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ABSTRACT Lipid excipients are applied for numerous pur-
poses such as taste masking, controlled release, improvement of
swallowability and moisture protection. Several melting tech-
niques have evolved in the last decades. Common examples
are melt coating, melt granulation and melt extrusion. The re-
quired equipment ranges from ordinary glass beakers for lab scale
up to large machines such as fluid bed coaters, spray dryers or
extruders. This allows for upscaling to pilot or production scale.
Solvent free melt processing provides a cost-effective, time-saving
and eco-friendly method for the food and pharmaceutical indus-
tries. This review intends to give a critical overview of the pub-
lished literature on experiences, formulations and challenges and
to show possibilities for future developments in this promising
field. Moreover, it should serve as a guide for selecting the best
excipients and manufacturing techniques for the development of a
product with specific properties using solvent free melt
processing.
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ABBREVIATIONS
API Active pharmaceutical ingredient
BET Brunauer–Emmett–Teller theory
Caco Colon adenocarcinoma cells
DSC Differential scanning calorimetry
DVS Dynamic vapor sorption
EDX Energy dispersive x-ray microanalysis

FDA Food and drug administration
FT-IR Fourier transform infrared spectroscopy
GRAS Generally recognized as safe
HLB Hydrophilic lipophilic balance
HSM Hot stage polarization microscopy
IIG Inactive ingredient guide
INF Interferon
NIR Near infrared spectroscopy
PAT Process analytical technology
PEG Polyethylene glycol
PgP P-glycoprotein
SEM Scanning electron microscope
TGA Thermogravimetric analysis
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction

INTRODUCTION

The importance of lipid-based solid oral formulations has in-
creased during the last decades, due to their outstanding ben-
efits such as providing modified release profiles or taste
masking using solvent-free processing techniques. Lipid-
based excipients were first used in the 1960s for embedding
drugs in a wax matrix in order to sustain drug release (1,2). In
the more recent years these excipients were successfully used
in oral drug delivery systems to enhance the bioavailability of
poorly aqueous soluble drugs (3–5). Furthermore, taste
masking and the improvement of swallowability have been
achieved with these excipients (6). Further reasons for the
application of lipids in a formulation may be (I) shelf life ex-
tension by protecting the drug from other ingredients or from
environmental influences (II) the reduction of gastric irritation
(III) the improvement of general attributes like flowability,
lubrication performance, compressibility or mechanical resis-
tance (7,8). Common techniques to obtain solid lipid-based
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formulations are: spray congealing/drying, adsorption on sol-
id carriers, melt granulation/melt extrusion, supercritical fluid
based methods, or processing of solid lipid nanoparticles (9).
The major difference between these methods is whether or
not solvents are applied during the process. Several formula-
tions described in the literature are prepared by spraying tech-
niques involving lipid excipients emulsified in water or dis-
solved in organic solvents and also aqueous dispersions of solid
lipid nanoparticles (9–12). However, there are several draw-
backs associated with the presence of solvents. An aqueous
medium requires a time-consuming solvent evaporation step
and residual moisture may affect product stability due to drug
hydrolysis. Organic solvents offer a considerably faster evap-
oration step, though these solvents are much more expensive,
flammable and often toxic. This causes other issues like the
prevention of hazards to employees and environment, and
additional costly steps for solvent recovery and disposal (13).
On the contrary, working with molten excipients provides the
outstanding benefit of evading any solvent. Thereby, all the
described disadvantages can be overcome. Despite the prom-
ising benefits, there are also some problems involved with the
application of solvent-free melting techniques with lipid based
excipients, e.g., heat sensitive drugs may undergo degradation
and polymorphic and morphological changes of the lipid or
crystallinity changes of the drug may alter the product perfor-
mance over time.

Countless studies on the development of solid oral formula-
tions using solvent-free melting techniques have been published
in the last decades. The current work is a critical review of these
studies based on the applied excipients, processing strategies
and the analytical methods for the characterization of the ex-
cipients and the end product. The focus is on manufacturing
processes, which are categorized into three main strategies, i.e.,
melt extrusion, melt coating and melt agglomeration.
Additionally, this review intends to give support for selecting
appropriate lipid excipients and suitable solvent-free
manufacturing techniques to obtain the desired end product.

LIPID-BASED EXCIPIENTS

Substances containing a fatty acid in their chemical structure
are referred to as lipid-based excipients. Even though fatty
acids occur naturally and are part of the daily diet, a general
statement about the safety and toxicity of their derivatives
cannot be made. A reasonable approach is the selection of
lipid-based excipients listed as Bgenerally recognized as safe^
(GRAS) or registered as inactive ingredient in the Binactive
ingredient guide (IIG)^ published by the United States Food
and Drug Administration (FDA) or the use of food excipients,
which only require a simplified authorization procedure for
pharmaceutical application (14–16). However, physiological
and biopharmaceutical interactions with other formulation

compounds as well as additional toxicological effects of the
formulation are not taken into account (14,17). Many lipophil-
ic compounds act as substrates for the P-glycoprotein (PgP), a
membrane-bound ATP-dependent efflux pump in the
enterocyte that transports xenobiotics back into the intestinal
lumen, and for the intestinal cytochrome P450 enzyme, a
hydroxylase that metabolizes xenobiotics to more water solu-
ble, often inactive derivatives that can be excreted through the
urinary bladder (18,19). Their inhibition increases the absorp-
tion of drugs out of the intestinal lumen and reduces the
metabolization into inactive drug derivatives leading to an
overall higher drug exposure, which may go along with more
pronounced side effects (18). An in vitro study, for instance,
revealed that lipid-based additives such as Peceol and
Gelucire 44/14, both approved as GRAS, inhibit the PgP-
mediated efflux in human colon adenocarcinoma cells
(Caco-2) by decreasing the PgP-protein expression (20).
However, the prediction of the real in vivo impact is hardly
possible, as it strongly depends on the applied excipient con-
centration, the binding-affinity, the therapeutic index of the
drug, and even on the individual genetic protein polymor-
phism (18,21).

Nevertheless, the number of possible combinations of the
molecular structure is virtually infinite, depending on the fatty
acid (e.g., chain length, the grade of saturation, the presence of
branches, the kind of chemical bond (e.g., ether/ester) and na-
ture and number of the linked molecule (e.g., glycerol, addition-
al fatty acids, propylene glycol, polyglycerol, sucrose etc.). This
leads to a wide field of application possibilities of these excipi-
ents comprising solubility enhancement as well as controlled
drug release. A useful indicator to estimate the drug release is
the hydrophilic-lipophilic balance (HLB) a numerical rating
scheme based on the water solubility and polarity of the excip-
ient (22,23). As the contact angle and, consequently, the wetting
behavior are affected by the HLB, excipients with a lower HLB
(≤5) can be expected to retard the original drug dissolution
pattern (24). Apart from polarity the gel-formation properties,
melting point, crystallinity and porosity as well as the nature of
the drug (e.g., solubility, melting point) itself and the way the
drug is integrated into the formulation (e.g., core/shell, matrix),
can play an integral role in in vitro drug release (24–26). Table I
gives an overview of the substance classes and associated mate-
rials applied as excipients in published formulations for both
pharmaceutical and food supplementary products. The most
frequently, purely used excipients in the recent past are
Compritol 888 ATO for controlled release, Precirol ATO 5
(depending on coating amount and drug (27,28)) for taste
masking, Gelucire 50/13 for solubility enhancement of poor
soluble drugs, and stearic acid for pH-dependent release (e.g.,
enteric coating). In particular, Precirol ATO 5 and Gelucire
50/13 are prone to exhibit polymorphic changes and have
therefore been associated with storage instabilities.
Chapter 3.3 lists a few strategies to circumvent this issue.
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Common surfactants comprising a fatty acid in their mo-
lecular structure such as polyoxyethylene sorbitan fatty acid
esters (Tween), sorbitan fatty acid esters (Span) or glyceryl
esters of organic acids (E472 a-c) are excluded from the list.
Waxy materials such as microcrystalline wax (hydrocarbon
wax), carbowax and all other available polyethylene glycols
are also excluded, as these materials do not comprise lipid-
based structures. Nevertheless, these materials have been fre-
quently processed with the within described melting
techniques.

CHARACTERIZATION METHODS, CHALLENGES
AND CONTROLLING STRATEGIES

Lipid-based excipients often involve acylglycerols in their
structure or their blend. Acylglycerols exist in up to four dif-
ferent crystalline structures: the pseudo-hexagonal sub α-, the
hexagonal α-, the orthorhombic β′- and the triclinic β-form (in
order of increasing thermodynamic stability) (174–177).
These forms not only differ in their packing density and sta-
bility, but also in their physico-chemical properties such as
their melting point, recrystallization rate, and solubility in wa-
ter (177–179). For instance, the transformation from the ther-
modynamically instable and less dense α-form to the most
stable and densely packed β-form should result in the reduc-
tion of wettability. Another effect associated with polymorphic
transformation occurs during the transformation from the
hexagonal α- to the triclinic β-form while passing the

orthorhombic β′-form. The altered geometric integrity of the
crystalline structure leads to the spontaneous formation of
flake-like fractal structures on the surface also known as
Bblooming^ (164). Interestingly, the impact of this alteration
on drug release described in the literature points towards two
different directions, both causing a change in drug release
after storage and indicating formulation instability. On the
one hand, the rough surface was described as super water-
repellent with contact angles larger than 150°, meaning a
significant reduction of wettability (180,181). Several studies
have proven the formation of fractal structures on the surface
of different lipid formulations with SEM images, which seems
to be associated with an undesired retarded drug release after
storage. It is of particular interest, that all described formula-
tion comprised mono-, di- or triacylglycerides in a extruded
mixture with the drug (159,182). This effect was even able to
overrule the dissolution enhancing effect of some surfactants
(e.g., glyceryl monostearate, HLB 3.8) (131). On the other
hand, several formulations have been reported showing a sig-
nificant increase in their dissolution rate after storage
(80,102,183).

Interestingly, these formulations all included a compound
with a high HLB and a lower melting point (e.g., Caprol PGE
860), which might form an amorphous partition in the sur-
rounding of the crystallized lipid structures. The storage above
the melting point increases the mobility of this amorphous
phase and induces phase separation and may result in an
increased wettability. This effect can be promoted additionally
by changes in the structure of the crystalline phase due to

Table I Overview of Lipid Based Excipients and Their Application in Literature

Substance class Materials and application examples in literature

Waxes Bees wax (29–34), carnauba wax (29,31,32,35–41)

Fully or partially hydrogenated
vegetable oils and fats

Hydrogenated coco-glycerides (e.g.,Witocan 42/44, Witepsol E 85) (42–45), hydrogenated palm fat and oil
(e.g., Softisan 154) (46,47), hydrogenated castor oil (e.g., Cutina HR) (48–58), hydrogenated rape oil
(59), hydrogenated cottonseed oil (e.g., Sterotex, Lubritab) (60–62), hydrogenated soybean oil (e.g.,
Sterotex HM) (63–67), hardened soybean oil (e.g., Dynasan 120) (68)

Polyoxylglycerides Gelucire 55/18 (69,70), Gelucire 50/13 (71–85), Gelucire 44/14 (75,86–101), Gelucire 39/01
(102–104), Gelucire 43/01 (104–107), Gelucire 50/02 (28, 69,88) and Gelucire 64/02 (108),
Compritol HD 5 (109)

Fatty acids Myristic acid (59), palmitic acid (110–113), stearic acid (35,36,57–59,111,113–119), behenic acid
(59, 120), Syncrowax AW1-C, Emulsifying wax NF (37)

Monoacylglycerides Glyceryl monostearate (e.g., Imwitor 491, Atmul 84 K) (39,55, 57,114, 115,121–132), glyceryl
monooleate (133,134), glycerol monolaurate (84)

Diacylglycerides Glyceryl palmitostearate (Precirol ATO 5) (27, 43,135–142) and glyceryl dibehenate (Compritol 888 ATO)
(29,137,44,54,139,142–158) with 40–60% of diacylglycerides

Triacylglycerides Trilaurin (Dynasan 112) (159,160), trimyristin (Dynasan 114) (44,141,142), tripalmitin (Dynasan 116)
(159–162), tristearin (Dynasan 118) (45,131, 159,163–165), tribehenin (e.g., Syncrowax HR-C),
triglyceride of long fatty acids (Syncrowax HGL-C) (37,147)

Animal fats Cow ghee (41,166,167)

Polyglycerides Tetraglycerol pentastearate, tetraglycerol monostearate (168), polyglyceryl-6-stearate (47)

PEG fatty acid esters PEG-6-stearate (e.g., superpolystate) (169)

Sucrose fatty acid esters Sucrose laurate (170,171), sucrose stearate (61,172), sucrose palmitate and sucrose behenate (173)
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polymorphic transition during storage (Bthermally induced
phase separation-recrystallization^). These phenomena are
highly dependent on the characteristics of the raw material
(e.g., melting point, miscibility, crystal structure) as well as on
the temperature and mobility of the molecules. In particular
Gelucire 50/13, which is a mixture of mono-, di- and
triacylglycerides (C12-C18) and polyethylene glycol esters, is
already known to show an increased release rate due to ther-
mally induced phase separation and polymorphic transforma-
tion (184). The last example, Precirol ATO5, will emphasize,
how complex and severe the impact of the polymorphic be-
havior on formulation stability can be. Hamdani et al. reported
a complete loss of the prolonged release properties after stor-
age at accelerated conditions of melt-granulated pellets com-
prising Phenylephrine, Lactose 450, Precirol ATO 5 and dif-
ferent amounts of unmelted Compritol 888 ATO. However,
the storage at 25°C/60% r.h. decreased the dissolution rate
significantly (138). Reitz et al. reported a similar impact
on drug dissolution rate by using Precirol ATO 5 for
manufacturing theophylline extrudates. Although the
dissolution rate decreased in the first week, after
9 months it was significantly higher than directly after
manufacturing (142). The mechanism behind these ob-
servations is not explained, but it is nonetheless possible
that the formation of more stable polymorphs and frac-
tal structures reduces the dissolution rate after storing at
room temperature. The increase of dissolution rate ob-
served after storage at higher temperatures lacks an ex-
planation and has to be associated with the heteroge-
neous composition and sensibility to thermal treatment
(141). Nevertheless, the formulation design (e.g., melting
technique, excipient composition, drug properties and
interaction with excipients etc.) may also affect the drug
release during storage.

As the dissolution profile is influenced by various effects
and complex interactions, it is not surprising that there also
exist stable formulations with excipients that caused storage
instabilities in other studies (139,185). Hence, it is crucial
to understand the physicochemical behavior of the raw
materials and the interaction and impact on the prop-
erties of the processed formulation. Therefore, the fol-
lowing subchapters will focus on the characterization
methods for the excipients and the product after ther-
mal processing. Subchapter 3.3 intends to show how
storage instabilities may occur and how they can already be
prevented in the preformulation stage.

Characterization of the Excipients

Changes in polymorphism and morphological structure as
well as phase separation phenomena are probably the most
common effects inducing formulation instabilities during stor-
age. Therefore it is crucial to develop a deep understanding of

the physicochemical properties of the selected excipients be-
fore and after melting, under different conditions (e.g., time,
temperature), and in mixtures with each other and with and
without the drug. This step saves time and costs in the process
development phase. Table II summarizes methods used to
gain insight into physico-chemical properties.

Characterization of the Product After Melt Processing

Apart from the well-established powder and surface-morphology
characterization techniques (72,109,110,126,187,188), analytical
in vitro tools are also available for the estimation of the subsequent
in vivo dissolution behavior of the formulation in the
body. Common in vitro methods for this purpose are dissolution
tests with biorelevant media and lipolysis studies with pancreatin
(182,189–193). Biorelevant media contains physiologically
relevant surfactants including a mixture of bile salts (e.g., sodium
taurocholate), phospholipids, pancreatic lipase to simulate
lipolysis, and buffer and salts are added to adjust the pH and
the osmolarity of the medium to imitate physiological conditions
(182). Witzleb et al. showed that the release from lipid-based
matrices in biorelevant media highly depends on the structure
of the lipid. Cetyl palmitate and glyceryl monostearate, for
instance, exhibited a significantly faster release in biorelevant
media than in HCl due to a different solubilization with
surfactants and enzymatic degradation in case of glyceryl
monostearate. Other lipid matrices such as glyceryl tripalmitate
and glyceryl dibehenate indicated only a minor effect of the
changed medium on drug release (182). In addition, lipolysis
measurements revealed that lipid digestion of the pancreatic
lipase does not only depend on the chain length, but also on
the grade of esterification, on the solid state, and the ability for
solubilization (182,194,195). Hence, it cannot be excluded that
changes in crystallinity and solubility due to polymorphic
transitionmay have a significant impact on in vitro and in vivo drug
release profiles (182). Alongwith an optimal dissolution rate, taste
masking is often an important objective in formulation
development (33,43,196,197). This is usually evaluated in
sensory studies with trained volunteers (33,198–200). Some
studies also involve cats, which are sensitive to bitterness
and scorn bitter food with insufficient taste masking (197).
A simple in vitro method is the use of a disintegration tester
(1 min stirring, pH 7,4) for the evaluation of the short time
release amount in a pH close to that in the mouth (196),
but also the results of a test of the first minutes of dissolution
have been utilized (201). Another method reported is the
mini column method, which represents a release test that
attempts to simulate the anatomy and physiology of the oral
cavity (201,202). A more sophisticated method is the measure-
ment of dissolved samples with an electronic tongue, which
consists of different potentiometric sensors and a pattern
recognition system (203,204) (Table III).
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Strategies for Controlling Polymorphism
and Formulation Stability

Several approaches to control lipid polymorphism are con-
ceivable, whereby only some have been applied in the existing
literature:

& Tempering during processing:
Process temperatures are kept between the melting

point of the instable α- and stable β-form, in the area
where the direct recrystallization of the stable β-form pre-
dominates over the β′-form (205). This prevents the for-
mation of fractal structures (159) and the alteration of the
dissolution profile due to morphological changes during
storage. The recrystallization of the thermodynamically
stable β-form is significantly slower than of the α-form.
This may result in processing difficulties such as agglom-
eration in a fluid bed melt coating process or incomplete
resolidification after spray chilling in a spray dryer. Melt
extrusion is an appropriate technique to generate storage
stable extrudates with this technique (142).

& Tempering after processing (Bmaturing^):
In the first step recrystallization of the instable α-form is

enabled by ensuring optimum process conditions.
Maturing is performed after the process at elevated tem-
peratures below but close to the melting point of the insta-
ble α-form. The maturing step is time consuming and may
require additional equipment (e.g., a drying chamber).

Alternatively, a fluid bed coater can be used for that step,
as this prevents the formation of agglomerates. The α→ β
transformation causes the formation of fractal structures
and the alteration of the dissolution profile before and after
maturing (64,66,146). A complete transformation is essen-
tial for achieving a storage stable formulation.

& Addition of crystallization seeds (Btemplate effect^)
The stable β-form or material with a comparable satu-

ration grade and a chain length difference of n≤4 can be
used as seed material (177). The seed material is added to
the molten lipid in the solid state. The presence of seeds
acting as templates should accelerate the direct recrystal-
lization of the molten material into the stable β-form
(67,177). In case the stable β-form recrystallizes directly
from the melt during the process, fractal structures should
be avoided (159,164). When seed material is applied in
form of a spraying suspension, the amount is limited to
prevent nozzle clogging. The efficiency of this measure in
accelerating the recrystallization and its effect on the pu-
rity of the stable phase haven’t been analyzed in detail yet.

& Avoidance of melting:
The polymorphic transformation of most lipid excipi-

ents is monotropic. That means that if melting of the raw
material, which is usually provided by the supplier in the
stable β-form, can be avoided, the storage instabilities due
to polymorphic changes can be eliminated. The challenge
herein lies in the processability. Solid lipid excipients with
a critical polymorphic behavior should either have a

Table II Characterization Methods for Lipid Excipients

Method Information Application in development

DSC (also coupled with XRD
or TGA)

Melting and recrystallization point/range, peak broadness,
polymorphism, thermal behavior, melting/recrystallizing
fractions, chemical stability

Selection of process temperatures, prediction
of storage stability and process performance
(agglomeration/ film formation)

Isothermal microcalorimetry Monitoring of thermal events Detection of polymorphic changes during storage

XRD Crystallinity, morphology, polymorphism Prediction of storage stability

Hot stage polarization microscopy
(HSM)

Crystal growth under well-defined conditions, polymorphic
transformation

Selection of cooling rate, coating quality, prediction
of storage stability

FT-IR/ NIR/ Raman Polymorphism (finger print), chemical composition Product quality, process monitoring (PAT)

Goniometry contact angle Wettability, surface tension Solubility, dissolution rate

Rheometer Melt viscosity (shear rate, temperature), thermoplastic
behavior of excipients

Processability (spraying techniques), selection of
process parameters

Texture analyzer Brittleness, film adhesion, swelling behavior, conductivity, Coating quality, stability

Dilatometry Thermal expansion/contraction Coating quality

Profilometry Surface roughness, topographic analysis Mouth feel

Penetrometry Material strength, hardness Mouth feel

Dynamic vapor sorption (DVS) Water sorption/desorption Moisture protection

Karl Fischer titrimetry Water content Moisture protection

Acid/Base titration Saponification value
Acid value

Calculation of HLB (186)

TD-NMR Solid fat content (SFC) Spreadability, firmness, mouth feel, processability
and stability
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suitable viscosity or have to be combined with an excipient
that has an appropriate viscosity and/or shows no poly-
morphism or transforms into the stable form during or
immediately after resolidification (161,207–209). In the
case of aiming at a controlled release formulation, the
formation of a physical mixture between drug and lipid
excipient might be the wrong path as the dissolution rate
of the physical mixtures may be higher than that of the
solidified melt-dispersion (140,210).

& Addition of polymorphic modifiers:
Several emulsifiers are known to have a significant im-

pact on the crystallization (e.g., nucleation rate, crystal
growth and morphology) and polymorphic transition of
lipid excipients (211,212). Although numerous publica-
tions exist on this topic, the majority of these studies dis-
cuss applying commercially available additives, which of-
ten consist of a chemical mixture with high heterogeneity
and differ in their composition between different suppliers

and even batches (211). Additional effects such as their
concentration, kind of lipid, degree of undercooling as well
as the use of agitation may have a significant influence on
the crystallization and polymorphic process (211). Most of
the application examples derive from and are addressed to
the food industry and only a few studies are specific to the
pharmaceutical industry (131,162,213,214). There are
several examples how modifiers can impact the polymor-
phism: Sucrose esters obstruct the α → β and β′ → β
transition in tristearin and hydrogenate sunflower oil due
to their high rigidity and some representatives (e.g., P-170,
S-170) also affect the crystal size of the high-melting frac-
tion of milk fat (215–217). Garti et al. claimed that solid
emulsifiers such as Span 40 (sorbitan monopalmitate),
Span 60 (sorbitan monostearate), Span 65 (sorbitan
tristearate) as well as glyceryl monostearate were able to
stabilize the α-form and prevented the transformation into
the stable β-form in tristearin (218,219). However, ageing

Table III Characterization
methods for product after melt
processing

Parameter Methods

Size distribution, sphericity, shape Sieve analysis, digital imaging, laser diffraction (76,188,198)

Friability Friabilator (33,48)

Flowability, compactibility,
compressibility

FT4 powder rheometer, flow time (funnel), angle of repose, graduated
cylinder (tapped/ bulk density, hausner ratio, carr index), texture
analyzer (tensile strength profile) (48,169,198)

Hardness Hardness tester, texture analyzer (32, 48,68)

Porosity Mercury porosimeter (142,188,302)

True density, specific surface area (BET) Helium pycnometer (81,158,188)

Surface topography and morphology Scanning electron microscopy (SEM) (179,188)

Microstructure (Cryogenic) Transmission electron microscopy (TEM) (206)

Synchrotron radiation computed microtomography (SRμ-CT) (157)
Surface structure Atomic force microscopy (AFM), stereomicroscopy (179)

Coating thickness Optical coherence tomography (OCT)

Terahertz spectroscopy (265,267)

Surface polymorphism Attenuated total reflection fourier transform infrared spectroscopy (ATR-
FTIR) (44)

Elemental composition & homogeneity Energy dispersive x-ray microanalysis EDX) (84,306)

Chemical distribution & homogeneity Raman confocal microscopy (raman mapping) (126)

Atomic composition & homogeneity X-ray photoelectron spectroscopy (XPS) (188,366)

Buoyancy lag time Floatability (visualization/counting method) (83,106,133,148,149)

Non-invasive, in vivo floating behavior γ-scintigraphy with radiolabeled technetium (99mTc), radiographic
incorporation studies (107)

Taste (e.g., bitterness) Sensory studies with trained or untrained volunteer collective, electronic
tongue, short-time dissolution profiles by using disintegration
tester (33,196,199,200,203,238)

Dissolution Dissolution tester I/II, data fitting to mathematical kinetic models for
controlled release (e.g., zero order) or immediate
release (30,57,106,188)

In vitro prediction of lipid digestion in vivo Dissolution with biorelevant medium; in vitro lipolysis with pancreatin,
construction of IVIVC-model in case in vivo data is
available (9,182,189,190,191)

Storage stability at accelerated or
intermediate conditions

Evaluation of quality attributes (e.g., dissolution, taste) (43,91,138,139)
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experiments at room temperature revealed that only a few
molecules ( e .g . , tr iglycerol- l -s tearate, sorbitan
monostearate) with a suitable dimension of the hydrophil-
ic moiety (Bbutton syndrome^) were able to preserve a
certain amount of the α-form for a longer storage time
(218). As the effect on polymorphism depends on the
chemical and structural nature of the lipid and emulsifier,
in principle it is conceivable that the stabilization of the α-
form during storage may be feasible to some extent.
Nevertheless, this approach is associated with a high risk
of transformation into the stable β-form in particular at
higher storage temperatures. A more promising approach
is the addition of emulsifiers to accelerate the transforma-
tion into the stable β-form. In particular, liquid or semi-
solid emulsifiers such as different polysorbates (Tween 60,
65, 80) and sorbitan monolaurate (Span 20) were proven
to promote the α→ β transformation due to an increase in
molecular mobility (218,220). In the pharmaceutical in-
dustry this approach was used to coat N-acetylcysteine in
a fluid bed coater with a coating consisting of tripalmitin
and polysorbate 65 (162). As an advantage, the process
temperatures can be kept to a minimum, which is prefer-
able for drugs sensitive to heat, and the transformation
and morphological changes will be complete before stor-
age. However, it must be borne in mind that phenomena
apart from polymorphism can lead to storage instabilities
in particular if a liquid or semi-solid emulsifier is used in a
greater amount (e.g., phase separation). Furthermore, the
application of a higher amount of low-melting excipients
can pose a problem if melt coating (e.g., fluid bed coating)
or fast recrystallization in general is required. Thus, it is
wise to take the time and effort for pre-formulation studies
exploring the polymorphic and morphological behavior
(e.g., crystal size, blooming, phase separation etc.) at differ-
ent conditions (e.g., temperature, cooling and recrystalliza-
tion rates, concentration etc.).

& Selection of excipients without/with stable polymorphism
Waxes such as carnauba wax, bees wax and stearyl

stearate are stated to be non-polymorphic materials
(40,46,221), which avoid storage instabilities associated
with polymorphic changes. In particular the high melting
point and brittleness of carnauba wax can induce process-
ing problems such as nozzle clogging. Carnauba wax and
bees wax have been most frequently used for controlled
release formulations, but also immediate release is feasible
with the addition of dissolution enhancers. Polyglycerides
are said to be non-polymorphic, but stable in the α-
crystalline form (222,223). The amount of glycerol- and
esterified fatty acid molecules contributes to the HLB and
can be adjusted in a wide polarity range and oligoglycerols
with a degree of polymerization of up to 10 are approved
by the FDA (224). Polyglycerol bears more functional
groups for modification than PEG, and therefore shows

a higher adaptability to different requirements such as the
melting point or viscosity. However, these materials have
been overlooked by the pharmaceutical industry for a long
time (224).

& Selection of polymorphic excipients:
Lipid excipients consisting of a complex mixture of

glycerol molecules with different degrees of esterification
(e.g., Precirol ATO 5, Compritol 888 ATO, Gelucire 50/
13 etc.) and/or of esters of different fatty acids (e.g., Precirol
ATO 5) should be treated with particular caution
(70,225). The high heterogeneity leads to a complex poly-
morphic behavior difficult to predict during melt process-
ing and storage (137). The polymorphic behavior of
Compritol 888 ATO, which mainly consists of glyceryl
dibehenate, has been studied extensively with DSC,
time-resolved synchrotron x-ray diffraction and infrared
spectroscopy at different conditions (e.g., cooling rate, ad-
dition of pure acyl glycerides etc.) (135,226). These studies
revealed that the ratio of mono-, di- and tribehenin and
especially the monobehenin amount is important for the
formation of a pseudohexagonal sub-α and hexagonal α-
phase (226). In particular the less stable and compact
sub-α-form shows a higher drug incorporation, which is
desired in the preparation of solid lipid microparticles
(226,227). Therefore a variation in the batch composition
of the supplier as well as the mixture with excipients con-
taining monoacylglycerides themselves can lead to chang-
es in the equilibrium and different polymorphic behavior
(226). Nevertheless, Compritol 888 ATO has been
widely used in controlled release formulations and
seems to be able to provide a stable release profile
during storage (43,228). In contrast, the literature
seems to lack polymorphic studies for Precirol
ATO 5 with a similar degree of detail. Hamdani
et al. mainly used DSC and powder X-ray diffraction
to investigate the sensitivity of the polymorphism on
thermal treatment of Precirol ATO 5 (137). The
complex polymorphic behavior due to the high ho-
mogeneity of the mixture led to several studies that
showed an altered dissolution profile (138,142).
However, the higher complexity of the aforementioned
materials also brings advantages such as the broader melt-
ing and recrystallization range, which leads to a better
spreading and higher robustness against process changes
compared to pure materials with a sharp recrystallization
profile such as triacylglycerides (e.g., Dynasan 114) (142).

& Specification of storage temperature:
Transformation kinetics and phase separation phenom-

ena are both temperature dependent (26,82). The selection
and specification of adequate storage conditions might be
the last way to prevent or at least slow them down to a
minimum. However, this approach is less favored by the
pharmaceutical industry as patient compliance is an issue.

Lipid-based Solid Oral Formulations 1525



SELECTION OF LIPID-EXCIPIENTS AND MELT
PROCESSING TECHNIQUES

Several techniques have been described in the literature on
solvent-free preparation of lipid-based solid, oral formula-
tions. Nevertheless, the first step in formulation development
should always be a careful selection of the lipid excipients (and
other excipients if necessary). A useful, rationale based ap-
proach is provided by the FDA in the ICH guideline Q8
within the framework of the concept of quality by design
(QbD) (229). According to this guideline a quality target prod-
uct profile (QTPP) should be defined for the final or interme-
diate product. This QTPP should include all desired charac-
teristics such as the dosage form, drug load, particle size, bio-
availability, dissolution behavior, taste and stability (230).
Based on the QTPP the next step will be the definition of
the critical quality attributes (CQA) for the excipients and
the drug and their appropriate specification limits, which must
bemet to ensure the desired product quality and patient safety
(229). Typical CQAs are, for instance, the dissolution rate, the
particle size distribution, the maximum permissible impurity
profile (231) as well as the stability of the formulation (232).
Rosiaux et al. (26) gave an overview of formulation parameters
(e.g.,HLB, excipient characteristics, further additives) that can
be used to adjust the drug release from lipid matrices. Pore
formers or surfactants with higher polarity accelerate the drug
release, whereas increasing the concentration and melting
point of the hydrophobic lipid excipient can be used to slow
down the drug release (26). Taste masking with an immediate
release profile can be achieved by applying lipids with a com-
parably lowmelting point such as Dynasan 114, Dynasan 116,
Precirol ATO 5 or Witocan 42/44 (16,42,162,233–235).
However, excipients with a melting point near room tem-
perature may result in an inferior product quality due to
poor flowability, a tendency to form great agglomerates
and the risk of morphology changes during storage (236).
Hence, comprising a liquid or a very low melting (<40°C)
excipient in the formulation has to be well considered and
the amount kept as low as possible. The ideal compromise
between sufficient taste masking and immediate release
may be found by applying a statistical design (DOE) to
achieve an optimal adjustment of the critical process input
parameters (CPP). Further consideration should be given
to physical or chemical interactions between the chosen
lipid excipients and the drug with special regard to tem-
perature induced degradation and changes in crystallinity
(solid solution, polymorphic changes). The selection of
equipment and processing technique depends on the
desired dosage form and particle size distribution as well
as on already existing equipment and characteristics of the
active ingredient and chosen excipients. The most
common equipment in the industry used for melt process-
ing are the extruder, the high shear mixer, the fluid bed,

the pan coater and the spray dryer, which all allow for
upscaling. Depending on the desired solid dosage form, a
great number of different downstream processes are addressed
in the literature, such as spheronization (49,69,109,209),
molding (74,95,133,183,237,238), capsule f i l l ing
(87,88,91,98,100,102,139,239–246), injection moulding
(247,248), freeze pelletization (121,249), pastilation (250),
milling (122,196) or tableting (92,156,251). Nevertheless, it
should be obvious, that manufacturing costs will rise with the
addition of further process steps and, therefore, should be con-
sidered thoroughly in advance. Table IV summarizes the com-
mon advantages and disadvantages associated with the melt
processing technique in the respective equipment. A compari-
son with the required QTPP may provide the first support for
the selection of the appropriate technique and equipment.

The following chapter will focus on the developed formu-
lations and associated characteristics of the final product, on
the basis of the categories melt extrusion, melt coating and
melt agglomeration. At this point it is worthy of note that
the terms for the melting techniques are not used consistently
in the literature, especially when the topics melt coating and
melt granulation are concerned (51). The fundamental differ-
ences between these techniques lie in the distribution of the
API and the size of its contact surface with the lipid excipient.
Melt extrusion provides a homogeneous solid dispersion after
processing, while the distribution is less homogenous and the
contact surface of the API and the lipid is smaller when melt
agglomeration by high shear mixing and in particular melt
coating are used. Nevertheless, the delimitation between these
terms is complicated. For instance, several downstream pro-
cesses of melt extrusion allow for the formation of pellets and
granules, and with melt coating techniques a drug / lipid
dispersion may be sprayed on nonpareils creating a solid dis-
persion layering.

Melt Extrusion

The classic equipment for the melt extrusion process is the
extruder, which consists of a single- or twin-screw system. In
both systems the screw is positioned in the center of a heatable
stationary barrel. Three zones within the extruder are named
after their individual function.

1. Feed zone: maximum pitch between barrel and screw
flight

The feed material enters this zone through a gravimet-
ric or volumetric hopper, is mixed under low pressure and
transported by the screw rotation to the compression
zone.

2. Compression zone: continuous reduction of the pitch
along the screw

The steady pressure increase leads to compression,
particle size reduction and more effective shearing and
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mixing. The heated barrel wall and the frictional heat are
used to melt or at least soften the material. Additional
equipment such as conveying and kneading elements
may be used for the mixing, homogenization, venting
and kneading process.

3. Metering zone: constant minimum pitch
The continuous high pressure supports a homogenous

and steady material flow to and through the die.

After melt extrusion the product is cooled and shaped
downstream in further processing units, such as hot strand
cutters, calendaring, chil l rol ls , or spheronizers/
marumerizers (128,280,281,290294).

Melt Extrusion is widely used for two main purposes,
namely enhancing the bioavailability of poorly soluble drugs
and the development of formulations with modified release
profiles (294–296). Jannin et al. (9) and Keen et al. (247)
reviewed a number of formulations showing an improved
drug release. The preferred lipid excipient was Gelucire 44/
14, which was extruded in a blend with 17 β-estradiol and
PVP, PVA, or PEG 6000 (92). Mehuys et al. extruded
Propranolol with HPMC and Gelucire 44/14, which was
molded as core material in an ethyl cellulose pipe. The ethyl
cellulose pipe offers protection against hydrodynamic andme-
chanical stress and provides a sustained, zero-order, erosion-
controlled drug release and a better bioavailability in dogs
compared to a commercial product (237,297,298). The appli-
cation of extruded wax matrices for the retardation of drug
release started in the early 1990s (299,300). Sato et al. and
Miyagawa et al. conducted a study to analyze the influence
of dissolution rate-controlling agents on extruded carnauba
wax matrices with diclofenac as model drug. Their investiga-
tions highlighted the importance of a proper pre-selection of
the dissolution modifiers and their physiochemical properties
(301,302). Liu et al. prepared tablets from sustained-release
extrudates of phenylpropanolamine, wax and different types
of fillers and showed the effect on the dissolution rate caused
by the type of filler in the matrix (303). This matches the
investigations of De Brabander et al., who described a different
impact on dissolution with different starch derivatives in
extrudates compressed to mini tablets (304). Quintavalle et al.
developed a sustained co-extrudate with an inner hydrophilic
core (PEG 6000) and an outer lipophilic coat both containing
theophylline as drug. Its release was tailored through a suit-
able selection of parameters. In addition a very small in vivo
bioavailability study of four healthy volunteers confirmed the
desired sustained release (305). Roblegg et al. introduced veg-
etable calcium stearate for preparing sustained release pellets
with a 20% paracetamol drug load. Although the addition of
dissolution enhancers like glyceryl monostearate and tributyl
citrate was able to reduce the process temperatures, the tem-
perature of 70°C is still inappropriate for thermolabile sub-
stances (128). Vithani et al. successfully applied Compritol®Ta
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888 ATO as an excipient for the extrusion of the model drug
diclofenac sodium and subsequent direct compression of
sustained release tablets (306). Several investigations from
the working groups of Breitkreutz and Kleinebudde et al. de-
livered insight into the applicability of different lipid excipients
and the polymorphic behavior after melt extrusion and stor-
age (43,131,142,159,161,163). Their storage stability studies
revealed a superior stability of homogenous lipids (e.g.,
Dynasan 114) and emphasized the requirement for under-
standing and avoiding polymorphic transformation during
storage (43,142). WithWitocan 42/44 melt extrusion at room
temperatures (Bsolvent-free cold extrusion^) and a stable re-
lease profile over storage was feasible (42,43). Another ap-
proach for reduction of the process temperature and extend-
ing the release was adopted by Schulze and Winter for a
protein co-lyophilisate of INF α with hydroxypropyl-β-
cyclodextrin in a lipid implant. The selective melting of a
low melting lipid excipient in a blend with a high melting lipid
provided an extrudable mass at moderate temperatures, an
unchanged protein structure and avoided polymorphic
changes of the high melting lipid due to recrystallization
(207). In a second study with lysozyme Sax and Winter chose
different low melting lipids in the combination with Dynasan
118 and different portions of pore forming agent to analyze
the influence on the release kinetics of protein molecules from
the lipid implant (45). The partial melting of the low melting
fraction at incubation temperatures of 37°C built a protein
reservoir and an additional non-aqueous diffusion pathway
besides the conventional way through the buffer filled inter-
connected pore-network created by the dissolution of hydro-
philic excipients (45,165). Recently, Oliveira et al. evaluated
the extrudability of formulations, comprising Gelucire 33/01
and two further lipid excipients such as Dynasan 114, Precirol
ATO 5, Witocan 42/44 or Compritol 888 ATO at room
temperature and revealed a complex influence on porosity,
thermal behavior, mechanical properties and dissolution rate
depending on the chosen composition (307). It can be conclud-
ed that if lipid excipients are used, not only the dissolution rate
but also mechanical properties and porosity should be moni-
tored during storage. A list of formulations developed via extru-
sion and their characteristics are summarized in Table V.

All in all, lipid-based excipients usually show a lower melt
viscosity and melting point compared to polymeric excipients
typically used in hot melt extrusion (e.g., hydroxypropyl meth-
ylcellulose, cellulose acetate, polymethacrylate) (294). Hence,
with lipid excipients the addition of plasticizers (e.g., PEGs,
triacetin, citric acid, GMS etc.) to decrease the glass transition
point and melt viscosity is dispensable. This leads to a reduction
of formulation complexity and allows for lower process temper-
atures (294,308,309). Thus, lipid excipients are able to extend
the portfolio of suitable APIs for hot melt extrusion by also
including heat sensitive candidates such as proteins (207).
Another important issue in the recent years was the adjustment

of the dissolution rate. Most of the published studies focus on
sustained release formulations (128,142,303,306,310) but only
a few on the application for taste masking by maintaining the
immediate release profile (42,43,233,235) and enhancement of
the solubility of poorly water-soluble drugs (92). The enhance-
ment of the release profile was usually performed by adding
rather high amounts of additives such as polyethylene glycol
(161), or certain amounts of polymers such as PVP (92).
However, the literature seems to lack in successful solvent-free
melt extrusion approaches with lipid-based excipients alone,
although hot melt extrusion with polymers is one of the most
popular methods to enhance solubility (281). The reasons for
the reluctant development of these kinds of formulations are
multifactorial. The choice of lipid-based excipients for oral ap-
plication suitable for this purpose is rather limited. The idea of
including polyethylene groups is perhaps sufficient to increase
the HLB and solubility, but leads to low melting temperatures
(Gelucire 44/14—HLB 14, melting point 44°C) impeding melt
processing (e.g., in spheronization step) (92) and deteriorating
formulation stability. Additionally, changes in polymorphism
may occur and alter dissolution rates during storage (e.g.,
Gelucire 50/13—HLB 13, melting point 50°C) (311). Also
other excipients such as sucrose esters, which would be stable
up to 140°C (312) and are available with a promising highHLB
of 16, showed polymorphic transformation during storage after
melting (173). Polyglycerol esters crystallize in hexagonal
subcells, exhibit no polymorphic transformation, are thermally
stable below 100°C (312) and available in a HLB range from 6
to 11 (313). However, only one study published in 1993 could
be found where these excipients were successfully applied in a
spray chilling process (314).

Melt Coating

The first publication mentioning the term Bmelt coating^ or
more precisely Bhot melt coating^was anUS patent published
in the year 1942 (315). A solvent-free coating technology was
described to coat sheet material (e.g., paper, foil, metal) with
molten thermoplastic resins, which can be used for the
manufacturing of water- and grease-proof primary packaging
of food (315,316). In the following decades the coating with
molten lipid-based excipients became a standard procedure in
the food industry (317,318). The literature discusses a wide
range of food products coated by recrystallization of lipid-
based molten excipients. For example: dip-coating of frozen
meat (Blarding^) (317,319,320), spray- or dip-coating as well
as enrobing of ice cream with molten chocolate (321), spray
chilling/congealing or fluidized bed coating of supplements
(e.g., vitamin C) (322), food additives (e.g., aspartame) (323),
flavors (324), or even heat sensitive probiotic bacteria
(47,259), to name just a few. The advantages of this coating
method have not gone unnoticed by the pharmaceutical in-
dustry. In the 1960s spray chilling was used for the first time by
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Merck & Co Inc. to achieve taste masking for iron particles
(325) as well as for water-soluble vitamins (326). In 1968
Richardson Merrell Inc. applied sprays of molten resin mix-
tures on a tumbling bed of tablets in a pan coater (327,328),
which marked the birth of the so called pan spray coating
procedure. This technique was also transferred to a fluid
bed coater, which was equipped with an additional heating
system for the atomization air by Glatt Air Techniques Inc. in
the early 1990s (62, 329). This was the start of further research
and development in this field, which has been reviewed in
several articles (13,253,263,264,330,331). The fluidized bed
coater, the pan coater and also the spouted bed are common
machines used for hot melt coating (264,332–334). In a coat-
ing pan the molten material is either sprayed by a nozzle (pan
spray (63,327,328)) or poured onto the rolling product (pan
pour coating (113,167)). The same can be performed in a fluid
bed chamber by fluidizing and melting the lipid excipient
together with the product (in-situ hot melt coating/ solid

dispersion fluid bed hot melt coating (123,147,335)) or by
spraying (hot melt spray coating (62,221)). Classically, the
drug is preheated and fluidized in the fluid bed coater, but
heat stable drugs can also be homogenously dispersed in the
molten coating material and sprayed on fluidized nonpareils
seeds (drug lipid dispersion hot melt coating (64–66)). This
makes a time-consuming process step to obtain a core material
with appropriate particle characteristics (e.g., size distribution,
flowability, friability etc.) superfluous. Nevertheless, this meth-
od is only suitable for a small drug load as the solid amount in
the spray dispersion can clog the nozzle during spraying.
Drug-lipid interactions have to be evaluated in advance, as
the drug may be dissolvable in the lipid matrix and can be
present in the amorphous state after resolidification (65) pos-
ing a potential risk of formulation instability due to recrystal-
lization during storage. Further, the particle size of the drug
can have a significant impact on drug release (65) and there-
fore has to be observed during formulation development.

Table V Overview: Selection of Formulations and Characteristics

API Lipids Application/product characteristics

Sodium benzoate (42) Stearic acid, Precirol ATO 5,
Witocan 42/44

Taste masking
Witocan 42/44 with superior binding capacity even at room temperature
(cold extrusion)

Solvent-based coating with Eudragit E required for taste masking

Theophylline (142) Precirol ATO 5, Dynasan 114 Controlled release
Dynasan 114: porosity dependent on extrusion temperature (Bblooming^)
Precirol ATO5: alteration in dissolution rate during storage (Bageing^)

Enrofloxacin (196) Compritol 888 ATO/Aerosil 200 Taste masking
Original die diameter: impact on dissolution rate of very slightly soluble drugs
Extrusion temperature: no impact on dissolution rate

Sodium benzoate (43) Witocan 42/44/Dynasan 114, Precirol
ATO 5, Compritol 888 ATO

Immediate release (taste masking)
Cold extrusion feasible for binary/ternary mixtures of Witocan 42/44 and
other lipids

Precirol ATO5: ageing during storage at elevated temperatures led to delay
in dissolution rate

Theophylline
diprophylline (44)

Witocan 42/44, Precirol ATO 5,
Dynasan 114

Controlled release
Faster drug release from extrudates with Dynasan 114 in comparison to
Precirol ATO 5

Impact factors on dissolution rate: particle size and drug load

Theophylline (159) Dynasan 112, Dynasan 116,
Dynasan 118

Controlled release
Diffusion controlled and chain-length dependent dissolution rate; extrusion
temperatures below melting point of instable α-form may induce storage
instabilities

Theophylline (131) Dynasan 118/Imwitor 491 Controlled release
Diffusion controlled dissolution, Imwitor 491 stabilizes the α-form and leads
to storage instability due to transformation into the stable β-form and the
formation of water repellent fractal structures

Theophylline (161) Dynasan 116/polyethylene
glycol 10000

Controlled release
Dissolution rate dependent on amount of additional polyethylene glycol
10000 amount; process temperatures above α-form avoid polymorphic
transformation during storage

Trospium chloride (163) Dynasan 118 Controlled release
Extrudates show a fast initial and slower release over days. Tempered mini-
molds have a negligibly initial drug release, an appropriate retardation and
exhibit the stable polymorph.
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However, pouring techniques and in-situ hot melt coating are
used more often in the context of research than in large-scale
manufacturing. The use of pouring techniques in pan coating
requires a high degree of attention and care, as poor execution
may cause twinning as well as inferior coating homogeneity
and efficiency (52). In-situ hot melt coating can be used without
any additional hot-melt equipment (e.g., nozzle, heating sys-
tem etc.), which may be advantageous for faster pre-studies.
Nevertheless, the applicability in production scale is question-
able, as core materials smaller than 420 μm are prone to
agglomerate, porosity and particle size distribution affect
batch-to-batch reproducibility and the lipid amount success-
fully applicable without agglomeration is rather low (<5%)
and fails to reach the target specification (335). Hot melt spray
coating requires more experience for the parameter selection,
additional heating equipment, excipients with appropriate
physicochemical characteristics (e.g., melting point, viscosity
etc.) for the spraying process, and more time for the spraying
step. Nevertheless, it is preferred over in-situmelting as it offers
the option of fine adjustment of the product quality due to a
higher number of process parameters, a lower risk of agglom-
eration, minor thermal stress of the API due to significant
shorter exposure times to the molten coating, and easier up-
scaling. Table VI provides a selection of formulations pro-
duced by spray coating and their intended purpose found in
the literature.

Hot melt coating by direct blending is another method
more recently mentioned in the literature (338,339). Drug
granules or nonpareils are stirred in the molten coating or
coating drug dispersion until homogeneity is reached and then
congealed by cooling down to room temperature under con-
tinuous, vigorous stirring (37,339). A zero-order release was
obtained by double coating of extruded acetaminophen
pellets with carnauba wax and HPMC in the inner
and Syncrowax HR-C (glyceryl tribehenate) in the outer
coating. HPMC and EC were described as useful swell-
ing and eroding agents, which are able to decrease ini-
tial burst release by hindering drug diffusion (338).
Further, sugar spheres with a coating comprising a waxy
excipient with a low melting point and higher polarity
(e.g., cetostearyl alcohol, Polawax, and 1-Monostearin)
and a low drug load of acetaminophen exhibited an
immediate release profile. At the first glance, the pro-
cessing seems very convenient and easily controllable for
particles with an appropriate size (250–595 μm) without
the requirement of any sophisticated equipment in lab-
oratory scale (37), but if and how this method is suitable
for up-scaling has yet to be evaluated. It will also be of
further interest, if taste masking can be attained by this ap-
proach, how the dissolution profile can be tailored by different
pellet and coating compositions (e.g., other drugs, higher drug
load, multi-layers) and most importantly if the obtained for-
mulations are stable during storage.

As already stated in the subchapter on hot melt extrusion,
controlled release was the main application purpose for hot
melt coating with lipid-based excipients. Rosiaux et al. gave a
comprehensive insight into the literature on drug release
mechanisms of sustained release lipid matrices (26).
Immediate release was achieved with a homogenous mixture
of a lipid excipient with a rather low HLB (HLB ≤ 5), a higher
melting point (≥60°C), a small recrystallization range (≤35°C)
and a hydrophilic polymer or emulsifier with sufficient misci-
bility in the melt (e.g., hydroxyethyl cellulose, hydroxypropyl
cellulose, carbomer, PEG-derivatives, E-400–E-499 etc.)
(40,336). The emulsifiers and disintegrants were mainly select-
ed on the basis of their HLB and hydrophilic behavior, but
only one study is known in which the emulsifier was used as a
polymorphic modifier to gain the stable β-phase during and
directly after the process (162). Although studies on storage
stability are the most crucial point while working with lipid
based formulations, in particular if complex coating composi-
tions are used, only very few studies have taken this point into
account (40,46,162). The same holds true for the evaluation of
taste masking, which often is a further target of this kind of
formulation. Sufficient taste masking is often assumed on the
basis of the release profile in the first minute of dissolution, but
only rather seldom volunteers or more sophisticated analytical
tools are used for the evaluation (40).

Melt Agglomeration

Melt agglomeration includes melt granulation and melt pel-
letization, which provides highly spherical agglomerates with
a narrow size distribution and a particle size from 0.5 to 2mm.
However, both terms cannot be clearly distinguished and are
not used consistently in the published literature (340,341).
Apart from using a melt extruder equipped with the necessary
accessories, the formation of granules and pellets can be
performed in a fluid bed (84,124,342,343) or high shear mixer
(55,75,81,99,130,148,169,344). Schaefer et al. gave a deep in-
sight into the important process parameters especially for the
high shear mixer and described the following phases and
mechanisms during agglomeration (125,345–350).

1. Nucleation phase (345,346,351,352):
In the first step the solid lipid binder is either filled into

the equipment together with the starting material
consisting of excipients (e.g., filler, disintegrants etc.) and/
or drug or molten externally with or without the drug. In
case the binder is molten during mixing with the remain-
ing compounds the method is described as Bmelt-in^ (high
shear mixer) or also Bin-situ^ (fluid bed) agglomeration. If
the binder is added in the molten form it can either be
sprayed with a nozzle onto the preheated material in the
Bspray on^-method or steadily pumped onto the
preheated material in the Bpour-on^ or Bpump-on^
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method. Two different nucleation mechanisms after wet-
ting of the material have been postulated. One is the dis-
tribution mechanism where the molten binder spreads
over the surface of the starting material and primary nu-
clei are formed by coalescence. The other is the immer-
sionmechanism, which is predominant if the molten bind-
er droplets are larger than the starting material particles
and the solid particles immerse into the molten droplet
surface to form the nuclei. The droplet size can be affect-
ed by the shear rate (melt-in, pour-on), the initial particle
size of the lipid binder (melt-in), the spray rate and pres-
sure (spray-on), as well as by the binder viscosity at the
applied temperature. The nucleation takes place as long
as nuclei interact with initial particles. This leads to a

depletion of fines and finally to an increased wetting and
starting of growth by coalescence between nuclei.

2. Growth phase (345,346,351,352):
The growth phase presents an equilibrium between

consolidation and growth until a critical size is reached
and attrition and breakage into smaller particles takes
place. The critical size depends on several parameters
such as the physicochemical properties and amount of
the binder (e.g., particle size, viscosity, deformability, tem-
perature etc.), characteristics of the starting material (par-
ticle size, shape, density etc.) and kinetic energy applied
(impeller speed and frictional heat, air temperature)
(346,351,352). Parameters such as the particle size and
shape, the binder viscosity and a certain solid/lipid ratio

Table VI Overview: Selection of Formulations and Characteristics

API Coating agent Characteristics/application

Acetaminophen Carnauba wax/sorbitan monostearate
Hydrogenated vegetable oils/sodium stearyl
lactate or sorbitan monostearate or glyceryl
monostearate (46)

Taste masking, immediate release, storage stability achieved with
carnauba wax, formulation with hydrogenated vegetable oils
with inferior storage stability

Compritol 888 ATO (152) Controlled release
(Higuchi model)

Precirol ATO 5, stearic acid
Compritol 888 ATO
Several combinations with surfactants and/or
release enhancer were tested:

CaCO3, PEG 3000, PEG 4000, Amberlite IRP,
Tween 20, Cremophor EL, Cremophor A6,
Gelucire 50/13, Kollidon CL-M, Kollidon CL,
Carbopol 971P NF, Carmellose Sodium,
KHCO3, Lactose, Blanose (336)

Immediate release
Taste masking assumed, only study of release profile, no study for
taste masking or formulation stability included

N-acetylcysteine (162) Tripalmitin/Polysorbate 65 Immediate release, taste masking (volunteer panel), stability
achieved, acceleration of α → β transition due to emulsifier

Antibiotics (40) Carnauba wax/carbomer, xanthan gum, L-HPC Immediate release, taste masking (electronic tongue), storage
stability achieved

Bromhexin HCl (33) Bees wax/cetyl alcohol Taste masking (human volunteers)
Stability not approved

Chloroquine (145) Compritol 888 ATO Controlled release

Diclofenac sodium (111) Stearic acid, palmitic acid Enteric coating

Diltiazem HCl (337) Glyceryl monostearate/bees wax/ white wax/
stearyl alcohol

Immediate release, taste masking was assumed (drug release after
1 min)

Stability not approved

Herbal extract (115) Stearic acid/ PEG 6000 Immediate release, moisture sorption control, stability not
approved

Ibuprofen Precirol ATO 5 (27) Immediate release, taste masking and stability not approved

Compritol 888 ATO (146) Controlled release
Maturing reduced and stabilized dissolution rate

Metoprolol tartrate (34) Bees wax/ethyl cellulose (34) Sustained release, stable during storage

Phenylpropanolamine (146) Compritol 888 ATO Controlled release
Maturing reduced and stabilized dissolution rate

Theophylline Hydrogenated castor oil/HPMC, sodium laurel
sulphate (52)

Controlled release
Hydrophilic pore formers increased the release, no stability study
conducted

Compritol 888 ATO (143,144,146) Controlled release
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also have an effect on the granule strength and whether
agglomerates are formed and densified by coalescence or
if breakage to fragments and layering on the existing ag-
glomerates is present. In case the binder viscosity and
lipid/solid ratio are well-chosen, densification and a
steady growth will take place and depending on the bind-
er amount and the applied shear force, particle size dis-
tribution narrows, sphericity increases and porosity de-
creases (melt pelletization).

3. Cooling phase (81,352)
The cooling phase can be performed by cooling the

particles in the equipment, which is much faster in the
fluid bed than in the high shear mixer due to the better
heat transfer, or by rapid cooling by pouring the material
directly into liquid nitrogen (Bflash-cooling^) or by simply
spreading the material out in thin layers on trays (high
shear mixer). In case of polymorphic material or material
that can vary in the degree of its crystallinity (e.g., PEG
3000), the cooling rate can play an essential role in con-
trolling formulation stability and drug release (81).
Table VII lists a selection of formulations prepared
by melt agglomeration in a high shear mixer and
fluid bed.

Several designs have been applied to understand the gran-
ulation mechanisms and the effect of different process param-
eters on product quality (71,99,118,198,274,357).
Comparison studies using in-line particle size measurement
tools (focused beam reflectance measurement, spatial filter
velocimetry) for the endpoint determination between the
binder application methods (melt-in/in-situ, spray-on) re-
vealed that the results were comparable in respect of particle
size distribution and flowability. The dissolution profiles of the
granules processed in a fluid bed and in a high shear mixer
were comparable, provided the drug was applied in the same
close contact to the lipid excipients (126,277). Further studies
revealed that both fluid bed methods, spray-on as well as in-
situ, were able to obtain smooth and spherical granules with a
comparably fast dissolution rate for granules with the same
size, while the particle size distribution seems to be positively
affected by smaller binder particles or droplets in both
methods (354). Studies revealed that melt agglomeration in a
fluid bed can be successfully applied to improve the lubricant
performance, flowability, and compressibility of the granules
in a subsequent tableting step (358,359). This is caused by a
homogenous repartition and due to the significantly lower
shear force in a fluid bed than in a high shear mixer that leads
to a reduction of particle densification and to an increased
elastic deformation and better compressible granules (124).
Moreover, the fluid bed offers a more efficient cooling process
without additional densification, which is an advantage for up-
scaling and enables the addition of higher binder contents
(343). Further, Kukec et al. were able to successfully scale an

in-situ laboratory method up to pilot scale by the aid of a three-
factor, five-level circumscribed central composite design,
whereby the resulting dissolution rate was affected mainly by
the binder content (261). Hence, in-situ melt fluid bed granu-
lation is a viable and fast method to obtain granules from heat
sensitive drugs.

Other Methods

Spray Congealing (Synonyms: Spray Chilling, Spray Cooling)

Although spray congealing is often listed as a melt agglomer-
ation technique (340,352,360), it can be seen as a mix of all
three aforementioned methods, as the products are perfectly
spherical microspheres or microcapsules that can contain the
drug embedded as a solid dispersion in the lipid matrix. The
nozzle type and fluid delivery determines whether a matrix
(Bmicrosphere^) or a more core/shell-like structure
(Bmicrocapsules^) of the drug embedment is generated.
Prilling is a special form of spray-congealing that delivers a
product with an increased particle size of 500 to 2000 μm
(Bprills^) (120,157,361). For spray congealing a stable and
homogenous mixed melt dispersion of the drug (and further
excipients if necessary) is required. The chosen technique (e.g.,
ultrasound homogenizer, high shear mixer) for the prepara-
tion of the dispersion may have a significant impact on the
rheological behavior, particle size and crystallinity and should
be therefore controlled during product development and pro-
cessing (76). Thismixture is subsequently processed in a choice
of atomization units, which are distinguished by their atomi-
zation mechanism, liquid channeling, throughput and prod-
uct properties (e.g., particle size and distribution, structure etc.)
(285,286). Examples mentioned in the literature are the spin-
ning disk (127,132,362,363), vibrating nozzle (157,361), pneu-
matic nozzle (101,120,364,365), ultrasonic devices (72,
77,78,366–368), or dual-fluid nozzle (73,76). After atomiza-
tion the particles are solidified by falling in a large prilling
tower, a chamber of a spray dryer flushed with cold air, liquid
nitrogen or a carbon dioxide ice bath (285,364). This step is
critical especially if greater particles like prills have to be so-
lidified, whichmay lead to deformation or sintered lipid blocks
in the product container due to an inappropriate time of flight
and an incomplete recrystallization. Table VIII gives an over-
view of some formulation characteristics obtained with spray
congealing.

An important point to consider while working with the
spray congealing technique is the polymorphic state of the
obtained microspheres. As rapid cooling is applied, thermo-
dynamically unstable forms crystallize during the resolidifica-
tion step. Even microspheres with carnauba wax, which is
often stated to be a non-polymorphic material (40,46,221),
showed thermal transition events in a microcalorimetric sys-
tem during storage. However, the effects on parameters such
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as the dissolution rate were not evaluated (362). A clear poly-
morphic change was detected with tripalmitin-insulin micro-
spheres, which showed the instable α-form after resolidifica-
tion and transformed into the stable β-form within 28 days of
storage (365). Yajima et al. discovered that the transformation

of the α-form of the freshly spray congealed glycerol
monostearate Eudragit E microspheres to more stable poly-
morphic forms had a significant impact on the drug release in
a mini-column method used for testing taste masking efficien-
cy (202). Li et al. observed that the drug Bupivacaine as well as

Table VII Selection of Formulations Produced by Melt Agglomeration Techniques

High shear mixer

API Excipients Application

Acetaminophen Glycerol monostearate/ aminoalkyl
methacrylate copolymer E (353)

pH-dependent drug release (appropriate for taste masking)

PEG-6-stearate (169) Rapidly disintegrating tablets and increased physical resistance
Waxy excipient with melting temperature lower than in the
body (33–37°C) and high HLB of 9

Stearic acid (187,188,274) Sustained release
Increased bioavailability in vivo

Diazepam (81) Gelucire 50/13 Dissolution enhancement
Applied drug load: 30–40%
Similar dissolution for pump-on and melt-in method

Dipeptidylpeptidase IV
Inhibitor (50)

Hydrogenated castor oil Moisture protection, maintained immediate release

Lansoprazole (71,75) Gelucire 44/14, Gelucire 50/13 Dissolution enhancement
Box–Behnken design inputs: binder concentration, batch size,
mixing time, impeller speed

Griseofulvin (99) Gelucire 44/14 Dissolution enhancement
Applied drug load: 2.5–5%
24 factorial design
Input: drug load, binder, filler and HPMC

Phenylephrine HCl (138) Precirol ATO 5/Compritol 888 ATO Sustained release
Instable in accelerated storage conditions

Riboflavin (148) Precirol ATO 5/Compritol 888 ATO Floating formulation
Increased urinary excretion in-vivo especially after feeding.

Theophylline (149) Precirol ATO 5/Compritol 888 ATO Floating formulation
Gas generation agent: sodium bicarbonate
Drug load >40%

Fluid bed

API excipients Application

acetaminophen Precirol ATO 5 (198) Taste masking
Volunteer study
In-situ method
23 full factorial design
Inputs: binder particle size, content, granulation time, air flow rate
Highly spherical particles

Gelucire 50/13 (354, 355) Immediate release
Applicable granules for tableting
In-situ, spray-on
23 full factorial design
Inputs: binder content, spray rate, spray pressure
Box-Behnken design, multilayer perceptron neural network
Binder size controls granule size and shape

Ibuprofen (356) Precirol ATO 5/Gelucire 54/02 Controlled release and lubrication
in-situ
Appropriate granules for tableting

Lu–X (84) Glycerol monolaurate, Gelucire 50/13 Dissolution enhancement
Melt-in and spray-on
Distribution or immersion depending on the binder, difference
in dissolution

Stable during storage at 25°C/3 months
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tristearin crystallize in their unstable form during spray
congealing and the transformation into their stable forms dur-
ing heat-treatment has a significant impact on the fluidity and
gelation behavior in an aqueous medium (363). Although
Gelucire 50/13 was able to enhance the dissolution rate of
Piroxicam in spray congealed microspheres significantly,
the morphological structure changed from a smooth sur-
face to a flake-like structure (Bblooming^) and the disso-
lution rate increased during storage (80). Additionally,
even the drug showed a remarkable impact on the poly-
morphic transformation behavior, for instance, paracet-
amol was able to stabilize the low melting lipid fraction
while caffeine was associated with the transformation to
more stable phases (74). Moreover, different polymor-
phic forms can exhibit a different potential to incorpo-
rate drugs in a molecular dispersed form, and therefore
changes in lipid polymorphism during storage can lead
to drug precipitation and changes in dissolution rate
(214). But also the crystallinity and polymorphic state
of the drug are important, as melting techniques are
able to generate an amorphous state of the drug or
reduce crystallinity or have an effect on the recrystallized
polymorph of the drug (120,364,369). Hence, studies on
polymorphism and drug/lipid interactions are crucial for
formulation development.

Freeze Pelletization

Freeze pelletization is a variant of the spray congealing pro-
cess. The molten dispersion is dropped into a column with a
cooling liquid with a needle or nozzle (121,249,370). The
liquid offers a better heat transfer than the air and the
resulting pellets are described as nonporous, spherically
shaped and exhibiting a narrow size distribution (370).
Nevertheless, the selection of a suitable cooling fluid seems
to be a great challenge, as is has to be non-toxic, inert, immis-
cible and has to have an appropriate viscosity (370).

Pastillation

Pastillation is a method to facilitate the handling with dusty
hazardous powders by transforming them into pastilles com-
mon in the petro- and agrochemical industry (250). In this
process the molten drug/lipid dispersion is dropped with a
needle on a cold surface. An important parameter is the contact
angle of the solidified drop to the surface, which affects the
flowability of the pastilles and can be adjusted by the needle
height and geometry as well as with the temperature of the
surface (250,371,372). As the up-scaling to continuous
manufacturing seems to be rather easy and different lipid-
materials should be applicable, this method seems to be

Table VIII Selection of Formula-
tions Produced by Spray Congealing API Lipid excipients Characteristics

Acetaminophen (127) Glycerol monostearate pH-dependent release (taste masking)

Box–Behnken design

Inputs: drug load, Eudragit E amount

Mean size: 400 μm

Drug: 10–30%

Glimepiride (73) Gelucire 50/13 Dissolution enhancement

Morphological changes (Bblooming^) during storage
(30°C/1 month)

d50: 58–278 μm

Drug: 1.7% (w/w)

Meloxicam (101) Gelucire 44/14 Dissolution enhancement

Drug load: ~ 10%

Mesalazine (36) Carnauba wax, stearic acid pH-dependent release

Two step congealing process

1. carnauba wax/drug reservoir

2. stearic acid enteric coating

Drug load: ~ 18%

Metoprolol tartrate (120) Stearic acid, behenic acid Sustained pH-dependent release

Prilling: 1.8–2.5 mm

Drug load: 10–40%

Polymorphism of fatty acids not affected

Drug/lipid interaction, amorphous fraction recrystallized
during storage at accelerated conditions

In vivo results comparable with commercial formulation
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promising for the pharmaceutical industry, provided recrystal-
lization behavior and Reynolds number are appropriate (371).

Fusion (Synonyms: Hot Fusion, Melt Fusion, Melt-Mixing)
and Melt-Solidif ication

The term Bhot fusion^ refers to the preparation of a solid
dispersion of a drug in a matrix and therefore can be under-
stood as a kind of melt extrusion but with the use of less
sophisticated equipment on a laboratory scale and has often
been applied in pre-formulation studies. Hot fusion is per-
formed by melting the lipid excipient and mixing the drug
homogenously by using a magnetic stirrer, a high shear mixer
or rotor-stator homogenization to generate a solid dispersion
or even a solid solution (29,32,85,153,369). The molten mix-
ture can bemolded into tablets (68,373–375), filled in capsules
(102,139), poured into a cold water bath and stirred to obtain
beads (110,376,377), screened through a sieve for generating
granules (32,378), spheronized to pellets (49), or ground and
sieved (48,114,136,153,172). The sievedmaterial may be used
f o r d i r e c t c o m p r e s s i o n t o t a b l e t s
(32,48,114,136,153,158,169,172,379). The fusion of highly
soluble drugs with hydrophobic matrices (e.g., Compritol 888
ATO, glyceryl monostearate, stearic acid, Precirol ATO 5,
hydrogenated castor oil etc.) retards the drug release
(29,48,114,136,251) and tableting of this solid dispersion has
a significantly higher efficiency to sustain release than the di-
r e c t c o m p r e s s i o n o f t h e p h y s i c a l m i x t u r e
(29,136,153,210,379). The dissolution of poorly water soluble
drugs may be significantly enhanced in a solid dispersion with
hydrophilic lipid excipients, such as Gelucire 50/13 (85),
Gelucire 44/14 (89,93) compared to the physical mixture of
the same (85,93). The addition of an effervescent formulation
to the tablets can also help overcome the slower release of
tablets compared to an accordingmultiparticulate system (89).

Sintering of Tablets

Thermal treatment (Bsintering^) of tablets received by direct
compression of the physical mixtures had a significant
retarding effect on the dissolution rate due to a redistribution
of the wax and an increased matrix tortuosity (158,380,381).
However, with hydrogenated cotton seed oil the opposite ef-
fect has been seen, which was assumed to be a consequence of
wax migration (379). As the study lacks solid-state analysis
data a change in polymorphic and morphological properties
cannot be excluded (379).

CONCLUSION

Solvent-free melting techniques are well-known in the litera-
ture and very promising for the pharmaceutical industry. The

achievable formulation properties serve a wide-area, ranging
from modified release by allowing different dissolution kinet-
ics, but also bioavailability enhancement (e.g., gastroretentive
formulation), taste masking, up to moisture protection and
improvement of swallowability. A recent trend is the design
of multiparticulate drug delivery systems, which strike a good
and balanced compromise between taste masking and fast
release. These systems play a key role in the development of
population driven patient-centric strategies, improving the ad-
herence to medication for swallowing difficulties in pediatrics
and geriatrics (382). An ongoing challenge in working with
lipid materials is the proper handling of stability issues such
as polymorphic and morphological changes. Meeting this
challenge is worth the effort: the materials required are often
cheaper than the corresponding polymers and are mostly pro-
cessable in standard industrial equipment such as the high
shear mixer or fluid bed coater. This facilitates the decision
for feasibility studies utilizing a solvent-free melting process in
formulation development. Therefore, solvent-free melting
processes offer an effective, simple, safe and eco-friendly way
of manufacturing in pharmaceutical and food industries.
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