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Abstract

Background: Electroencephalography (EEG) is best suited for long-term monitoring of
brain functions in patients with disorders of consciousness (DOC). Mathematical tools are
needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings.

Methods: Starting with matching pursuit (MP) decomposition, we automatically detect
and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and
theta waves present in EEG recordings, and automatically construct profiles of their time
evolution, relevant to the assessment of residual brain function in patients with DOC.

Results: Above proposed EEG profiles were computed for 32 patients diagnosed as
minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness
syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their
interpretation revealed significant correlations between patients’ behavioral diagnosis
and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity
and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta,
and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent
features of these profiles classified correctly 87% of cases.

Conclusions: Proposed EEG profiles offer user-independent, repeatable, comprehensive
and continuous representation of relevant EEG characteristics, intended as an aid in
differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable
further development of this methodology into clinically usable tests, we share user-
friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts
used for creation of the presented profiles (attached to this article).

Keywords: Electroencephalography, Matching Pursuit, Disorders of consciousness,
Minimally conscious state, Vegetative state, Locked-in syndrome
Background
Monitoring brain functions in disorders of consciousness (DOC)

Owing to the progress in medicine, intensive care and technology, more patients survive trau-

matic accidents and diseases causing brain damage. Some of these patients do not recover

from their coma within days and weeks and stay in a state of wakeful unawareness, specified

as vegetative state (VS/UWS [1]). Apparent unawareness of some of these patients is merely

a consequence of the loss of all motor functions, with full consciousness retained—this state

is called locked-in syndrome (LiS [2]). Other patients may reveal at least transient signs of

consciousness—this state is defined as minimally conscious state (MCS) and may potentially
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lead to full recovery [3]. Although all of these states can last for years or even be permanent,

it is believed that patients in MCS have much better prognosis for recovery than those in

VS/UWS [4]. Precise identification of signs of conscious perception versus sometimes reflex,

ambiguous behavior and differentiation between these states is difficult, which causes mis-

diagnoses of VS/UWS and LiS and of VS/UWS and MCS [5].

Development of recent methods of assessing brain function like positron emission

tomography (PET) and functional magnetic resonance imaging (fMRI) disclosed several

cases of such misdiagnoses [5,6]. However, even these advanced methods may some-

times provide misleading results, due to significant fluctuations of the state of these pa-

tients in time. These changes may be accounted for by long-term monitoring, but PET

and fMRI are not well suited for this task. The only technique allowing for long-term

monitoring of brain functions in such cases is electroencephalography (EEG, for a re-

view, see [7]). While the “normal” pattern of EEG varies significantly between subjects,

assessment of the state of brain functions can be based upon the occurrence of circa-

dian rhythms in EEG. Methodology of their assessment was developed in the field of

sleep research.
Sleep and DOC

Sleep is a state characterized by the absence of response to external stimuli due to tran-

sient but reversible period of unconsciousness. Interactions of sleep and consciousness

in brain-injured patients are still not known, but, as reported in cases of patients with

disorders of consciousness (DOC), presence of some sleep patterns may correlate with

diagnosis and prognosis. Early studies on coma suggested that the presence of EEG pat-

terns resembling sleep may be a reliable marker for a favorable outcome [8,9]; it was

reported that sleep patterns continue to become more complex during rehabilitation

therapy, paralleling patients’ cognitive recovery [10]. EEG pattern which resembles sleep

spindle—spindle-coma (SC, activity in 9-14Hz range) was postulated to be an indicator

of benign form of coma and, if accompanied by EEG reactivity to noxious stimuli, pres-

age better outcome [9,11]. Some other studies have also indicated that sleep spindles

may carry prognostic information. It was shown that the presence of spindle activity

after hypoxic or anoxic injury does not always indicate a good outcome, but the

absence of spindles or EEG background reactivity does predict a poor outcome [12].

Reference [13] reported better outcome for patients with sleep related patterns in EEG,

K-complex responses for stimuli and spontaneous arousals, and the worst in the ab-

sence of spontaneous arousals activity.

A more recent study supports these findings in comatose children and concludes that

the reappearance of sleep patterns and sleep spindles is a sign of good prognosis. In

traumatic coma, these sleep elements are observed more frequently than in anoxic

cases [14] and may depend on the time since coma onset. Such activity occurred in

91% of cases if recorded within 1–2 days after injury and in 30% of more prolonged

cases (3–12 days) [15]. Another study reports no relationship to the brain region of

damage and time since insult [16].

Some studies reported clear relationship between general mental ability and frontal

spindle activity, suggesting that spindles may be different between VS/UWS and

MCS [17].
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Another study [18], where 6 MCS and 5 VS/UWS were analyzed, showed for all pa-

tients with MCS an alternating non-rapid eye movement/rapid eye movement sleep

pattern and a homoeostatic decline of electroencephalographic slow wave activity

through the night in contrast to all patients in a VS/UWS, for which no slow wave sleep

or rapid eye movement sleep stages could be identified, and no homoeostatic regulation

of sleep-related slow wave activity was observed. Authors suggest that the study of

sleep and homoeostatic regulation of slow wave activity may provide a complementary

tool for the assessment of brain function in patients with MCS and VS/UWS.

However, a study of 24 h recordings of 10 MCS and 10 VS/UWS [19] suggests a far

less clear-cut division: sleep-wake cycles were identified in 50% of MCS and about 30%

of VS/UWS; sleep spindles were more predominate in patients who clinically improved

in 6 months; slow waves sleep was present in 8/10 - 80% MCS and 3/10 VS/UWS;

rapid eye movement was present in all MCS and 3 VS/UWS. In line with these find-

ings, other studies reported the presence of sleep patterns similar to healthy controls in

VS/UWS patients [20] and the absence of a correlation between outcome and sleep

patterns [21-23].

Altogether, a wide spectrum of sleep disturbances, from almost normal sleep to se-

vere loss and disorganization of sleep, has been reported in DOC (for review see [24]),

and the topic is still poorly understood. Also, the spectrum of altered sleep in LiS, as

documented in literature, vary from almost normal sleep patterns [25,26], to severe

sleep quantity decrease [27-29], disorganized NREM sleep and stage 4 [25,27,28,30], or

REM absence [31] depending on the lesions ([32] also reviewed in [24]).
Automatic analysis of sleep EEG

Analysis of the occurrences of EEG transients like sleep spindles and slow wave activity

serves as the basis for construction of the hypnogram—a basic tool in sleep research.

In [33] we proposed the first automatic system for creation of hypnograms explicitly

based upon the criteria used in the visual analysis of EEG, which still constitutes the

golden standard.

This analytical approach, based upon detection of the relevant structures, offers a lot

more than the final report of sleep profile in the form of a hypnogram. For example,

sleep stages 3 and 4 are defined by the presence of the delta activity in 20-50% and over

50% of the epoch, respectively. To implement this definition explicitly, we assess dir-

ectly the time span occupied by given structures (as described in section “Selection of

EEG structures”). Subsequently, setting the thresholds at 20% and 50% of the length of

an epoch (in sleep analysis usually 20 or 30 seconds), we get an explicit detection of

stages 3 and 4 based directly upon the classical criteria defined in [34]. Apart from this

explicit approach to the classical criteria of scoring sleep stages, these estimates give us

a continuous description of the sleep profile as in Figure 1, which has been previously

suggested as a welcome enhancement to deal with the shortcomings of the classical

sleep staging in 20–30 sec epochs [35-37]. Such EEG profiles can be a valuable tool in

the assessment of the circadian pattern of brain activity, which may contain an infor-

mation important for an assessment of the state of patients in different states of DOC,

as presented in this paper. Discussion of the advantages of MP in the analysis of

nonstationary EEG can be found in a book [38] and several papers (c.f. [33,39-42]).



Figure 1 EEG profile of a sleep recording of control subject. (a), (b), (c) and (e) – numbers of
waveforms conforming to the criteria defining, correspondingly, alpha, theta and beta waves and sleep
spindles, detected per subsequent 3-min epochs. Each vertical line in (d) marks one occurrence of a K-
complex. Lower panel (f) presents percentage of each 20-second epoch occupied by SWA; horizontal lines
at 20% and 50% mark the classical criteria for stages 3 and 4 scoring.
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Above mentioned occurrence of well described micro-structures (K-complexes,

spindles), transients and waveforms which form stages [34], and cycles accompanied

repeatedly more or less by arousals, is typical for a normal sleep pattern. On the con-

trary, in DOC the existence of normal sleep stages and polysomnographic elements is

a matter of debate. Some authors suggest persistence of sleep stages in some more

“evolved state”, whereas others refute this. Problems in definition of wakefulness and

sleep in DOC are due to the uncertainty whether the oscillations recorded by EEG re-

flect still the same cellular mechanisms as in normal physiological sleep. For example,

large amplitude slow waves in coma may not necessarily indicate “slow-wave” sleep

(SWS) and deep non-rapid eye movement (NREM) sleep, as they do in normal

sleeping individuals, because generalized slowing in delta and theta ranges (continuous

delta activity) is a phenomenon generally observed in coma. The same kind of ob-

served spindles-coma (SC) may not necessary represent the same mechanism as sleep

spindles in normal sleep process. Therefore, classical criteria for sleep staging [34]

cannot be directly applied to recordings from patients with DOC.

In this paper we propose automatic constructions of EEG profiles, in a way max-

imally compatible with classical sleep scoring criteria, allowing for monitoring coma-

tose patients’ brain electrical activity and focusing on changes in micro- and

macrostructure of sleep and awake patterns.
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Methods
Experimental data

This paper presents analysis of EEG recordings of 32 brain-injured patients with disor-

ders of consciousness. Among these 32, 20 patients were diagnosed as a MCS. Their

average age was 33 (range 5–56), mean of time from insult 560 days (range 25–2633),

11 of these 20 MCS cases were in a chronic state (> 1 year post insult); 9 females and

12 males. Next 11 patients were diagnosed in a VS/UWS, their average age was 55

(range 3–75), mean time from insult 347 days (range 8–2348); 3 of these cases were in

a state (> 1 year post insult); 6 females and 5 males. Three of the 11 patients with VS/

UWS and 13 of the 20 with MCS had traumatic etiology, respectively. Dataset include

also one recording of a patient (female) in LiS who had a rombencephalitis, examined

about 2 years after insult. All patients were evaluated at the University Hospital of

Liège, in Liège, Belgium. Two patients from the original pool were excluded because of

short time of acquisition. Other nine patients had to be excluded because of technical

problems (computer problems not complete data, missed clinical information). Clinical

assessment and diagnosis were based on the standardized Coma Recovery Scale-

Revised [43]. Detailed description of patient’s characteristics is reported in columns 1–

5 of Table 1. Dataset contained also 5 recordings from healthy subjects for reference (3

females and 2 males, age 24–26). This study was approved by the Ethics Committee of

the Faculty of Medicine of the University of Liège.

EEG was recorded using one of the following systems:

1) high density EEG (Electrical Geodesics), 256 electrodes sampled at 500Hz,

referenced to Cz with simultaneous, synchronized video-taped recordings to

confirm the patients behavior With this system 15 MCS, 7 VS/UWS, 1 LiS, and 5

control subjects were examined.

2) polysomnography recording performed with a V-Amp amplifier (Brain Products),

12 EEG channels localized according to the 10–20 system plus EMG, two EOG,

and ECG, with sampling rate also 500Hz. With this system 5 MCS and 4 VS/UWS

were examined.

Minimal time of acquisition was 9 hours. All recordings include night time. For each pa-

tient, EEG electrode C3 or C4 (referenced to mastoid A2 or A1), as recommended for sleep

scoring [34,44] and bandpass filtered in 0.5-40 Hz was used for further analysis.
Matching Pursuit

Matching Pursuit (MP) is a suboptimal solution to the problem of optimal representa-

tion of a function in a redundant dictionary, proposed by Mallat and Zhang [45]. When

used with dictionary of Gabor functions to decompose time series, it offers an adaptive

time-frequency parameterization of the structures present in the analyzed signal. The

procedure can be summarized as follows:

1. We start by creating a huge, redundant dictionary of candidate waveforms for

representation of structures possibly occurring in the signal. For the time-frequency

analysis of signals we use dictionaries composed of sines with Gaussian envelopes,



Table 1 Patients information and summary of EEG profiles

1 2 3 4 5 6 7 8 9 10 11 12

Patient # Age Etiology Days since
onset

Behavioral
diagnosis

SS δ (SWA) Spikes Other activi.
αβθ

Cycles light-
deep sleep

Variability Other comments (’small’- small,
not significant number of detections)

1 36 CVA 2348 VS/UWS - - + - - - Mostly isoelectrical signal

2 29 TBI 2633 MCS + - + αβθ - + Small δ

3 15 Rhombencephalitis 712 LIS + + + αβθ + + All activity

4 34 TBI 1015 MCS + + + αβ - + Small δ, small θ, big β

5 56 Anoxia 392 MCS - - + β - - Poor activity, few β, small Variab

6 25 TBI + hypoxia 310 MCS - - + β - - Small δ, small Variab

7 38 TBI 516 MCS + + - αβθ + + Nice β -sleep relationship, small ampl SS

8 36 anoxia 547 MCS - - - β - - Poor small θ andδ, small Variab

9 30 TBI 585 MCS - + + αβθ - + Small SS, small cycles

10 30 TBI 564 VS/UWS - + - - - - Poor activity; small other, small ampl δ, small
spikes

11 5 TBI 1113 MCS + + + αβθ + + Like opposite homeost. cycle

12 31 TBI 141 MCS + + - αβθ + + Lots of α, small spikes, small ampl δ

13 25 TBI 1285 MCS + - + αβθ + - Poor activity, small Variab

14 28 ADE 713 MCS - + - αβθ + + Few α, small spikes

15 61 Toxoplasmose 16 VS/UWS + - - αβθ - - Small δ, smalls Cycles, small Variab

16 31 Hematoma 44 MCS + + + αβθ + + Small α, small ampl SS, small spikes

17 61 Anoxia 119 VS/UWS - + + β - - Few θ, small SS, small Cycles, small Variab

18 48 TBI 238 MCS + + + αβθ + + No clear wake-sleep periods, small ampl δ

19 17 TBI 25 MCS + + + αβθ + + No wake-sleep cycles

20 53 TBI 62 MCS + + + αβθ + + All activity

21 31 TBI 224 MCS + + - αβθ + + Small spikes

22 61 35 VS/UWS - - - βθ - - Poor variability
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Table 1 Patients information and summary of EEG profiles (Continued)

Brainstem
hemmorrh.

23 74 TBI 15 VS/UWS - - + αθ - - NoVariab across 24 h, no β, a lot of spikes,
small ampl SS, small ampl δ

24 45 SH 361 MCS + + - αβθ + + Continuous small θ, small α, small spikes

25 55 Cardiac arrest 25 MCS + + - αβθ + + Contin α, small θ, small spikes

26 19 TBI 214 MCS + + + αβθ + + Lot of θ

27 21 TBI 756 MCS + + - αβθ + + Lot of β, small θ

28 35 Anoxia (infection) 522 VS/UWS - + + βθ + - Lot of β, small θ, small SS, small C, small Variab

29 45 Hypoglycemia 108 VS/UWS - - + αβθ - + Lot of β, θ, small Cycles, small SS, small δ,
isoelectrical

30 75 TBI 8 VS/UWS + - + αθ - - Contin. α, contin.θ, small δ, small Cycles,
small other

31 62 Pontine
Hemorrhage

49 VS/UWS - - - αθ - - Contin. α, continθ, small spikes

32 70 Meningoencephalitis 31 VS/UWS - - - αβ - - Mostly contin. α, small SS, small δ, small Variab

Columns 1–5: patients clinical information; columns 6–12: summary of EEG profiles computed for patients with disorders of consciousness; TBI: traumatic brain injury; CVA: cardiovascular arrest; SH: subarachnoïdale
hemorrhage due to aneurysm disruption; ADE: Acute demyelinating encephalomyelitis. δ: delta; θ: theta activity; α: alpha activity; β: beta activity; SS: sleep spindles, +: present; -: absent.
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called Gabor functions, which reasonably represent waxing and waning of

oscillations.

2. From this dictionary we choose only those functions, which fit the local signal

structures. This choice is based on a maximum inner product of the function and

signal’s residuum, left after subtracting the functions fitted in previous iterations

(Eq. (1)). In such a way, the width of the analysis window is adjusted to the local

properties of the signal.

3. Local adaptivity of the procedure is somehow similar to the process of visual

analysis, where an expert tends to separate local structure and assess their

characteristics. Owing to this local adaptivity, MP is the only signal processing

method returning explicit time span of detected structures.

Using equations, the above reads:

R0x ¼ x

Rnx ¼ Rnx; gγn

D E
gγn þ Rnþ1x

gγn ¼ argmaxgγn∈D Rnx; gγi

D E���
���

ð1Þ

8>>><
>>>:

where x is the decomposed signal and Rn is the nth residue left after subtracting results of

previous iterations. As a result we get an expansion

x≈
XM−1

n¼0

Rnx; gγn

D E
gγn ð2Þ

Apart from the high resolution and adaptivity to the local signal structures, MP offers
a unique advantage of explicit parametrization in terms of not only frequency and amp-

litude, but also time span for each detected structure. This feature was employed in

[39] for explicit parametrization of slow waves and, together with other structures, for

construction of an automatic sleep stager based explicitly on the classical scoring

criteria [33].

In this study MP decomposition was performed on subsequent 20s epochs of C3 or

C4 derivation of all the available recordings. Details of the MP algorithm and the freely

available software package used for this decomposition are given in [46]. From this de-

composition, relevant structures were identified using criteria explained in the follow-

ing section.
Selection of EEG structures

From the set of functions chosen by the MP algorithm for representation of the EEG

time series we can automatically select those corresponding to particular structures of

interest, by setting the ranges for their amplitude, frequency and width in time (some-

times also phase). Criteria used in this work for selection delta waves, sleep spindles, K-

complexes, epileptiform spikes, alpha, theta and beta waves are given in Table 2.

Selection and quantification of relevant structures, which explicitly takes into account

also their time widths and amplitudes, is significantly more selective and sensitive than

the classically employed spectral estimators, as was presented e.g. in [41]. It is a natural

consequence of performing the discrimination in three weakly correlated dimensions



Table 2 Criteria for selection of EEG structures

Frequency [Hz] Duration [s] Min. amplitude [μV]

Delta waves 0.2 – 4 >0.5 70

Sleep spindles 11 – 15 0.5-2.5 12

K-complexes* 0.05 – 2.5 0.3 - 1.5 100

Theta waves 4 – 8 > 1 15

Alpha waves 8 – 12 > 1.5 5

Beta waves 15 – 25 > 0.5 4

Spikes* 0.2 – 7 0.05 - 0.35 50

Parameters of functions from MP decomposition, used for automatic detection of relevant waveforms. *For K-complexes
an additional constraint on the phase, enforcing a negative deflection and condition for the amplitude to exceed also
the background amplitude by factor 1.5, for spikes or the amplitude to exceed also the average background amplitude
by factor 2.
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(amplitude, time width and frequency) rather than just one (frequency) and allows also

for a better separation of relevant structures from those due to the artifacts. Previously

published MP-based studies of normal sleep [33,40,42] were performed without any

artifact-rejection, which significantly increases the repeatability and objectivity of the

proposed procedure, since different schemes of artifact detection may bias the choice

of artifact-free epochs and hence also the final results. Also in this study no artifact-

contaminated epochs were excluded from analysis, and relevant structures were

detected from MP decompositions of the whole available recordings.
EEG profiles

Application of the above discussed criteria to the results of MP decomposition (Eq. (2))

provides automatically a detailed description of all the relevant EEG structures, present

in the analyzed recording. This procedure not only saves dozens of hours of tedious

work of experienced electroencephalographers, but also provides strict repeatability.

From such a database of relevant structures we can produce various types of reports

and graphs—in this paper we concentrate on their time course.

Figure 1 presents example of continuous description of EEG activity from normal

subject across all-night recording. Alpha, theta, and beta activities, as well as sleep spin-

dles (subplots a, b, c, e), are represented by the number of occurrences in subsequent

3 min epochs. Each K-complex is represented in subplot d by vertical line in the time

of its occurrence. Finally, for slow waves we compute the percent of time which these

waves occupy in every subsequent 20-second period (subplot f ), a parameter used in

analysis of deep sleep stages by rules for normal sleep scoring [34].

These profiles constructed for sleep EEG of a control subject reveal gradual changes in

the activity of the slow waves. Sleep spindles occur in a reverse relationship to the occur-

rence of delta waves. Occurrences of K-complexes correspond to those of sleep spindles

and especially in the first sleep cycle also to SWA. Beta waves are dominating at the be-

ginning of the sleep (or in the period leading to the onset of sleep) and at the end of

night. In this recording beta activity increases also in some periods of the night, but

these detections may be associated with muscle artifacts. According to a well-known ob-

servation, beta waves show a clear trend reversed in the presence of delta waves at the

beginning of sleep, a trend that fades with the fall in SWA activity during the night.
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Theta waves coincide with the detected delta waves, sometimes slightly ahead of the slow

waves. Alpha waves are observed across almost whole time of the recordings, with a high

concentration at the beginning of sleep and around the Stage 2, of which can be associ-

ated with the appearance of sleep spindles—activity in the band close to the frequency of

alpha waves.

All the analyzed recordings of control subjects were characterized by the occurrence

of all the waveforms and appearance of sleep cycles. Rates of particular activities re-

vealed differences across night, and gradual changes were observed in proportions of

deep/light sleep–from predominance of deep sleep in the first part of night to REM

sleep during second half of the night.
Reproducible research and availability of software

Software used for this article (except for the MatlabW commercial package) is freely

available. Downloading, installation and use of this software, as well as mathematical

and numerical optimizations used in the mp5 implementation of MP, are covered in

details in [46]. MP decomposition of EEG with a user friendly GUI is embedded in the

Svarog (Signal Viewer, Analyzer and Recorder on GPL) package, which can be freely

downloaded from http://braintech.pl/svarog. From the MP decomposition, EEG profiles

presented in this work were computed by a set of MatlabW scripts, attached in

Additional file 1. This archive contains also decomposition of the signal used for

Figure 1, and so allows to recreate this figure.
Results and discussion
EEG profiles of DOC patients

In the same way as the above example of normal sleep from the control group, EEG record-

ings of all the 32 DOC patients were analyzed by means of the method proposed in the pre-

vious section. These profiles revealed great variety between patients—which may have been

expected, but hereby it was presented using an objective and parametric method. Represen-

tative examples of these 32 profiles are presented in Figures 2, 3, 4 and 5.

None of these profiles has shown the typical profile of normal sleep homeostatic de-

cline. The reason for this may be that their daily cycle is not associated with the cycle

of day and night.

As mentioned in the Background section, the most important in diagnosis and prog-

nosis of DOC patients are occurrences in EEG of the sleep patterns of the occurrence

of structures such as sleep spindles, slow waves, and their variability across time.

Figures 2, 3, 4 and 5 present the variability of these patterns, computed for different

patients. Characteristics of these profile vary from residual detection of all analyzed

activity (Figure 2), through the lack of sleep spindles and poor SWA (Figure 3), but

presence of alpha, theta, and beta waves—in a large proportion but continuous and

not differentiated activity, characterized by abundance of sleep spindles (Figure 4), but

no variation across 24 hours and correlation with the slow waves, to the case (Figure 5)

where the spindles are increased in the specific intervals during the night, and their re-

verse relationship to slow waves and other activity corresponds to the pattern of a nor-

mal sleep profile.

http://braintech.pl/svarog


Figure 2 EEG profile for all-night VS/UWS recording with residual detection of all analyzed activity.
Subplots organized as in Figure 1. (a), (b), (c) and (e) – numbers of alpha, theta and beta waves and sleep
spindles, detected per subsequent 3-min epochs, (d) markers of occurrence of K-complexes, (f) percentage
of each 20-second epoch occupied by SWA; horizontal lines at 20% and 50% mark the classical criteria for
stages 3 and 4 scoring.
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Figure 4 presents 24 hours EEG profile as an example of continuous monitoring of

patients’ EEG activity during longer periods of time.

Assessment of predominant features of EEG profiles and statistics

Automatically constructed plots like Figures 2, 3, 4 and 5 provide a novel insight into

the time evolution of classical EEG features, traditionally assessed via visual analysis or

spectral methods with significantly lower time resolution. Apart from the elements

used for sleep staging (slow waves, sleep spindles and spikes that is interictal epilepti-

form activity), we evaluated also other parameters, including:

1. appearance of alternating cycles of deep and light sleep (present(+)/absent(−))

2. degree of variability of brain activities across time (‘variability’:

present(+)/absent(−))

3. presence of alpha, theta and beta waves (“other activities”): (αβθ)

These features were assessed visually for each patient, based upon plots like those

presented in Figures 1, 3, 4 and 5. For each patient and each parameter, binary



Figure 3 EEG profile for all-night VS/UWS recording with the lack of sleep spindles and poor SWA,
but the presence of alpha, theta, beta waves- in a large proportion but continuous and not
differentiated activity. Subplots organized as in Figure 1. (a), (b), (c) and (e) – numbers of alpha, theta
and beta waves and sleep spindles, detected per subsequent 3-min epochs, (d) markers of occurrence of K-
complexes, (f) percentage of each 20-second epoch occupied by SWA; horizontal lines at 20% and 50%
mark the classical criteria for stages 3 and 4 scoring.
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assessment of whether given feature is present or not was marked in columns 6–11 of

Table 1. The last parameter (presence of alpha, theta and beta) was classified for further

statistical analysis as present if all of them were detected, absent if none were identified

in patient’s EEG and partial if some of “other activity”, for example only beta, or only

alpha or theta were present.

Above mentioned EEG features (columns 6-11 of Table 1) were correlated with the

clinical data (columns 2–5 of Table 1) available for each of the patients:

� behavioral diagnosis (according to the Coma Recovery Scale-Revised, (VS/UWS)/

MCS/LIS, [43]).

� interval since insult: less than 1 year or chronic (> 1 year post insult).

� etiology: traumatic or other non-traumatic etiology.

For statistical evaluation of these data, Pearson’s chi-squared test was used. It was

performed separately for pairs consisting of one of the clinical parameters describing patients’

state (columns 3–5) and one of the EEG-derived parameters (columns 6–11). The results

were thresholded for significance at p < 0.05 and corrected for multiple comparison (marked

**). Results which proved significant only in separate comparisons are marked with “*”.

Figure 6 presents statistically significant relations between patients state and EEG-

derived parameters:



Figure 4 EEG profile of 24 hours recording. An example of continuous monitoring of patient’s EEG
activity during long period of time. Recording with many sleep spindles detected but no typically
concentrated during night, not correlated with the slow waves and without variation across 24 hours.
Subplots organized as in Figure 1. (a), (b), (c) and (e) – numbers of alpha, theta and beta waves and sleep
spindles, detected per subsequent 3-min epochs, (d) markers of occurrence of K-complexes, (f) percentage
of each 20-second epoch occupied by SWA; horizontal lines at 20% and 50% mark the classical criteria for
stages 3 and 4 scoring.
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1. sleep spindles are more likely found in MCS patients (p = 0.01*): they occurred in

27% of VS/UWS, but in 75% MCS and in LiS patient.

2. delta waves were found in 36% of patients with VS/UWS and in 75% of patients

with MCS and for the LiS patient, (p = 0.035*).

3. cycles of light and deep sleep were not detected in VS/UWS, detected in 70% MCS

and for the LiS patient, (p < 0.001**).

4. “other activities” (alpha, beta, theta) was absent in all patients with VS/UWS but

present in 70% if patients with MCS and for the LiS patient. Single frequency band

(e.g., only beta, only alpha or theta) was present in 90% of patients with VS/UWS

and in 30% of patients with MCS, (p = 0.001**).

5. variability of detected activity across time were detected for 9% VS/UWS, 80% MCS

and for the LiS patient, (p < 0.001**).
Figure 7 presents statistically significant relations between etiology and EEG-derived

parameters:
1. sleep spindles were observed in 78% of patients with traumatic etiology and only in

22% of non-traumatic etiology, (p = 0.001**).



Figure 5 EEG profile of all-night MCS recording. In this case we observe increase of the number of
sleep spindles in specific intervals during the night, and their inverse relationship to slow waves and other
activity, corresponding to the pattern of normal sleep profile. Subplots organized as in Figure 1. (a), (b), (c)
and (e) – numbers of alpha, theta and beta waves and sleep spindles, detected per subsequent 3-min
epochs, (d) markers of occurrence of K-complexes, (f) percentage of each 20-second epoch occupied by
SWA; horizontal lines at 20% and 50% mark the classical criteria for stages 3 and 4 scoring.

Figure 6 Results of correlation of patient states (behavioral diagnosis) and analyzed EEG
parameters. Bars plots of statistically significant correlation of patients state and: SS (p = 0.01*) fig. a), SWA
(p = 0.035*) fig. b), occurrence of sleep cycles (p < 0.001**) fig. c), other EEG activity (p = 0.001**) fig. d)
variability of these all activity across time (p < 0.001**) fig. e) and etiology (p = 0.044*) fig. f).
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Figure 7 Results of correlation of analyzed EEG parameters and etiology and time from insult for
each patient. Statistically significant correlation are presented on bars plots: occurrence of SS and etiology
(p = 0.001**) fig. a), occurrence of SWA and etiology (p = 0.018*) fig. b), occurrence of sleep cycles
(p = 0.045*) fig. c), other EEG activity (p = 0.002**) fig. d) and variability of these all activity across time
versus etiology (p = 0.02*) fig. e).
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2. delta waves are also more common for traumatic brain injury patients - observed in

68% post-traumatic, and only in 32% non-traumatic etiology, (p = 0.018*).

3. sleep cycles in 71% post-traumatic, and only in 29% non-traumatic etiology, (p = 0.045*).

4. all „other activities“(alpha, beta and theta) were present in 86% of cases for traumatic

and 14% of non-traumatic patients’ etiology. Only some of the „other activities “were

detected for 25% post-traumatic and in 75% of non-traumatic, (p = 0.002**).

5. variability of detected activity across time were found in 71% of patients with

traumatic brain injury and only in 29% in non-traumatic etiology patients, (p = 0.021*).

Less patients diagnosed VS/UWS were found in cases after traumatic brain injury

than non-traumatic. Within the analyzed group of patients there is a significant de-

pendence between patients diagnosed state and etiology of DOC (p = 0.044*). 27% pa-

tients in VS/UWS have traumatic etiology, 73% other. In MCS 65% of patients etiology

were traumatic, 35% other. This is an important factor which will have to be taken into

account in following studies, as etiology has an influence on patients‘ outcome and can

be a confounding factor here.

Finally, discriminant analysis carried out on the basis of behavior diagnosis of patients

states indicated that the most important features for MCS and VS/UWS discrimination

are: occurrence of sleep cycles, variability of detected activity across time and occur-

rence of SS and SWA. Occurrence of interictal spikes is not significant factor. Discrim-

ination between MCS and VS/UWS based upon prominent features of these profiles

classified correctly 87% of cases, 3 diagnosed MCS were classified as VS/UWS and 1

VS/UWS as MCS. When adding etiology information as an extra parameter in the ana-

lysis of correlation between patients state and EEG-derived parameters, the same effect

was observed suggesting that etiology is not a confounding factor (on the border of sig-

nificance). Only separate comparison between patient’s states and etiology of patient’s

disorders indicated p = 0.044* suggesting significant correlation.
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As compared to the study from Giubilei and colleagues [21] who reported the pres-

ence of sleep patterns similar to healthy controls in 9 out of 10 traumatic acute VS/

UWS, we observed poorer sleep patterns in a majority of VS/UWS as compared to

MCS patients. Moreover, other studies showed the absence of a correlation between

outcome and sleep pattern in VS/UWS patients [21,22]. We observed a correlation be-

tween the level of consciousness and etiology and sleep cycles, traumatic and MCS pa-

tients being more likely to show complex sleep patterns as compared to non-traumatic

and VS/UWS patients. It has been suggested in the literature that etiology and level of

consciousness influence outcome in DOC patients [4,47]; our results support the po-

tential of automatized EEG sleep recordings as a complementary diagnostic and/or

prognostic tool for assessing DOC patients at bedside.

Conclusions
This study investigates the clinical interest of an automatic sleep analyzer for assessing

sleep preservation in a group of patients with DOC. Using this system, we report sig-

nificant differences in the occurrene of sleep waves characteristics between conscious

patients (MCS and LIS) and unconscious patients (VS/UWS). We also found an eti-

ology effect, traumatic patients being more likely to show preserved EEG sleep-like ac-

tivities, which agrees with previous literature [47,48]. Altogether, these results highlight

the applicability of an automatic sleep analyzer to study clinical population such as pa-

tients with DOC and to improve our knowledge about the diagnosis and prognosis in

this population. Moreover, this would also have a major impact for clinical settings,

were sleep examinations currently remain time-consuming and subjective.

Additional file

Additional file 1: Matlab® scripts recreating Figure 1. This package contains a set of Matlab® scripts *.m and one
binary file norma_sleep_C3-LM_128_smp.b, containing MP decomposition of the sample recording analyzed in Figure 1.
This decomposition was computed using the 5th version (mp5) of the matching pursuit software, developed at the
University of Warsaw. It can be downloaded from http://braintech.pl/svarog. To reproduce the figure, run “plot_figure1.m“.
Parameters defining EEG structures are in files corresponding to their names (alpha_mp5.m, SS_mp5.m etc.), and can be
modified directly in the code – see file “HOWTO.txt” enclosed in the archive.
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