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Brain machine interfaces (BMIs) have demonstrated lots of successful arm-related reach decoding in past decades, which provide 
a new hope for restoring the lost motor functions for the disabled. On the other hand, the more sophisticated hand grasp move-
ment, which is more fundamental and crucial for daily life, was less referred. Current state of arts has specified some grasp related 
brain areas and offline decoding results; however, online decoding grasp movement and real-time neuroprosthetic control have not 
been systematically investigated. In this study, we obtained neural data from the dorsal premotor cortex (PMd) when monkey 
reaching and grasping one of four differently shaped objects following visual cues. The four grasp gesture types with an additional 
resting state were classified asynchronously using a fuzzy k-nearest neighbor model, and an artificial hand was controlled online 
using a shared control strategy. The results showed that most of the neurons in PMd are tuned by reach and grasp movement, us-
ing which we get a high average offline decoding accuracy of 97.1%. In the online demonstration, the instantaneous status of 
monkey grasping could be extracted successfully to control the artificial hand, with an event-wise accuracy of 85.1%. Overall, our 
results inspect the neural firing along the time course of grasp and for the first time enables asynchronous neural control of a 
prosthetic hand, which underline a feasible hand neural prosthesis in BMIs. 
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The loss of the hand results in a serious reduction of the 
functional autonomy of a person in his daily living. Pros-
thesis is the most common way to restore the lost function, 
however, there are several barriers existing trough a suc-
cessful prosthesis use, and the most important seems re-
garding the development of a reliable interface capable to 
decode the intention of the disabled to the prosthetic device. 
Brain machine interfaces (BMIs) provide a new hope for 
restoring motor functions of the severely disabled through 
controlling prostheses with intentional commands extracted 
from brain signals. Decoding motor cortex activities for 

robotic arm and screen cursor control in two or three di-
mensions has been examined successfully in human or 
non-human primates in past decades [1–3]. However, there 
are few investigations of movement decoding for restoring 
hand function, which is a great challenge with a higher de-
grees of freedom (DoFs). 

The hand is a marvelous example of how a complex bio- 
mechanism can be implemented, with effective combina-
tions of mechanisms, sensing, actuation and cortical control 
system coordinated in 38 muscles and 22 DoFs [4]. With 
these complex architectures, recent studies have shown that 
how dexterous grasps are represented and transformed into 
motor commands in distinct brain regions. Several cortical 
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areas distributed in parietal and frontal lobe are involved in 
control of reaching and grasping movement, such as anteri-
or intraparietal (AIP) area [5], areas PF and PFG of the in-
ferior parietal lobule (IPL) [6] and ventral premotor cortex 
(PMv, area F5) [7], which form the a dorsal stream pathway 
in inferior parietal area; some other areas such as area V6A, 
dorsal premotor cortex (PMd, area F2) [8] and medial in-
traparietal (MIP) forms another ventral stream pathway [9]. 
Moreover, these cortical areas are anatomically and func-
tionally interconnected, forming a grasping neural network 
to complete the function of sensory-motor transformations 
(both visual and somatosensory information), appropriate 
hand configuration, grasp movement execution, and high- 
order motor perceptions [10].  

The complexity of such a network, mingled with sophis-
ticated bio-mechanism of reaching and grasping, has kept us 
from decoding every DoF for grasp under current tech-
niques. Recently, there are some reports that can decode a 
large number of joint kinematics from hand. Aggarwal et al. 
tried to decode the individual and two combined fingers 
flexion and extension movement from neurons in M1, and 
got high accuracies [11]. Vargas-Irwin et al. demonstrated 
that the full arm joint kinematics (including arm, wrist and 
hand) can be reconstructed from local ensembles of M1 [12]. 
However, none of them can reconstruct the functional grasp 
gesture, which is crucial for grasping different objects 
[11,12]. Alternatively, current studies often resolve the 
problem by transferring continuous grasp movement into 
discrete classification. The strategy classifies finger config-
urations into one of the predefined categories based on the 
kinematic synergy movement in grasping and the neural 
encoding of grasp postures [13,14]. Grasp types were de-
coded successfully from multiunit activity (MUA) in PMd 
and PMv [15], single neuron recording in PMv [16], and 
multiple units in PMv and AIP [17] previously. Compared 
with continuous kinematic decoding, the classification 
strategy takes advantage of simplified hand configuration 
and high order planning in the brain, reducing the burden of 
the decoding system dramatically. 

Current state of arts has specified the grasp related brain 
areas and some offline decoding results. Townsend et al. 
demonstrated the first real time grasp types decoding, alt-
hough it is in synchronous mode and the grasp gestures are 
induced by different LED light mode, not different object 
shapes, which are more nature [17]. Hendrix et al. investi-
gated the signaling of grasp dimension and force during 
reach and grasp movement using signals from dorsal pre-
motor cortex (PMd). However, online decoding grasp 
movement and real-time neuroprosthetic control using PMd 
signals have not been systematically investigated. This 
study, using the discrete classification strategy, presents our 
work on asynchronously decoding of four gestures and a 
resting state using neural ensemble signals from the dorsal 
premotor cortex of a monkey. To obtain the data, we have 
developed an experimental paradigm for the monkey to 

grasp one of the four given objects with a specific gesture. 
Neural signals from the premotor cortex were recorded 
synchronously with hand movement during the grasp ex-
periment. Individual neuron analysis and population decod-
ing of the signals demonstrated that it is feasible to predict a 
variety of gestures in real time from the activities of motor 
cortex. Furthermore, the real-time decoding results were 
used to control an artificial hand for the first time to achieve 
the same grasp types as monkey using a shared control 
strategy. 

1  Experiments and methods 

1.1  Behavioral setup and tasks 

Monkey (rhesus macaque, male, body weight 6.5 kg) was 
trained to reach and grasp one of four polycarbonate plastic 
objects, each with a unique shape, using his right hand with 
a specific hand posture. As illustrated in Figure 1(a), the 
objects were fixed and arranged in a two-by-two matrix on a 
transparent plexiglass board, which was located vertically in 
front of the animal at the chest level. Each object can be in 
one of the positions of upper left (UL), upper right (UR), 
lower left (LL) and lower right (LR). The distance from the 
board to the eyes of the animal was ~50 cm. A PC-con- 
trolled LCD monitor was mounted behind the board to in-
struct the monkey which object to grasp by presenting a 
bright square right behind the target object. Figure 1(b) 
shows the shapes of the objects, including a cylinder (diam-
eter = 18 mm; length = 100 mm), a cuboid plate (5 mm× 60 
mm × 120 mm), a small cone (base diameter = 10 mm; 
length = 30 mm) and a small ring (inner diameter = 25 mm; 
outer diameter = 30 mm). The cylinder, plate and ring were 
fixed to the board with their longer axes vertical to the 
ground; the cone was placed with its base sticking on the 
board. The shapes were designed to direct the monkey to 
pose four different hand postures, which are (1) heavy wrap 
for the cylinder (with fingers and thumb flexing around the 
object, against the palm); (2) primitive precision for the 
plate (performed using the thumb and the pulpar surface of 
fingers’ last phalanxes, with four fingers in opposition to the 
thumb); (3) lateral for the cone (performed using the thumb 
and the radial surface of the last phalanx of the index finger) 
and (4) two-finger hook grip for the ring (with index and 
middle fingers inserted into the ring). 

The monkey was seated in a primate chair with his head 
fixed and right arm resting on clapboard at chest level. As 
shown in Figure 1(c), a trial was initiated after one of the 
objects was randomly illuminated by the light projected 
from the background screen (hereafter referred to as Light 
ON) and the monkey was required to reach for and grasp 
the object using a proper gesture, and hold it for a variety of 
3 to 4 seconds until the background light was turned off 
(hereafter referred to as Light OFF). After Light OFF, the 
monkey should release the object and withdrew the hand to  
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Figure 1  Experimental setup and training paradigm. (a) The side view of the experimental setup when the monkey is grasping the objects; (b) the four 
target objects and corresponding grasp gesture; (c) the time sequence of a single trial with external event and monkey actual movement shown above and 
below the time line, respectively. 

the rest position to complete a successful trial, which re-
sulted in several drops of water reward. Any unsuccessful 
trial would be excluded from further analysis. To facilitate 
analysis, we partitioned the period of each trial into the fol-
lowing phases: (1) resting, when the subject rests his arm on 
the clapboard; (2) reaching and grasping, during which the 
subject reaches for the object, touches the object and form a 
grip; (3) holding, during which the subject holds the object 
after grasping; (4) releasing and withdrawing, during which 
the subject cancels the grip, releases the object and with-
draw his arm to initial resting position. All the procedure 
was controlled by custom-developed software using Visual 
C# language. Hand and arm movements were also recorded 
using an infrared camera during the experiment. 

Five to eight blocks, each lasting 10 minutes and con-
sisting of ~50 trials, were conducted in one session (both in 
offline and online test) with a few minutes of break between 
two adjacent blocks. In each session, we repositioned the 
objects randomly to test if the position arrangement affects 
the grip type decoding. Compared with other works, it is 
important to note that the experimental paradigm is more 
simple and natural than traditional ones for three reasons:  
(1) the monkey grasped the object only during Light ON, 
without additional artifacts, such as planning period before 
onset of movement. This enables us to investigate the neural 
properties during a more nature reach and grasp movement, 
which is important for practical neuroprosthesis; (2) the 
grasp was performed with a long holding period without 
any external restriction of hand rest position, which was like 
performing daily grasping tasks; (3) room conditions were 
not restricted in ways such as with room light on or off, 
with noise from other rooms, even with prosthetic hand and 
technician aside for online experiments. 

1.2  Surgical implantation and neural recording 

Neural data were collected from Utah arrays (96 channels, 
4.2 ×4.2 mm, Blackrock Microsystems, Salt Lake City, UT, 
USA) chronically implanted in the hand area of PMd were 
contralateral to the hand performing the task. The implanta-
tion sites were identified by the brain landmarks, i.e. PMd 
site was dorsal to the spur of arcuate sulcus separating from 
ventral premotor cortex [8,18]. In addition, two head posts 
were placed on the skull for head stabilization during neural 
recording and array pedestal fix, respectively. The surgical 
procedures were similar to those previous described in [19]. 
All surgical procedures were performed under sterile condi-
tions and under general anesthesia. The monkey was in-
jected with ketamine (10 mg/kg) and diazepam (1 mg/kg) to 
induce anesthesia, which was maintained at a deep level via 
endotracheal administration of isoflurane (1%–2%). Body 
temperature was maintained at 37°C with a heating pad. 
During the entire surgical procedure, continuous heart rate, 
expired end tidal carbon dioxide (ETCO2), breathing rate, 
blood pressure and oxygen saturation were monitored with a 
physiological monitor. The monkey was allowed to recover 
from surgery for at least one week. Antibiotic therapy 
(Ceftriaxone sodium, 1 g/day) was continuously injected for 
5 days. Before the reaching and grasping task, the animal 
had been enrolled in a center-out experiment for 3 months. 
In this work, neural data were recorded about half a year 
after the implantation. All experimental procedures in this 
study conformed to the Guide for the Care and Use of La-
boratory Animals (Ministry of Health of China). 

Continuous neural activities were recorded from the mi-
croelectrode array in PMd using a Cerebus data acquisition 
system (Blackrock Microsystems, Salt City, UT, USA). 
Analog signal from each channel was amplified, filtered 
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(Butterworth bandpass, 0.3–7500 Hz), digitized (16 bit res-
olution, 30 kHz sample rate) and digitally filtered (Butter-
worth highpass, at 250 Hz). Spike activities were detected 
by thresholding of the filtered signal, at a level of −5.5 
times the root mean square (RMS) of baseline signal, and 
sorted by predefined waveform templates. The timing of 
behavior-related events, including Light ON, Light OFF, 
trial end and rewarding, was also recorded via the digital 
input port of the system synchronously. 

1.3  Neural tuning analysis and online control 

One goal here was to identify neural properties associated 
with reaching and grasping movements, which could be 
further used to assist online grasp posture decoding from 
neural ensemble of motor cortex. Neural spikes from each 
electrode were resorted using commercial software (Offline 
Sorter, Plexon Inc., Dallas, TX, USA) block by block to 
isolate single units [20]. The spikes of each unit were 
counted for each of the contiguous 100 ms bins across the 
entire trial. Signal-to-noise ratio (SNR) was assessed for 
each isolated unit by dividing the mean peak-to-peak volt-
age of the isolated unit by the mean estimated noise level. 
One neuron was judged as tuned to the reach grasp move-
ment if its firing rate in any bin during reach grasp movement 
was significantly different with the baseline firing rate. 

Fuzzy k-nearest neighbors (FKNN) was applied to clas-
sify different movement phases and grasp gestures in this 
application [21]. Given a training set 1 2 ][ , , nD y y y   

with n labeled neural vectors and an unlabeled test neural 
vector z related to one of the objects, the algorithm com-
putes the distance between z and all the training vectors to 
determine its k nearest neighbors and then assigns a fuzzy 
membership vector (FMV) to the z. The FMV is defined as 

 1 2   [ , ],LM m m m  where L is the number of classes and mi 

denotes the membership to the i-th class. mi is calculated as: 
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where c(y) is the label of y and Ii is an indicator function, 
i.e., (( ) 1)iI C y  if  ( );i C y  otherwise ( )( ) 0.iI C y  The 

predicted label of z is arg max{ | 1, , }.i
i

m i L   We calcu-

lated the labels for each neural vector bin by bin along the 
whole time course of grasping. In offline analysis, the most 
frequent label during the grasp was determined as the final 
label of this grip. 

The online control module was integrated into the train-
ing system described above, with additional sub-modules 
including real-time data reading from Cerebus, online de-
coding, prosthetic hand controller and graphic user interface. 
Online control of a prosthetic hand required asynchronous 

classification in real-time without priori knowledge of the 
movement events, i.e., the decoder not only can predict the 
right grasp types, but also the timing of grasp [22]. There-
fore, we employed a two-stage decoding strategy. The first 
stage classified the Grasp state and the Rest state, roughly 
corresponding to the periods between and beyond Light ON 
and Light OFF event, respectively. If the result of the first 
stage is Grasp, the second stage was activated to classify the 
four types of grasp gesture as used in offline decoding. 
During the online decoding, the classifier had been working 
along the whole time course of grasping and outputted one 
result out of five states (one Rest and four Grasps) for each 
bin, which is different from offline analysis.  

The prosthetic hand employed in this experiment is an 
anthropomorphic mechanical hand, which has five inde-
pendent fingers with 16 DoFs actuated by 6 DC motors. The 
microcontroller embedded in the hand can (i) provide inter-
face of receiving commands from a host PC via a standard 
RS232 protocol and (ii) control the position of each finger 
from all open to all close linearly. The online FKNN model 
output one of five states (one Rest state and four Grasp ges-
ture state) for each bin, and only when the state changed, 
the corresponding grasp primitive command was sent to the 
artificial hand. Accordingly, the hand has been tuned with 
five grasps primitive: open all fingers (rest), lateral pinch 
(cone), cylindrical (cylinder), lateral (thin plate) and two- 
finger hook (small ring). Automatic grasps was modeled on 
natural grasping, in other words when the decoder (i.e. the 
monkey) invokes a grasping primitive, three different phas-
es are sequenced by the hand according to the decoding 
state: pre-shaping, grasping and releasing. 

2  Results 

Monkey was well trained to perform four objects reach and  
 

 

 

Figure 2  Online decoding system setup and prosthetic hand control. 
When monkey grasping different objects, the decoder reads the neural 
activity from brain, real-time decode the current grasp states and send the 
corresponding control signal to the hand. 
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grasp task with light cues, i.e. monkey grasped one of the 
objects when the corresponding light was on and released it 
when the light was off. Neural signals in PMd were ob-
tained from a total of 11 sessions distributed in one month. 
After offline sorting, we isolated an average of 42 units 
each session, in which 93% had signal-to-noise ratio larger 
than 2.0, and 72% were significantly tuned to reach and 
grasp movement (one-way ANOVA, p <0.05). These data 
were used for analysis and decoding. Another 4 sessions 
were conducted online for evaluation of real time prosthetic 
hand control.  

2.1  Example neurons tuned by reach and grasp 

As shown in Figure 3, the tuned neurons fired differently 
during the time course of reach and grasp movement. Ac-
cording to the video analysis, the animal grasped the objects 
at an average of 385 ms (standard deviation, SD, 100 ms) 
after Light ON and released them 503 ms (SD, 160 ms) af-
ter Light OFF. Neuron 39-1 (channel 39, unit 1) and Neuron 
11-2 fired complementarily, i.e., the former neuron in-
creased its firing rate during grasping, while the latter ex-
hibited more firing during releasing, leaving other move-
ment phases no apparent difference compared with baseline. 
These two neurons are defined as reach neuron, because 

they only responded to reach movement, regardless of dif-
ferent grasp types. Neurons 22-1 and 27-1 formed another 
pair, in which the former only responded to grasping the 
plate and small ring, while the latter was only sensitive to 
the other two objects (i.e., cylinder and small cone). The 
firing rates of these two neurons decreased slowly during 
the holding phase, while maintaining the lowest firing for 
other objects. Neuron 64-1 showed a sharp decrease after 
grasping and maintained the lowest firing during holding. 
On the other hand, neuron 30-1 fired intensively during the 
cone and ring objects holding period. 

It is also important to note that the firing rate baseline 
varied neuron from neuron. Neurons 22-1 and 27-1 rarely 
fired during the resting phase while others maintained a 
constant low firing rate. The timing of response was also 
different, e.g. neurons 27-1 and 64-1 increased their firing 
rates before the movement onset (near at 1 s), while neuron 
22-1 responded after the onset. The tuning on different ob-
jects was also observed. Neuron 27-1 fired disparately when 
grasping, from which we could discriminate at least 3 types 
of hand posture. Moreover, the tuning property was also 
observed during releasing through different firing ampli-
tudes and phases, i.e., the neurons responded diversely even 
when the animal released the hand from different objects. 
All these were the evidences that individual neurons were   

 
 
 

 

Figure 3  Neural firing rate of representative tuned neurons during the whole reach and grasp movement. All trials were doubly aligned to the timing of 
Light ON (at 0.6 s) and Light OFF (at 4.1 s, an averaged position of Light OFF event), as the two vertical lines shown in each panel. One break point was 
showed at 3.1 s. Neuron 39-1 means the 1st unit from channel 39 and so on. The waveform of the unit is also plotted in a block in each panel. Each firing 
rate curve was averaged across all the trials in that session or block. 
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tuned towards specific reach grasp movement. 

2.2  Offline decoding analysis 

To investigate whether signals from PMd could be used to 
decode different hand grasp gesture, the FKNN classifica-
tion model was used for offline decoding block by block. 
We trained the model using the trials in the first half 5 min 
and tested with the second half ones. In order to extract as 
much information as possible, we used one second data 
segment (10 bins) after Light ON event to train and test the 
FKNN model. In training set, each bin used in one trial was 
labeled as the object grasped. When testing a trial, the mod-
el will give out a label result for each bin indicating the ob-
ject grasped. The label occurring most frequently in the 10 
bins will be determined as the final label of the tested trial. 
An average of 97.1% classification accuracy was achieved 
across all the blocks. The session-wise results were illus-
trated in Figure 4(a), which showed that the 4 out of 11 ses-
sions achieved 100% performance. Furthermore, a two-fold 
cross-validation, randomly assigned with equal size data for 
train and test, was used and averaged 100 times in each 
block. Similarly, an average of 94.5% accuracy (SD, 6.7%) 
was achieved, indicating a robust decoding performance. 

Another goal of offline analysis was to find out the 
shortest time period, during which the classifier was most 
reliable. Figure 4(b) presents the classification accuracy as a 
function of training length (i.e., the bins used to train and 

test) started from different time points (0 to 500 ms) after 
Light ON. The accuracy increased with decoding length and 
reached a constant limit at ~90%. Different starting time 
showed different performances: (i) using the same training 
length, the accuracy increased with the starting time; (ii) the 
length of time to reach the highest accuracy decreased with 
starting time, i.e., when starting from a latter time point, the 
accuracy maximized in shorter time; (iii) the accuracy got 
little difference when the starting time was later than 500 
ms. Taking 500 ms after Light ON as the starting decoding 
time, the time reaching to the highest accuracy was at 800 
ms (i.e. 8 bins), which was the shortest decoding time dura-
tion. The decoding accuracy using a sliding time window 
approach got similar results in Figure 4(c). Time windows 
with different lengths were tested. The accuracy dramati-
cally increased to the highest values at 600 to 1000 ms after 
Light ON and declined near and after Light OFF gradually. 
Note that the accuracy increased with window length, and, 
if the window lengths were larger than 700 ms, no visible 
difference was inspected. In order to investigate the least set 
of neurons needed for decoding, we evaluated decoding 
performances as a function of the number of the neurons 
used in PMd. The results in three example sessions were 
showed in Figure 4(d). The decoding accuracy increased 
with the neuron number used and finally reached a stable 
performance, which were defined as the point whenever two 
ajacent decoding accuracy have no significant difference 
(Student’s t-test, p > 0.05). In the three example sessions,   

 

 

 

Figure 4  Offline decoding and analysis. (a) The session-wise prediction accuracy, in which 4 out of 11 sessions achieved 100% performance, indicated by 
the red stars; (b) Classification accuracy as a function of training length. Different line indicated different original time from 0 to 500 ms after Light ON, e.g., 
for the red line, we originated from 300 ms after Light ON and increased the training length bin by bin and got the accuracy. Time 0 meant training using 
only the first original bin; (c) the performance of FKNN decoder along the time course of grasp using a sliding time window approach. The plots were dou-
bly aligned at Light ON and Light OFF as Figure 3 and four kinds of different time window length from 300 to 900 ms were tested. The results in (b) and (c) were 
both averaged across 12 blocks in 4 sessions and only one plot showed the standard deviation using error bar plot for clarity; (d) decoding performance as a func-
tion of the number of neurons (random selected) used in the classification model in 3 representative sessions. Each point in the plot was averaged 50 times.
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only 16/41, 31/52 and 22/36 neurons were used when 
getting the stable performance, which indicated a redundant 
and robust grasp movement encoding in PMd area. Overall, 
neurons in PMd provided a good decoding performance in 
our neural ensemble recordings, which provided basis for 
online prothetic hand control. 

2.3  Online control of prosthetic hand 

Online system connected with the artificial hand was set up 
when monkey was grasping different objects. Neural data 
were also recorded simultaneously and sorted online using 
spike waveform templates method. In each session, the data 
recorded in the first five minutes were used to train the 
FKNN model, which outputed one of five states (one Rest 
state and four objects Grasp state) for each bin when testing. 
For stable and smooth operation of the hand, a finite state 
machine (FSM) was employed to convert the output labels 
of the FKNN classifier to the primitive commands of 
artificial hand asynchronously, i.e., both different move-
ment states and movement onset timing were predicted. We 
designed a set of state transition polices for the FSM. First, 
if no membership predicted from FKNN was above a 
predefined threshold, the FSM regarded it as ambiguous and 
kept the current state unchanged. Second, FSM transited to 
a new state only when the classification label of the state 
was predicted in 5 consecutive bins. Third, the state cannot 
transfer from one kind of grasp type to another directly; 
Rest state must be inserted, which is also the actual situation. 
Only when the output state of the FSM changed, the 
command of grasping or releasing was sent to the hand. 

Representative online decoding process in several trials 
is shown in Figure 5. The prediction output of the FSM was 
compared with actual movement synchronously. One trial 

was judged as correct only when both grasp and rest states 
were predicted, i.e., only one continuous period of the 
correct decoding result appeared in each state. Across all the 
trials in the tested sessions, an average accuracy rate of 
85.1% was achieved, which meant that the artificial hand 
followed the movement of monkey completely in those 
trials. The bin-by-bin averaged prediction true positive rate 
(TPR) and false positive rate (FPR) compared with the 
actual grasp movement was 0.69 and 0.11, respectively. 
Meanwhile, note that there was always a prediction delay 
(PD) between Light ON event and predicted grasp start time. 
We evaluated the PD across all the correctly classified trials, 
with a mean value of 587 ms (SD, 237 ms). The delay was 
mainly due to the policy of using 5 consecutive bins for 
making a decision and the monkey’s reaction time 
mentioned above (i.e. monkey started to grasp the objects 
385 ms after Light ON). On the other hand, the artificial 
hand employed in this application performed smoothly and 
fast enough to follow the monkey movement. 

3  Discussion and conclusion 

The results of the study demonstrated that real time asyn-
chronous grasp type decoding could be obtained reliably 
from the cortical area of PMd in monkey. The single unit 
activity during the grasp movement showed distinct and 
stable neuron by neuron tuning to reach and grasp move-
ment, showing a robust reach grasp pattern encoded in PMd 
area. In offline decoding analysis, we first evaluated the 
performance in the setting of FKNN classifier, getting an 
average decoding accuracy of 97.1% across all the sessions. 
Furthermore, according to the different training length and 
sliding window approach, we get the shortest and most 

 
 

 

Figure 5  Representative online bin by bin decoding results showing actual movement sequence and the predicted counterpart in 16 successive trials. Five 
movement states were represented in different levels of vertical axis, and the start and end of the four objects grasp was calibrated as the event timing of 
Light ON and Light OFF respectively. 
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reliable decoding period was soon after Light ON event, 
which could be up to 800 ms. In the online demonstration, a 
FSM combined with a two-stage FKNN model was used to 
classify the motor information (four grip types and one rest 
state) asynchronously, in which both different movement 
states and movement onset timing were predicted. The in-
stantaneous status of monkey grasping could be extracted 
from the firing pattern of neural ensemble during the entire 
experiment, with an event-wise accuracy of 85.1%. 

Decoding individual finger movement from cortical 
neuron ensemble is possible now. However, these kinematic 
parameters were reconstructed independently without con-
sidering inter-finger coordination, i.e., if it would reproduce 
a well-coordinated grasp movement is currently unclear or 
only constrained in a simple close-open grasp movement 
[12]. In fact, we do not need control every single joint sep-
arately, because natural grasp works in a synergic way, 
which is also the way brain adopted [14,23]. Although 
studies have decoded categorized grasp types [15–17,23], 
we realized the decoding in real time and asynchronous 
mode, which is critical in practical applications [22,24]. The 
present study demonstrated the asynchronously real time 
grasp type decoding, in which both the onset of movement 
and movement type were decoded. Meanwhile, the decod-
ing grasp types (high-level command) were sent to an artifi-
cial hand (low-level controller) to accomplish the detailed 
finger movement. Such strategy may construct “shared con-
trol” between the brain machine interface and the low-level 
intelligence, which can reduce the burden of the user in 
terms of accurate decoding algorithms and overcomes some 
limitations of traditional systems [25,26]. 

PMd cortex has been extensively studied during the last 
two decades when subjects performing proximal forelimb 
reaching movement toward visual targets (center-out para-
digm). These results have demonstrated that the movement- 
related discharge of the PMd neurons is correlated with 
kinematic parameters such as reaching directions and am-
plitudes [27]. However, the contribution of the distal fore-
limb movements to PMd discharge was rarely reported. The 
functional properties of PMd neurons for grasp movement 
were first investigated by Raos et al. [8], in which, PMd 
showed high selectivity for specific grip type and wrist ori-
entation during both planning and execution of grasp, simi-
lar to neurons in PMv [8,28]. Other studies also demon-
strated the grasp-specific activity in PMd [29,30]. Actually, 
PMd has a strong connection with other cortical areas in 
grasp cortical network, such as PMv, M1 and area V6A 
[31,32]. Compared with the classical dorsal lateral AIP-F5 
grasp pathway, PMd is involved in a dorsal medial pathway, 
which contains area V6A, medial intraparietal area (MIP), 
mesial parietal areas (PEc and PGm) and PMd [9,27]. The 
high grasp type decoding accuracy using PMd neurons in 
our result also provided the evidence that PMd played an 
important role in grasp movement.  

In the action of reaching to grasp, a coordinated activa-

tion of muscles of the hand is required to shape the hand in 
relation to the variety of object characters. Grasp parameters, 
such as preshape, aperture, wrist orientation, grasp force 
and feedback control, should be involved in sensorimotor 
cortex to obtain a flexible grasp movement. Besides the grip 
type discussed in this paper, how grasp force [1,30], wrist 
orientation [17,33] and grasp aperture [12] are encoded in 
the brain were also studied before. However, a combination 
of these grasp factors was rarely mentioned, which are piv-
otal for dexterous control of prosthesis in BMI applications. 
Furthermore, little attention has been given to the role of 
other different signal types interaction in grasp movement 
decoding, such as local field potentials (LFPs), electroen-
cephalograms (EEGs) and peripheral nervous signals (PNS). 
In fact, recent research has indicated a good deal of infor-
mation can be extracted from LFPs. Moreover, different 
frequency bands of LFPs exhibit different amount of infor-
mation about the kinematics of limb and arm, which are to 
some extent complementary with spike signals [34]. Future 
studies might also enable combining different signal types 
to improve the decoding performance and control feasibility. 
It is also important to notice that the successful neural con-
trol of movement requires both neuroscience and engineer-
ing developments, which is a cross-disciplinary frontier 
research field. 
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