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Abstract This article builds on recent work (Akhmeteli in
Int. J. Quantum Inf. 9(Supp01):17, 2011; J. Math. Phys.
52:082303, 2011), providing a theory that is based on spinor
electrodynamics, is described by a system of partial differ-
ential equations in 3 + 1 dimensions, but reproduces uni-
tary evolution of a quantum field theory in the Fock space.
To this end, after introduction of a complex four-potential
of electromagnetic field, which generates the same electro-
magnetic fields as the initial real four-potential, the spinor
field is algebraically eliminated from the equations of spinor
electrodynamics. It is proven that the resulting equations for
electromagnetic field describe independent evolution of the
latter and can be embedded into a quantum field theory using
a generalized Carleman linearization procedure. The theory
provides a simple and at least reasonably realistic model,
valuable for interpretation of quantum theory. The issues re-
lated to the Bell theorem are discussed.

1 Introduction

In an earlier article (Ref. [1]), this author discussed a possi-
bility of a “no drama” quantum theory, as simple (in prin-
ciple) as classical electrodynamics—a local realistic the-
ory described by a system of partial differential equations
in 3 + 1 dimensions, but reproducing unitary evolution of
a quantum field theory in the Fock space. In particular, it
was shown there that the matter field can be algebraically
eliminated from the equations of scalar electrodynamics
(the Klein–Gordon–Maxwell electrodynamics) in the uni-
tary gauge, the resulting equations for electromagnetic field
describe independent evolution of the latter and can be em-
bedded into a quantum field theory. The issue of the Bell
theorem was discussed in detail using arguments of night-
light and E. Santos. The analysis can be summarized as fol-
lows. While the Bell inequalities cannot be violated in the
theories of Ref. [1], there are some reasons to believe these
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inequalities cannot be violated either in experiments or in
quantum theory: on the one hand, there is no loophole-free
experimental evidence of violations of the Bell inequalities
(see, e.g., Ref. [2]), on the other hand, to prove that the in-
equalities can be violated in quantum theory, one needs to
use the theory of quantum measurements, e.g., the projec-
tion postulate. However, such postulate is in contradiction
with the standard unitary evolution (this is the well-known
problem of measurement in quantum theory), as such pos-
tulate introduces irreversibility and turns a superposition of
states into their mixture. Therefore, mutually contradictory
assumptions are required to prove the Bell theorem (not in
the part related to the derivation of the Bell inequalities for
local realistic theories, but in the part related to violations
of the Bell inequalities in quantum theory), so it can be cir-
cumvented if the projection postulate is rejected in favor of
unitary evolution. The reader is referred to Ref. [1] for the
detailed analysis and the references.

The extension of the above results to spinor electro-
dynamics (the Dirac–Maxwell electrodynamics) offered in
Ref. [1] was much more limited and less satisfactory, as, in-
stead of the Dirac equation, its modification for a limited
class of functions was used. The root of the problem was
that, while a scalar field can always be made real (at least
locally) by a gauge transform (Ref. [3]), this is not true for a
spinor field described by the Dirac equation. Recently, how-
ever, this line of research produced a most important spin-
off (Ref. [4]): it was shown that, in a general case, three
out of four complex components of the Dirac spinor can be
algebraically eliminated from the Dirac equation in electro-
magnetic field, and the remaining component can be made
real (at least locally) by a gauge transform. Thus, on the one
hand, the Dirac equation is generally equivalent to a fourth
order partial differential equation for just one real compo-
nent, on the other hand, most results of Ref. [3] for scalar
fields and scalar electrodynamics were extended to spinor
fields and spinor electrodynamics. This opened a way to the
main result of the present article (announced in Ref. [5]): a
much more satisfactory extension of the results of Ref. [1] to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81785067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:akhmeteli@ltasolid.com


Page 2 of 7 Eur. Phys. J. C (2013) 73:2371

spinor electrodynamics, which is more realistic than scalar
electrodynamics.

2 Scalar electrodynamics

Let us first consider scalar electrodynamics, both to illustrate
the general approach using this simpler case and to present
a proof for scalar electrodynamics that is significantly im-
proved compared to Ref. [1], as it does not contain the nasty
square roots (see, e.g., (15) of Ref. [1]).

The equations of scalar electrodynamics are as follows:

(
∂μ + ieAμ

)
(∂μ + ieAμ)ψ + m2ψ = 0, (1)

�Aμ − Aν
,νμ = jμ, (2)

jμ = ie
(
ψ∗ψ,μ − ψ∗

,μψ
) − 2e2Aμψ∗ψ. (3)

The metric tensor used to raise and lower indices is (Ref. [6])

gμν = gμν =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ , gν

μ = δν
μ.

The complex charged matter field ψ in scalar electro-
dynamics ((1), (2), and (3)) can be made real by a gauge
transform (at least locally), and the equations of motion in
the relevant gauge (unitary gauge) for the transformed four-
potential of electromagnetic field Bμ and real matter field ϕ

are as follows (Ref. [3]):

�ϕ − (
e2BμBμ − m2)ϕ = 0, (4)

�Bμ − Bν
,νμ = jμ, (5)

jμ = −2e2Bμϕ2. (6)

The following unexpected result was proven in Ref. [1]:
the equations obtained from (4), (5), and (6) after natural
elimination of the matter field form a closed system of par-
tial differential equations and thus describe independent dy-
namics of electromagnetic field. The detailed wording is as
follows: if components of the four-potential of the electro-
magnetic field and their first derivatives with respect to time
are known in the entire space at some time point, the values
of their second derivatives with respect to time can be calcu-
lated for the same time point, so the Cauchy problem can be
posed, and integration yields the four-potential in the entire
space-time.

To eliminate the matter field ϕ from (4), (5), and (6), let
us use a substitution Φ = ϕ2 first. For example, as

Φ,μ = 2ϕϕ,μ, (7)

we obtain

Φ,μ
,μ = 2ϕ,μϕ,μ + 2ϕϕ,μ

,μ = 1

2

Φ,μΦ,μ

Φ
+ 2ϕϕ,μ

,μ. (8)

Multiplying (4) by 2ϕ, we obtain the following equations in
terms of Φ instead of (4), (5), and (6):

�Φ − 1

2

Φ,μΦ,μ

Φ
− 2

(
e2BμBμ − m2)Φ = 0, (9)

�Bμ − Bν
,νμ = −2e2BμΦ. (10)

To prove that these equations describe independent evolu-
tion of the electromagnetic field Bμ, it is sufficient to prove
that if components Bμ of the potential and their first deriva-
tives with respect to x0 (Ḃμ) are known in the entire space
at some time point x0 = const (that means that all spatial
derivatives of these values are also known in the entire space
at that time point), (9) and (10) yield the values of their sec-
ond derivatives, B̈μ, for the same value of x0. Indeed, Φ can
be eliminated using (10) for μ = 0, as this equation does not
contain B̈μ for this value of μ:

Φ = (−2e2B0
)−1(�B0 − Bν

,ν0

)

= (−2e2B0
)−1(

B
,i
0,i − Bi

,i0

)
(11)

(Greek indices in the Einstein sum convention run from 0 to
3, and Latin indices run from 1 to 3). Then B̈i (i = 1,2,3)
can be determined by substitution of (11) into (10) for μ =
1,2,3:

B̈i = −B
,j
i,j + Bν

,νi + (B0)
−1Bi

(
B

,j

0,j − B
j

,j0

)
. (12)

Thus, to complete the proof, we only need to find B̈0. Con-
servation of current implies

0 = (
BμΦ

)
,μ

= Bμ
,μΦ + BμΦ,μ. (13)

This equation determines Φ̇ , as spatial derivatives of Φ can
be found from (11). Differentiation of this equation with re-
spect to x0 yields

0 = (
B̈0 + Ḃi

,i

)
Φ + (

Ḃ0 + Bi
,i

)
Φ̇

+ Ḃ0Φ̇ + ḂiΦ,i + B0Φ̈ + BiΦ̇,i . (14)

After substitution of Φ from (11), Φ̇ from (13), and Φ̈ from
(9) into (14), the latter equation determines B̈0 as a function
of Bμ, Ḃμ and their spatial derivatives (again, spatial deriva-
tives of Φ and Φ̇ can be found from the expressions for Φ

and Φ̇ as functions of Bμ and Ḃμ). Thus, if Bμ and Ḃμ are
known in the entire space at a certain value of x0, then B̈μ

can be calculated for the same x0, so integration yields Bμ

in the entire space-time. Therefore, we do have independent
dynamics of electromagnetic field.
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A reader made the following important comment on a
preliminary version of this article: “The equations of scalar
electrodynamics include (taking into account the gauge free-
dom) five real functions (for the fields Aμ and complex ϕ).
These obey second order differential equations and hence
one would naively expect that 10 initial conditions would be
required. On the other hand, it seems that one only needs
Bμ and Ḃμ at t = t0 in order to evolve in time; hence eight
initial conditions. A similar situation appears in the spinor
case. The author should clarify the initial condition count-
ing.” The author would like to emphasize that the systems
of partial differential equations considered in this article are
very specific, and their peculiarities influence the choice of
initial conditions of the Cauchy problem. The systems in-
clude both equations of motion and constraints, such as the
Maxwell equation with index μ = 0, so standard methods
developed for systems with constraints should be used to
determine the true initial conditions. Such analysis, while
straightforward, is beyond the scope of this article. The au-
thor only proved that electromagnetic field evolves indepen-
dently (if we know Bμ and Ḃμ at t = t0, we can calculate
B̈μ at t = t0), but that does not mean that, for example, ar-
bitrary values of Bμ and Ḃμ at t = t0 can be chosen for
scalar electrodynamics, as such arbitrary choice can be in-
compatible with the constraints. Some peculiarities that in-
fluence the choice of initial conditions: (1) equations (1),
(2), and (3) are not independent, as current conservation can
be derived both from the Maxwell equations and from the
Klein–Gordon equation; (2) equation (14), derived from the
Maxwell equations, defines Φ̈ , so a constraint can be derived
from (14) and (9).

3 Spinor electrodynamics

The equations of spinor electrodynamics are as follows:

(i/∂ − /A)ψ = ψ, (15)

�Aμ − Aν
,νμ = e2ψ̄γμψ, (16)

where, e.g., /A = Aμγ μ (the Feynman slash notation). For
the sake of simplicity, a system of units is used where
� = c = m = 1, and the electric charge e is included in
Aμ (eAμ → Aμ). In the chiral representation of γ -matrices
(Ref. [6])

γ 0 =
(

0 −I

−I 0

)
, γ i =

(
0 σ i

−σ i 0

)
, (17)

where index i runs from 1 to 3, and σ i are the Pauli matrices.
Let us apply the following “generalized gauge transform”:

ψ = exp(iα)ϕ, (18)

Aμ = Bμ − α,μ, (19)

where the new four-potential Bμ is complex (cf. Ref. [7]),
but produces the same electromagnetic fields as Aμ), α =
α(xμ) = β + iδ, β = β(xμ), δ = δ(xμ), and β , δ are real.
The imaginary part of the complex four-potential is a gra-
dient of a certain function, so alternatively we can use this
function instead of the imaginary components of the four-
potential.

After the transform, the equations of spinor electrody-
namics can be rewritten as follows:

(i/∂ − /B)ϕ = ϕ, (20)

�Bμ − Bν
,νμ = exp(−2δ)e2ϕ̄γμϕ. (21)

If ψ and ϕ have components

ϕ =

⎛

⎜⎜
⎝

ϕ1

ϕ2

ϕ3

ϕ4

⎞

⎟⎟
⎠ , ψ =

⎛

⎜⎜
⎝

ψ1

ψ2

ψ3

ψ4

⎞

⎟⎟
⎠ , (22)

let us fix the “gauge transform” of (18) and (19) somewhat
arbitrarily by the following condition:

ϕ1 = exp(−iα)ψ1 = 1. (23)

The Dirac equation (20) can be written in components as
follows:
(
B0 + B3)ϕ3 + (

B1 − iB2)ϕ4

+ i(ϕ3,3 − iϕ4,2 + ϕ4,1 − ϕ3,0) = ϕ1, (24)
(
B1 + iB2)ϕ3 + (

B0 − B3)ϕ4

− i(ϕ4,3 − iϕ3,2 − ϕ3,1 + ϕ4,0) = ϕ2, (25)
(
B0 − B3)ϕ1 − (

B1 − iB2)ϕ2

− i(ϕ1,3 − iϕ2,2 + ϕ2,1 + ϕ1,0) = ϕ3, (26)

−(
B1 + iB2)ϕ1 + (

B0 + B3)ϕ2

+ iϕ2,3 + ϕ1,2 − i(ϕ1,1 + ϕ2,0) = ϕ4. (27)

Equations (26) and (27) can be used to express components
ϕ3, ϕ4 via ϕ1, ϕ2 and eliminate them from (24) and (25). The
resulting equations for ϕ1 and ϕ2 are as follows:

−ϕ
,μ
1,μ + ϕ2

(−iB1
,3 − B2

,3 + B0
,2 + B3

,2

+ i
(
B0

,1 + B3
,1 + B1

,0

) + B2
,0

)

+ ϕ1
(−1 + BμBμ − iBμ

,μ + iB0
,3 − B1

,2 + B2
,1 + iB3

,0

)

− 2iBμϕ1,μ = 0, (28)

−ϕ
,μ
2,μ + iϕ1

(
B1

,3 + iB2
,3 + iB0

,2 − iB3
,2 + B0

,1 − B3
,1 + B1

,0

+ iB2
,0

) + ϕ2
(−1 + BμBμ − i

(
Bμ

,μ + B0
,3 + iB1

,2

− iB2
,1 + B3

,0

)) − 2iBμϕ2,μ = 0. (29)
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Equation (28) can be used to express ϕ2 via ϕ1:

ϕ2 = −(
iF 1 + F 2)−1(�′ + iF 3)ϕ1, (30)

where F i = Ei + iH i , real electric field Ei and magnetic
field Hi are defined by the standard formulas

Fμν = Bν,μ − Bμ,ν =

⎛

⎜⎜
⎝

0 −E1 −E2 −E3

E1 0 −H 3 H 2

E2 H 3 0 −H 1

E3 −H 2 H 1 0

⎞

⎟⎟
⎠ , (31)

and the modified d’Alembertian �′ is defined as follows:

�′ = ∂μ∂μ + 2iBμ∂μ + iBμ
,μ − BμBμ + 1. (32)

Equation (29) can be rewritten as follows:

−(
�′ − iF 3)ϕ2 − (

iF 1 − F 2)ϕ1 = 0. (33)

Substitution of ϕ2 from (30) into (29) yields an equation of
the fourth order for ϕ1:

((
�′ − iF 3)(iF 1 + F 2)−1(�′ + iF 3) − iF 1 + F 2)ϕ1 = 0.

(34)

Application of the gauge condition of (23) to (32), (30),
(34), and (33) yields the following equations:

�′ϕ1 = iBμ
,μ − BμBμ + 1, (35)

ϕ2 = −(
iF 1 + F 2)−1(

iBμ
,μ − BμBμ + 1 + iF 3), (36)

(
�′ − iF 3)(iF 1 + F 2)−1(

iBμ
,μ − BμBμ + 1 + iF 3)

− iF 1 + F 2 = 0, (37)

−(
�′ − iF 3)ϕ2 − (

iF 1 − F 2) = 0. (38)

Obviously, (23), (36), (26), and (27) can be used to eliminate
spinor ϕ from the equations of spinor electrodynamics (20)
and (21). It is then possible to eliminate δ from the resulting
equations. Furthermore, it turns out that the equations de-
scribe independent dynamics of the (complex four-potential
of) electromagnetic field Bμ. More precisely, if components
Bμ and their temporal derivatives (derivatives with respect
to x0) up to the second order Ḃμ and B̈μ are known at some
point in time in the entire 3D space x0 = const, the equations
determine the temporal derivatives of the third order

...
B

μ, so
the Cauchy problem can be posed, and the equations can be
integrated (at least locally). Let us prove this statement.

As ϕ1 = 1 (23), we obtain

ϕ̄γμϕ =

⎛

⎜⎜⎜⎜
⎝

ϕ∗
1ϕ1 + ϕ∗

2ϕ2 + ϕ∗
3ϕ3 + ϕ∗

4ϕ4

ϕ∗
2ϕ1 + ϕ∗

1ϕ2 − ϕ∗
4ϕ3 − ϕ∗

3ϕ4

iϕ∗
2ϕ1 − iϕ∗

1ϕ2 − iϕ∗
4ϕ3 + iϕ∗

3ϕ4

ϕ∗
1ϕ1 − ϕ∗

2ϕ2 − ϕ∗
3ϕ3 + ϕ∗

4ϕ4

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

1 + ϕ∗
2ϕ2 + ϕ∗

3ϕ3 + ϕ∗
4ϕ4

ϕ∗
2 + ϕ2 − ϕ∗

4ϕ3 − ϕ∗
3ϕ4

iϕ∗
2 − iϕ2 − iϕ∗

4ϕ3 + iϕ∗
3ϕ4

1 − ϕ∗
2ϕ2 − ϕ∗

3ϕ3 + ϕ∗
4ϕ4

⎞

⎟⎟⎟⎟
⎠

. (39)

Using (21) with index μ = 0 and (39), we can express
e2 exp(−2δ) as follows:

e2 exp(−2δ)

= (
B

,i
0,i − Bi

,i0

)(
1 + ϕ∗

2ϕ2 + ϕ∗
3ϕ3 + ϕ∗

4ϕ4
)−1

, (40)

as

�B0 − Bν
,ν0 = B

,i
0,i − Bi

,i0. (41)

Substitution of (40) in (21) yields

�Bi − Bν
,νi = B̈i + B

,j
i,j − Ḃ0

,i − B
j
,ji

= (
B

,j

0,j − B
j

,j0

)(
1 + ϕ∗

2ϕ2 + ϕ∗
3ϕ3 + ϕ∗

4ϕ4
)−1

×
⎛

⎝
ϕ∗

2 + ϕ2 − ϕ∗
4ϕ3 − ϕ∗

3ϕ4

iϕ∗
2 − iϕ2 − iϕ∗

4ϕ3 + iϕ∗
3ϕ4

1 − ϕ∗
2ϕ2 − ϕ∗

3ϕ3 + ϕ∗
4ϕ4

⎞

⎠ . (42)

We are going to use (42) first to express
...
B

i in terms of lower
derivatives of Bμ with respect to time and then to express

...
B

0

in terms of the said lower derivatives (see (55) below and the
following equations of this section).

We note based on (36) that ϕ2 can be expressed via Bμ,
Ḃμ, and their spatial derivatives (derivatives with respect to
x1, x2, and x3), as

F 1 = E1 + iH 1 = F 10 + iF 32

= B0,1 − B1,0 + i
(
B2,3 − B3,2), (43)

F 2 = E2 + iH 2 = F 20 + iF 13

= B0,2 − B2,0 + i
(
B3,1 − B1,3), (44)

F 3 = E3 + iH 3 = F 30 + iF 21

= B0,3 − B3,0 + i
(
B1,2 − B2,1). (45)

Using (43), (44), and (45), the first temporal derivatives of
F i can be written as follows:

Ḟ 1 = Ḃ0,1 − B̈1 + i
(
Ḃ2,3 − Ḃ3,2), (46)

Ḟ 2 = Ḃ0,2 − B̈2 + i
(
Ḃ3,1 − Ḃ1,3), (47)

Ḟ 3 = Ḃ0,3 − B̈3 + i
(
Ḃ1,2 − Ḃ2,1). (48)

We note based on (36), (43), (44), (45), (46), (47), and (48)
that ϕ̇2 can be expressed via Bμ, Ḃμ, B̈μ, and their spatial
derivatives.
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From (26) and (23) we obtain

ϕ3 = B0 − B3 − (
B1 − iB2)ϕ2 − i(−iϕ2,2 + ϕ2,1). (49)

We note that ϕ3 can be expressed via Bμ, Ḃμ, and their spa-
tial derivatives. The first temporal derivative of ϕ3 can be
written as follows:

ϕ̇3 = Ḃ0 − Ḃ3 − (
Ḃ1 − iḂ2)ϕ2

− (
B1 − iB2)ϕ̇2 − i(−iϕ̇2,2 + ϕ̇2,1). (50)

We note based on (50) that ϕ̇3 can be expressed via Bμ, Ḃμ,
B̈μ, and their spatial derivatives.

From (27) and (23) we obtain:

ϕ4 = −(
B1 + iB2) + (

B0 + B3)ϕ2 + iϕ2,3 − iϕ2,0. (51)

We note that ϕ4 can be expressed via Bμ, Ḃμ, B̈μ, and their
spatial derivatives. The first temporal derivative of ϕ4 can be
written as follows:

ϕ̇4 = −(
Ḃ1 + iḂ2) + (

Ḃ0 + Ḃ3)ϕ2

+ (
B0 + B3)ϕ̇2 + iϕ̇2,3 − iϕ̈2. (52)

All terms in the expression for ϕ̇4 with a possible exception
of −iϕ̈2 can be expressed via Bμ, Ḃμ, B̈μ, and their spa-
tial derivatives. Let us consider the expression ϕ̈2. Equations
(38) and (32) yield

0 = −(
�′ − iF 3)ϕ2 − (

iF 1 − F 2)

= −(
∂μ∂μ + 2iBμ∂μ + iBμ

,μ − BμBμ + 1 − iF 3)ϕ2

− (
iF 1 − F 2)

= −(
∂0∂0 + ∂i∂i + 2iB0∂0 + 2iBi∂i

)
ϕ2

+ (
iBμ

,μ − BμBμ + 1 − iF 3)ϕ2 − (
iF 1 − F 2)

= −ϕ̈2 − 2iB0ϕ̇2 − (
∂i∂i + 2iBi∂i

)
ϕ2

+ (
iBμ

,μ − BμBμ + 1 − iF 3)ϕ2 − (
iF 1 − F 2). (53)

We note that ϕ̈2 can be expressed via Bμ, Ḃμ, B̈μ, and their
spatial derivatives. Therefore, based on (52), the same is true
for ϕ̇4. Furthermore, we can summarize that all functions ϕμ

and ϕ̇μ can be expressed via Bμ, Ḃμ, B̈μ, and their spatial
derivatives. Obviously, the same is true for ϕ∗

μ and ϕ̇∗
μ.

Differentiating (42) with respect to time (x0), we con-
clude that functions

...
B

i can be expressed via Bμ, Ḃμ, B̈μ,
and their spatial derivatives, as the left-hand side of (42) af-
ter the differentiation equals

...
Bi + Ḃ

,j
i,j − B̈0

,i − Ḃ
j
,j i , (54)

and the right-hand side of (42) after the differentiation will
be expressed via Bμ, Ḃμ, B̈μ, ϕμ, ϕ̇μ, ϕ∗

μ, ϕ̇∗
μ, and their

spatial derivatives. Therefore, functions
...
Bi can be expressed

via Bμ, Ḃμ, B̈μ, and their spatial derivatives, so to prove the
initial statement we just need to prove the same for

...
B0. To

this end, let us consider the following equation derived from
(37) and (32):

(
∂μ∂μ + 2iBμ∂μ + iBμ

,μ − BμBμ + 1 − iF 3)

× (
iF 1 + F 2)−1(

iBμ
,μ − BμBμ + 1 + iF 3)

− iF 1 + F 2 = 0. (55)

It is obvious that the following part of the left-hand side of
(55) can be expressed via Bμ, Ḃμ, and their spatial deriva-
tives:

(
iBμ

,μ − BμBμ + 1 − iF 3)(iF 1 + F 2)−1

× (
iBμ

,μ − BμBμ + 1 + iF 3) − iF 1 + F 2. (56)

The rest of the left-hand side of (55) can be rewritten as
follows:

(
∂0∂0 + ∂i∂i + 2iB0∂0 + 2iBi∂i

)(
iF 1 + F 2)−1

× (
iBμ

,μ − BμBμ + 1 + iF 3). (57)

The following part of the expression in (57) can be expressed
via Bμ, Ḃμ, and their spatial derivatives:

(
∂i∂i + 2iBi∂i

)(
iF 1 + F 2)−1

× (
iBμ

,μ − BμBμ + 1 + iF 3). (58)

Let us evaluate the following expression (as an intermediate
step to evaluate the terms with ∂0∂0 and 2iB0∂0 in (57)):

∂0
(
iF 1 + F 2)−1(

iBμ
,μ − BμBμ + 1 + iF 3)

= −(
iḞ 1 + Ḟ 2)(iF 1 + F 2)−2

× (
iBμ

,μ − BμBμ + 1 + iF 3)

+ (
iF 1 + F 2)−1(

iḂμ
,μ − 2ḂμBμ + iḞ 3). (59)

It follows from (59) that the following part of (57) can be
expressed via Bμ, Ḃμ, B̈μ, and their spatial derivatives:

(
2iB0∂0

)(
iF 1 + F 2)−1(

iBμ
,μ − BμBμ + 1 + iF 3).

Therefore, we only need to evaluate (using (59)) the fol-
lowing remaining part of (57):

∂0∂0
(
iF 1 + F 2)−1(

iBμ
,μ − BμBμ + 1 + iF 3)

= ∂0(−(
iḞ 1 + Ḟ 2)(iF 1 + F 2)−2(

iBμ
,μ − BμBμ

+ 1 + iF 3)) + ∂0(iF 1 + F 2)−1



Page 6 of 7 Eur. Phys. J. C (2013) 73:2371

× (
iḂμ

,μ − 2ḂμBμ + iḞ 3)

= ∂0(−(
iḞ 1 + Ḟ 2)(iF 1 + F 2)−2(

iBμ
,μ − BμBμ

+ 1 + iF 3)) + (
∂0(iF 1 + F 2)−1)

× (
iḂμ

,μ − 2ḂμBμ + iḞ 3) + (
iF 1 + F 2)−1

× (
i
...
B

0 + iB̈i
,i + (

∂0(−2ḂμBμ + iḞ 3))). (60)

It follows from (46), (47), and (48) that F̈ i can be expressed
via Bμ, Ḃμ, B̈μ,

...
B

i (but not
...
B

0), and their spatial deriva-
tives, but, as explained above (see (54) and the text around
it),

...
B

i can be expressed via Bμ, Ḃμ, B̈μ, and their spatial
derivatives. Thus, this is also true for all terms of the right-
hand side (following the last equality sign) of (60) (and, con-
sequently, for all terms of (55)), with a possible exception of
the term

(
iF 1 + F 2)−1

...
B0, (61)

but that means that (55) can be used to express this term and,

therefore,
...
B0 via Bμ, Ḃμ, B̈μ, and their spatial derivatives,

which completes the proof.
Thus, matter field can be eliminated from equations of

scalar electrodynamics and spinor electrodynamics, and the
resulting equations describe independent evolution of elec-
tromagnetic field (see precise wording above). It should be
noted that these mathematical results allow different inter-
pretations. For example, in the de Broglie–Bohm interpre-
tation, electromagnetic field, rather than the wave function,
can play the role of the guiding field [1]. Alternatively, one
can also use the above results to get rid of the matter field
altogether, as if it were just a ghost field, and leave just elec-
tromagnetic field in an interpretation. It seems that there
may exist yet another interpretation of real charged fields
shown in Refs. [3, 4] to be generally equivalent to complex
fields in the context of the Klein–Gordon equation and the
Dirac equation: the one-particle wave function may describe
a large (infinite?) number of particles moving along the tra-
jectories defined in the de Broglie–Bohm interpretation. The
total charge, calculated as an integral of charge density over
the infinite 3-volume, may still equal the charge of elec-
tron. So the individual particles can be either electrons or
positrons, but together they can be regarded as one electron,
as the total charge is conserved.1 This seems to be compati-
ble with the notions of polarization of vacuum and path in-
tegral. So the wave function in a point can be a measure of
polarization of vacuum in the point (and this may explain the

1If an electron is then removed, for example, as a result of a measure-
ment, and the total energy of what is left is not very high, so it is diffi-
cult to speak about presence of pairs, then the remaining field will look
very much like electronic vacuum, maybe with some electromagnetic
field.

fact that it determines the density of probability of finding a
particle in this point), and spreading of wave packets should
not create problems. This interpretation also seems to give a
clearer picture of the two-slit interference. The author is not
sure if such an interpretation has been proposed for ordinary
complex charged fields, but it seems especially appropriate
for real charged fields. But again, the above results allow
different interpretations.

4 Transition to many-particle theories

To make this article more self-contained, this section con-
tains a summary of the approach used in Ref. [1] (fol-
lowing nightlight (Ref. [8])) to embed the resulting (non-
second-quantized) theories describing independent evolu-
tion of electromagnetic field into quantum field theories. The
following off-the-shelf mathematical result (Refs. [9, 10]), a
generalization of the Carleman linearization, generates for
a system of nonlinear partial differential equations a sys-
tem of linear equations in the Fock space, which looks like
a second-quantized theory and is equivalent to the original
nonlinear system on the set of solutions of the latter.

Let us consider a nonlinear differential equation in an
(s + 1)-dimensional space-time (the equations describing
independent dynamics of electromagnetic field for scalar
electrodynamics and spinor electrodynamics are a special
case of this equation) ∂tξ(x, t) = F (ξ ,Dαξ ;x, t), ξ(x,0) =
ξ0(x), where ξ : Rs × R → Ck (function ξ is defined in
an (s + 1)-dimensional space-time and takes values in a k-
dimensional complex space; for example, for spinor elec-
trodynamics, the space-time is (3 + 1)-dimensional, and
ξ includes real and imaginary parts of Bμ, Ḃμ, and B̈μ),
Dαξ = (Dα1ξ1, . . . ,D

αk ξk), αi are multiindices, Dβ =
∂ |β|/∂x

β1
1 . . . ∂x

βs
s , with |β| = ∑s

i=1 βi , is a generalized
derivative, F is analytic in ξ , Dαξ . It is also assumed
that ξ0 and ξ are square integrable. Then Bose operators
a†(x) = (a

†
1(x), . . . , a

†
k (x)) and a(x) = (a1(x), . . . , ak(x))

are introduced with the canonical commutation relations:
[
ai(x), a

†
j

(
x′)] = δij δ

(
x − x′)I,

(62)[
ai(x), aj

(
x′)] = [

a
†
i (x), a

†
j

(
x′)] = 0,

where x, x′ ∈ Rs , i, j = 1, . . . , k. Normalized functional
coherent states in the Fock space are defined as |ξ 〉 =
exp(− 1

2

∫
dsx |ξ |2) exp(

∫
dsx ξ(x) · a†(x))|0〉. They have

the following property:

a(x)|ξ 〉 = ξ(x)|ξ 〉. (63)

Then the following vectors in the Fock space can be intro-
duced:

|ξ, t〉 = exp

[
1

2

(∫
dsx |ξ |2 −

∫
dsx |ξ0|2

)]
|ξ 〉
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= exp

(
−1

2

∫
dsx |ξ0|2

)

× exp

(∫
dsx ξ(x) · a†(x)

)
|0〉. (64)

Differentiation of (64) with respect to time t yields, together
with (63), a linear Schrödinger-like evolution equation in the
Fock space:

d

dt
|ξ, t〉 = M(t)|ξ, t〉, |ξ,0〉 = |ξ0〉, (65)

where the boson “Hamiltonian” M(t) = ∫
dsx a†(x) ·

F(a(x),Dαa(x)). Let us note that the states of (64) are in
general multi-particle states.

Obviously, the majority of solutions of the linear equa-
tions in the Fock space have no predecessors among the so-
lutions of the initial nonlinear equations in (3 + 1)-dimen-
sional space-time, so the strict principle of superposition
is abandoned; however, there is a “weak” (or approximate)
principle of superposition. Indeed, let us start with two dif-
ferent states in the Fock space corresponding (via the above
procedure) to two different initial fields in three dimensions
ξ(t0, x) and ψ(t0, x) (so these states are not the most general
states in the Fock space). We can build a “weak superposi-
tion” of these states as follows: we build the following ini-
tial field in 3D: aξ + bψ , where a and b are the coefficients
of the required superposition. Then we can build (using the
above procedure) the state in the Fock space correspond-
ing to aξ + bψ . If ξ and ψ are relatively weak, only the
vacuum state and a term linear in ξ and ψ will effectively
survive in the expansion of the exponent for the coherent
state. However, what we typically measure is the difference
between the state and the vacuum state. So we have approx-
imate superposition, at least at the initial moment. However,
as electrodynamic interaction is rather weak (this is the basis
of QED perturbation methods), nonlinearity of the evolution
equations in 3D is rather weak. Such analysis motivates that
this “superposition” will not differ much from the “true” su-
perposition of the states in the Fock space. We leave detailed
analysis for future work.

5 Conclusion

A complex four-potential of electromagnetic field is in-
troduced in the equations of spinor electrodynamics (the
Dirac–Maxwell electrodynamics). This complex four-poten-
tial generates the same electromagnetic fields as the initial
real four-potential. After that, the spinor field can be alge-
braically eliminated from the equations of spinor electro-
dynamics, and the resulting equations describe independent
evolution of electromagnetic field. These equations are then
embedded into a quantum field theory. At this stage, the
theory provides a simple, valuable, and at least reasonably
realistic model, as it is based on spinor electrodynamics, but
it is not clear if this model or its modification can describe
experimental results as well as standard quantum electrody-
namics.
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