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Abstract
This paper is devoted to the existence of periodic solutions for the one-dimensional
p-Laplacian equation

–(φp(u
′))′ = f (t,u),

where φp(u) = |u|p–2u (1 < p < +∞), f ∈ C([0, 2π ]×R,R). By using some asymptotic

interaction of the ratios f (t,u)
|u|p–2u and

p
∫ u
0 f (t,s)ds
|u|p with the Fučík spectrum of –(φp(u′))′

related to periodic boundary condition, we establish a new existence theorem of
periodic solutions for the one-dimensional p-Laplacian equation.

Keywords: periodic solutions; p-Laplacian; Fučík spectrum; Leray-Schauder degree;
Borsuk theorem

1 Introduction andmain results
In this paper, we are concerned with the existence of solutions for the following periodic
boundary value problem:

⎧⎨
⎩
–(φp(u′))′ = f (t,u),

u() = u(π ), u′() = u′(π ),
(.)

where φp(u) = |u|p–u ( < p < +∞), f ∈ C([, π ] × R,R). A solution u of problem (.)
means that u is C and φp(u′) is absolutely continuous such that (.) is satisfied for a.e.
t ∈ [, π ].
Existence and multiplicity of solutions of the periodic problems driven by the p-

Laplacian have been obtained in the literature by many people (see [–]). Many solv-
ability conditions for problem (.) were established by using the asymptotic interaction
at infinity of the ratio f (x,u)

|u|p–u with the Fučík spectrum for (φp(u′))′ under periodic bound-
ary condition (see e.g., [, , –]). In [], Del Pino, Manásevich andMurúa firstly defined
the Fučík spectrum for (φp(u′))′ under periodic boundary value condition as the set �p

consisting of all the pairs (λ+,λ–) ∈R
 such that the equation

–
(
φp

(
u′))′ = λ+

(
u+

)p– – λ–
(
u–

)p–
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admits at least one nontrivial π-periodic solution (see [] for p = ). Let

πp = (p – )

p

∫ 



(
 – tp

)– 
p dt = (p – )


p

π

p sin(π
p )
.

By [], it follows that

�p =
{
(λ+,λ–) ∈R

 : πp

(


p√λ+
+


p√λ–

)
=
π
k
,k ∈ Z

+
}
.

Then they applied the Sturm’s comparison theorem and Leray-Schauder degree theory to
prove that problem (.) is solvable if the following relations hold:

p ≤ lim inf
u→+∞

f (t,u)
|u|p–u ≤ lim sup

u→+∞
f (t,u)
|u|p–u ≤ p,

q ≤ lim inf
u→–∞

f (t,u)
|u|p–u ≤ lim sup

u→–∞
f (t,u)
|u|p–u ≤ q,

uniformly for a.e. t ∈ [, π ] with p,q,p,q >  satisfying

π
(k + )πp

<


p√p
+


p√q

≤ 
p√p

+


p√q
<

π
kπp

, k ∈ Z
+.

Clearly, in this case, we have ([p,q] × [p,q]) ∩ �p = ∅, which is usually called that the
nonlinearity f is nonresonant with respect to the Fučík spectrum �p. In [], Anane and
Dakkak obtained a similar result by using the property of nodal set for eigenfunctions. If f
is resonantwith respect to�p, i.e., there exists (λ+,λ–) ∈ �p such that limu→+∞ f (t,u)

|u|p–u = λ+,
limu→–∞ f (t,u)

|u|p–u = λ– uniformly for a.e. t ∈ [, π ], together with the Landesman-Lazer
type condition, Jiang [] obtained the existence of solutions of (.) by applying the vari-
ational methods and symplectic transformations. In these works, either f is resonant or
nonresonant with respect to �p, the solvability of problem (.) was assured by assuming
that the ratio f (t,u)

|u|p–u stays at infinity in the pointwise sense asymptotically between two
consecutive curves of �p. Note that

lim inf
s→±∞

f (t, s)
s

≤ lim inf
s→±∞

F(t, s)
s

≤ lim sup
s→±∞

F(t, s)
s

≤ lim sup
s→±∞

f (t, s)
s

,

we can see that the conditions on the ratio F(t,s)
s are more general than that on the ratio

f (t,s)
s . Recently, Liu and Li [] studied the nondissipative p-Laplacian equation

–
(
φp

(
u′))′ = c

(
φp

(
u′))′ + g(u) – p(t), (.)

where c >  is a constant. DefineG(u) =
∫ u
 g(s)ds. They proved that (.) is solvable under

the following assumptions:
() There exist b,d,d >  such that d ≤ g(u)

|u|p–u ≤ d for all |u| ≥ b;
() limu→+∞ pG(u)

|u|p = λ+, limu→–∞ pG(u)
|u|p = λ– with (λ+,λ–) /∈ �p.

Here, the potential functionG is nonresonant with respect to�p and the ratio g(u)
|u|p–u is not

required to stay at infinity in the pointwise sense asymptotically between two consecutive
branches of �p and it may even cross at infinity multiple Fučík spectrum curves.

http://www.boundaryvalueproblems.com/content/2013/1/96
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In this paper, we want to obtain the solvability of problem (.) by using the asymp-
totic interaction at infinity of both the ratios f (x,u)

|u|p–u and pF(t,u)
|u|p with the Fučík spectrum

for (φp(u′))′ under periodic boundary condition. Here, F(t,u) =
∫ u
 f (t, s)ds. The goal is to

obtain the existence of solutions of (.) by requiring neither the ratio f (x,u)
|u|p–u stays at in-

finity in the pointwise sense asymptotically between two consecutive branches of �p nor
the limits limu→±∞ pF(t,u)

|u|p exist. We shall prove that problem (.) admits a solution under
the assumptions that the nonlinearity f has at most (p – )-linear growth at infinity and
the ratio f (t,u)

|u|p–u has a L limit as u → ±∞, while the ratio pF(t,u)
|u|p stays at infinity in the

pointwise sense asymptotically between two consecutive branches of �p. Our result will
complement the results in the literature on the solvability of problem (.) involving the
Fučík spectrum.
For related works on resonant problems involving the Fučík spectrum, we also refer the

interested readers to see [–] and the references therein.
Our main result for problem (.) now reads as follows.

Theorem . Assume that f ∈ C([, π ]×R) and the following conditions hold:
(i) There exist constants C,M >  such that

∣∣f (t,u)∣∣ ≤ C
(
 + |u|p–), a.e. t ∈ [, π ],∀|u| ≥ M; (.)

(ii) There exists η± ∈ L∞(, π ) such that

∫ π



∣∣∣∣ f (t,u)|u|p–u – η±(t)
∣∣∣∣dt →  as u→ ±∞; (.)

(iii) There exist constants p,p,q,q >  such that

p ≤ lim inf
u→+∞

pF(t,u)
|u|p ≤ lim sup

u→+∞
pF(t,u)

|u|p ≤ p, (.)

q ≤ lim inf
u→–∞

pF(t,u)
|u|p ≤ lim sup

u→–∞
pF(t,u)

|u|p ≤ q (.)

hold uniformly for a.e. t ∈ [, π ] with

(
[p,p]× [q,q]

) ∩ �p = ∅. (.)

Then problem (.) admits a solution.

Remark If f (t,u) = a(t)|u|p–u+ – b(t)|u|p–u– + e(u) + h(t), where a,b,h ∈ C[, π ] with
p ≤ a(t) ≤ p, q ≤ b(t) ≤ q and p,p,q,q >  satisfy (.), e is continuous on R and
limu→+∞ e(u)

|u|p–u = , then limu→+∞ pF(t,u)
|u|p = a(t) and limu→–∞ pF(t,u)

|u|p = b(t). By Theorem .,
it follows that problem (.) admits a solution. It is easily seen that the result of [] cannot
be applied to this case. Note that one can also obtain the solvability of (.) in this case by
the result of [], while in Theorem . we do not require the pointwise limit at infinity of
the ratio f (t,u)

|u|p–u as in [].

For convenience, we introduce some notations and definitions. Lp(, π ) ( < p < ∞)
denotes the usual Sobolev space with inner product 〈·, ·〉p and norm ‖ · ‖p, respectively.

http://www.boundaryvalueproblems.com/content/2013/1/96
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Cm[, π ] (m ∈ N) denotes the space of m-times continuous differential real functions
with norm

‖x‖Cm = max
t∈[,π ]

∣∣x(t)∣∣ + max
t∈[,π ]

∣∣ẋ(t)∣∣ + · · · + max
t∈[,π ]

∣∣x(m)(t)
∣∣.

2 Proof of themain result
Denote by deg the Leray-Schauder degree. To prove Theorem ., we need the following
results.

Lemma . [] Let � be a bounded open region in a real Banach space X. Assume that
K :� →R is completely continuous and p /∈ (I –K)(∂�). Then the equation (I –K)(x) = p
has a solution in � if deg(I –K ,�,p) �= .

Lemma. (Borsuk Theorem []) Assume that X is a real Banach space. Let� be a sym-
metric bounded open region with θ ∈ �. Assume that K : � → R is completely continuous
and odd with θ /∈ (I –K)(∂�). Then deg(I –K ,�, θ ) is odd.

Proof of Theorem . Take (λ+,λ–) ∈ [p,p] × [q,q]. Consider the following homotopy
problem:

⎧⎨
⎩
–(φp(u′))′ = ( –μ)(λ+(u+)p– – λ–(u–)p–) +μf (t,u) ≡ fμ(t,u),

u() = u(π ), u′() = u′(π ),
(.)

where μ ∈ [, ].
By (.) and the regularity arguments, it follows that u ∈ C[, π ], and furthermore

there exists a,b ∈R
+ such that, if u is a solution of problem (.), then

‖u‖C ≤ a‖u‖∞ + b. (.)

In what follows, we shall prove that there exists C >  independent of μ ∈ [, ] such that
‖u‖∞ ≤ C for all possible solution u(t) of (.). Assume by contradiction that there exist a
sequence of number {μn} ⊂ [, ] and corresponding solutions {un} of (.) such that

‖un‖∞ → +∞ as n → +∞. (.)

Set zn = un
‖un‖∞ . Obviously, ‖zn‖∞ = . Define

αn(t) =

⎧⎨
⎩

f (t,un)
|un|p–un , un(t) >M,

, un(t) ≤ M

and

βn(t) =

⎧⎨
⎩

f (t,un)
|un|p–un , un(t) < –M,

, un(t) ≥ –M.

http://www.boundaryvalueproblems.com/content/2013/1/96
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By (.), there existsM >  such that

∣∣αn(t)
∣∣, ∣∣βn(t)

∣∣ ≤ M, a.e. t ∈ [, π ].

Then there exist α,β ∈ L∞(, π ) such that

αn(t)
∗

⇀ α(t), βn(t)
∗

⇀ β(t) in L∞(, π ). (.)

In addition, using (.) and the regularity arguments, there exists M >  such that, for
each n, we have ‖zn‖C ≤ M, and thus there exists z ∈ C[, π ] such that, passing to a
subsequence if possible,

zn → z in C[, π ]. (.)

Clearly, ‖z‖∞ = . In view of {μn} ⊂ [, ], there exists μ ∈ [, ] such that, passing to a
subsequence if possible,

μn → μ as n→ +∞. (.)

Note that for μ = , problem (.) has only the trivial solution, it follows that μ ∈ (, ].
Denote ᾱ(t) = ( –μ)λ+ +μα(t), β̄(t) = ( –μ)λ– +μβ(t). It is easily seen that z is a
nontrivial solution of the following problem:

⎧⎨
⎩
–(φp(z′

))′ = ᾱ(t)(z+)p– – β̄(t)(z–)p–,

z() = z(π ), z′
() = z′

(π ).
(.)

We now distinguish three cases:
(i) z changes sign in [, π ];
(ii) z(t) ≥ , ∀t ∈ [, π ];
(iii) z(t) ≤ , ∀t ∈ [, π ].

In the following, it will be shown that each case leads to a contradiction.
Case (i). Let

I+ =
{
t ∈ [, π ] : z(t) > 

}
,

I– =
{
t ∈ [, π ] : z(t) < 

}
,

I =
{
t ∈ [, π ] : z(t) = 

}
.

Then, as n→ +∞, we get

un(t) → +∞, ∀t ∈ I+,

un(t) → –∞, ∀t ∈ I–.

In addition, as shown in [], we have |I| = . Define

η+(t) =

⎧⎨
⎩

η(t), t ∈ I+,

α(t), t ∈ I–,

http://www.boundaryvalueproblems.com/content/2013/1/96
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and

η–(t) =

⎧⎨
⎩

β(t), t ∈ I+,

η(t), t ∈ I–.

By (.) and (.), it follows that

α(t)≡ η+(t), β(t) ≡ η–(t), a.e. t ∈ [, π ].

Thus, z satisfies

⎧⎨
⎩
–(φp(z′

))′ = α̃(t)(z+)p– – β̃(t)(z–)p–,

z() = z(π ), z′
() = z′

(π ).
(.)

Here, α̃(t) = ( –μ)λ+ +μη+(t), β̃(t) = ( –μ)λ– +μη–(t).
Now we prove that there exist n̄ ∈ Z

+ and  < κ <  < κ such that

κ ≤ maxun
–minun

≤ κ, ∀n≥ n̄. (.)

In fact, if not, we assume, by contradiction, that there exists a subsequence of {un}, we still
denote it as {un} with maxun → ∞ and minun → –∞, such that

maxun
–minun

→  or
maxun
–minun

→ +∞.

Combing with (.), ‖z‖∞ =  and the fact that z changes sign, we obtain

max
un

‖un‖∞

/(
–min

un
‖un‖∞

)
→ max z

–min z
> .

A contradiction. Hence, (.) holds.
For any (t,μ) ∈ [, π ]× [, ], define

f̄(t, s,μ) = fμ(t, s) – α̃(t)sp–, ∀s ∈R
+,

f̄(t, r,μ) = fμ(t, r) – β̃(t)|r|p–r, ∀r ∈R
–

and

F̄(t, s,μ) =
∫ s


f̄(t, τ ,μ)dτ , F̄(t, r,μ) =

∫ r


f̄(t, τ ,μ)dτ .

Denote sn = maxun, rn = minun. Then by (.) it follows that sn → +∞ and rn → –∞.
Taking tn such that un(tn) = sn, tn is the nearest point satisfying tn < tn and un(tn) = .
Since tn , tn ∈ [, π ], there exist t̄, t̄ ∈ [, π ] such that

tn → t̄, tn → t̄ as n→ +∞. (.)

http://www.boundaryvalueproblems.com/content/2013/1/96
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By (.), we obtain z(t̄) = , z(t̄) = maxt∈[,π ] z(t). Note that ‖un‖∞ → +∞, we have
un(t) → +∞, ∀t ∈ (t̄, t̄). Hence, togetherwithμn → μ and (.), there exist subsequences
of {un} and {μn}, we still denote them as {un} and {μn}, such that, for a.e. t ∈ [, π ],

f̄(t,un(τ ),μn)
(un(τ ))p–

→ , a.e. τ ∈ (
t̄, t̄

)
.

Using (.), for a.e. t ∈ [, π ], { f̄(t,un(τ ),μn)
(un(τ ))p–

} is uniformly boundedwith respect to τ ∈ (t̄, t̄),
we obtain by the Lebesgue dominated convergence theorem that

∫ t̄

t̄

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣dτ → , uniformly for a.e. t ∈ [, π ].

Thus,

∫ tn

tn

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣dτ

=
∫ t̄

tn

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣dτ +
∫ t̄

t̄

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣dτ +
∫ tn

t̄

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣dt
→ , uniformly for a.e. t ∈ [, π ]. (.)

By (.) and (.), we get

∣∣pF̄(t, sn,μn)
∣∣

=
∣∣pF̄(t,un(tn),μn

)
– pF̄

(
t,un

(
tn

)
,μn

)∣∣
=

∣∣∣∣
∫ tn

tn
pf̄

(
t,un(τ ),μn

)
u′
n(τ )dτ

∣∣∣∣
≤ p

∫ tn

tn

∣∣f̄(t,un(τ ),μn
)∣∣dτ

∥∥u′
n
∥∥∞

= p
∫ tn

tn

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣
∣∣(zn(τ ))p–∣∣dτ‖un‖p–∞

∥∥u′
n
∥∥∞

≤ C
∫ tn

tn

∣∣∣∣ f̄(t,un(τ ),μn)
(un(τ ))p–

∣∣∣∣dτ spn.

In view of (.), we obtain that

∣∣∣∣pF̄(t, sn,μn)
spn

∣∣∣∣ →  (.)

holds uniformly for a.e. t ∈ [, π ]. Similarly,

∣∣∣∣pF̄(t, rn,μn)
|rn|p

∣∣∣∣ →  (.)

holds uniformly for a.e. t ∈ [, π ].

http://www.boundaryvalueproblems.com/content/2013/1/96
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On the other hand, for {sn}, {rn} satisfying (.)-(.), denoting

ξ(t) = lim inf
n→+∞

pF(t, sn)
|sn|p ,

ξ(t) = lim inf
n→+∞

pF(t, rn)
|rn|p ,

we obtain by (.)-(.) that

p ≤ ξ(t)≤ q, p ≤ ξ(t)≤ q, a.e. t ∈ [, π ]. (.)

Using μn → μ, we have

lim inf
n→+∞

pF̄(t, sn,μn)
|sn|p

= lim inf
n→+∞

[
( –μn)λ+ +μn

pF(t, sn)
|sn|p – α̃(t)

]

= μ
(
ξ(t) – η+(t)

)
, a.e. t ∈ [, π ], (.)

lim inf
n→+∞

pF̄(t, rn,μn)
|rn|p

= lim inf
n→+∞

[
( –μn)λ– +μn

pF(t, rn)
|rn|p – β̃(t)

]

= μ
(
ξ(t) – η–(t)

)
, a.e. t ∈ [, π ]. (.)

We claim that there exists subinterval I ⊂ [, π ] with |I| >  such that

ξ(t) – η+(t) �= , ∀t ∈ I, (.)

or subinterval I ⊂ [, π ] with |I| >  such that

ξ(t) – η–(t) �= , ∀t ∈ I. (.)

Indeed, if not, we assume that η+(t) = ξ(t), η–(t) = ξ(t), a.e. t ∈ [, π ]. Together with the
choosing of λ+, λ– and (.), we get

p ≤ α̃(t) ≤ q, p ≤ β̃(t) ≤ q, a.e. t ∈ [, π ].

Then by (.), it follows that z ≡ . A contradiction. Combining (.)-(.) with (.)-
(.), we obtain a contradiction.
Case (ii). In this case, we have

sn → +∞ and {rn} is uniformly bounded.

Using similar arguments as in Case (i), by (.) and (.) it follows that α(t) ≡ η+(t), ∀t ∈
[, π ]. Taking f̄ + = f̄, F̄+ = F̄, a.e. t ∈ [, π ]. We can see that there exists subsequence

http://www.boundaryvalueproblems.com/content/2013/1/96
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of {sn}, which is still denoted by {sn}, such that

∣∣∣∣pF̄
+(t, sn,μn)

spn

∣∣∣∣ →  (.)

holds uniformly for a.e. t ∈ [, π ]. On the other hand, for {sn} satisfying (.), denoting

ξ+(t) = lim inf
n→+∞

pF(t, sn)
|sn|p ,

we obtain by (.) that

p ≤ ξ+(t) ≤ q, a.e. t ∈ [, π ]. (.)

Using μn → μ, we have

lim inf
n→+∞

pF̄+(t, sn,μn)
|sn|p

= lim inf
n→+∞

[
( –μn)λ+ +μn

pF(sn)
|sn|p – α̃(t)

]

= μ
(
ξ+(t) – η+(t)

)
, a.e. t ∈ [, π ]. (.)

We shall show that there exists subinterval I+ ⊂ [, π ] with |I+| such that

ξ+(t) – η+(t) �= , ∀t ∈ I+. (.)

In fact, if not, we assume that η+(t) = ξ+(t), a.e. t ∈ [, π ]. By the choosing of λ+ and (.),
we get p ≤ α̃(t) ≤ q, a.e. t ∈ [, π ]. Thus, z is a nontrivial solution of the following
problem:

⎧⎨
⎩
–(φp(z′

))′ = α̃(t)zp– ,

z() = z(π ), z′
() = z′

(π ).
(.)

Taking  as test function in problem (.), we get

 =
∫ π


α̃(t)zp– dt. (.)

By α̃(t) ≥ p >  for a.e. t ∈ [, π ], it follows that z(t) =  for a.e. t ∈ [, π ], which is
contrary to that ‖z‖∞ = . Hence, (.) holds. Clearly, (.)-(.) contradict (.).
Case (iii). In this case, rn → –∞ and {sn} is uniformly bounded. Similar arguments as in

Case (ii) imply a contradiction.
In a word, (.) cannot hold, and hence by (.) there exists C >  independent of μ ∈

[, ] such that, if u is a solution of problem (.), then

‖u‖C ≤ C. (.)

http://www.boundaryvalueproblems.com/content/2013/1/96
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Note that, for each h ∈ L∞(, π ), the problem

⎧⎨
⎩
–(φp(u′))′ + φp(u) = h(t),

u() = u(π ), u′() = u′(π )
(.)

has a unique solution Gp(h) ∈ C[, π ]. Clearly, the operator Gp seen as an operator
from C[, π ] into C[, π ] is completely continuous. Define ψ : C[, π ] → C[, π ]
by ψ(u)(t) = f (t,u(t)). Then solving problem (.) is equivalent to finding solutions in
C[, π ] of the equation

u –Gp
(
ψ(u)

)
= .

Let (α,β) ∈ [p,q]× [p,q]. Define the operator Tα,β : C[, π ] → C[, π ] by Tα,β (u) =
Gp(φp(u) + α(u+)p– – β(u–)p–). Denote BR = {u ∈ C[, π ] : ‖u‖C < R,R ∈ R}. Clearly,
deg(I – Tα,β ,BR, ) is well defined for all R > . Owing to λ+ · λ– > , there is a continu-
ous curve α(τ ), β(τ ), τ ∈ [, ], whose image is in R

 \ �p and (λ,λ) ∈ R \ �p such that
(α(),β()) = (λ+,λ–), (α(),β()) = (λ,λ). From the invariance property of Leray-Schauder
degree under compact homotopies, it follows that the degree deg(I–Tα(τ ),β(τ ),BR, ) is con-
stant for τ ∈ [, ]. Obviously, the operator Tλ,λ is odd. By the Borsuk’s theorem, it follows
that deg(I – Tλ,λ,BR, ) �=  for all R > . Thus,

deg(I – Tλ+,λ– ,BR, ) �= , ∀R > .

Consider the following homotopy:

H(μ,u) =Gp
(
φp(u) + ( –μ)

(
λ+

(
u+

)p– – λ–
(
u–

)p–) +μψ(u)
)
,

for (μ,u) ∈ [, ]×C[, π ]. By (.), we can see that there exists R >  such that

H(μ,u) �= u, ∀μ ∈ [, ],∀u ∈ ∂BR .

From the invariance property of Leray-Schauder degree, it follows that

deg
(
I –H(, ·),BR , 

)
= deg

(
I –H(, ·),BR , 

)
= deg(I – Tλ+,λ– ,BR , ) �= .

Hence, problem (.) has a solution. The proof is complete. �
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