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Abstract

Background: The efficacy of antibiotics against bacterial infections is decreasing due to the development of
resistance in bacteria, and thus, there is a need to search for potential alternatives to antibiotics. In this scenario,
peptidoglycan hydrolases can be used as alternate antibacterial agents due to their unique property of cleaving
peptidoglycan cell wall present in both gram-positive and gram-negative bacteria. Along with a role in maintaining
overall peptidoglycan turnover in a cell and in daughter cell separation, peptidoglycan hydrolases also play crucial
role in bacterial pathophysiology requiring development of a computational tool for the identification and
classification of novel peptidoglycan hydrolases from genomic and metagenomic data.

Results: In this study, the known peptidoglycan hydrolases were divided into multiple classes based on their site of
action and were used for the development of a computational tool ‘HyPe’ for identification and classification of novel
peptidoglycan hydrolases from genomic and metagenomic data. Various classification models were developed using
amino acid and dipeptide composition features by training and optimization of Random Forest and Support Vector
Machines. Random Forest multiclass model was selected for the development of HyPe tool as it showed up to 71.12 %
sensitivity, 99.98 % specificity, 99.55 % accuracy and 0.80 MCC in four different classes of peptidoglycan hydrolases. The
tool was validated on 24 independent genomic datasets and showed up to 100 % sensitivity and 0.94 MCC. The ability of
HyPe to identify novel peptidoglycan hydrolases was also demonstrated on 24 metagenomic datasets.

Conclusions: The present tool helps in the identification and classification of novel peptidoglycan hydrolases from
complete genomic or metagenomic ORFs. To our knowledge, this is the only tool available for the prediction of
peptidoglycan hydrolases from genomic and metagenomic data.
Availability: http://metagenomics.iiserb.ac.in/hype/ and http://metabiosys.iiserb.ac.in/hype/.

Keywords: Peptidoglycan hydrolase, N-acetylglucosaminidase, N-acetylmuramidases, Lytic transglycosylases,
Endopeptidase, N-acetylmuramoyl-L-alanine, Carboxypeptidase, Cell wall hydrolases, Support Vector Machine, Random
Forest

Background
The compounds which act against bacterial infection ei-
ther by suppressing its growth or by killing the bacter-
ium are mainly considered as antibacterial agents such
as sulfonamide derivatives and tetracycline antibiotic [1].
These antibiotics have been widely used as medicines for
humans and animals for fighting against bacterial infec-
tion. However, in the last decades, these antibiotics have
not shown consistent effectiveness against bacterial

infections due the emergence of drug resistance in bac-
teria against these antibiotics [2]. This problem poses a
serious challenge towards the researchers to discover
either newer drug molecules with lower bacterial drug
resistance or to look for the alternatives of antibiotics
[3]. Recently, peptidoglycan hydrolases have been pro-
posed as potential alternative for antibiotics due to
their bacteriolytic activity with multifarious spectrum
[4–6]. Among the various sites of action of the anti-
bacterial agents, bacterial cell wall has been a widely
used target which is also the target site for peptido-
glycan hydrolases [7].
The bacterial cell wall is made up of glycan strands

which are cross-linked by flexible peptide side chains,
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providing strength and rigidity to the bacterial cell wall
[8]. The peptidoglycan of both gram-positive and gram-
negative bacteria comprises of repeating units of N-
acetylglucosamine (NAG) and β-(1–4)-N-acetylmuramic
acid (NAM) cross-linked by peptide stem chains at-
tached to the NAM residues [9]. First two peptides of
tetra-peptide chain generally consist of L-alanine and D-
glutamine or isoglutamine and the last residue is gener-
ally D-alanine. The third residue of stem peptide varies
across bacteria and is lysine in coccoid gram-positive
bacteria and meso-diaminopimelate (mDAP) in gram-
negative bacteria and in many gram-positive rods such
as Listeria and Bacillus species [10]. The peptidoglycan
layer is highly dynamic during cell growth and reshapes
on division.
Bacterial peptidoglycan hydrolases are the enzymes

responsible for cleaving the bonds in peptidoglycan
chain and side-chain branches, therefore, are responsible
for maintaining overall cell wall peptidoglycan turnover
[11, 12]. Three main classes of bacterial peptidoglycan
hydrolases are glycosidases that cleave the backbone of
glycan, the amidases that cleave the side-chain peptide
and peptidases (endopeptidases and carboxypeptidases)
that cleave within the peptide side-chain, which are further
divided based on their site of cleavage [13, 14]. The glycosi-
dases consists of N-acetylglucosamidases which hydrolyses
N-acetyl-D-glucosamine (GlcNAc) residues from contigu-
ous sugar residues and N-acetylmuramidases cleaves the
β1-4 glycosidic bond between N-Acetylmuramic acid
(MurNAc) and GlcNAc. There are two enzymatic methods
which can carry out the cleavage of bond between MurNAc
and GlcNAc, i.e., lysozyme glycosidic cleavage which results
in generation of terminal MurNAc residue, and lytic trans-
glycosylases which forms 1, 6-anhydro ring on MurNAc
residue [13, 15]. On the other hand amidases consists of N-
acetylmuramyl-L-alanine amidases, cleaving the bond
between peptide side chain and glycan strand, endopepti-
dases, cleaving amide bond in between two amino acid resi-
dues in a peptide chain, and carboxypeptidases, cleaving
the bond at peptide terminal in a peptide chain [13]. The
endopeptidases and carboxypeptidases are referred to
as DD-peptidases if they cleave the bond between D-
amino acid, and are referred to as DL or LD-peptidases
if they cleave the bond between D- and L- amino acids
[13]. Schematic representation of peptidoglycan hydro-
lases is shown in Fig. 1.
Several studies have been carried out on cell wall auto-

lysins (peptidoglycan hydrolases) in various bacterial
populations with roles pertaining to the peptidoglycan
turnover along with the other functions in bacteria.
Though potentially lethal, these autolysins are univer-
sally present among bacteria that have peptidoglycan.
Lysostaphin is one of the most studied peptidoglycan
hydrolase, excreted by Staphylococcus simulans cleaving

the peptidoglycan chain of Staphylococcus aureus with-
out affecting itself [16]. Zoocin A which is produced by
Streptococcus zooepidemicus 4881 is also a bacteriolytic
cell wall hydrolase similar to lysostaphin [17]. It has re-
cently been demonstrated to be potentially effective in
controlling and treating infection caused by Staphylococ-
cus aureus group of bacteria. Millericin B which is an-
other antimicrobial murein hydrolase produced by
Streptococcus milleri NMSCC061 inhibits the growth of
several bacterial species [18]. A muraminidase Cpl-1 is
also a phase lytic enzyme and was used for the first time
to treat pneumococcal meningitis infection through
intravenous administration [19]. Antimicrobial proper-
ties of peptidoglycan hydrolase (such as lysozyme) have
been known since several decades [20]. The efficacy of
lysozyme has been shown for skin treatment and in the
infections of mucus membranes and is used as an ingre-
dient in wound healing ointments [21, 22]. Bacterio-
phage endolysin PlyC in an aerosolized form was active
against pathogenic Streptococcus equi and is considered
as the first narrow-spectrum disinfectant against the bac-
terial strain [23]. Endolysin PlyV12 and Enterolysin A are
known peptidoglycan hydrolase having anti-enterococcal
activity [24, 25]. Several other peptidoglycan hydrolases
such as Acd, LytA, or PL-1 were identified and purified
from various origins having antibacterial activity mainly
against gram-positive bacteria [26–28]. Taken together,
these studies underscore the potential of using peptidogly-
can hydrolases as antibacterial agents in several applica-
tions including therapeutics.
Identification and classification of novel peptidoglycan

hydrolases in the completely sequenced genomes becomes
difficult due to the lack of homology of these hydrolases
with the previously well characterized peptidoglycan hy-
drolases. Therefore, in the present work, a machine learn-
ing based approach using Random Forest (RF) has been
used and demonstrated for the identification and
classification of novel peptidoglycan hydrolases from
genomic and metagenomic data. The predicted novel
peptidoglycan hydrolases belonging to different classes
would provide leads for further characterization and
potential application as antibacterial agents specifically
against various bacterial species.

Results and discussion
Selection of machine learning method
To select appropriate machine learning method and fea-
ture inputs for construction of final module providing
the most accurate classification, the Amino Acid Com-
position (AAC) and Dipeptide Composition (DPC) were
used as features calculated from randomly selected 10 %
data from the positive and negative datasets. At the first
level of binary classification, the idea was to optimize
the parameters for construction of a module which can
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Fig. 1 Sites of action of peptidoglycan hydrolases on bacterial cell wall
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predict peptidoglycan hydrolases from input sequences.
The selected (10 %) data was used to carry out ten-
fold cross-validation in WEKA. It is apparent from
Additional file 1 that LibSVM performed better than
other machine learning techniques as it showed the
highest accuracy of 93.15 % in the case of DPC fea-
tures and 91.3 % in case of AAC features. RF also
showed good results in case of both AAC (86.64 %)
and DPC features (86.62 %).
At the second level, termed as ‘multiclass classifica-

tion’, for a protein predicted as peptidoglycan hydrolase,
the category of the protein is predicted using the infor-
mation from the five categories (see Methods) based on
their site of action. AAC features and DPC features of
randomly selected 10 % data from the total dataset,
where each sequence was tagged with its respective cat-
egory, were used for evaluation using ten-fold cross-
validation using WEKA. LibSVM performed better than
the other machine learning methods and showed the
highest accuracy of 90.01 % for DPC features and
87.68 % for AAC features. RF also showed good results
with an accuracy of 83.45 % in case of DPC as feature
input, and 82.63 % when AAC was used as feature input
(Additional file 2).
These results suggest that both LibSVM and RF, using

AAC and DPC features and on using 10 % of the total
data, performed better than the other machine learning
methods, and can be further evaluated and optimized on
the complete dataset. The further optimization was car-
ried out to select the best features and a machine learn-
ing method for construction of the final module.

Optimization of LibSVM and random forest modules
For binary classification
The performance of LibSVM was optimized using both
AAC and DPC as the feature input. After fine tuning of
various parameters, it was observed that linear kernel
with DPC feature based modules, at all possible c values,
performed better than AAC feature based modules
(Fig. 2). The five-fold cross validation was carried out for
performance evaluation at c = 1. At threshold of zero
(default), sensitivity (78.76 %), specificity (94.67 %), ac-
curacy (90.4 %) and MCC (0.75) obtained using DPC
features based module was higher compared to the sen-
sitivity (53.81 %), specificity (93.63 %), accuracy
(82.94 %) and MCC (0.53) obtained using AAC features
based modules (Table 1). Therefore, DPC feature input
with the linear kernel at a cost parameter of 1 was con-
sidered for construction of the final LibSVM module.
This LibSVM module was further compared with the
optimized modules of RF for binary classification at the
first level to choose more accurate classifier between
these two methods.

The performance of RF was optimized separately in R
package using both AAC and DPC features as an input
vector. Optimization of mtry (random variables at each
split node) was carried out using tuneRF function of the
RF at ntree = 100. OOB error was minimum (8.9 %) at
mtry = 4 using AAC as the feature input, and OOB error
was minimum at mtry = 64 (7.63 %) and at mtry = 256
(7.31 %) using DPC as the feature input (Fig. 3a). Further
optimization was carried out using more number of
trees at optimized mtry values for both AAC and DPC.
The final module constructed using AAC as a feature at
mtry = 4 and ntree = 500 displayed the OOB error of
8.56 %, and the module constructed using DPC as a fea-
ture at mtry = 64 and mtry = 256 using ntree = 500 dis-
played the OOB error of 7.07 and 6.82 %, respectively
(Fig. 3b). It is apparent that OOB error was lower for
DPC as compared to AAC, therefore DPC was selected
as the feature input. Since the difference in OOB error
at mtry = 64 and mtry = 256 using DPC was very low
(0.25 %), the mtry = 64 was selected for the final module
construction. The performance of the final modules of
RF and LibSVM was comparable, however, the LibSVM
module showed higher sensitivity (78.76 %) and the RF
module showed higher specificity (99.48 %), accuracy
(92.93 %) and MCC (0.82 %) (Table 1). Therefore, both

Fig. 2 Performance of LibSVM modules using linear kernel at
different cost parameters for AAC and DPC for binary classification

Table 1 Comparative performance of LibSVM and RF using Amino
Acid and Dipeptide as feature inputs for binary classification

Sensitivity Specificity Accuracy MCC

AAC DPC AAC DPC AAC DPC AAC DPC

SVM 53.81 78.76 93.63 94.67 82.94 90.40 0.53 0.75

RF 74.14 75.08 97.79 99.48 91.44 92.93 0.77 0.82

AAC = Amino acid composition and DPC = Dipeptide composition
SVM = Support Vector Machine at t = 0 and c = 1 for both AAC and DPC
RF = Random Forest; for AAC mtry = 4, ntree = 500 and for DPC
mtry = 64, ntree = 500
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the modules were considered for binary classification
and were further evaluated at the time of construction
of final pipeline of the prediction tool for Hydrolases of
Peptidoglycans ‘Hype’.

For multiclass classification
For the development of multiclass classifier, the per-
formance of LibSVM was optimized using the same
feature inputs used in the first level for binary classifica-
tion. LibSVM module using linear kernel performed bet-
ter for DPC in comparison to AAC features at all
possible c values (Fig. 4). Using five-fold cross validation
using c = 0.7, at zero threshold, the sensitivity, accuracy
and MCC values for the peptidoglycan hydrolases class
predictions was lower for AAC features based module as
compared to DPC based modules (Table 2). Therefore,

DPC with the linear kernel was considered for LibSVM
and was further compared with the results of RF.
The performance of RF was optimized at different mtry

values using both AAC and DPC features as input using
the tuneRF function. Using AAC, the OOB error was
minimum (11.55 %) at mtry = 8, on using DPC the OOB
error was minimum at mtry = 64 (10.57 %) and mtry = 256
(9.85 %) (Fig. 5a). Further optimization was carried out by
increasing the number of trees (ntree = 100 to 500) at
optimized mtry for both AAC and DPC features.
The module constructed using AAC as the feature in-

put at mtry = 8 and ntree = 500 displayed an OOB error
of 11.29 %, and the module constructed using DPC as
the feature input at mtry = 64 and mtry = 256 using
ntree = 500 displayed OOB errors of 10.44 and 9.55 %,
respectively (Fig. 5b). A significant difference was not
observed between the OOB errors obtained after the
increment in mtry values from 64 to 256. The perform-
ance of AAC and DPC modules is shown in Table 3.
Therefore, DPC at mtry = 64 was considered for the con-
struction of DPC based module.

Fig. 3 a OOB error using AAC and DPC as feature inputs at different mtry for binary classification. b OOB error on increasing the number of trees
at optimized mtry for AAC and DPC for binary classification

Fig. 4 Performance of LibSVM modules using linear kernel at different
cost parameters for AAC and DPC for multiclass classification

Table 2 Performance of LibSVM using Amino acid and Dipeptide
composition as feature inputs for multiclass classification

Class Sensitivity Specificity Accuracy MCC

AAC DPC AAC DPC AAC DPC AAC DPC

A 7.53 76.57 97.95 97.16 86.67 94.67 0.07 0.74

B 0 52.45 100 99.6 96.91 98.31 0 0.62

C 14.2 55.88 98.36 97.55 88.94 93.47 0.19 0.6

D 0 32.77 100 99.81 99.37 99.4 0 0.4

E 98.23 96.17 15.49 75.08 76.01 90.74 0.26 0.74

SVM = Support Vector Machine at t = 0 and c = 0.7 for both AAC and DPC
Where, A = N-acetylmuramoyl-L-alanine amidases, B = Peptidases, C = Enzymes
acting on Peptidoglycan chain, D = Unclassified, and E = Negative Dataset
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From the optimization results, it is evident that at the
first level of classification the performances of both
LibSVM and RF modules were comparable; however, at
the second level the RF module performed better than
LibSVM module (Tables 1, 2 and 3). Therefore, for the
multiclass classification RF module was considered as
the final classifier, and for the binary classification fur-
ther evaluation was carried out to select between the
LibSVM and RF modules. Using these modules, three
prediction approaches were constructed using the fol-
lowing strategy.
In the first approach, at the first level (for binary clas-

sification) the LibSVM module was implemented using
DPC as the feature input and linear kernel at cost factor
of 1. The query proteins were classified as ‘positive’ or
‘negative’ hits at this level and all the positive hits were
further used as query protein at the second level (for
multiclass classification). At the second level, the RF
module constructed using DPC at mtry = 64 and
ntree = 500 was used for the classification of positive

hits (predicted peptidoglycan hydrolases) obtained
from the first level.
The second approach was also implemented using the

same methodology, however, at the first level the RF
module constructed using DPC at mtry = 64, ntree = 500
has been used for binary classification in place of
LibSVM module. The RF module at second level
remained the same as mentioned in the first approach.
The query proteins were analyzed using the same pro-
cedure as mentioned in the first tool.
The third approach had only a single level where the RF

module constructed using DPC at mtry = 64 and ntree =
500 was used for the classification of query proteins into
the five categories as mentioned in Additional file 3.

Performance evaluation of the three approaches
Two datasets were used to examine the performance of
the three approaches. The first dataset was constructed
using randomly selected 250 known peptidoglycan hy-
drolases from 24 bacterial genomes (from validation set)
and was used as a query to evaluate the performance of
the three approaches. The performance was evaluated in
terms of the number of peptidoglycan hydrolases which
could be predicted positively and the time required for
the prediction by each tool. It is apparent that the third
approach which used only the RF module for multiclass
classification performed better (220 correct predictions
out of 250 proteins in 2.90 s) as compared to the other
two approaches (Additional file 4).
The complete ORFs predicted from the metagenomic

dataset (MH0016) were used as the second dataset for
the performance evaluation. BLAST was performed for
these ORFs against the positive dataset and the ORFs
which showed significant (E <1e-6 and identity ≥80 %)
best hits with the positive dataset were considered as

Fig. 5 a OOB error using AAC and DPC as feature inputs at different mtry for multiclass classification. b OOB error on increasing the number of
trees at optimized mtry for AAC and DPC for multiclass classification

Table 3 Performance of Random Forest (RF) final models using
Amino acid and Dipeptide composition as feature inputs for
multiclass classification

Class Sensitivity Specificity Accuracy MCC

AAC DPC AAC DPC AAC DPC AAC DPC

A 62.52 71.12 98.55 99.47 93.90 95.77 0.70 0.80

B 61.10 54.91 99.95 99.98 98.62 98.45 0.77 0.73

C 59.73 53.49 98.72 99.66 94.19 94.34 0.68 0.69

D 40.41 38.19 99.97 99.98 99.55 99.55 0.60 0.60

E 98.99 99.93 64.50 62.92 90.14 90.18 0.73 0.74

Where, A = N-acetylmuramoyl-L-alanine amidases, B = Peptidases, C = Enzymes
acting on Peptidoglycan chain, D = Unclassified, and E = Negative Dataset

Sharma et al. BMC Genomics  (2016) 17:411 Page 6 of 12



true peptidoglycan hydrolases. These selected 41 ORFs
were further used to evaluate the results obtained from
the three approaches. In this case also, the performance of
the third approach was better (30 correct predictions out
of 41 in 19 s) than the other two approaches (Additional
file 5). It is evident from these results that the third ap-
proach which involved only one level of classification
using RF module showed the best performance among all
the three approaches and, hence was selected for develop-
ing the prediction tool termed as ‘HyPe’.

Validation of ‘HyPe’ on independent genomic datasets
The first independent dataset consisted of protein se-
quences from 24 new bacterial genomes and was used
to evaluate the performance of HyPe. The annotated
peptidoglycan hydrolases from each genome was used
as the reference dataset to compare the predictions
made by HyPe and BLAST. To evaluate the perform-
ance of BLAST, local alignment was carried out for
the proteins present in each genome against the posi-
tive dataset. The proteins which showed significant (E
<1e−6 and identity ≥80 %) similarity with the positive
dataset were selected as positive hits. Similarly, the
proteins from each of the 24 bacterial genomes were
analyzed using HyPe to predict peptidoglycan hydro-
lases from each genome.
Out of all the 24 genomes, BLAST predicted the

maximum (30) number of peptidoglycan hydrolases
for the genome Bacillus anthracis strain PAK1 and
the ‘HyPe’ predictions were maximum (50) for Crono-
bacter sakazakii SP291. For the genome Chlamydia
trachomatis strain L2b CS19_08, only a single pep-
tidoglycan hydrolase was predicted using both BLAST
and ‘HyPe’. Some of the peptidoglycan hydrolase pro-
teins (as per their annotation in the genomes) could
not be predicted by BLAST and ‘HyPe’. The max-
imum number of such proteins was 10 for genome
Bacillus subtilis T30 (Additional file 6). Similarly,
HyPe could predict several peptidoglycan hydrolases
which could not be predicted by BLAST. Therefore,
the performance of HyPe for all 24 bacterial genomes
was evaluated by adding the number of peptidoglycan
hydrolases which were commonly predicted by both
BLAST and HyPe and the new correct predictions of
HyPe which are together called as ‘true positive’. The
incorrect predictions of HyPe were called as ‘false positive’
and the peptidoglycan hydrolases which could not be cor-
rectly predicted by HyPe were called as ‘false negative’.
The remaining protein sequences in a given genome were
called as ‘true negative’. Sequences of hypothetical and
putative proteins were not considered at the time of per-
formance evaluation. The detailed performance evaluation
for the genomic dataset is provided in Table 4.

Validation of ‘HyPe’ on real metagenomic datasets
The second independent dataset consisted of 24 metage-
nomic samples obtained from the Human Gut Microbial
Gene Catalogue and processed using the methodology
discussed in the methods section (Additional file 7). The
complete proteins having length ≥100 amino acids were
used as query for each metagenome. Using BLAST, the
maximum (83) number of peptidoglycan hydrolases were
predicted for metagenomic sample MH0045, whereas,
using HyPe the maximum (288) number of peptidogly-
can hydrolases were predicted for metagenomic sample
MH0085, among all metagenomic samples. The max-
imum number of common predictions by BLAST and
HyPe was 79 for MH0074. The complete results from
the comparison of BLAST and HyPe on all 24 metage-
nomic samples are provided in Additional file 8.

Development of the HyPe pipeline
The web server for HyPe is developed using the standa-
lone HyPe application which can be used for the

Table 4 Performance of HyPe on independent genomic dataset

Genome Sensitivity MCC

Alcanivorax pacificus RT type strain W11 5 71.43 0.56

Bacillus anthracis strain PAK 1 77.42 0.81

Bacillus cereus strain 03BB87 75.86 0.77

Bacillus subtilis T30 62.96 0.67

Bacillus thuringiensis strainHD571 84.00 0.86

Campylobacter jejuni subsp jejuni strain YH001 42.86 0.51

Chlamydia trachomatis strainL2b CS19 08 50.00 0.71

Clostridium botulinum strain NCTC8550 68.18 0.75

Cronobacter sakazakii SP291 85.71 0.74

Francisella tularensis subsp. novicida U112 100.00 0.82

Haemophilus influenzae strain Hi375 82.35 0.88

Halomonas sp strain KO116 88.89 0.94

Lactobacillus sp. wkB8 66.67 0.63

Listeria monocytogenes Serovar 4b
Strain IZSAM Lm hs2008

92.31 0.86

Listeria monocytogenes strain NTSN 80.00 0.77

Mycobacterium tuberculosis H37RvSiena 100.00 0.78

Neisseria meningitidis LNP21362 78.57 0.65

Pasteurella multocida OH1905 62.50 0.59

Rickettsia rickettsii str Morgan 75.00 0.75

Staphylococcus aureus strain FCFHV36 77.27 0.81

Streptococcus iniae strain ISNO 60.00 0.63

Vibrio alginolyticus NBRC 15630 64.71 0.74

Vibrio tubiashii ATCC 19109 70.59 0.75

Weissella ceti strain WS74 60.00 0.67

The Specificity and Accuracy was almost 1 for all the above genomes since the
number of True Negatives (TN) was very large in number, which used in the
denominator for the calculation to Specificity and Accuracy
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identification of peptidoglycan hydrolases from complete
genomic or metagenomic ORFs (Additional file 9).
Query sequence will pass through the RF module to pre-
dict positive hits (peptidoglycan hydrolases) and also to
categorize the resultant peptidoglycan hydrolases into
their respective classes.
For the analysis of genomic and metagenomic pro-

teins, separate options ‘Genomic’ and ‘Metagenomic’ has
been provided at ‘Application’ page. The user should up-
load the protein sequence file in FASTA format using
the ‘Genomic’ option. The ORFs (in FASTA format) pre-
dicted by any gene prediction software should be
uploaded using the ‘Metagenomic’ option. The page with
the ‘Job ID’ will be displayed to access the results after
submission of a query. The standalone version of HyPe
is developed for usage on the Linux OS based computer
and requires the installation of free packages such as R
and Random Forest (Details on Download page on web-
site http://metagenomics.iiserb.ac.in/hype, http://meta-
biosys.iiserb.ac.in/hype, and in Additional file 10.

Prediction of peptidoglycan hydrolases from pathogenic
bacteria using HyPe webserver
Forty-five pathogenic and 3 non-pathogenic (Bdellovi-
brio bacteriovorus, Bifidobacterium animali and Deino-
coccus radiodurans) genomes were analyzed using HyPe
web server to identify the peptidoglycan hydrolases. The
list of predicted peptidoglycan hydrolases from these
most common pathogenic bacterial species is provided in
Additional file 11. Some of the peptidoglycan hydrolases
with well-established antibacterial activity could be identi-
fied using HyPe, such as Lysostaphin from Staphylococcus
simulans with activity against Staphylococcus aureus [16],
LasA from Pseudomonas aeruginosa [29] with lytic activity
against various Staphylococcus species (i.e., S. saprophyticus,
S. epidermidis and S. warneri) [30], PlyL from Bacillus
anthracis which cleaves the cell wall of several Bacillus
species when applied exogenously [31], N-acetylmuramoyl-
L-alanine amidase from various organisms which has lytic
effect with varying spectrum of activity [6, 32–34], and lytic
activity of lysozymes which has been known since long time
[35]. Large number of peptidoglycan hydrolases could be
predicted in various gram-positive and gram-negative bac-
terial species, most of them being hypothetical proteins
(205 of 1203) (Additional file 11), enabling identification
and characterization of novel cell wall hydrolases. With the
wide spectrum of activity of these proteins it would be pos-
sible to customize the usage of peptidoglycan hydrolases ac-
cording to the type of antibacterial spectral requirement. It
is also plausible to believe that exploration of this class of
antibacterial proteins from metagenomic data would lead
to identification of novel cell wall hydrolases with desired
antibacterial spectra and activity.

Conclusions
The novel strategies for antibacterial development are
requisite to tackle the ongoing struggle between emer-
gence of resistance and slow development of new antibi-
otics. Only a few peptidoglycan hydrolases have yet been
identified from completely sequenced genomes as poten-
tial antibacterial agents. However, from different metage-
nomic datasets, more diversely active (with both narrow
and broad range spectrum of activity as murein hydro-
lase) peptidoglycan hydrolases could be identified which
is an unexplored area for this class of proteins. These
novel peptidoglycan hydrolases have the potential to be
used, as shown previously, in food industry for preserva-
tion, in agriculture for achieving resistance against
phytopathogenic bacteria, and as antibacterial agents
[36, 37]. The peptidoglycan hydrolases could be devel-
oped into a new class of antibacterial agents to counter-
act the problem of antibiotic resistance in pathogenic
organisms [38–41]. Identification and characterization of
novel peptidoglycan hydrolases will also provide insights
into better understanding of pathophysiology of various
pathogens. To the best of our knowledge, this is the only
tool available to predict the peptidoglycan hydrolases
from genomic and metagenomic data.

Methods
Construction of datasets
Construction of peptidoglycan hydrolase dataset and
negative dataset
A total of 399,933 sequences were retrieved from NCBI
protein database (website) using the following terms n-
acetylmuramidases, n-acetylmuramoyl-l-alanine amidase,
n-acetylglucosaminidase, and “murein and carboxypepti-
dase” “murein and endopeptidase” to obtain the peptidogly-
can hydrolases from different bacterial origin. Sequences
with ambiguous terms (hypothetical, like, similar, related,
unknown, possible, probable, putative, partial, uncharacter-
ized, predicted, inhibitor, regulator, enhancer, unnamed,
precursor, fraction, and repressor) in annotations were
removed and not considered for further analysis. A
total of 281,313 sequences which remained after the
removal of ambiguous terms were clustered at 95 %
identity using CD-HIT [42].
The resulting dataset consisting of 62,572 representa-

tive sequences was labeled as the positive dataset. To
construct the negative dataset, 547,085 protein se-
quences were retrieved from UniProtKB/Swiss-Prot
database (http://www.uniprot.org/downloads, version 20
Nov 2014) [43]. The sequences with annotations con-
taining the search terms used to construct the positive
dataset were removed. Clustering was performed for the
remaining sequences in the negative dataset at 80 %
identity using CD-HIT to avoid over-representation of
similar sequences. The resultant dataset consisted of
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195,220 sequences. From this dataset, in order to re-
move sequences which could be remotely related to the
positive dataset, BLAST was performed at e-value < 10
using the sequences of the positive dataset as query se-
quence [44]. All those sequences which showed a simi-
larity with the sequences in the positive dataset were
removed and the remaining sequences were considered
as the negative dataset. For appropriate training, the se-
quences smaller than 100 amino acids were removed
from the positive and negative datasets. The final posi-
tive and negative datasets contained 23,062 and 62,837
sequences, respectively.
Positive dataset were manually curated to classify the pep-

tidoglycan hydrolases sequences into three main categories
depending on the site of action at peptidoglycan. The three
representative categories were N-acetylmuramoyl-L-alanine
amidase (acting on bond between the tetra-peptide side
chain and peptidoglycan chain) (NAMLAAmidases), murein
peptidases (including endopeptidases and carboxypeptidases)
(Peptidases) and the enzymes acting on peptidoglycan chain
(N-acetylmuramidases, N-acetylglucosaminidase) (Peptido-
glycan_Chain). Remaining sequences which could not be
classified into any of the three categories were collectively
considered as unclassified peptidoglycan hydrolases and
constituted the fourth category (Additional file 3).

Independent genomic datasets
For the performance evaluation of the prediction method,
an independent set was created using 24 new bacterial ge-
nomes which were released at EMBL-EBI (http://www.e-
bi.ac.uk/genomes/bacteria.html) during January to May
2015. The positive and negative datasets constructed in
the earlier sections contained sequences from genomes
which were released earlier to given time period. Thus, it
eliminates any chances of biasness in the predictions by
the tool since the sequences in the independent set were
not included in the training set. Each genome from the in-
dependent set was analyzed using the prediction tool to
identify peptidoglycan hydrolases. BLAST was performed
for each genome against the positive dataset and the
results of BLAST were compared with the results of the
prediction tool. Further, the peptidoglycan hydrolases
were manually identified from each genome using same
the set of keywords (positive set) as used in the previous
section to identify all known peptidoglycan hydrolases in
that genome.

Metagenomic datasets
Twenty-four metagenomic samples were obtained from the
Human Gut Microbial Gene Catalogue [45] (Additional file
7). The paired-end reads from each sample were assembled
in to a single read of average length 131 bp by FLASH [46]
and were further assembled into contigs using MEGAHIT
[47]. ORF predictions were carried out in contigs using

MetaGeneMark [48] and only complete ORFs (with start
and stop codon) having length ≥100 amino acids were used
for the evaluation of prediction tool.

Feature extraction
Amino acid and dipeptide composition
Amino-acid composition (AAC) and Dipeptide compos-
ition (DPC) were used as features and were calculated
using in-house Perl scripts in the positive and negative
datasets. Sequence belonging to the positive and nega-
tive datasets were labeled as “+1” and “-1” respectively.
The AAC and DPC features of each protein were calcu-
lated using the following formula [49].

AAC ið Þ ¼ Total number of amino acid ið Þ
Total number of all possible amino acids
� 100

where, amino acid (i) is one of the 20 amino acids and
AAC(i) is the amino acid composition of the amino acid (i).

DPC ið Þ ¼ Total number of dipeptides ið Þ
Total number of all possible dipeptides
� 100

where, the dipeptide (i) is one out of 400 dipeptides and
DPC(i) is the dipeptide frequency of dipeptide (i).

Machine learning techniques
Selection of machine learning method
In the preliminary analysis, functional domains were also
searched in the peptidoglycan hydrolase protein se-
quences in order to apply HMM, however, domain based
approach could not be implemented due to the reasons
mentioned in Additional file 12.
The AAC and DPC as features and the different ma-

chine learning approaches were evaluated using WEKA,
which provides several machine learning algorithms for
classification, regression and clustering analysis [50].
From the positive and negative dataset, only 10 % of the
data was used for the evaluation at first level termed as
binary classification. The first level is for the binary clas-
sification of a protein as peptidoglycan hydrolase or
other function. After the first level where a protein is
identified as peptidoglycan hydrolase, the second level is
for the classification of this protein into the various
categories based on the site of action of peptidoglycan
hydrolases. For multi-class classification, the sequences
in positive dataset which were classified into four cat-
egories were labeled as A, B, C and D, and the negative
dataset were labeled as E (Additional file 3) and only
10 % of the data was used for the evaluation at the
second level.
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Support Vector Machine (SVM)
SVM was implemented via LibSVM package (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) [51]. It is a super-
vised machine learning algorithm which is used to dis-
tinguish the data based on observed patterns within the
data. LibSVM provides the flexibility to optimize the
number of parameters and kernels [52, 53]. The kernel
which provided better results at the time of optimization
was considered for the construction of SVM module for
the development of prediction tool. To evaluate the
unbiased performance of the LibSVM, five-fold cross-
validation experiment was performed.

Random Forest (RF)
RF was implemented using the randomForest package
provided in R (http://cran.r-project.org//) [54]. RF is
one of the implementation of an ensemble-learning
method based on the construction of decision trees for
classification and regression [55]. Each tree in the forest
works as independent model and the output depends
upon the overall performance. This algorithm shows
better performance as compared to other machine
learning methods since several model works together in
this approach and the final class is predicted via overall
decisions given by individual models. The mode of clas-
sification is decided by bootstrapping of classification
trees, by choosing a mtry value (which decides the
number of variables to be used at each node to split)
and trying to minimize the out of bag (OOB) error rate.
The OOB error mainly depends upon the strength of
the relationship between the trees and strength of each
tree [54, 56]. The performance of RF was assessed using
various parameters such as mtry and ntree. The param-
eters which showed the best performance were used for
the final RF module construction for the development
of prediction tool.

Comparison with BLAST
BLAST (version 2.2.26) was used in this study to com-
pare the performance of the prediction tool on genomic
and real metagenomic datasets.

Cross-validation and performance evaluation
The performance of LibSVM and RF was evaluated
using the parameters discussed below.

Accuracy ¼ TP þ TN
TP þ FN þ FP þ TN

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

MCC ¼ TP � TNð Þ− FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

Where, TP = True Positive, FP = False Positive, FN =
False Negative, TN = True Negative.
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