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cLaboratoire de Physique Théorique, Ecole Normale Supérieure,

24 rue Lhomond, 75231 Paris cedex 05, France
dMax-Planck-Institut für Physik (Werner-Heisenberg-Institut),
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Abstract: We find static spherically symmetric solutions of scale invariant R2 gravity.

The latter has been shown to be equivalent to General Relativity with a positive cosmo-

logical constant and a scalar mode. Therefore, one expects that solutions of the R2 theory

will be identical to that of Einstein theory. Indeed, we find that the solutions of R2 gravity

are in one-to-one correspondence with solutions of General Relativity in the case of non-

vanishing Ricci scalar. However, scalar-flat R = 0 solutions are global minima of the R2

action and they cannot in general be mapped to solutions of the Einstein theory. As we

will discuss, the R = 0 solutions arise in Einstein gravity as solutions in the tensionless,

strong coupling limit MP → 0. As a further result, there is no corresponding Birkhoff the-

orem and the Schwarzschild black hole is by no means unique in this framework. In fact,

R2 gravity has a rich structure of vacuum static spherically symmetric solutions partially

uncovered here. We also find charged static spherically symmetric backgrounds coupled to

a U(1) field. Finally, we provide the entropy and energy formulas for the R2 theory and

we find that entropy and energy vanish for scalar-flat backgrounds.
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1 Introduction

Gravity theories based on Einstein gravity plus higher derivative terms of the type R+Rn

possess several interesting features attracting the attention of our scientific community; R

denotes the scalar curvature and R stands for all possible combinations and versions of

the curvature tensor. A first remark is that in string theory an infinite series of higher

curvature corrections to Einstein gravity appears naturally. Secondly, as it was noticed in

ref. [1, 2], the addition of the quadratic curvature terms with n = 2 makes the theory of

gravity renormalizable. However the prize one has to pay is the appearance of a ghost-like

modes in the theory, which are originated from the square of the Riemann tensor as well

as from the square of the Weyl tensor. This pathology however is absent once we are

restricted to the case of R+R2; this theory turns out to be ghost-free and it is equivalent

to standard Einstein gravity with one additional scalar degree of freedom φ. Furthermore

as was noticed by Starobinsky and others [3, 4] the potential of φ is of great cosmological

interest, since it can describe a slow transition from a de Sitter phase to a flat Minkowski

phase leading to a viable realization of the inflationary scenario in the early Universe [5–

7]. More recently the R + R2 inflationary scenario was also investigated in the context of

supergravity [8–22].

In almost all previous investigations of higher curvature gravity and its solutions [23–

26] the linear Einstein term was assumed to be always present in the action. In this work we

investigate in more detail the case of pure R2 theory. As it was recently emphasized [22]

and also further investigated in the context of supergravity and superstring theory, the

pure R2 gravity possesses two distinct and important features: first it is the only ghost
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free theory of quadratic order in the curvature tensor. Second, one obtains in this way a

scale invariant gravitational theory with a non trivial interacting structure, in analogy to

the scale invariance of the low energy (Supersymmetric)-Standard Model without Higgs

mass term at the classical level.1 Reformulated in Einstein frame, the R2 theory describes

an action with cosmological constant, i.e. an exact de Sitter (or Anti de Sitter) space as a

consequence of an unbroken global scale symmetry.

The structure of this paper is as follows: in the next section 2 we construct vacuum

static spherically symmetric solutions of the pure R2 gravity. In section 3 we couple the

theory to Maxwell theory and we find the corresponding solutions. In section 4 we discuss

entropy and energy issues of the background found. Finally we conclude in section 5.

2 Spherically symmetric static backgrounds in R
2 gravity

The most general quadratic and scale invariant theory for gravity is described by the Weyl-

Eddington action,

SW =

∫

d4x
√
−g

(

αCµνρσC
µνρσ + βR2

)

, (2.1)

where Cµνρσ is the Weyl tensor and R is the Ricci scalar (see [27–30] for some more recent

discussions on this action).

For β = 0, the theory describes Weyl gravity which has extensively been studied. In

this particular case, the action (2.1) is not only scale invariant but exhibits full conformal

invariance; it is however a problematic theory since it contains ghost degrees of freedom.

On the other hand the limit α = 0, β 6= 0 is ghost free theory and it deserves special

attention; the pure R2 gravity is described by a simple quadratic action [22],

S =

∫

d4
√
−g

(

1

16µ2
R2 + Lmatter

)

, (2.2)

where Lmatter matter Lagrangian. It posses a global scale symmetry gµν → e2w0gµν in the

case where the matter fields are conformally coupled to gravity Lmatter → e−4w(xµ)Lmatter

and in particular in the case where w(xµ) = w0 =constant [22]. The equations of motions

which follow from the variation of (2.2) are:

RRµν −
1

4
R2 gµν −∇µ∇νR+ gµν∇2R = 4µ2Tµν , (2.3)

where Tµν is the energy-momentum tensor. It is easy to see that if we define

Jµν = RRµν −
1

4
R2 gµν −∇µ∇νR+ gµν∇2R , (2.4)

and utilising the identities,

∇µRµν =
1

2
∇νR ,

∇µ∇ν∇λR−∇ν∇µ∇λR = −Rκ
λµν∇κR , (2.5)

1The scale violating terms in particular the Einstein term R will be induced at the quantum level of the

theory, where conformal and scale invariance are broken in a more or less controllable way [22].
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we find that Jµν is covariantly constant,

∇µJµν = 0 , (2.6)

and therefore Tµν sastisfies

∇µTµν = 0 . (2.7)

Our interest is to find vacuum solutions to the equations (2.3), (when Tµν = 0),

RRµν −
1

4
R2 gµν −∇µ∇νR+ gµν∇2R = 0 . (2.8)

It is easy to see that eq. (2.8) is solved by two distinct classes of solutions:2

(i) Flat spaces with vanishing scalar curvature:

R = 0 . (2.9)

As we will see in the following, this class of solutions of the R2 theory contains in

particular non-Ricci flat spaces, Rµν 6= 0, which however do not exist as vacuum

solutions in the dual-conformal (almost) equivalent standard Einstein gravity.

(ii) Non-flat spaces which satisfy:

Rµν = 3λ gµν , (2.10)

where λ is an arbitrary constant.3 This is reminiscent of unimodular gravity (gov-

erned by the traceless part of Einstein equations). As a result, the solutions to the

theory are defined up to a cosmological constant, which is nevertheless fixed by the

boundary conditions. Of course, the limiting case with λ = 0, eq. (2.8) is also solved

by Ricci-flat spaces with Rµν = 0, as was the case of the standard Schwarzschild

black hole.

In order to be more explicit we will study in what follows the cases of static spherically

symmetric vacuum solutions of the form

ds2 = −a(r)dt2 + b(r)dr2 + r2dΩ2
2 . (2.11)

Then the field equations Jµν = 0 are non-linear fourth order differential equations, which

are not obvious how they can be integrated in full generality. Therefore, in searching for

solution we will further assume that b(r) = 1/a(r). Then the combination

r2

a
Jtt + Jθθ = 0 (2.12)

2The existence of these two branches is a generic feature of gravitational actions with two or more

curvature terms [31].
3In fact λ can be a function of the coordinates such that λµ = ∂µλ is covariantly constant vector. In

this case, spacetime is necessarily decomposable and eq. (2.10) leads then to λ = const. [32].
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does not contains fourth derivatives. Solving (2.12) for a(3) and utilizing Jrr = 0 we obtain

a single equation which is given in terms of three product factors:

(

r2a′′ + 4ra′ + 2a− 2
) (

r2a′′ − 2a+ 2
) (

ra′ + 2a
)

= 0 . (2.13)

The above equation has three obvious solutions:4

(i) a(r) = 1− M

r
+

K

r2
, (2.14)

(ii) a(r) = 1− M

r
− λr2 , (2.15)

(iii) a(r) =
M

r
, (2.16)

where M,K, λ are independent integration constants. The solutions with acceptable

asymptotic behavior correspond to the first and second cases. We therefore disregard

the case (iii).

• The vanishing of the second factor in (2.13) gives rise to the solutions of class (ii)

discussed previously,

ds2 = −
(

1− M

r
− λr2

)

dt2 +
dr2

1− M

r
− λr2

+ r2dΩ2
2 . (2.17)

When R 6= 0 they describe asymptotically de Sitter (λ > 0) or anti-de Sitter (λ < 0)

spacetimes and satisfies eq. (2.10). For λ = 0, the spacetime is asymptotically flat

and they describe an ordinary black hole.

• The vanishing of the first factor in (2.13) gives rise to the solutions of class (i) char-

acterized by R = 0 and Rµν 6= 0,

ds2 = −
(

1− M

r
+

K

r2

)

dt2 +
dr2

1− M

r
+

K

r2

+ r2dΩ2
2 , (2.18)

describing more general asymptotically flat solutions which are reduced to the ordi-

nary Scharzschild black holes for K = 0. In the next subsection we will investigate

the scalar-flat solutions in more details.

2.1 Non-trivial scalar-flat (R = 0) spherically symmetric backgrounds

A general static spherically symmetric spacetime has a metric which can be written as

ds2 = −λ(r)dt2 +
dr2

ν(r)
+ r2dΩ2

2 . (2.19)

The trace of the vacuum field equations

Jµν = 0 (2.20)

4The first two solutions of pure R
2 gravity already appeared in [33].
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leads to

�R = 0 , (2.21)

and therefore the Ricci scalar is a harmonic function. Multiplying (2.21) by R and inte-

grating over space we get that
∫

d3x
[

∇i

(√
λνR∂iR

)

−
√
λν∇iR∇iR

]

= 0 . (2.22)

If ∇iR vanish sufficiently rapidly at infinity, we get from the positivity of the second

term that

∇iR = 0 . (2.23)

Therefore, we get that static vacuum solutions to the R2 theory are backgrounds with

constant Ricci scalar R = const.5 In particular, for µ2 > 0, pure R2 gravity has a positive

action since

SR2 =
1

16µ2

∫

d4x
√
−gR2 ≥ 0 . (2.24)

Therefore, backgrounds with R = 0 saturate the above bound and are global minima

of (2.24). For µ2 < 0, of course such curvature scalar-flat spacetimes are global maxima.

In both cases, scalar-flat spacetimes are extrema of (2.24) and it can trivially be checked

that indeed they satisfy the vacuum field equations (2.20). For a general static spherically

symmetric spacetime with metric of the form (2.19), the curvature scalar is

R = −
(

λ′(r)

2λ(r)
+

2

r

)

ν ′(r) +

(

λ′(r)2

2λ(r)2
− 2

r2
− λ′′(r)

λ(r)
− 2λ′(r)

rλ(r)

)

ν(r) +
2

r2
. (2.25)

Hence, the equation R = 0 is written as

ν ′(r) + p(r)ν(r) + q(r) = 0 , (2.26)

where

p(r) =
2r2λλ′′ − r2λ′2 + 4rλλ′ + 4λ2

r2λλ′ + 4rλ2
,

q(r) = − 4λ

r2λ′ + 4rλ
, (2.27)

and λ(r), ν(r) are subject to the conditions

λ(r) → 1, ν(r) → 1, for r → ∞ . (2.28)

The general solution to (2.26) is then

ν(r) =
1

u(r)

∫

u(r)q(r)dr, u(r) = e
∫
p(r)dr . (2.29)

5There is a similar argument for the R+R
2 theory [23–26].
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In other words, there is no corresponding Birkhoff theorem in pure R2 theory: given

any particular profile function λ(r) (or ν(r)), the other is uniquely determined by the

asymptotic conditions and the singularity structure. For example, by choosing

λ(r) =

(

1− M

r

)2

(2.30)

we find that

ν(r) = 1 +
(M − 2c1) (M − 2r)

2r2
. (2.31)

However, it is easy to see that

CµνρσCµνρσ =
3
(

−4M2 (c1 + r) +Mr (8c1 + 3r)− 2c1r
2 + 2M3

)

2

r8(M − r)2
(2.32)

and therefore there are singularities at r = 0 and r = M . Nevertheless, the second

singularity at r = M is removed for c1 = −M/2. For this particular value of c1 we find

ν(r) =

(

1− M

r

)2

(2.33)

so that

ds2 = −
(

1− M

r

)2

dt2 +
dr2

(

1− M
r

)2 + r2dΩ2
2 , (2.34)

which is just the extremal RN black hole. However, there are also other asymptotically

flat solutions with the correct Newtonian limit. For example, we find that for

λ(r) =

(

1− M

r

)4

(2.35)

the solution of (2.26) is

ν(r) =

(

1− M

r

)−2
(

1 +
M2

3r2
− 10M

9r
+

c1e
−

3M
r

r

)

. (2.36)

Note that there is a singularity at r = 0 and a second one at r = M as can be seen by a

direct calculation of a the scalar invariant (2.32) for example. This second singularity can

be removed for c1 = −2Me3/9 and hence the metric is written as

ds2 = −
(

1− M

r

)4

dt2 +

(

1− M
r

)2

1 + M2

3r2
− 10M

9r

(

1 + 1
5e

3(1−M
r
)
)dr2 + r2dΩ2

2 (2.37)

is also a vacuum static spherically symmetric solution of the R2 theory. Note that the

metric (2.37) has no singularity at r = M as the geometry there is, like in (2.34), AdS2×S2.

Another class of solutions is provided for example for

λ = e−M/r . (2.38)
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In this case, we find that

ν(r) =
r2

[

r2
(

c1e
M/r + 1024r

)

+ 4M3 + 72M2r + 456Mr2
]

(M + 4r)5
, (2.39)

which is asymptotically flat and singular only at r = 0. Therefore, the vacuum solutions of

the R2 theory are scalar flat R = 0 backgrounds. In particular, these scalar flat backgrounds

are global minima of the action and clearly there is no corresponding Birkhoff theorem for

the R2 theory.

2.2 Unrevealing the no-scale mode

The action

S =

∫

d4x
√
−g

(

1

16µ2
R2

)

, (2.40)

can equivalently be written as

S =

∫

d4x
√
−g

(

ΦR− 4µ2Φ2
)

. (2.41)

The no-scale mode Φ plays the role of a Lagrange multiplier and arises in this conformal

frame (Jordan) frame without space-time derivatives. In that frame the initial scale symme-

try of the R2 theory is translated to a scale symmetry acting on Φ → e−2w0Φ compensating

the scale transformation of the metric gµν → e2w0gµν .

Parametrizing Φ as

Φ =
1

2
eaφ , a =

√

2/3 (2.42)

and performing a conformal transformation gµν → ḡµν = eaφgµν , the action (2.41) can be

written as

S =

∫

d4x
√
−ḡ

(

1

2
R̄− 1

2
∂µφ∂νφ− µ2

)

, (2.43)

which shows that the initial R2 action is conformally equivalent to a conventional Einstein

action coupled to an additional massless scalar propagating field φ and with a non-zero

cosmological constant µ2.

Before proceeding further we would like to stress at this point, that the pure R2 theory

is scale invariant only in four dimensions. Indeed, considering pure R2 theory in different

dimensions,

Sn =

∫

dnx
√
−g

(

1

16µ2
R2

)

, (2.44)

which again can equivalently be written as

Sn =

∫

dnx
√
−g

(

ΦR− 4µ2Φ2
)

. (2.45)
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Then, by a conformal transformation,

gµν → eanφgµν , eanφ = 2Φ with a2n =
4

(n− 2)(n− 1)
, (2.46)

the theory can be written in Einstein frame as:

Sn =

∫

dnx
√
−g

(

1

2
R̄− 1

2
∂µφ∂νφ− µ2e

4−n
2

anφ

)

. (2.47)

It is then obvious that the R2 theory is scale invariant only for n = 4. Indeed, only in four

dimensions, the potential for the φ field is flat while in higher dimensions it acquires an

exponential potential. The scale invariant generalization of (2.49) in n-dimensions is

S =

∫

dnx
√
−g

(

1

16µ2
Rn/2

)

. (2.48)

Returning back to the four dimensional action (2.43) one derives the following field

equations:

R̄µν −
1

2
ḡµνR̄+ 2µ2ḡµν − ∂µφ∂νφ+

1

2
gµν(∇̄φ)2 = 0 , (2.49)

∇̄2φ = 0 . (2.50)

We will like now to investigate how the solution (2.17) is written as a solution to

eqs. (2.49) and (2.50). Let us consider eq. (2.8) and now introduce a field φ defined as

eaφ =
1

8µ2
R , (2.51)

so that eq. (2.8) is written as

Rµν −
1

4
eaφ gµν − e−aφ∇µ∇νe

aφ + gµνe
−aφ∇2eaφ = 0 . (2.52)

Then by a conformal transformation

gµν = e2bφḡµν , (2.53)

and using the fact that

e−aφ∇µ∇νe
aφ = a∇̄µ∇̄νφ+ (a− b)a∇̄µφ∇̄νφ+ ab ḡµν(∇̄φ)2 , (2.54)

Rµν = R̄µν − 2b∇̄µ∇̄νφ+ 2b2∇̄µφ∇̄νφ− b ḡµν∇̄2φ− 2b2 ḡµν(∇̄φ)2 , (2.55)

we find that eq. (2.52) is written as

0 = R̄µν − (2b+ a)∇̄µ∇̄νφ+ (2b2 − a2 + 2ab)∇̄µφ∇̄νφ ,

−(b− a) ḡµν∇̄2φ− (2b2 − ab+ a2 + 4ab) ḡµν(∇̄φ)2 − 2µ2ḡµνe
(a+2b)φ . (2.56)

We choose now

a = −2b , (2.57)
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so that eqs. (2.51) and (2.56) turn out to be

R̄− 6b∇̄2φ− 6b2(∇̄φ)2 = 8µ2 , (2.58)

R̄µν − 6b2∇̄µφ∇̄νφ− 3b ḡµν∇̄2φ− 2µ2ḡµν = 0 . (2.59)

We see that the trace of eq. (2.59) is eq. (2.58) provided

∇̄2φ = 0 . (2.60)

Therefore, eqs. (2.58) and (2.59) are written (for b2 = 1/6) as

R̄µν − ∇̄µφ∇̄νφ− 2µ2ḡµν = 0 , (2.61)

∇̄2φ = 0 , (2.62)

which are precisely eqs. (2.49) and (2.50). The lesson from the above exercise is the follow-

ing: to any vacuum solution gµν of (2.8) with scalar curvature R > 0, the corresponding

solution (ḡµν , φ) of eqs. (2.49) and (2.50) is given by

eaφ =
1

8µ2
R , (2.63)

ḡµν =
R

8µ2
gµν . (2.64)

Clearly, this transformation works as long asR 6= 0, otherwise the transformation is singular

and the solution of the R2 action (2.40) is not a solution of (2.43).

For the spherical symmetric vacuum solution

ds2 = −
(

1− M

r
+

K

r2

)

dt2 +
dr2

1− M

r
+

K

r2

+ r2dΩ2
2 , (2.65)

we find that, although it is not Ricci flat, it has vanishing Ricci scalar

R = 0 . (2.66)

As a result, this asymptotically flat, spherical symmetric vacuum solution of the pure R2

theory does not exist in the dual Einstein gravity with cosmological constant. This can be

easily seen by varying the quadratic action of R2

δS = 0 −→
(

Rδ
√
−g + 2

√
−g δR

)

R = 0 , (2.67)

which is solved either by R = 0 or by (δ
√−g + 2

√−gδR) = 0. In the Einstein frame only

the second class of solutions are captured. The first class with R = 0 appears singular

since it gives rise to a singular conformal transformation with Φ = 0. Differently stated,

it corresponds to the tensionless limit (i.e. strong coupling limit) of Einstein gravity with

MP → 0. Therefore the space of general solutions of the R2 theory is that of the dual

Einstein theory but including also its tensionless limits. Hence we conclude that in the

tensionless limit of Einstein gravity with MP → 0, there are vacuum solutions of the

– 9 –
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type eq. (2.65) with non-zero Ricci tensor but with vanishing scalar curvature. These are

however not solutions of weakly coupled gravity with finite MP .

This reminds us to a similar situation in the framework of tensionless string in six

dimensions where one has an equation of motion which is not possible to be obtained from

an action. It also reminds us to the strong coupling limit in string theory written in the

sigma-model frame, with e−2φR in the limit g2s = e2φ → ∞. From eq. (2.48), the additional

class of solutions with R = 0 exist in all dimensions with n > 2. Therefore the extension

to the tensionless solutions does not only appear in four-dimensions but it is a common

property valid in all dimensions with n > 2.

The asymptotically de Sitter solutions like eq. (2.17) with λ > 0 having R 6= 0 corre-

sponds to the second class of solutions

Rµν = λgµν , R = 12λ , (2.68)

with

ds2 = −
(

1− M

r
− λr2

)

dt2 +
dr2

1− M

r
− λr2

+ r2dΩ2
2 , (2.69)

and therefore, the corresponding solution of (2.43) is

eaφ =
3

2µ2
λ , (2.70)

ds̄2 =
3λ

2µ2











−
(

1− M

r
− λr2

)

dt2 +
dr2

1− M

r
− λr2

+ r2dΩ2
2











. (2.71)

It is easy to see that (2.71) satisfies

R̄µν = 2µ2ḡµν , (2.72)

as expected.

Note that for Ricci flat solutions with Rµν = R = 0, the transformation from the R2

action eq. (2.40) to the Einstein frame action eq. (2.43) is still possible. In this case one

has also to take the limit µ = 0, while keeping eaφ = R
8µ2 finite.

Finally, one would like to know how to find the sub-class of solutions of (2.40) once a

solution of Einstein gravity eq. (2.43) is known. For this, let us suppose that we have a

solution (ḡµν , φ) to eqs. (2.49) and (2.50) of the Einstein theory eq. (2.43). Then, it turns

out that

R = e−2bφ
(

R̄− 6b∇̄2φ− 6b2(∇̄φ)2
)

, (2.73)

and the corresponding particular solution to the pure R2 theory will be given by

gµν =
8µ2

R
ḡµν . (2.74)
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3 Coupling to matter

We would like now to couple the R2 theory to matter and find the corresponding static

spherically symmetric solution. The most obvious choice for matter is an electromagnetic

field, the action of which is also scale invariant (in fact it is conformal invariant). So we

will consider below the theory

S =

∫

d4x
√
−g

(

1

16µ2
R2 − 1

4
FµνF

µν

)

. (3.1)

The field equations which follows from the (3.1) are

RRµν −
1

4
R2 gµν −∇µ∇νR+ gµν∇2R = 4µ2

(

FµρFν
ρ − 1

4
gµνF

2

)

(3.2)

∇µF
µν = 0 . (3.3)

For a static spherically symmetric solution we assume that the background metric is of

the form

ds2 = −a(r)dr2 +
dr2

a(r)
+ r2dΩ2

2 , (3.4)

so that the electromagentic field turns out to be

At =
Q

r2
, Ftr =

Q

r2
. (3.5)

The field equations (3.2) are written then as

(

ra′ + 2a
)[

r4a′′2 + a
(

8− 8ra′
)

+ 4ra′(r)
(

r2a′′ + 2
)

− 4a2 + 8µ2Q2 − 4
]

= 0 . (3.6)

The solution to the above equation with appropriate asymptotic behavior is

a(r) = 1− M

r
− Z

r2
+

Q2µ2

6Z
r2 , (3.7)

and therefore we have

ds̄2 = −
(

1− M

r
− Z

r2
+

Q2µ2

6Z
r2
)

dt2 +
dr2

1− M
r − Z

r2
+ Q2µ2

6Z r2
+ r2dΩ2

2 , (3.8)

At =
Q

r
. (3.9)

Clearly, there are no asymptotically flat solutions (sinceQ2µ2/Z 6= 0) and the only solutions

that are allowed are de Sitter Reissner-Nordstrom (dS-RN) for Z < 0 and anti-de Sitter

Ressner-Nordstrom type (AdS-RN) for Z > 0. It can straightforwardly be verified that,

due to the conformal invariance of the Maxwell Lagrangian, the dual theory is written as

S =

∫

d4x
√
−g

(

1

2
R− ∂µφ∂

µφ− µ2 − 1

4
FµνF

µν

)

. (3.10)
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Then since

R̄ =
−2µ2Q2

Z
, (3.11)

by using the transformations (2.63), (2.64), we find that the corresponding solution in the

Einstein frame is

ds2 =
−Q2

4m2Z

[

−
(

1− M

r
− Z

r2
+

Q2µ2

6Z
r2
)

dt2 +
dr2

1− M
r − Z

r2
+ Q2µ2

6Z r2
+ r2dΩ2

2

]

(3.12)

At =
Q

r
, (3.13)

and it is acceptable for only for Z < 0 (for µ2 > 0). In other words, R2 theory coupled

to electromagnetism admits solutions of dS-RN and AdS-RN type (3.8). However, only

(dS-RN) are solutions of the dual Einstein gravity. Again, the dual Einstein theory can

only capture part of the possible solutions of the R2 theory.

4 Entropy

According to Wald [34], the black hole entropy is the Noether charge associated to diffeo-

morphisms under the Killing vector which generates the event horizon of the stationary

black hole. Let us note that under an arbitrary variation of the lagrangian density we have

δ(
√
−gL) =

√
−gJµνδg

µν +
√
−g∇µθµ . (4.1)

The field equations are then

Jµν = 0 , (4.2)

and the Noether current θµ is conserved

∇µθ
µ = 0 , (4.3)

when the field equations are satisfied. For diffeomorphisms generated by the vector ξµ,

we have

δ(
√
−gL) = Lξ(

√
−gL) =

√
−g∇µ(ξ

µL) , (4.4)

so that

∇µj
µ = −2Jµν∇µξν , (4.5)

where

jµ = θµ − ξµL . (4.6)

Hence, if the field equations are satisfied, the current jµ obeys

∇µj
µ = 0 . (4.7)
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The conservation equation (4.7) can be written in terms of the 1-form j = jµdx
µ as

d ∗ j = 0 , (4.8)

and therefore j is the dual of an exact 3-form

j = ∗dQ , (4.9)

where Q = 1
2Qµνdx

µ ∧ dxν is a two-form. Then the Noether charge q associated to a

diffeomorphism generated by ξµ in a spatial volume Σ, which is analogous to
∫

Σ jµdΣ
µ, is

given by the boundary integral

q =

∫

∂Σ
Qµν dΣ

µν . (4.10)

It turns out that when the spacetime possess a bifurcated Killing horizon, the Noether

charge associated to the Killing vector (after appropriate rescaling to have unit surface

gravity) is actually the entropy S

S = 2π

∫

∂Σ
Qµν dΣ

µν . (4.11)

For a rigorous treatment, one may consult [34, 35].

The vector θα is constructed as follows [35]. One treats the Lagrangian as a functional

of the metric and the Riemann tensor such that

δ(
√
−gL) =

√
−g

(

Eαβ
g δgαβ + Eαβγδ

R δRαβγδ + Eφδφ
)

+
√
−g∇αθ̃

α , (4.12)

where Eαβ
g is the variation w.r.t. the metric, Eαβγδ

R is the variation with respect to to

the Riemann tensor, and Eφ is the variation with respect to all the other matter fields,

collectively denoted by φ. In addition, θ̃α is different in general from θ, which is given by

θα = 2Eαβγδ
R ∇δδgβγ − 2∇δE

αβγδ
R δgβγ + θ̃α . (4.13)

Specializing to the R2 action (2.40), we find,

Eαβγδ
R =

1

16µ2
R
(

gαβgγδ − gγβgαδ
)

, (4.14)

so that

θα =
1

8µ2
gαβgγδ

(

R∇δδgβγ −R∇βδgγδ − δgβγ∇δR+ δgγδ∇βR
)

. (4.15)

Then, for diffeomorphisms generated by ξα (so that δgαβ = ∇αξβ −∇βξα) we find that the

associated Nother current jα (after using the field equations Jαβ = 0), is given by

jα =
1

16µ2
∇β

(

R∇[γξα]
)

+
1

8µ2
∇β

(

ξ[γ∇α]R
)

. (4.16)
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Therefore, jα satisfies (∇αj
α = 0) and the 2-form Qαβ defined in eq. (4.9) is given by

Qαβ =
1

16µ2
ǫαβγδ

(

R∇αξβ + 2ξα∇βR
)

. (4.17)

Let us recall that ξα vanishes on a bifurcated killing horizon B and for stationary back-

grounds we have on B that ∇αξβ = κǫαβ where κ is the surface gravity and ǫαβ is the the

binormal on B. Hence, by using (4.17) we find that the entropy is given by

S =
1

2µ2

∫

B
d2x

√
hR . (4.18)

This is exactly the entropy we would have found using the standard expression

S =
1

4G

∫

B
d2x

√
h , (4.19)

for the entropy in the Einstein frame and then using the conformal transformation,

gµν → eαφgµν =
16πG

8µ2
Rgµν , (4.20)

to find the entropy in the R2 theory. That the entropy is invariant under conformal

transformations has been proven, at least for that class of transformations that approach

identity at infinity in [36, 37].

It is interesting to notice that the entropy (4.18) is zero for background which have R =

0. These backgrounds cannot conformaly be mapped to Einstein frame. In addition since

(for µ2 > 0) backgrounds with R = 0 saturate the bound (2.24) and minimize the action,

they resemble the BPS condition and the associated zero entropy of the corresponding

BPS states.

We also note that backgrounds with R < 0 have negative entropy.6 The interpretation

of such backgrounds is not very clear. Note in particular that such backgrounds cannot

be conformally mapped to backgrounds with Lorentzian signature in the Einstein frame as

long as µ2 > 0. The conformal mapping gives spacetime with wrong signature indicating a

strong instability. The question is if we can still map backgrounds with R < 0 to metrics

with Lorentzian signature in the Einstein frame. This indeed can be done for negative

Φ < 0 in eq. (2.42), which can be parametrized as

Φ = −1

2
eaφ , eaφ = − 1

8µ2
R . (4.21)

Then Einstein frame action turns out to be

S′ =

∫

d4x
√
−g

(

−1

2
R− 1

2
∂µφ∂νφ− µ2

)

, (4.22)

and the conformal transformation to the Einstein frame is only possible for eaφ > 0, i.e.

R < 0. However, although the metric in the Einstein frame is of Lorentzian signature now,

6The fact that higher curvature gravity may have negative entropy has been noticed also in [38].
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gravity has been turned repulsive. Thus, the negative entropy in the R2 theory associated

to backgrounds with R < 0, corresponds to repulsive gravity in the Einstein frame. In

other words, gravity is repulsive on backgrounds with negative entropy in the R2 theory.

This is a further indication that R2 theory, although it can be conformally transformed to

Einstein frame, it is quite different form it.

5 Energy

We note here that we may define a three-form Θ = 1
3!Θµνρdx

µ ∧ dxν ∧ dxρ as the dual

of the 1-form θ = θµdx
µ (Θ = ∗θ.) Let us then consider globally hyperbolic spacetimes

which are asymptotically flat possessing Cauchy surfaces C with single asymptotic region

∂C. Then, as has been proven in [35], if the vector field ξµ generates time evolution, a

Hamiltonian exists if and only if there exists a 3-form B such that

δ

∫

∂C
ξ ·B =

∫

∂C

ξ ·Θ . (5.1)

In that case, the Hamiltonian is given by

H =

∫

∂C

(

Q− ξ ·B
)

, (5.2)

In particular, when ξµ is the asymptotic time-translation vector kµ = (∂/∂t)µ, the canonical

energy is given by

E =

∫

∂C

(

Q[k]− k ·B
)

. (5.3)

For the R2 theory, we find from eqs. (4.15) and (4.17) that for asymptotically flat spherically

stationary solutions, we have Q = Θ = 0 and therefore

E = 0 , (5.4)

in accordance with [39–41] (see also [42] for a more recent discussion on the energy definition

in R2 theories).

6 Conclusions

We have discussed here classical solutions to the R2 scale invariant gravity. As has been

shown recently in [22], this theory is equivalent to Einstein gravity with a cosmological

constant and a massless scalar field. We show how solutions of R2 theory are mapped

to corresponding solutions of General Relativity in the case of non-zero scalar curvature.

Furthermore, we have discussed scalar flat R = 0 solutions of R2 theory which cannot be

mapped to a General Relativity setup. This class of solution corresponds to a tensionless

limit respectively strong limit in the conformally dual Einstein theory.

We worked out in details static spherically symmetric backgrounds and we showed

that in R2 theory there is no the equivalent of the Birkhoff theorem. We also discuss the
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coupling of this theory to scale invariant matter and in particular we study the coupling

to a U(1) Maxwell field.

We have also calculated the entropy and the energy for the classical solutions associated

to the R2 theory and we show that both the entropy and the energy vanish for scalar-flat

backgrounds. This is a direct manifestation of the zero energy theorem [39], which represent

an additional motivation for studying this theory. Although the spectrum of general four

order theories is expected to be unbounded from below due to the presence of ghosts, the

spectrum of the scale invariant R2 theory turns out to be bounded by En ≥ E0 = 0 at

least at the classical level. This property is probably still valid at the quantum level of the

theory as consequence of unitarity. This problem remains open and it will be interesting

to be proven in the future.
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A Solutions of field equations

Here, for completeness, we will provide the spherically symmetric solutions to the scale

invariant Weyl-Eddington action (2.1). The field equations which follow from (2.1) can be

written as

Wµν = βJµν − 2αBµν = 0. (A.1)

Jµν was defined in eq. (2.4) and Bµν is the Bach tensor given by

Bµν =

(

∇ρ∇σ +
1

2
Rρσ

)

Cµρνσ. (A.2)

Let us then consider the following form of the metric

ds2 = −a(r)dt2 +
dr2

a(r)
+ r2dΩ2

2. (A.3)

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
1
4
3

Then, although the field equations (A.1) are complicated, we find that the combination

W 0
0 −W r

r is quite simple and turns out to be

W 0
0 −W r

r =
a(r)

6r4

[

(72βr2a′′(r) + r3(α− 12β)
(

ra(4)(r) + 4a(3)(r)
)

− 144βa(r) + 144β
]

= 0. (A.4)

The solution to the above equation is

a(r) = 1− M

r
+ c1r

γ1 + c2r
γ2 + Λr2, (A.5)

where γ1,2 =
±

√
α2−312αβ+3600β2+α−12β

2α−24β and c1,2,M,Λ are integration constants. Plugging

this solution to any other components of Wµν = 0 we find that c1,2 = 0. Therefore the

solution is finally

a(r) = 1− M

r
+ Λr2. (A.6)
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