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Abstract

Background: Genome-wide sensitivity screens in yeast have been immensely popular following the construction of
a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude
experiments on minimal growth medium, one of the most informative metabolic environments. Here we present
quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection
across a large set of metabolic conditions.

Results: The complete collection was grown in environments consisting of one of four possible carbon sources
paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The
relative contributions to mutants' fitness of each carbon and nitrogen source were determined using multivariate
statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients
and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale
metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions
and hitherto unavailable experimental data.

Conclusions: These data address a fundamental deficiency in our understanding of the model eukaryote
Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source
has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the
nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how
these data can be integrated with other whole-genome screens to interpret similarities between seemingly
diverse perturbation types.
Background
Large scale gene deletion screens have become common
in Saccharomyces cerevisiae due to efforts in the yeast
community to assemble a near complete collection of
non-essential single-mutant strains [1]. The subsequent
refinement of mating-based high-throughput strain con-
struction techniques such as synthetic genetic array (SGA)
analysis [2] has further driven the creation of customized
yeast deletion arrays. While quantitative single mutant
fitness assays have been performed [3], they are generally
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limited to a single growth medium. A few notable ex-
ceptions have begun to explore this space [4-7], but
the conditions of interest are often chosen with human
therapeutic ends in mind and are limited to known
drugs or small molecules of unknown biological effect.
A decade and a half after the sequencing of the best-studied
eukaryote, a systematic exploration of mutant growth
across basic nutrient environments is conspicuously
absent. These data would be valuable for metabolic
researchers and computational biologists that attempt
to model the metabolic network of the cell using method-
ologies such as flux balance analysis (FBA) [8] because the
defined growth conditions are amenable to modeling.
Yeast strain collections used in previous high-throughput

assays (that is, the deletion collection) are auxotrophic [1],
and therefore unable to survive in minimal media unless
provided additional nutrients. This requirement reflects
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the historical use of auxotrophic markers for genetic
selection. The resulting requirement for nutrient supple-
mentation precludes systematic testing of the yeast deletion
collection on specific combinations of carbon and nitrogen
sources because the auxotrophic nutrient supplements can
also be used as carbon and nitrogen sources. Previous work
has shown not only that nutrient supplementation can
have different physiological consequences from genetic
complementation [9] but also that auxotrophies can alter
the expression of many other genes [10].
To address this deficiency in genome-scale data on

growth in other, defined media, we constructed a proto-
trophic version of the yeast deletion collection and then
screened this collection of 4,772 mutants against 28
defined minimal media conditions. These 28 conditions
were formed by using all pairwise combinations of four
carbon sources and seven nitrogen sources (Table 1,
Figure 1). These screens of the prototrophic collection
revealed numerous interactions between carbon and
nitrogen sources with respect to wild-type growth rate,
underscoring the need to perform growth experiments in
a combinatorial fashion. Mutant data revealed condition-
specific sensitivities across all conditions, including many
effects for uncharacterized genes and mutants that are
healthy under standard laboratory conditions. We show
that the data have power to predict functional relationships
between genes and are otherwise validated via a separate
liquid assay as well as through comparison with previous
studies involving galactose. We also present a method
for distinguishing carbon and nitrogen effects from their
combined profiles and additionally provide a benchmark
of current constraint-based modeling techniques and
their ability to predict our experimental data.

Results and discussion
Prototrophic deletion set construction and profiling
Briefly, a MATα strain carrying the SGA marker [11,12]
was crossed to the MATa yeast deletion set [1], selected
for diploids, and sporulated. Prototrophic haploids were
selected using the SGA approach [11]. The final genotype
of these 4,772 strains is MATa yfgΔ0::KanMX can1Δ::
STE2pr-SpHIS5 his3Δ1 lyp1Δ0. These strains were then
pinned out onto plates containing one of four different
carbon sources along with one of seven nitrogen sources.
Table 1 Summary of conditions and hits called in each condit

Fast/slow Ammonium Proline Glutamate

Glucose 41.5/41* 186/417 133/354

Galactose 132/461 276/658 400/906

Ribose 312/345 981/462 306/412

Glycerol NA NA NA

* Mean of six replicates. Note that this reflects the average number of false positive
Noise from extremely slow growth on glycerol precluded identification of significan
All 28 carbon:nitrogen combinations were included to
produce a broad set of well-defined metabolic conditions.
The plates were imaged in time course in order to
estimate growth rates from measurements of colony
size (Figure 1; see Materials and methods for details;
Additional file 1).

Yeast wild-type growth suggests carbon/nitrogen
interactions
The mean growth rate of all wild-type replicates was calcu-
lated in each condition, which revealed extensive variation
across the profiled conditions (Figure 2a; Additional file 2;
Materials and methods). As expected, wild-type yeast grow
substantially faster on glucose or galactose than on glycerol
or ribose. Similarly, urea is a consistently poor nitrogen
source with glutamine and ammonium generally preferred.
To systematically examine the interactions between carbon
and nitrogen sources over our entire dataset, a linear model
was fit to the logarithm of wild-type growth rates under the
assumption that independent contributions to growth rate
would combine multiplicatively (a multiplicative model fit
better than simple alternatives such as an additive formu-
lation). Indeed, the model suggests that pairs of nitrogen
and carbon sources commonly interact to produce a wild-
type growth rate phenotype that is different from what
might be predicted assuming independent contributions,
evidenced by the fact that the majority of the interaction
terms in the linear model were significant (Figure 2b). For
example, consider the apparent increase in growth rate
observed under ribose:glutamate when compared to
glucose:glutamate (Figure 2a), observable as a positive
interaction between ribose and glutamate (Figure 2b).
When paired with glucose, glutamate is the nitrogen
source that yields the fourth fastest growth rate. However,
when paired with a much poorer carbon source (for ex-
ample, ribose or glycerol) glutamate becomes the nitrogen
source that yields the fastest growth rate. This interaction
is likely caused by the ability of the cell to utilize glutam-
ate not only as a source of nitrogen, but as a secondary
carbon source in the presence of a poor primary carbon
source. When glutamate is deaminated for use as a nitrogen
source, alpha-ketoglutarate is produced and can be subse-
quently utilized for energy production via the tricarboxylic
acid cycle. This dual role is not specific to glutamate. For
ion

Glutamine Arginine Urea Allantoin

169/286 173/920 135/219 95/284

270/877 452/530 154/216 124/545

291/192 437/46 388/345 379/492

NA NA NA NA

s in the screen since glucose ammonium was the reference condition. NA,
t individual mutant effects.
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(See figure on previous page.)
Figure 1 Experimental overview. A custom prototrophic strain is mated to the entire deletion collection and haploids are selected via SGA. The
resulting prototrophic deletion collection is plated out onto 28 distinct metabolic media, and time course growth rate data are extracted from
plate images. Growth rates are normalized to a glucose:ammonia reference (constructed from six replicates) and z-scores are calculated for each
deletion, in each condition (except glycerol). WT, wild-type.
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Figure 2 Wild-type growth data in all conditions. (a) Average wild-type growth rates in all conditions. Conditions are grouped and colored by
carbon source. Nitrogen sources are ordered by growth rate when paired with glucose, and all values are relative to the glucose:ammonium rate.
Error bars represent standard error from 701 wild-type replicates. (b) A linear model fit to log-transformed growth values. Terms for
individual carbon and nitrogen sources are colored, interaction terms are gray. All but the three terms marked with a black circle are significant
(P < 0.01); error bars represent standard error.
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Figure 3 Overlap with known galactose sensitivities and
prediction of known functional associations. (a) Overlap between
mutants sensitive on galactose from several different studies. For this
study, galactose sensitivity is defined as a significant z-score in four or
more of our seven galactose conditions. N denotes the total number of
genes the studies have in common. (b) Precision-recall analysis assessing
the ability of gene-gene similarity to predict co-annotation to specific
terms in the Gene Ontology. Results for all gene pairs are shown in blue,
and results for a subset of metabolism-related genes (included in
iMM904 model) are shown in red.
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example, glutamine is utilized in a similar manner, though
the ratio of 'free' carbon skeletons per nitrogen produced is
less efficient (1:2 as opposed to 1:1). Despite the fact that
many of the nitrogen sources share this property, we here-
after continue to refer to them simply as 'nitrogen sources'
for simplicity. Our results show that the wild-type growth
rate can be predicted from independent contributions of
carbon and nitrogen sources in only 3 of our 28 conditions
(Figure 2b). Significant interaction terms in all but
three conditions signify the complex interdependencies
throughout the metabolic network, thus underscoring the
importance of testing each pair of sources systematically.

Fitness determination of deletion mutants over the
media conditions
In an effort to identify mutant growth defects specific
to particular conditions, we derived a model designed
to score growth rate for each deletion strain in a given
condition relative to its growth under a reference con-
dition (glucose:ammonium). First, the growth rate data
(Additional file 1) were normalized for each experimental
condition with respect to the glucose:ammonium refer-
ence (see Materials and methods). This controlled for the
growth rate differences observable in wild-type cells across
the different conditions (Figure 2; Additional file 2) and
enabled us to focus on more subtle effects due only to the
genetic perturbation. A modified z-score was then calcu-
lated for each mutant strain (see Materials and methods;
Additional file 3). This measure is negative if the strain
grew slower in the test condition than would be expected
due to the nutrient environment alone, and positive if the
strain grew faster than expected. The distribution of
growth rates in the 701 wild-type replicates was used to
assess the statistical significance of mutant effects in each
condition and estimate a false discovery rate (FDR) for
any gene-environment interactions (see Materials and
methods; Additional file 4). Table 1 shows the number
of deletions that grew slower or faster than expected at
an FDR threshold of 20% (see Additional file 3 for a
complete list of z-scores). While the large number of wild-
type replicates allowed for confidence in the small differ-
ences in reference strain growth between various nitrogen
sources when paired with glycerol, the mutant data on gly-
cerol proved to be too noisy due to extremely slow growth
to call mutant effects. Therefore, no growth rate (z-score)
data are presented for mutant strains on glycerol.

Observations in galactose concur with previous
auxotrophic studies
To build additional confidence in our high-throughput
dataset, we compared lists of mutants deficient for growth
under galactose to data from several previous studies that
had tested the auxotrophic deletion collection in a variety
of experimental conditions. Giaever et al. [1], Kuepfer
et al. [13], and Dudley et al. [7] each included a condition
in which galactose is the major source of carbon, and the
overlap between the deletions that we call as effects in our
galactose conditions and sensitivities collected from
these three experiments is highly significant (Figure 3a;
Additional file 5). We define a galactose-sensitive gene
for this purpose as having a significant fitness defect in at
least four of our seven galactose conditions and we obtain
a list of 565 such genes (using FDR 20%; Additional files 3
and 4). This list covers approximately 50% of the sensitive
genes identified in each of the three previous auxo-
trophic screens (Giaever n = 23, P < 10−11; Kuepfer n = 120,
P < 2 × 10−16; Dudley n = 16, P < 10−6; hypergeometric;
Figure 3a; Additional file 5). Additionally, we discover
385 mutants sensitive under galactose not revealed in
any of these previous studies. For comparison, the over-
lap between two of the previous genome-wide studies
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(Giaever et al. and Kuepfer et al.) was only 15 genes, 12
of which are recovered in this study (Figure 3a). We
suggest two primary reasons for the increased number
of galactose-sensitive mutants discovered in our study.
The first is that 47% of these new galactose-sensitive
genes did not have a phenotype when only one nitrogen
source (ammonium) was used. Thus, the testing of
a wide-range of nitrogen sources revealed additional
galactose-sensitive mutants. The second reason is that
previous studies used more stringent thresholds for galact-
ose phenotypes. Smaller quantitative measurements of
fitness defects across multiple galactose:nitrogen source
combinations allow for increased sensitivity in detecting
galactose phenotypes compared with other studies.
Another possible explanation for differences between

our galactose results and those from the Dudley et al.
study is the absence of antimycin A in our media. Anti-
mycin A inhibits energy production from respiratory
pathways and forces the strains to ferment galactose. In
our experiments, yeast had access to oxygen and could
perform both respiration and fermentation with galactose
as a carbon source, which is the natural metabolism of
galactose by S. cerevisiae [14].

Liquid culture validation of mutant fitness measurements
We independently validated our single mutant fitness
measurements by measuring the growth rate of 40
mutants in a liquid growth assay performed across 20 of
the experimental conditions (excluding ribose:arginine
and all glycerol pairings; see Materials and methods).
The overall correlation between wild-type strain growth
rates from these two different approaches was 0.65 (P <
0.003; Pearson), suggesting general agreement between
growth rates determined on solid and liquid media. We
then adjusted the liquid growth scores, controlling
for the wild-type rate in the given condition and the
relevant mutant rate in glucose:ammonium so they
would reflect condition-specific effects, similar to our
modified z-score derived from the agar experiment.
The Spearman rank correlation between the adjusted
liquid growth score and our agar z-score (for 40 mu-
tant strains × 19 conditions) was 0.34 (P < 2.2 × 10−16).
Further excluding glucose conditions (which are gen-
erally sparser in the z-score data as a consequence of
our use of glucose:ammonium as a reference) increases
this correlation to 0.38. Thus, we conclude that there
is reasonable agreement between the high-throughput
measures and a lower-throughput liquid growth assay,
including for condition-specific effects.

Number of environmental sensitivities is correlated with
single mutant fitness and genetic interaction degree
We compared our growth measurements with other
quantitative phenotypes measured on the auxotrophic
deletion collection. For example, genetic interaction
mapping efforts have measured the single mutant fitness
of all deletion strains from the auxotrophic background
on synthetic complete media [3,15] and found a correl-
ation between the magnitude of the fitness defect and the
number of genetic interactions for each single mutant
(genetic interaction degree). The prevailing explanation
for this correlation is that genes that display a fitness
defect represent the subset that are playing an active
role under the condition tested, are additionally not
completely buffered by other genes, and/or contribute
to a wider variety of cellular processes. We observe a
similar correlation between the single mutant fitness
defect (as previously measured on synthetic complete
media [3]) and the number of significant condition-
specific sensitivities in our study (r = 0.33, P < 5 × 10−100;
Pearson). Additionally, there is a partial correlation be-
tween the number of genetic interactions a gene has and
the number of environments with which it interacts, even
after controlling for single mutant fitness defect (r = 0.18,
P < 5 × 10−31; Pearson). This echoes a previously observed
correlation between genetic interaction degree and sensi-
tivities in more complex chemical environments (r = 0.4,
P < 10−5) [6,15]. These results confirm that our study is
uncovering more effects for genes known to be pleiotropic
or central under a variety of environmental backgrounds
[7]. These findings also suggest that hubs are conserved
across different network types, with many of the same
genes conferring robustness to genetic, chemical, and
environmental perturbations.

Mutant sensitivity profiles are predictive of gene function
Previous genetic interaction studies have shown that
high profile similarity for mutant sensitivity across varied
environmental conditions or diverse genetic backgrounds
(for example, genetic interaction profiles) is highly predict-
ive of similar gene function [5,7,15]. We applied an analo-
gous logic to our data to see if similar environmental
sensitivity profiles would also be predictive of similar
function. Using co-annotation to an informative set of
Gene Ontology (GO) terms [16,17] as our standard for
functional similarity, we ranked all pairs of genes by
their profile similarity (Pearson) and evaluated these
rankings with respect to known functional relationships.
We measured a precision of approximately 35% at a recall
of 1,000 gene pairs (2-fold over a random baseline of 17%;
Figure 3b). Additionally, when we restrict our predictions
to those genes with a known involvement in metabolism
(663) we see a much higher precision (precision ~ 65% at
recall = 100), though a similar performance over the in-
creased background rate (1.7-fold over 38%; see Materials
and methods). The higher performance for metabolism-
related predictions is likely due to the direct relevance of
the environmental conditions chosen to the study of basic



VanderSluis et al. Genome Biology 2014, 15:R64 Page 7 of 18
http://genomebiology.com/2014/15/4/R64
metabolism. Thus, we have demonstrated an ability to pre-
dict general gene function using the guilt-by-association
principle, and the diverse environments chosen for this
assay are well-suited to reveal sensitivities in the metabolic
network of this newly created prototrophic collection.

Metabolic network models show modest ability to predict
experimental data
The prototroph growth data on minimal media presented
here are uniquely suited to bring experimental data
to bear on theoretical predictions of constraint-based
analysis of metabolic networks. Constraint-based modeling
is a widely used approach to study the metabolic capacity
of genome-scale biochemical networks in steady state with-
out requiring detailed enzyme kinetic parameters [8]. FBA
is the most popular constraint-based approach to computa-
tionally predict the phenotypes under environmental and
genetic perturbations and has been shown to successfully
predict gene essentiality, and to a lesser extent, condition-
specific essential status in yeast [13,18]. We used our sensi-
tivity data to evaluate the ability of constraint-based models
to predict subtler quantitative sensitivities in a condition-
specific manner. We predicted biomass yield, a proxy for
growth, in all conditions using two versions of the yeast
metabolic network reconstruction: the more recent Source-
forge Yeast Consensus Reconstruction v5.35 (hereafter
Yeast5) [19], and iMM904 [20]. Additionally, we applied
two alternative algorithms to predict mutant phenotypes,
namely standard FBA [21] and minimization of metabolic
adjustment (MoMA) [22]. Predicted biomass production
fluxes were normalized with respect to every mutant's pre-
dicted biomass production in glucose:ammonium and the
wild-type prediction in each condition to make scores
analogous to our experimental z-scores. The prediction of
z-scores as opposed to raw growth rates was chosen to
assess the adaptability of each model's performance in the
face of varied environments, an admittedly more difficult
scenario than predicting global or condition-specific essen-
tiality. Though the output of the models is quantitative,
many conditions predict only a few discrete levels of result-
ing biomass production and therefore yield identical predic-
tions for the majority of mutants. The mode of the output
accounted for between 39% and 95% of the predictions, so
we assessed model performance by comparing the pre-
dicted set of slow mutants (below the mode biomass
production) to our set of significant z-scores in each
condition. Three metrics were collected to assess the per-
formance of each model-method combination: average
precision (across all 20 predicted conditions), average re-
call, and the number of conditions in which precision
exceeded random expectation (at P < 0.05 hypergeometric;
Figure 4; Additional file 6). Results for positive z-score
prediction (above the mode biomass) are also available in
Additional file 6 (see Materials and methods).
Prediction of condition-specific slow growth proved
consistently above random expectation (Figure 4), though
values of precision are much lower than those previously
reported in predicting qualitative essentiality (>90% [18]).
One key difference between our study and Snitkin et al.
[18] (as with Dudley et al. in the section on galactose
sensitivity above) is the latter's inclusion of antimycin A
in the media, which inhibits energy production from
respiration, whereas our strains could naturally respire
and ferment. Our results show an advantage for the
more recent Yeast5 model over the iMM904 model, as
well as a slight advantage for standard FBA over MoMA.
The Yeast5 model was able to perform above random ex-
pectation in 14 out of 20 conditions with a mean precision
of 25% and a mean recall of 18% (Figure 4; Additional
file 6). Recall scores for MoMA were generally higher
than for FBA owing to a much smaller fraction of the
predictions equal to the mode, though this was generally
associated with a loss of precision. Galactose conditions
appear to be well captured by the two models, and con-
sistently perform above random. By contrast, all three
conditions for which no model-method achieved signifi-
cance involved glucose (glucose:allantoin, glucose:glutam-
ine, glucose:urea). Thus, while the overall performance
demonstrates an above-random ability of these models
to predict quantitative and condition specific perturbation
effects, their modest precision and recall scores (<50%)
suggest substantial room for improvement.
An examination of false positives (predicted sensitive

by the model but not observed in the data) and false
negatives (observed sensitive, not predicted) showed
some functional coherency. Specifically, Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment of false posi-
tives in many conditions revealed connections to central
carbon metabolism (for example, the tricarboxylic acid
cycle), and half of the conditions showed enrichment for
the KEGG sulfur metabolism pathway in the model for
false positives (Additional file 6). This suggests potential
pathways that may need attention for the development of
improved models.
We also attempted to leverage existing metabolic models

to demonstrate the widespread metabolic consequences
of these common auxotrophies. To accomplish this, we
ran the models again using prototrophic and auxotrophic
versions of the network on glucose:ammonium and char-
acterized each metabolite as either: i) produced in the
auxotroph and the prototroph; ii) produced in the proto-
troph only; or iii) included in the model but not produced
in an optimal solution (see Materials and methods). The
simulations show that a significant proportion of produ-
cible metabolites (18% in iMM904 and 7% in Yeast5;
Figure 4c) are unavailable in the auxotrophic network.
This means that consequences of using auxotrophic
strains, even under supplementation for their specific
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deficiencies, may have a broader impact than expected.
It is our hope that the collection and accompanying
growth data presented here will prove invaluable to the
metabolic modeling community as it continues to refine
the structure of its models as well as their underlying
biological assumptions.

Broad environmental surveys address incomplete gene
annotations
A primary motivation for measuring fitness across diverse
environments is the discovery of novel phenotypes for
mutants that have near wild-type fitness under previously
tested conditions. The existence of such mutants in a
eukaryotic genome with approximately 6,000 genes is
driven by two main factors. The first is genetic redun-
dancy, whereby genes are performing vital functions
within the cell, but their importance is not captured by
single mutant phenotypes because other genes are present
that buffer the loss of function. This occurs at both the
level of individual genes buffering one another (for
example, duplicate genes [23,24]) and the level of larger
network structures (for example, parallel pathways). These
buffered functions are rapidly being mapped by genetic
interaction studies that delete multiple genes simultan-
eously [2,4,11,15,25,26]. The remaining contributing factor
is environmental robustness, whereby a gene presumably
has an important function under some evolutionarily
relevant circumstance that is not reflected in a laboratory
environment (for example, nutrients/media, temperature,
stress). Thus, an important motivation for complete
pairwise coverage of basic metabolic conditions is the
detection of novel fitness defects for genes that become
necessary only as the condition space is more broadly
surveyed. Interestingly, of the 729 remaining uncharacter-
ized mutants in the auxotrophic collection for which we
have single mutant fitness measurements in synthetic
complete media, a significant fraction of them (609) have
a fitness greater than 99% of wild-type (hypergeometric
P < 7 × 10−66) [27]. Despite the ever-increasing availability
of high-throughput genomic data for these genes, the task
of eliminating this set has seen only marginal success since
2007 [28]. It is possible that these genes (many of which
only have orthologs in other yeasts) may be responsible
for functions needed in the native environment of yeast
but unnecessary under standard laboratory conditions.
Still others may be required in the lab, but only after vary-
ing the nutrient conditions. The focus of recent chemical
genomics work on subjecting yeast to an extremely broad
range of chemical environments is helping to address
these genes [5,6], but auxotrophy in the deletion collection
had precluded measurements of growth on simple but
directly relevant metabolic conditions. Here we address
the potential impact of these data on both uncharacterized
genes and genes of little phenotypic consequence in stand-
ard conditions.

Novel effects for genes with high fitness in standard
conditions
As described earlier, we observed that the number of
significant effects in our data can be weakly predicted
by single mutant fitness in synthetic complete media.
However, nearly 40% of the S. cerevisiae genome shows
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little to no such effect. Of the genes in this study with
single mutant fitness scores greater than 99% of wild-type
under synthetic complete media, more than 50% of them
(1,548/2,745; Figure 5a) show at least one significant
slow-growth effect outside of glucose:ammonium. Mul-
tiple random assignments of the number of expected
false positives (20% of effect counts listed in Table 1)
demonstrate that only approximately 30% of genes should
show an effect. Additionally, 5% (142/2,745) show signifi-
cant effects in five or more distinct non-glucose:ammonium
conditions compared to a random expectation of 2.6 × 10−5

(<<1/2,745). For example, prs2Δ0 (the PRS2 gene encodes
one of the four phosphoribosyl-pyrophosphate (PRPP)
synthetases encoded in the genome; these synthetases are
required for nucleotide, histidine, and tryptophan biosyn-
thesis) has a single mutant fitness of 1.02 in synthetic
complete media [3] but shows significant growth defects
in 14 different conditions These conditions are highly co-
herent, including all seven galactose conditions, all ribose
conditions (except ribose:arginine) and no conditions in-
volving glucose except glucose:proline. PRS2 is highly
expressed under fermentative conditions [29]. Another
example is ICL1, which facilitates a key reaction of the
glyoxylate cycle, and shows slow growth effects in nine
(non-glucose:ammonium) conditions despite a single
mutant fitness score slightly greater than that of wild-type
under standard lab conditions (1.03) [3].

Novel phenotypes for uncharacterized ORFs
Approximately 13% of the S. cerevisiae deletion collection
is composed of uncharacterized ORFs [27], 692 of which
are included in this study. Nearly 25% of these unchar-
acterized genes show a significant effect in two or more
non-glucose:ammonia conditions (172/692; Figure 5a)
compared to the 4% expected given our FDR.
One such example with a very specific nitrogen sensitiv-

ity signature is FMP32. The fmp32Δ0 strain displays dra-
matically decreased fitness under arginine and proline
conditions. While the protein product of FMP32 has been
detected in highly purified mitochondria [30], the gene
is otherwise uncharacterized. The fmp32Δ0 strain was
included in our liquid confirmation assay and these
sensitivities were confirmed in this independent, small-
scale assay (Figure 5b). This highly specific signature
appears to be completely unique to the fmp32Δ0 strain, as
no other mutant in the collection shows a similar sensitiv-
ity profile.
The genes with the highest profile similarity to FMP32

are PUT1, PUT3, and RRF1, which have been previously
implicated in proline utilization (PUT1, PUT3 [31]) and
mitochondrial ribosome recycling/mitochondrial protein
synthesis during respiration (RRF1 [32,33]). PUT3 induces
PUT1 transcription when proline is present as the best
available nitrogen source and the latter (along with PUT2)
is responsible for the conversion of proline into glutamate
for further use as a nitrogen source. Our analysis suggests
that FMP32 is similarly involved in the respiratory
response under proline, though the reason for its add-
itional sensitivity under arginine remains unclear. These
examples show the utility of interactions between genes
and simple environments in uncovering the function of
both individual uncharacterized genes and genes without
a previously observed fitness defect in more complete
media.

Clustering of metabolic conditions reveals carbon source
as primary factor driving mutant profiles
Just as gene-gene correlation predicts functional similar-
ities, we expect a high correlation between condition pairs
to reflect a substantial overlap in the cellular machinery re-
quired to utilize the provided carbon and nitrogen sources.
When our matrix of z-scores is hierarchically clustered in
both the gene and condition dimensions, a structure clearly
driven by carbon sources emerges (Figure 6; see Materials
and methods). All of the glucose conditions cluster to-
gether, as do both the galactose and ribose conditions.
The sole exception to this is glucose:proline, which falls
in the galactose cluster. We attribute this observation to
the fact that the utilization of proline as a nitrogen
source requires some respiration. The glucose:proline
signature reveals sensitivity in a number of respiratory
deficient mutants, which is atypical for glucose condi-
tions in general since fermentation is generally preferred
over respiration when cells are grown on glucose. This
respiration-dependent signature is strong enough to
place the glucose:proline profile in the galactose cluster
where one would expect a modest profile contribution
from both respiration- and fermentation-related processes
(Figure 6), as is observed in growth on galactose [14].

Matrix factorization distinguishes carbon from
nitrogen effects
Further examination of gene and environmental profiles
after clustering revealed cases where a gene (for example,
FMP32) exhibited an effect in multiple instances of a par-
ticular nitrogen source (for example, proline or arginine),
but without a specific pattern with regard to carbon source
(or vice versa). This is expected behavior for genes required
for the utilization of a particular carbon/nitrogen source
regardless of the context. In order to more formally
extract a list of sensitivities for each source of carbon
or nitrogen regardless of its partner, we employed a
method known as non-negative matrix factorization (NMF)
[34,35] to decompose our experimental data into a collec-
tion of characteristic source signatures. When a matrix of
these source signatures is multiplied by a matrix describing
the source composition in each of our conditions, the result
should approximate our experimental observations. NMF
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Figure 5 Measuring effects for poorly characterized genes. (a) Counting slow-growth effects for under-characterized genes. Histograms show
the total number of mutants with at least x significant slow-growth effects in our data from the set of uncharacterized genes (left, orange), and
genes with little to no fitness defect on synthetic complete media (right, blue; single mutant fitness > 98% of wild-type). As a control, the expected
number of false positives (20% of significant effects in each condition) were randomly distributed among all genes, and the number of effects
for each gene was counted again. Gray bars show the mean of 1,000 such randomizations. (b) Z-score data show specific growth defects for
the uncharacterized gene FMP32 when grown on proline or arginine. (c) Liquid growth confirmations for effects highlighted in X-axis, time in hours. Y-
axis, optical density. (b). Two replicates of FMP32 mutants are shown (blue line) along with six replicates of a wild-type strain (black dashed line) in two
proline and two arginine conditions. The effects are pronounced when compared to observations in similar ammonium conditions.
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allows us to run this multiplication in reverse and fit the
source signatures as an unknown factor. These source
signatures are available in Additional file 7, and several
of them demonstrate enrichment for related GO terms
and KEGG pathways.
One example of a decomposed signature involves genes

that are sensitive when glutamate is chosen as a nitrogen
source. These genes are enriched for annotations relating
to endocytosis, endosome and vacuole related transport,
and retrograde transport (Additional file 7). Extracellular
glutamate decreases cellular amino acid permease activity
by redirecting intracellular trafficking of the permease
Gap1 from the plasma membrane to the vacuolar mem-
brane [36]. Many of the mutations in our glutamate
signature increase Gap1 activity by misdirecting the
protein to the plasma membrane [37]. Although GAP1
is transcribed at equal levels in cells grown on urea and
glutamate, permease activity in urea grown cells is 100
times higher than glutamate-grown cells [38]. Inappropri-
ate Gap1 activity is toxic in the context of high concentra-
tions of single amino acids [39], and we speculate that the
galactose glutamine
galactose proline

galactose ammonium
galactose allantoin

glucose proline
galactose glutamate

galactose arginine
galactose urea
ribose allantoin

ribose ammonium
ribose proline

ribose glutamate
ribose glutamine

ribose urea
ribose arginine

glucose glutamate
glucose arginine

glucose urea
glucose allantoin

glucose glutamine

Z-Score

Figure 6 A clustergram of Z-scores for the 500 mutants with the high
dimensions. Conditions organize themselves primarily by carbon source, fa
inappropriate trafficking in these mutants causes high
levels of permease activity that inhibit cell growth.
Many mutants (92) appear in both the galactose and

ribose signatures, and overlapping GO enrichments in
these conditions reveal many of these genes to have
known involvement in various aspects of respiration. For
example, enrichment for GO terms relating to mitochon-
drial organization and translation, as well as 'aerobic
respiration', appear highly significant in both of these sig-
natures (Additional file 7). Exceptions include GAL path-
way mutants that fall uniquely into the galactose carbon
signature ('galactose metabolic process' P < 1.3 × 10−4) and
genes involved in acetyl-CoA biosynthesis that appear to
be specifically sensitive under ribose (P < 1.4 × 10−6). As
more complex environments are mapped, multivariate
statistical techniques will become increasingly important in
determining which environmental constituents are actually
relevant to which experimental observations, and care
should be taken when designing experiments to ensure
their successful application (for example, complete com-
binatorial coverage of relevant environmental factors).
est variance. The data have been hierarchically clustered in both
lling into three distinct clusters.



VanderSluis et al. Genome Biology 2014, 15:R64 Page 12 of 18
http://genomebiology.com/2014/15/4/R64
Environmental and genetic perturbations can provoke
similar cellular states
Beginning to test the immense space of possible environ-
mental and chemical conditions combined with experi-
ments that have queried the space of genetic perturbations
[15] allows us to investigate how these spaces interrelate.
For example, if mappings can be found between them, we
can apply knowledge from the already extensively mapped
genetic perturbation networks to the intractable space of
environmental variation. While the sensitivity profile for a
given condition most certainly includes genes directly
required for the processing of the provided raw materials
(for example, the galactose metabolism pathway under
galactose conditions), it also contains information about
genes that, though not directly involved, are nonetheless
indirectly required for optimal cell growth. These profiles
then reveal much more than the functions of genes for
which we measure a fitness defect, and in fact give us a
high dimensional fingerprint of the internal cellular state.
We propose that genetic perturbations may put the cell
into a very similar state as would an alteration of the
environment. For example, the deletion of a gene that
encodes a transporter may exhibit a profile that mimics
the wild-type profile in an environment where the corre-
sponding substrate is absent. Downstream consequences
of the environment or genetic perturbation may cause
subtle and seemingly unexpected sensitivities. Thus, genetic
perturbation experiments and environmental perturbation
experiments may both result in the same phenotypic pro-
file. A similar principle has been demonstrated through
the observation that deletion mutants with similar double
mutant sensitivity profiles tend to be functionally related
[15]. Parsons et al. [5] first applied this principle to predict
drug targets, reasoning that a genetic sensitivity profile on
a chemical that targets an individual gene would be similar
to a sensitivity profile of a strain with the corresponding
gene deleted. When we compared sensitivity profiles from
our condition experiments to that of query-deletions
crossed into the auxotrophic deletion collection via
SGA [15], we found several interesting cases where
genetic perturbation profiles significantly overlapped with
sensitivity profiles from our environmental perturbations
(see Materials and methods). For example, the queries in
the top 10% in terms of similarity to galactose:urea are
enriched for members of the threonine and methionine
biosynthesis pathway (hom2, hom3, hom6, thr4; Figure 7;
GO:0006566 'threonine metabolic process' P < 4.5 × 10−2;
KEGG 'glycine, serine and threonine metabolism' P <
2.9 × 10−2). The strength and specificity of this similarity is
not driven by a handful of mutants in the collection, but
instead by trends across a much larger set of genes. We
speculate that the profile similarity in this case may be
due to accumulation of aspartate, which is upstream of
homoserine and threonine biosynthesis, and is excreted in
part through urea production. Growth on urea in the
setting of the respiratory growth of galactose may result in
the accumulation of aspartate.
The idea of comparing environmental and genetic per-

turbations can be generalized to other genome-wide per-
turbation data as well. For example, we observe significant
correlations between our glutamate signature and a rapa-
mycin sensitivity profile as measured by two different
chemical genomic screens (Hillenmyer et al. P < 10−18 [6];
Parsons et al. P < 10−9 [5]). The enrichment for transport-
related terms observed in the glutamate signature (above),
and its similarity to a rapamycin profile make sense given
that rapamycin redirects trafficking of Gap1 from the
plasma membrane to the vacuole [40]. Thus, the same set
of mutations in vesicle trafficking that lead to inappropri-
ate expression of Gap1 permease activity in cells grown
on glutamate also cause inappropriate permease activity
following rapamycin treatment.

Conclusion
The creation of the original yeast deletion collection has
had a profound impact on the way in which reverse gen-
etic experiments are performed. Yet despite a staggering
number of successful studies, the inherent auxotrophies
create a major blind-spot in a fundamental area of cellular
function, and previous reviews of the topic have called for
the creation and use of standardized prototrophic strains
for metabolic experiments [9]. Recently, Mülleder and col-
leagues [41] have addressed the deletion collection auxot-
rophies by introducing a plasmid containing sequences for
HIS3, URA3, LEU2, and MET15. The resource used in this
study differs in that URA3, LEU2, and MET15 are in their
native genomic locations, with the exception of HIS3,
which is provided by Schizosaccharomyces pombe HIS5
under the SGA reporter [11]. Without the necessity for
plasmid selection, or possible effects on gene expression
due to non-chromosomal location, we anticipate that our
deletion collection will see frequent use by experimentalists.
The use of a genome-wide prototrophic strain collection

enables truly informative sensitivity screening in metabol-
ically controlled conditions. This represents a first step in
probing how nutrients in the environment jointly affect
cellular response with or without additional genetic per-
turbation. This study demonstrates that much work is yet
to be done to understand growth in even simple environ-
ments. A solid grasp of the surprisingly complex responses
to simple environments will add much needed context to
studies done in more complex environments.
This study has demonstrated the potential of this col-

lection, when screened against simple environments, to
uncover phenotypes for hundreds of mutants that are
phenotypically normal in standard lab conditions. We
believe that the stock of simple experiments that might
reveal a phenotype for these mutants has not yet been



Figure 7 Comparison of sensitivity profiles from environmental to genetic perturbations. High dimensional sensitivity information for
mutants in threonine biosynthetic pathway (circled in red) were obtained from SGA experiments [15]. These profiles correlate with the sensitivity
profile obtained in this study when strains are grown on galactose:urea. This suggests a correspondence between the internal states of the cells
when grown in a specific environment, and when subjected to a specific genetic perturbation. For example, hom2Δ, hom3Δ, hom6Δ, and thr4Δ
mutants would all be expected to accumulate aspartate because these mutants shut down a major metabolic shunt for aspartate. The phenotypic
similarity in genetic interaction space between these mutants and growth on galactose:urea suggests that growth on galactose:urea may cause
the internal accumulation of aspartate or some other metabolic intermediate unique to the hom2Δ, hom3Δ, hom6Δ, and thr4Δ mutants.
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exhausted and expect that this whole-genome prototrophic
collection will be an invaluable resource to the community.
The rising number of metabolomics studies, fueled in
part by the increasing accuracy of experimental mass-
spectrometry, as well as the growing interest in metab-
olism as central to many common ailments in humans,
make it more important than ever to properly design
metabolically relevant experiments in the model eukaryote
S. cerevisiae. Central to that goal is a version of the deletion
collection that is unhindered by historical auxotrophic
requirements.
For example, while central metabolism is unrivaled

among cellular processes with respect to our ability to
make in silico predictions from constraint-based meta-
bolic models, it is far from a fully understood system.
Our results show a generally weak ability to predict
condition-specific sensitivities, though performance is
clearly above a random baseline. The prediction of
condition-specific sensitivities is admittedly more diffi-
cult than the prediction of sensitivities in general, but
it was our estimation that FBA and MoMA would be
well suited to approximate our observations given our
simple experimental setup. Their only moderate success
in doing so demonstrates the current limitations of
constraint-based modeling and the difficulty of relating
models built from biomass predictions to quantitative
growth rate data. There might be several possible reasons
for the discrepancy between in silico and in vivo results.
First, the success of predicting growth defects hinges on
the proper formulation of biomass composition. While a
single biomass composition is used for all our simulations,
it likely changes across environmental conditions. Future
studies could address this issue by measuring the com-
position of yeast cells under different nutrient settings.
A second limitation of purely flux-based models is
their inability to make predictions about components
that have an indirect effect on metabolism. Consider,
for example, the enrichment for transport-related genes
whose deletion confers glutamate-specific sensitivities.
Their putative role in nutrient sensing and signaling
reflects the fact that, despite its constrained nature, the
metabolic network operates as part of a much larger
and more dynamic network. More generally, the basic
constraint-based modeling approaches ignore regulatory
mechanisms. Several attempts have been made to bridge
this gap and they rely either on 'omic' data to constrain
the activity of specific reactions [42-44] or on integrating a
mathematical representation of gene regulation with the
metabolic model [45-47]. We feel that the availability of
this whole-genome collection and accompanying growth
data well suited to studies of metabolism will help the
community to develop and test novel models and methods
to better capture the operation of the greater cellular
network.
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Central to the understanding of the network as a whole
is the idea that a whole-genome screen reveals indirect as
well as direct consequences of the perturbation tested.
Positive gene-environment interactions under ribose con-
ditions may well illustrate this point. The median z-score
for the 166 genes annotated to 'chromosome segregation'
in GO is negative for all seven galactose conditions, yet
positive for all seven ribose conditions (binomial sign-test
P < 6.2 × 10−5). We believe this shift may be explained by
fundamental cellular rate limitations. Failure to segregate
chromosomes in the midst of even moderate growth (for
example, galactose) can have very severe consequences,
ultimately limiting growth rate, whereas comparatively
slow growth (for example, ribose) affords additional time
for slowly segregating mutants to complete segregation.
These mutants grow faster than we expect despite no ap-
parent link between carbon metabolism and chromosome
segregation. Thus, growth rates under one condition
disclose information about the interplay between a wide
variety of cellular subsystems, giving us a readout of the
internal cellular state. Similarly, a mutant profile across
many environments gives us information about how es-
sential that gene may be in any of those various cellular
states, in addition to elucidating any direct role that
gene may have in direct utilization of the provided nu-
trients. Analysis of our growth data recapitulated the
role of vesicle trafficking in the regulation of the amino
acid permease Gap1, relating growth on glutamate to
the drug rapamycin. This broader view of whole-genome
screen information then allows for integration of profiles
across different perturbation types (chemical, genetic, envir-
onmental), and should ultimately aid us in applying know-
ledge gained in one arena to observations made in another.

Materials and methods
Construction of a prototrophic deletion collection
As recently described [48], the strains in the standard
MATa deletion collection (MATa yfgΔ0::KanMX his3Δ1
leu2Δ0 met15Δ0 ura3Δ0) [1] were mated to a MATα
can1Δ::STE2pr-SpHIS5 his3Δ1 lyp1Δ0 strain, creating
diploids (selection on minimal media + his + G418). These
were sporulated and successive pinnings on selective
media were used to select prototrophic MATa strains
carrying each deletion allele. These prototrophic strains
were organized into an array of 16 plates including one
entire plate of the wild-type strain (hoΔ::KanMX), with
additional wild-type replicates in each row and column of
every plate (701 in all). The entire prototrophic collection
is available upon request, as is the individual SGA-ready
prototroph strain for crossing into other collections.

Media preparation
Minimal growth media were prepared using yeast nitrogen
base (BD Difco, Sparks, Maryland,) with the specified
carbon and nitrogen sources. Carbon sources included
glucose, galactose, ribose, and glycerol. Nitrogen sources
included ammonium, allantoin, arginine, glutamate, glu-
tamine, proline, and urea. Carbon sources were provided
at a concentration of 2%; nitrogen sources were 3.8 mM
with respect to nitrogen.

Calculation of growth rate
Sixteen 16 × 24 well plates were grown in 28 chemical
conditions for 24 to 48 hours. Plates were scanned on a
flatbed transparency scanner at 0, 5, 10, 24 and, in the
case of glycerol, 48 hours. Each condition is composed
of one carbon source and one nitrogen source. In total,
4,772 mutants were grown, and colony areas were ex-
tracted from tiff images by CellProfiler [49] and precise
time points were taken from EXIF data in the digital im-
ages. These values were used to compute an estimate of
the growth rate of each colony equal to the slope of the
least-squares linear fit of area (pixels) to time (seconds).
Colonies with insufficient data were given a growth rate
of NaN, colonies with a negative calculated growth rate
were defined to have a growth rate of 0.

Definition and construction of a reference condition
Six replicates of the glucose:ammonium combination were
merged to form a reference condition, establishing a base-
line score for each deletion. The six replicates were first
normalized to each other to control for differences in the
overall scale of growth rates, then averaged together ac-
cording to the following procedure. For each array plate
(p) the glucose:ammonium replicate with the fewest miss-
ing data points was held out (PlateA) and the remaining
five replicates were LOWESS smoothed (window size = 50%
of available data) and normalized by:

GAplatep
0 ¼ GAplatep � PlateA

lowess GAplatep
� �

The result of this approach is quite robust to the choice
of PlateA, and so we used whichever replicate had the few-
est number of missing values and would therefore provide
the most complete LOWESS fit. After normalizing five
replicates to the sixth, all six were averaged together to
create one reference plate, and this procedure is repeated
16 times to create a glucose:ammonium reference for each
array plate.

Normalization of experimental rates against reference
In every experimental condition (Y), each plate was
LOWESS smoothed (window size = 50% of available data)
against the constructed glucose:ammonium reference plate,
then normalized:

CondYplatep0 ¼ CondYplatep �
GAref p

lowess CondYplatep
� �
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Recovery of missing data
In certain cases, a growth rate of NaN was assigned to
a colony due to insufficient data being collected by
CellProfiler. In an effort to recover any good data,
these cases were visually inspected by five researchers
operating independently and a vote was taken to deter-
mine whether to leave it as missing data (NaN) or assign
it a growth rate of 0, indicating that the colony appeared
to be correctly plated but non-viable. In total, 1,362 of
2,601 colonies were recovered this way.

Transformation from normalized rates to z-scores
For each array plate, at each position, a strain-wise stand-
ard deviation is calculated across the residuals of the six
glucose:ammonium (GA) replicates.
Similarly, a plate-wise standard deviation is calculated

that accounts for the general growth variation on the plate,
separately for each condition. These are then combined,
and a z-score measure is calculated for each strain on each
experimental plate:

z ¼ CondYplatep0−GAref pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stddev strainð Þ2 þ stddev plateð Þ2

q

These z-scores are an expression of the difference in
magnitude and direction between the growth observed
at each position of a plate under a given condition from
the same position (and hence deletion) under the reference
GA model.

Spatial smoothing procedure
The plate level spatial smoothing filter is similar to that
found in [3]. First, temporarily replace any extreme
values (top and bottom 5%) along with NaNs with the
plate mean. Second, replace previous NaN positions with
values from a two-dimensional symmetric gaussian filter.
Third, compute and subtract the residual between the
two-dimensional smoothed plate and its mean.

Choosing effect thresholds
Each condition had 701 wild-type replicates. The mean
and standard deviation of the set of wild-type z-scores
were used to define a normal distribution against which
P-values for the experimental z-scores could be calculated.
This information allowed the use of Benjamini-Hochberg
procedure to establish condition-specific effect thresholds
as a function of a desired FDR (Additional file 4).

Liquid growth confirmation assay
The growth rate of 40 mutants in a liquid growth assay
was measured across 20 of the experimental conditions
excluding ribose:arginine and all glycerol pairings. Liquid
culture assays were not performed for the ribose:arginine
conditions because the combination of these carbon and
nitrogen sources did not allow arginine to maintain
adequate solubility over the duration of the experiment.
The precipitation of arginine prevented accurate optical
density readings from being obtained and thus these
data were excluded from our subsequent analyses. Six
replicate wells contained the wild-type strain and each
mutant strain was represented twice. Cells were pre-grown
on glucose:ammonia medium and diluted at a low density
into the growth medium of interest. Growth rates were
determined as the maximum optical density (saturation)
divided by the time to saturation. A simple model was
favored in order to robustly accommodate drastic differ-
ences in curve characteristics between fast growth and
slow growth conditions (for example, galactose versus
ribose).
We adjusted the liquid growth scores by dividing the

mean of mutant growth slopes by the mean of wild-type
growth slopes in the relevant condition. We further nor-
malized these scores by dividing them by the corresponding
adjusted mutant score in glucose:ammonium so they would
reflect condition-specific effects, similar to our modified
z-score derived from the agar experiment.

Gene Ontology and KEGG enrichments and co-annotation
standards
GO and KEGG annotations were downloaded in January
2011 [16,50].

Genome-scale metabolic modeling (FBA and MoMA)
Two S. cerevisiae metabolic models were used for mutant
biomass prediction. The Yeast Consensus Reconstruction
version 5.35 (Yeast5) [19] and iMM904 [20]. Yeast5 con-
sisted of 898 ORFs, 2,031 reactions and 1,594 metabolites
and the iMM904 model contained 901 ORFs, 1,597 reac-
tions and 1,234 metabolites. Default biomass descriptions
were used for both models.
Wild-type biomass production flux for each condition

was obtained using FBA [21] in MATLAB with the
COBRA Toolbox [51], which assumes optimal biomass
production (that is, maximum biomass yield). Mutant
biomass flux was predicted using both FBA [21] in
MATLAB with the COBRA Toolbox [51] and MoMA
[22] in MATLAB with the ILOG CPLEX optimization
suite. MoMA was formulated as a quadratic program-
ming problem, whereby mutant fluxes were selected
that minimized the Euclidean distance from an optimal
wild-type flux distribution. The yeast wild-type flux
distribution was calculated as a network flux solution
producing maximal biomass flux, determined by FBA,
with minimal total fluxes [52].
FBA and MoMA biomass fluxes were correlated with

both raw and normalized (z-score) experimental growth
rates using the Spearman rank correlation. Predicted
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biomass fluxes were also normalized for comparison to
experimental growth rate z-scores (separately in each
condition):

NormalizedFluxΔxCondY ¼ RawFluxΔxCondY

RawFluxΔxCondGlu:Amm � RawFluxwild−typeCondY

Prediction of positive z-scores was also carried out,
though performance was generally below random ex-
pectation (Additional file 6). This is likely due to the
fact that many positive z-scores corresponded to raw
growth rates for mutants that were faster than wild-type
under the same condition, a consequence that FBA- and
MoMA-based methods would find difficult or impossible
to predict.
To calculate the effect of gene deletions on the meta-

bolic network (Figure 4c), sets of producible metabolites
were calculated for the complete model, and for a mutant
with all four auxotrophic marker genes deleted. Produ-
cible metabolites were calculated for both iMM904 and
Yeast5 models in the glucose:ammonium media condition
by adding a special exchange reaction for each metabolite
and iteratively optimizing flux exported through that reac-
tion. If the export flux for a given metabolite exceeded
0.001 (with an upper and lower bound on internal reactions
set to ±1,000), it was classified as 'producible.' A non-zero
threshold is required to limit false positives as a result
of numerical errors. The threshold was determined to
be robust by scaling the upper and lower bounds, as well
as the threshold by a large constant and counting the
number of producible metabolites. Obtaining consistent
results in these experiments led us to conclude that nu-
merical errors are an order of magnitude smaller than
contributions from stoichiometry.

Source signature decomposition via modified non-negative
matrix factorization
Growth data were decomposed using a variant of NMF
[34]. Following transformation to z-scores, the data were
made binary using condition-specific FDR estimates as
thresholds (20% FDR; Additional file 4). The resulting
Boolean Data matrix was treated as numeric and served
as the target for decomposition. Genes without any signifi-
cant z-scores in any condition (empty rows) were removed,
as were the columns involving growth on glycerol. We then
defined a Coefficient matrix that related Condition rows in
the data to their component Sources. This matrix then had
C columns and S rows. For example, the glucose-urea col-
umn has a 1 in the glucose row and a 1 in the urea row.
Our task is then to find a Signatures matrix (Genes ×
Sources) such that the difference between the Data matrix
and the Signatures-Coefficients product is minimized:

Data G;Cð Þ≈Signatures G; Sð Þ � Coefficients S;Cð Þ
To ensure linear independence among the columns of
the Coefficient matrix, we removed all but one glucose:
ammonium (glucose:ammonium01) column, removing the
same columns in the Data matrix. Traditional NMF would
use a multiplicative update algorithm applied to both the
Signature and the Coefficient matrix to find the best fit to
the data; however, we chose to fix the Coefficient matrix at
the initial defined values (0 or 1). This gives each Signature
column equal weight and prevents over-fitting caused
by the sparsity of the Data matrix and the dramatically
different number of non-zero elements from one column
to the next. The multiplicative update was applied for 20
iterations, though in practice the results converged in
fewer than 10, and repeated trials from different random
initializations of the Signature matrix showed the results
to be quite stable. Genes were added to the signature list
in Additional file 7 if their value exceeded 0.4.

Comparison to SGA data
For the comparison to auxotrophic SGA data represented
in Figure 7, the SGA data were taken from [15]. The SGA
data and the z-score data (Additional file 3) were inde-
pendently normalized so that row and column vectors had
a euclidean length approximately equal to 1, and missing
values were set to 0. Inner product was then used to
measure the similarity between SGA 'queries' and environ-
mental profiles. The top 10% of queries in each condition
were checked for enrichment for GO terms and KEGG
pathway annotations, and the resulting P-values were
Bonferroni corrected to account for the number of terms/
pathways tested against.

Comparison with previous whole-genome screens
on galactose
Figure 3a uses a publicly available image for the basis of the
Venn diagram. This image is used with permission under
the terms of the Creative Commons Attribution-Share
Alike 3.0 Unported license [53].
Additional files

Additional file 1: Raw growth rates for all 28 conditions and all
4,772 strains.

Additional file 2: Raw growth rates for 701 wild-type replicates in
all conditions.

Additional file 3: z-score data for 21 conditions.

Additional file 4: FDR 10% and 20% thresholds for z-score data.

Additional file 5: A list of 565 galactose-sensitive genes as well as
overlap details between this set and three other full genome
studies using the auxotrophic collection on galactose.

Additional file 6: Summary of fast/slow prediction accuracy of FBA
models (sheets 1 and 2). Also contains KEGG pathway enrichments for
sets of genes predicted to be sensitive but not observed and vice versa
(sheets 3 and 4).

Additional file 7: List of genes in each signature and GO enrichments.
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