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Banach lattices of L-weakly and M-weakly compact operators

E. Bayram and A. W. Wickstead

Abstract. We give conditions for the linear span of the positive L-weakly
compact (resp. M-weakly compact) operators to be a Banach lattice under
the regular norm, for that Banach lattice to have an order continuous
norm, to be an AL-space or an AM-space.
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1. Introduction. We use [6] as our standard reference about Banach lattices
and operators on them but, for the convenience of the reader, let us recall the
definitions of the operators that this work involves. An operator T : E → Y ,
where E is a Banach lattice and Y a Banach space, is called M-weakly compact
if whenever (xn) is a norm bounded disjoint sequence in E, we have ‖Txn‖ → 0.
Dually, if T : X → F , where X is a Banach space and F a Banach lattice,
then T is called L-weakly compact if for every disjoint sequence (yn) in the
solid hull of {Tx : x ∈ X, ‖x‖ ≤ 1}, we have ‖yn‖ → 0. In this paper we
write WL(E,F ) [resp. WM (E,F )] for the L-weakly compact (resp. M-weakly
compact) operators from E into F , where we will only be considering operators
between two Banach lattices. The linear span of the positive operators in
each class will be denoted by Wr

L(E,F ) and Wr
M (E,F ), respectively. The

reader should not confuse, for example, Wr
L(E,F ) with WL(E,F ) ∩ Lr(E,F )

which is in general much larger. There is a considerable literature concerning
the relationship between L-weakly compact operators and M-weakly compact
operators, on the one hand, with weakly compact operators and a myriad of
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other classes, on the other hand. Missing from the literature seems to be any
discussion of the nature of these spaces as ordered Banach spaces. Prompted
by known results about the spaces of all regular operators, and the linear span
of the positive compact or weakly compact operators, natural questions to ask
are: When does a domination property hold? When are our spaces Banach
lattices? When is the norm in a Banach lattice of operators particularly nice?
E.g., when is it order continuous, a KB-norm, an AL-norm, or an AM-norm?
We present at least partial answers to all of these questions in this note, apart
from answering when they are KB-norms. We have results in this direction,
but they are as yet too partial to be worthy of publication.

2. Banach lattices of operators. For many special classes of operators be-
tween Banach lattices, e.g., compact operators, weakly compact operators, or
Dunford-Pettis operators, the so-called domination problem is both important
and non-trivial. I.e., what conditions on the domain and/or range together
with the relationship 0 ≤ S ≤ T forces S to be in the same class of operators
as T . By way of contrast, no extra conditions are needed when we deal with
L-weakly compact or M-weakly compact operators. We include a proof of this
for completeness, although it is certainly well known.

Proposition 2.1. If E and F are any Banach lattices, S, T ∈ L(E,F ), and
0 ≤ S ≤ T , then:

1. If T ∈ WL(E,F ), then S ∈ WL(E,F ).
2. If T ∈ WM (E,F ), then S ∈ WM (E,F ).

Proof. Suppose that T ∈ WL(E,F ) and that (yn) is a disjoint sequence in
sol

(
S(BE)

)
, then there is a sequence (xn) in BE such that |yn| ≤ |Sxn|. As

|yn| ≤ |Sxn| ≤ S|xn| ≤ T |xn|, (yn) is a disjoint sequence in sol
(
T (BE

)
and T

is L-weakly compact so that ‖yn‖ → 0 and therefore S ∈ WL(E,F ).
If T ∈ WM (E,F ) and (xn) is a disjoint sequence in BE , then so is (|xn|)

and therefore
∥
∥T |xn|∥∥ → 0. As |Sxn| ≤ S|xn| ≤ T |xn|, we have ‖Sxn‖ =∥

∥|Sxn|∥∥ ≤ ∥
∥T |xn|∥∥ so that ‖Sxn‖ → 0 and S ∈ WM (E,F ). �

This does not, however, mean that the spaces WL(E,F ) and WM (E,F )
have a nice order theoretic structure. Theorem 2.2 of [4] gives an example of
a regular operator that is both L-weakly compact and M-weakly compact but
does not have a modulus, whilst Theorem 2.3 of [4] provides an operator which
is L-weakly compact, M-weakly compact, and has a modulus but that modulus
is neither L-weakly compact nor M-weakly compact. These examples make it
clear that in order to have any hope of a well-behaved space of operators, we
should be working in the spaces Wr

L(E,F ) = {T1 − T2 : T1, T2 ∈ WL(E,F )+}
and Wr

M (E,F ) = {T1 − T2 : T1, T2 ∈ WM (E,F )+}.
In the first case, we have an extremely satisfactory result. Recall, [6, p.

212], that an L-weakly compact subset of a Banach lattice F is contained in
F a, the maximal ideal in F on which the norm is order continuous. It follows
that if T ∈ WL(E,F ), then T (E) ⊆ F a.

Theorem 2.2. For any Banach lattices E and F , Wr
L(E,F ), equipped with the

regular norm, is a Dedekind complete Banach lattice.
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Proof. If T ∈ W r
L(E,F ), there is U ∈ WL(E,F )+ with ±T ≤ U . As both

T and U take values in the Dedekind complete ideal F a, T has a modulus
in Lr(E,F a) which will be its modulus in Lr(E,F ). As −U ≤ |T | ≤ U ,
Proposition 2.1 tells us that |T | ∈ Wr

L(E,F ) so that Wr
L(E,F ) is a vector

lattice. It is similarly simple to see that Wr
L(E,F ) is Dedekind complete. To

complete the proof, we need only show that Wr
L(E,F ) is closed in Lr(E,F ) for

the regular norm. If each Tn ∈ Wr
L(E,F ), T ∈ Lr(E,F ), and ‖Tn − T‖r → 0,

then give that each Tn has a modulus in Lr(E,F ), then Theorem 2.1 of [5]
tells us that T has a modulus in Lr(E,F ) and that

∥
∥|Tn| − |T |∥∥

r
→ 0. It

follows that
∥
∥|Tn| − |T |∥∥ → 0. As each |Tn| ∈ WL(E,F ) and WL(E,F ) is

closed in L(E,F ) (Theorem 18.14 (2) of [1], Theorem 5.65 (2) of [2]), we see
that |T | ∈ WL(E,F ). Again, Proposition 2.1 tells us that T ∈ Wr

L(E,F ). �

As M-weakly compact operators need not take values in F a, we need an
extra assumption in order to guarantee the existence of a modulus. The proof
of the following result is virtually identical with that of Theorem 2.2, using part
(1) of the result used from [1] or [2]. There will, of course, be variants of this
theorem which assume, for example, that E is separable and F Dedekind σ-
complete or that E is atomic with an order continuous norm with appropriately
weaker conclusions.

Theorem 2.3. If E is any Banach lattice and F a Dedekind complete Banach
lattice, then Wr

M (E,F ), equipped with the regular norm, is a Dedekind complete
Banach lattice.

We are unsure what can be said about the order structure of Wr
M (E,F )

in the absence of Dedekind completeness of F . In a work in preparation, the
current authors will discuss matrix representations of L-weakly compact and
M-weakly compact operators between the standard sequence spaces. As a by-
product of this work, it will be seen that for E being any of the standard
sequence spaces, W r

M (E, c) is a vector lattice even though c is far from being
Dedekind complete. Our guess is that, as with compactness, the fact that c
is an AM-space helps here and that W r

M (E,F ) will not be a vector lattice in
general.

We turn now to the question of what kind of Banach lattice these spaces
of operators can be.

3. Order continuity of the norm. We first look at order continuity of the
norm in Wr

L(E,F ). If F a is trivial, then so is Wr
L(E,F ) and we can deduce

nothing about E. With the proviso that F a is non-zero, we have an extremely
satisfactory result. We write f ⊗ y for the operator x 	→ f(x)y if f ∈ E′ and
y ∈ Y . Note that if y ∈ F a, then f ⊗ y ∈ Wr

L(E,F ) whilst if f ∈ (E′)a, then
f ⊗ y ∈ Wr

M (E,F ).

Theorem 3.1. If E and F are Banach lattices with F a 
= {0}, then the reg-
ular norm on Wr

L(E,F ) is order continuous if and only if E′ has an order
continuous norm.
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Proof. Assume that E′ does have an order continuous norm. If T ∈ Wr
L(E,F )+,

then the order intervals [0, T ] in Wr
L(E,F ) and in Lr(E,F ) are the same by

Proposition 2.1. If T ∈ Wr
L(E,F )+, then T ′ ∈ WM (F ′, E′) by Theorem 3.6.11

of [6], so that T ′ ∈ WL(F ′, E′) by Theorem 3.6.14 of [6] (as E′ has an order
continuous norm) and hence T ∈ Wr

M (E,F ), using Theorem 3.6.11 of [6] a-
gain. As T takes values in F a, Theorem 3.6.19 of [6] now tells us that the norm
on [0, T ] is order continuous.

Suppose now that the norm on Wr
L(E,F ) is order continuous and that

F a 
= {0}. Let 0 
= y ∈ F a
+ and consider any net (fα) in E′

+ which decreases
to 0. Clearly, fα ⊗ y ↓ 0 in Wr

L(E,F ), so that ‖fα‖‖y‖ = ‖fα ⊗ y‖ ↓ 0 and the
norm in E′ is indeed order continuous. �

If F a = {0}, then Wr
L(E,F ) = {0}, so certainly has an order continuous

norm whatever E may be.
Even though Wr

M (E,F ) need not be a lattice, we can still talk about order
continuity of the norm in the sense that any net in the positive cone which is
downward directed to 0 must converge in norm to 0. Of course, we will not
have the usual characterisations of this that apply for Banach lattices.

Theorem 3.2. If E and F are Banach lattices with (E′)a 
= {0}, then the
regular norm on Wr

M (E,F ) is order continuous if and only if F has an order
continuous norm.

Proof. The proof of “if” is simple in this case using Theorem 3.6.19 of [6] and
Proposition 2.1, whilst the proof of the converse is very similar to that in the
preceding proof. �

Corollary 3.3. If E and F are Banach lattices with (E′)a 
= {0} and F a 
= {0},
then:

1. Wr
L(E,F ) has an order continuous norm if and only if Wr

M (F ′, E′) has
an order continuous norm.

2. If Wr
L(F ′, E′) has an order continuous norm, then so has Wr

M (E,F ).
3. Wr

L(F ′, E′) has an order continuous norm if and only if Wr
M (E,F ′′) has

an order continuous norm.

The converse of Corollary 3.3 (2) is false.

Example 3.4. Take E = F = c0. As F has an order continuous norm, Wr
M (E,F )

has an order continuous norm. However, because E′ = �1 has an order continu-
ous norm, so that E′a 
= {0}, and F ′′ = �∞ does not have an order continuous
norm, Theorem 3.1 tells us that W r

L(F ′, E′) does not have an order continuous
norm.

4. AL-spaces and AM-spaces of operators. Our results in this section will not
be unexpected, but we do need to take some care in their formulation. We deal
first with the rather simpler question of when these spaces are AL-spaces.

Theorem 4.1. If E and F are Banach lattices, then Wr
L(E,F ) is an AL-space

under the regular norm if and only if one the following conditions holds:
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1. F a = {0}.
2. E is an AM-space and F a is an AL-space.

Proof. Suppose that Wr
L(E,F ) is an AL-space and that F a 
= {0}. To see that

(2) holds, repeat the corresponding part of the proof of Theorem 2.1 in [7],
but requiring that all y’s lie in F a.

For the converse, if F a = {0}, then Wr
L(E,F ) = {0}, so is certainly an

AL-space. Otherwise, Theorem 2.1 of [7] tells that Lr(E,F a) is an AL-space
and so is its sublattice Wr

L(E,F a). But there is an obvious identification of
Wr

L(E,F a) with Wr
L(E,F ) so the claim is clear. �

Similar ideas give us:

Theorem 4.2. If E and F are Banach lattices, then Wr
M (E,F ) is an AL-space

under the regular norm if and only if one of the following conditions holds:
1. (E′)a = {0}.
2. (E′)a and F are AL-spaces.

Corollary 4.3. Let E and F be Banach lattices.
1. If F has an order continuous norm, then Wr

L(E,F ) is an AL-space if
and only if E is an AM-space and F an AL-space.

2. If E′ has an order continuous norm, then Wr
M (E,F ) is an AL-space if

and only if E is an AM-space and F an AL-space.

The criteria for the L-weakly compact operators to form an AM-space are
rather simpler than we might have expected as they take values in the order
continuous part of F and the Fatou property is automatic.

Theorem 4.4. If E and F are Banach lattices, then Wr
L(E,F ) is an AM-space

under the regular norm if and only if one of the following conditions holds:
1. F a = {0}.
2. E is an AL-space and F a is an AM-space

Proof. Again, the proof that if Wr
L(E,F ) is an AM-space, then either (1)

or (2) holds is modelled on part of the proof of Theorem 2.2 of [7]. If F a,
and therefore Wr

L(E,F ), is trivial, the conclusion is clear. If (2) holds, then
Lr(E,F a) is an AM-space by Theorem 2.3 of [7] as order continuous norms
are Fatou. As Wr

L(E,F ) is, for all intents and purposes, a closed sublattice of
Lr(E,F ) it also is an AM-space. �

Notice that if F a is an AM-space, then it is isomorphic to a space, C0(I),
of continuous functions vanishing at infinity on a discrete topological space.
Therefore the kind of AM-spaces that can arise as Wr

L(E,F ) are rather limited
in variety.

Matters become somewhat more difficult when we consider the M-weakly
compact operators. If these form an AM-space, then standard methods only
tell us that (E′)a is an AM-space (and therefore again of the form C0(I)) which
does not tell us much about E itself. Also, even to know that the space of M-
weakly compact operators is a Banach lattice, we must assume, for example,
that F is Dedekind complete. The following result, therefore, is somewhat
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disappointing in its completeness. We do, however, manage to avoid the Fatou
condition on F .

Theorem 4.5. If E is an AL-space and F a Dedekind complete Banach lattice,
then Wr

M (E,F ) is an AM-space under the regular norm if and only if F is an
AM-space.

Proof. It is pointed out in the proof of Theorem 2.6 in [4] that an M-weakly
compact operator on an AL-space must be zero on the non-atomic part. Hence
we may assume that E is an atomic AL-space. From the preceding theorem,
Wr

L(F ′, E′) = Wr
L(F ′, (E′)a) is an AM-space. If S, T ∈ Wr

M (E,F )+, then
using Theorem 4.1 in [3], we have

‖S ∨ T‖r = ‖S ∨ T‖ = ‖(S ∨ T )′‖ = ‖S′ ∨ T ′‖
= ‖S′‖ ∨ ‖T ′‖ = ‖S‖ ∨ ‖T‖ = ‖S‖r ∨ ‖T‖r,

so that Wr
M (E,F ) is an AM-space. The proof of the converse is routine. �

There will be variants of this results similar to those mentioned before
Theorem 2.3. Given the prevalence of AM-spaces with an order continuous
norm in our discussions, the following result may be worthy of note.

Theorem 4.6. If E and F are Banach lattices, then Wr
M (E,F ) under the reg-

ular norm is an AM-space with order continuous norm if and only if one of
the following conditions holds.

1. (E′)a = {0}.
2. (E′)a is an AM-space and F is an AM-space with order continuous norm.

Proof. If W r
M (E,F ) is an AM-space, then it is routine to check that (E′)a and

F must be AM-spaces whilst the order continuity of the norm in F is also
immediate from that of Wr

M (E,F ) if (E′)a 
= {0} using operators of the form
f ⊗ y for 0 
= f ∈ (E′)a

+.
The converse is trivial if (E′)a, and therefore Wr

M (E,F ), is trivial. In case
(2), repeat the proof from Theorem 4.5 using Synnatzschke’s theorem, Propo-
sition 1.4.17 of [6], given that F has an order continuous norm, in place of
Theorem 4.1 of [3]. �

There are, of course, also isomorphic versions of all the theorems in this
section.
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0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide
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