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ABSTRACT

Mechanistic target of rapamycin (mTOR) complex 1
(mTORC1) integrates signals from growth factors, cel-
lular energy levels, stress and amino acids to control
cell growth and proliferation through regulating trans-
lation, autophagy and metabolism. Here we determined
the cryo-electron microscopy structure of human
mTORC1 at 4.4 Å resolution. The mTORC1 comprises a
dimer of heterotrimer (mTOR-Raptor-mLST8) mediated
by the mTOR protein. The complex adopts a hollow
rhomboid shape with 2-fold symmetry. Notably,
mTORC1 shows intrinsic conformational dynamics.
Within the complex, the conserved N-terminal caspase-
like domain of Raptor faces toward the catalytic cavity of
the kinase domain of mTOR. Raptor shows no caspase
activity and therefore may bind to TOS motif for sub-
strate recognition. Structural analysis indicates that
FKBP12-Rapamycin may generate steric hindrance for

substrate entry to the catalytic cavity of mTORC1. The
structure provides a basis to understand the assembly
of mTORC1 and a framework to characterize the regu-
latory mechanism of mTORC1 pathway.

KEYWORDS mTORC1, structure, cryo-electron
microscopy

INTRODUCTION

Mechanistic target of rapamycin (mTOR) is a Ser/Thr kinase
that belongs to the family of phosphoinositide-3-kinase-re-
lated kinases (PIKK) and is structurally and functionally con-
served from yeast to mammals. mTOR exists in two distinct
protein complexes: mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2), which share two core components, the
mTORprotein and themammalian lethal withSEC13protein 8
(mLST8, also known as GβL). mTORC1 contains a unique
subunit, regulatory-associated protein of mTOR (Raptor),
whereas mTORC2 is defined by rapamycin insensitive com-
panion of mTOR (Rictor). Rapamycin inhibits mTORC1 by
forming a complex with immunophilin FKBP12 (12 kDa
FK506-binding protein) (Loewith et al., 2002; Sarbassov et al.,
2004).

In response to multiple growth factors, energy status, and
stress pathways, Tuberous Sclerosis Complex 1/2 (TSC1/2)
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complex serves as a negative regulator of mTORC1 and
functions as a GTPase-activating protein (GAP) to inactivate
the small GTPase Ras homolog Rheb (Garami et al., 2003;
Inoki et al., 2003; Tee et al., 2003), which binds to and
activates mTORC1. Nutrients promote the association of
Raptor and Rag GTPases, which recruits mTORC1 to the
surfaces of lysosomes and late endosomes for the activation
by Rheb (Kim et al., 2008). Deregulation of mTORC1 has
been found in many human diseases, especially in cancers
(Dazert and Hall, 2011; Inoki et al., 2005; Tee and Blenis,
2005) and mTORC1 inhibitors have been clinically used for
the treatment of organ transplantation and solid tumors
(Benjamin et al., 2011). mTORC1 regulates cell growth pri-
marily by phosphorylating a large number of proteins,
including the eukaryotic initiation factor 4E (eIF4E) binding
protein 1 (4EBP1) and p70-S6 Kinase 1 (S6K1) (Gingras
et al., 1999; Holz et al., 2005; Holz and Blenis, 2005).

mTORC1 is one of the most important regulators to
control cell growth and proliferation. The cellular function and
dynamic regulation of mTORC1 have been extensively
studied during the past decades. In contrast, the three-di-
mensional structure of mTORC1 remains largely unknown
due to the technical difficulties in preparing the complex to
homogeneity, as well as structural determination. The low-
resolution (26 Å) cryo-electron microscopy (cryo-EM) struc-
ture of mTORC1 shows a two-fold symmetric dimer of
complex formation (Yip et al., 2010). The crystal structure of
the mTOR protein (deletion of N-terminal 1375 residues) in

complex with mLST8 at 3.2 Å resolution was reported (Yang
et al., 2013). The structure shows that the kinase domain
adopts a canonical protein kinase conformation and provides
a model for the inhibition of mTORC1 by Rapamycin-
FKBP12. Recently, the cryo-EM structures of mTORC1 at
5.9 Å resolution (Aylett et al., 2016) and Tor-Lst8 from the
thermotolerant yeast Kluyveromyces marxianus at 6 Å
(Baretic et al., 2016) were reported, respectively. However,
controversial conclusions were made for the topology of
mTOR according to these studies. Here we report the cryo-
EM structure of mTORC1 at 4.4 Å resolution. The higher
resolution structure and biochemical analyses together pro-
vide a topological interpretation of human mTOR and rela-
tively more accurate model for understanding the assembly
and function of mTORC1.

RESULTS

mTORC1 protein purification

To determine the cryo-EM structure of mTORC1, we purified
the active ternary complex to homogeneity by the following
procedures. The mTORC1 was transiently expressed with
myc-mTOR, Flag-Raptor, Flag-mLST8 co-transfected into
HEK293F cells in suspension culture. The complex was
purified over an anti-Flag affinity resin, followed by ion
exchange and gel filtration (Fig. 1A). The purified mTORC1
consists of mTOR, Raptor, and mLST8 in stoichiometry and
exhibits kinase activity on S6K1 and 4EBP1, which can be
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Figure 1. Size exclusion chromatogram of the human mTORC1 and kinase activity. (A) The gel-filtration was performed using a

Superose 6 column (10/3004 GL, GE Healthcare). The peak fractions were subjected to SDS-PAGE and stained with Coomassie

blue. (B and C) Phosphorylation of purified S6K1 (K100R) (B) and 4EBP1 (C) by mTORC1 in the presence or absence of Torin. The

phosphorylation was detected by immunoblotting with antibodies targeting phospho-Thr-389 (top), Flag (middle), and mTOR (bottom)

in (B), and antibodies targeting phospho-4EBP1 (top), 4EBP1 (middle), and mTOR (bottom) in (C). Below are the quantification of the

immunoblots for B and C.
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inhibited by Torin1, a well-characterized ATP-competitive
inhibitor of mTOR, and FKBP12-Rapamycin (Fig. 1B and
1C).

The mTORC1 was embedded in vitreous ice as mono-
dispersed particles with multiple orientations, allowing us to
perform single particle cryo-EM 3D reconstruction (Fig. S1A–
C). Using a Titan Krios electron microscope equipped with a
direct electron detector, we collected about 500,000 particle
images of the mTORC1 and reconstructed the complex at an
average resolution of 4.4 Å and the central portion was fur-
ther refined to 4.0 Å resolution using a local mask (Methods,
Supplementary information Fig. S1D–G, Table S1, and
Movie 1). The Cryo-EM map showed well-defined secondary

structural elements in the complex (Fig. S2), therefore
allowing us to build the atomic models of the Raptor and
mLST8 with unambiguous topology (Methods) except for the
mTOR protein (see below).

The overall structure of mTORC1

The mTORC1 architecture reveals a hollow rhomboid shape
in the front view with overall dimensions of ∼280 × 210 × 130
(Å3) (Fig. 2). The complex adopts a 2-fold symmetry with the
central core primarily formed by two mTOR molecules.
mLST8 is located on the distal convex along the short axis
and protrudes out of the rhomboid architecture. Each Raptor
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Figure 2. Overall structure of human mTORC1. (A) Colored coded domain architecture of the three essential components of

human mTORC1. The same color scheme is used in all structure figures. The inter- and intramolecular interactions are indicated as

arrows. B) Ribbon representation of mTORC1 structure in four different views. The proteins and domains are indicated. CaspRaptor

represents Caspase-like domain of Raptor.
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binds to two mTOR molecules and extends towards the
distal convex along the long axis of the rhomboid with the
WD40 repeats domain located on the apical side. A central
hole is formed within the mTOR dimer. From a side view, the
N-terminal super-helical α-solenoids of mTOR and Raptor
are located on one side of the rhomboid whereas the kinase
domain of mTOR and the associated mLST8 are on the
other side (lower panels in Fig. 2B). The kinase domain is
close to mLST8 and the Caspase-like domain of Raptor and
the open catalytic cavity faces towards outside of the central
core region. Our cryo-EM analysis revealed a strong
heterogeneous conformation of the dimeric mTORC1 with
the distance between edges of two kinase domains ranging
from 9 Å to 29 Å even after the mTORC1 cryo-EM sample
was generated with mild glutaraldehyde gradient fixation
(Fig. S3), which explains the difficulty in improving the res-
olution of mTORC1 reconstruction.

The C-terminal region of mTOR protein forms a compact
core domain (designated Core), in which a “C”-shaped α-
solenoid (FAT) wraps around the kinase domain from which
the FRB domain protrudes out (Fig. 2B). The N-terminus of

mTOR protein adopts a spiral (∼1.3-turn) right-hand super-
helix comprising of 16 HEAT repeat (designated N-HEAT).
The middle region adopts extended HEAT repeat (desig-
nated M-HEAT) bridging the N-HEATand the Core domain of
mTOR. Intriguingly, no direct contact was observed between
the N-HEAT and M-HEAT nearby the Core domain. Fur-
thermore, while the M-HEAT’s two ends are well defined in
the EM map, no density was observed to connect the two
ends to either the N-HEATor the Core regions even at lower
threshold. Therefore, the mTOR protein adopts a peculiar
disconnected/branched domain architecture within the
mTORC1 so that the mTOR protein’s topology is difficult to
be unambiguously determined solely from the 4.4 Å resolu-
tion reconstruction.

Topology of mTOR protein

We sought to use a combination of bioinformatics,
crosslinking mass spectrometry and structural biology
approaches to determine the topology of mTOR protein. The
C-terminal regions could be clearly defined according to the
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Figure 3. The cryo-EM electron potential maps for the interfaces between M-HEAT and Core and between N-HEAT and

M-HEAT (D) contoured at 5 sigma level. (A–C) is the different zoom-in view. The putative linkage between N-HEATand M-HEAT

is depicted as the red dot line, which is measured to be 20.4 Å. Because of the high quality of the cryo-EM map, it is clear that the

density making up the M-HEAT region does not directly join with the FAT domain. (E and F) Comparison of cryo-EM map from this

study at 4.4 Å (E) and previous study at 5.9 Å (F) resolution, respectively. Both of the maps are displayed in Chimera at the same

threshold after normalization.
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previous crystal structure (Yang et al., 2013). However, the
topology of the N-HEAT and M-HEAT in mTOR protein is
hard to define. Opposite orientations of N-HEAT and
M-HEAT from two mTOR molecules can generate eight
possible topology models for the mTOR dimer. Taking
account of the proximity likelihood among N-HEAT, M-HEAT
and the Core domain, there are four possible models worth
further consideration (Fig. S4). The relatively good quality
and high resolution of our potential map in the central portion
of the reconstruction revealed clearly that the density

corresponding to the M-HEAT region does not directly join
with TRD subdomain (numbering according to the crystal
structure of CoremTOR) (Yang et al., 2013) of FAT domain
(Fig. 3, Movie 2). A short segment of helix from M-HEAT
extends in the opposite direction away from the N-terminus
of TRD, with a straightaway distance of 35 Å between the
two termini. Interestingly, one terminus of the N-HEAT
domain also extrudes out a short helix from its HEAT repeat
motif, which faces toward the M-HEAT domain (Fig. 3, Movie
2). The distance between the above two short helix
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Figure 4. Intramolecular and intermolecular interactions within mTORC1. (A) Closed-up view of the dimer formation of

mTORC1. Ribbon representation of the mTORC1 is shown. The mTORC1 dimer is formed through the intermolecular interaction

between the M-HEATand the Core and that between the N-HEATand the Core. (B) Closed-up view of the interaction between Raptor

and mTOR. Raptor binds to the ridge region of the M-HEAT repeats in one mTOR and the convex side of the N-HEAT region in the

other mTOR.
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segments is approximately 20 Å, agreeing with the sec-
ondary structural prediction that there are ∼10 residues as a
flexible loop between the N-HEAT and M-HEAT (Fig. S5).
This supports a topology of model I for the mTOR protein in
the complex. This model is further supported by crosslinking
mass spectrometry analysis of the mTORC1, with the most
confident lysine crosslinking pairs between the N-HEAT and
the Core region, between the M-HEAT and the Core region,
and between the M-HEAT and the caspase-like domain of
Raptor (Fig. S6). Notably, this topology (model I) was inter-
preted differently in the cryo-EM structure of mTORC1 at 5.9

Å resolution (Aylett et al., 2016), but in agreement with the
topological interpretation of Tor-Lst8 structure from the
thermotolerant yeast Kluyveromyces marxianus (Baretic
et al., 2016).

Interaction of mTORC1 subunit

We therefore used the model I hereafter for structural anal-
yses of inter- and intramolecular interactions within the
mTORC1 (Fig. 4). Within the N-HEAT region, the HEAT
repeats 12–13 are involved in the interaction with Raptor and
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Figure 5. Caspase-like domain of Raptor and FKBP12-mTORC1 interaction. (A) Superimposition of caspase-3 and Raptor in

mTORC1 structures. Two structures are shown in ribbon representations with unnecessary regions omitted. Caspase-3 is colored in

orange. The active site of kinase domain of mTOR and the active site of caspase-like domain of Raptor are indicated, respectively.

Shown below is the closed-up view of the structural comparison between caspase-3 and caspase-like domain of Raptor. (B) Equal

amount of purified caspase-3 and Raptor were incubated with 20 µmol/L Ac-DEVD-AMC in the presence or absence of caspase

inhibitor Z-VAD-FMK at 37°C for 60 min. The activities were measured using a Spectrafluor Fluorescence Plate Reader with

excitation at 400 nm and emission at 505 nm. Error bars, s.d. for triplicate experiments. (C) Superimposition of FRBmTOR-FKBP and

mTORC1 structures is shown in ribbon representations. (D) Effect of FKBP12-Rapamycin for mTORC1 assembly. Increased amount

of FKBP12-Rapamycin incubated with mTORC1 (Flag-Raptor) immobilized on the Flag resin. Bound proteins were subjected to SDS-

PAGE and stained with Coomassie blue.
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the M-HEAT region. The HEAT repeat 16 binds to three
parallel α-helices of FAT domain of the Core region. Other
parts of the N-HEAT region have no inter- or intramolecular
interactions, suggesting that N-HEAT tends to be dynamic, in
consistent with its relatively weak density in the 3D recon-
struction. Similar phenomenon has been observed in other
proteins such as the flexible HEAT repeats of PP2A complex
(Xu et al., 2006). The conformational flexibility of the N-HEAT
region may provide significant functional implications, for
example, adopting different conformations for the interac-
tions with various mTOR regulators (Kim et al., 2008;
Wullschleger et al., 2006; Zoncu et al., 2011).

The M-HEAT region contains 7 HEAT repeats (HEAT
repeats 17–23) and adopts extended conformation. The
dimerization of mTOR protein in the complex is mediated by
the inter-molecular interaction between the N-HEAT region
from one mTOR and the M-HEAT region from the other one
(Fig. 4A). This interaction is through close proximity between
the HEAT repeats 20–23 of the M-HEAT region and the HEAT
repeats 12–13 of the N-HEAT region. The formation of this
interaction does not seem to need other proteins but is sta-
bilized by Raptor, which binds to the ridge region of the
M-HEAT repeats 20–22 in one mTOR and the convex side of
the N-HEAT repeats 11–13 in the other mTOR (Fig. 4B). To
test Raptor’s role in the dimerization of mTOR protein, we
purified mTOR-mLST8 complex without Raptor. Gel-filtration
analysis indicates that mTOR-mLST8 is sufficient to dimerize
(Fig. S7). Thus, mTOR-mLST8 can assemble into dimer of
heterodimer, which serves as the core for mTOR holoenzyme
(mTORC1 or mTORC2) assembly, as well as a scaffold for
association with various binding proteins. We propose that
mTOR-mLST8 adopts similar fold in mTORC1 and mTORC2
complexes. The mTOR surface for Raptor interaction may
also be involved in Rictor association because Raptor and
Rictor are mutually exclusive for mTOR complex formation
(Loewith et al., 2002; Sarbassov et al., 2004).

Structure and implication of RNC domain of Raptor

The mTORC1 structure shows that Raptor contains a Raptor
N-terminal conserved (RNC) domain, followed by HEAT
repeats and a C-terminal WD40 repeats. The RNC domain
adopts a compact fold with a six-stranded β-sheet stabilized
by three α-helices on each side. In support of previous
prediction (Ginalski et al., 2004), the RNC domain shows
similar overall structure to that of caspase family proteins
(Fig. 5A). Although the catalytic residues (H153, C196) of
Raptor are conserved, no caspase activity was detected
using Ac-DEVD-AMC as the substrate for either the Raptor
alone or mTORC1 (Fig. 5B).

Proposed mechanism of FKBP12-Rapamycin
inhibition on mTORC1 activity

It has been well characterized that FKBP12-Rapamycin
binds to mTORC1 and inhibits its kinase activity. Structural

comparison of mTORC1 with FRB-FKBP12 (Choi et al.,
1996) shows that upon binding to FRB, FKBP12 would be in
close proximity to kinase domain of mTOR and therefore
lead to steric hindrance for substrate entry into the catalytic
cavity of mTORC1 (Fig. 5C). Notably, structural superimpo-
sition shows that FKBP12 has no other direct contact with
mTORC1 besides FKBP-FRB interface. There is still ample
space for substrate association, which explains the relatively
weak inhibition by FKBP12-Rapamycin compared to the
ATP-competitive inhibitor Torin1. To test whether FKBP12
association disrupts interaction between mTOR and Raptor
(Kim et al., 2002), we performed an in vitro assay using
purified mTORC1 (Flag-Raptor) and increasing amount of
FKBP12-Rapamycin (Fig. 5D). In support of the structural
analysis, FKBP12-Rapamycin does not disrupt mTORC1
integrity.

DISCUSSION

In this study, we report the cryo-EM structure of mTORC1 at
4.4 Å resolution, the highest resolution for human mTORC1
up to now. According to the biochemical and structural
analyses, we proposed a most likely correct topological
model for mTOR within the complex. The structure provides
a structural basis for understanding the complex assembly of
mTORC1 and the regulatory mechanism of mTORC1 by its
binding partners and those yet to be identified.

First, we provided four possible models and used several
ways to determine the topology of mTOR protein. Our result
support the topology of model I, which is in accordance with
Tor-Lst8 structure from yeast (Baretic et al., 2016), while is
not consistent with mTORC1 at 5.9 Å resolution (Aylett et al.
2016). Although further high-resolution structural analysis
should be performed, we here propose that model I is more
likely to represent correct topology of mTOR under current
understanding (Fig. S4).

Second, from structural analysis, the RNC domain of
Raptor bind to the M-HEAT and N-HEAT repeats of mTOR
(Fig. 4B). It has been reported that Ser 863, Ser 859 phos-
phorylation of Raptor by several kinases in response to dif-
ferent conditions, leading to a decrease of mTORC1 activity
(Dunlop et al. 2014; Stretton et al., 2015; Yuan et al. 2015)
because of reduced interaction between mTOR and Raptor
(Stretton et al., 2015). However, structural analysis shows
that Ser 859 of Raptor is located within the WD40 repeat
domain and would have no direct contact with mTOR. Thus,
the structure of mTORC1 also provides a framework to
reconsider previous mechanistic explanation of biochemical
observations of mTORC1 pathway.

Third, although the RNC domain of Raptor is similar with
caspase family proteins from overall structure, we test that
Raptor has no caspase activity (Fig. 5B). Previous studies
have shown that Raptor binds to and recruits mTORC1
substrate proteins through recognizing TOS motifs, FDIDL in
S6K1 and FEMDI in 4EBP1, both containing conserved
aspartate residues for caspase cleavage. Therefore, the
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caspase-like domain may serve as a module to recognize
and recruit specific substrates for kinase processing. Con-
sistently, the catalytic site of the caspase-like domain of
Raptor faces toward the catalytic cavity of the kinase domain
of mTOR.

Fourth, our structural analysis and experiment result show
that FKBP12-Rapamycin does not disrupt mTORC1 integrity
as previously discussed (Kim et al., 2002). In fact, it provides
steric hindrance for substrate entry into the catalytic cavity of
mTORC1. In addition, higher resolution structure of
mTORC1 is needed to illustrate the detailed information of
the complex.

MATERIALS AND METHODS

Reagents

Antibodies against phospho-Thr-389 S6K (9205), 4EBP1 (9652),

phos-4EBP1 (9456) and mTOR (2972) were from Cell Signaling

Technology; horseradish peroxidase-labeled anti-mouse and anti-

rabbit secondary antibodies were from AbMart; FLAG M2-agarose

was from Sigma; Ni-NTA resin, Mono Q, Superdex75 (10/300 GL)

and Superose 6 (10/300 GL) were from GE Healthcare; Rapamycin

and Z-VAD-FMK were from Selleckchem; Torin1 was kindly provided

by Dr. Haixin Yuan from IBS, Fudan University; Polyethylenimine

(PEI) was from Polysciences (23966); 293F medium was from Sino

Biological Inc.

Protein expression and purification

To produce soluble mTORC1 protein, the ORFs of human mTOR,

raptor, and mLST8 were sub-cloned into modified pCAG vectors.

The three plasmids were co-transfected to 293F cells using PEI.

After culture at 37°C for 3 days, cells were collected and lysed in

50 mmol/L HEPES, pH 7.4, 150 mmol/L NaCl, 0.4% CHAPS and

3 mmol/L DTT at 4°C for 30 min, and the insoluble fraction was

removed by centrifugation at 15,000 rpm for 30 min. Supernatants

were incubated with FLAG-M2 monoclonal antibody-agarose for 1 h

and unbound proteins were extensively washed away. The fusion

proteins (FLAG-tagged raptor, FLAG-tagged mLST8 and Myc-tag-

ged mTOR) were digested using PreScission protease overnight

and the eluted proteins were further purified using ion exchange and

gel filtration chromatography. The peak fractions were pooled for

biochemical and structural analyses.

In vitro kinase assays

The in vitro kinase assays were performed in the buffer containing

25 mmol/L HEPES, pH 7.4, 100 mmol/L NaCl, 10 mmol/L MgCl2,

2 mmol/L DTT and 0.5 mmol/L ATP for 30 min at 30°C. Reactions

were terminated by the addition of SDS sample loading buffer and

boiling for 5 min. Samples were subsequently analyzed by SDS-

PAGE and immunoblotting.

Caspase activity assay

The purified human caspase-3 and Raptor were respectively incu-

batedwith 20 µmol\L Ac-DEVD-AMCwith or without caspase inhibitor

Z-VAD-FMK at 37°C for 60 min using a Spectrafluor Fluorescence

Plate Reader with excitation at 400 nm and emission at 505 nm.

Purification of FKBP12 and in vitro pull-down

FKBP12 protein was purified from E. coli BL21(DE3) cells trans-

formed with modified pGEX-6P-1 vector containing the ORF of

human FKBP12. GST-FKBP12 was induced at 16 °C overnight with

0.1 mmol/L IPTG. The cells were harvested and disrupted with buffer

containing 25 mmol/L Tris, pH 8.0, 150 mmol/L NaCl, 5 mmol/L

imidazole. The fusion proteins were purified using Ni-NTA resin and

digested by PreScission enzyme. The eluted proteins were purified

using ion exchange and gel filtration. Equal molar FKBP12 and

rapamycin were incubated with Flag-Raptor/mTOR for 30 min. The

unbound proteins were washed away and the bound proteins were

subjected to SDS-PAGE and stained by Coomassie blue.

Cross-linking and Mass Spectrometry analysis

The purified mTORC1 (0.8 µg/µL) was cross-linked using disuccin-

imidyl suberate (DSS) at a 1:150 molar ratio at room temperature for

20 min. The reaction was terminated by 20 mmol/L ammonium

bicarbonate. The proteins were precipitated with cooled acetone and

lyophilized. The pellet was dissolved in 8 mol/L urea, 100 mmol/L

Tris, pH 8.5, followed by TCEP reduction, iodoacetamide alkylation,

and trypsin digestion. Trypsin (Promega) digestion was quenched by

5% formic acid. Tryptic peptides were desalted with Pierce C18 spin

column (Thermo Fisher) and separated in a Proxeon EASY-nLC

liquid chromatography system by applying a step-wise gradient of 0–
85% acetonitrile (ACN) in 0.1% formic acid. Peptides eluted from the

LC column were directly electrosprayed into the mass spectrometer

with a distal 2 kV spray voltage. Data-dependent tandem mass

spectrometry (MS/MS) analysis was performed on Thermo Q-Ex-

active instrument in a 60-minute gradient. Raw data was processed

with pLink software (Ellisen et al. 2002).

Cryo-electron microscopy

For cryo-grid preparation, aliquots of 3.5 µL of purified mTOR1

complex at a concentration of ∼1.5 mg/mL were applied to glow-

discharged holey carbon grids (Quantifoil Cu, R1.2/1.3, 400 mesh).

The grids were blotted for 2.5 s and flash-plunged into liquid ethane

pre-cooled in liquid nitrogen using an FEI Vitrobot mark IV operated

at 22°C and 100% humidity. Data collection was performed on an

FEI Titan Krios equipped with Gatan K2 Summit electron counting

camera. Images were recorded in the super-resolution mode using

UCSF-Image4 (Wang et al., 2015) at a nominal magnification of

22,500, which corresponds to a final pixel size of 1.306 Å by binning

2 of the original micrographs. For each image stack, a total dose of

about 50 electrons per Å2 at the specimen were equally fractioned

into 32 frames with a total exposure time of 8 s. Defocus values

ranged from −1.5 to −2.5 μm.

Image processing

For cryo-EM data sets, beam-induced motion correction was per-

formed as previously described (Li et al., 2013). Micrographs

inspection, automatic particle picking, 2D, 3D classification and
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refinement were performed within RELION 1.4 (Scheres, 2012) and

the contrast transfer function parameters were estimated using

CTFFIND3 (Mindell and Grigorieff, 2003). About 2000 manually

picked particles were used to generate the templates for particle

auto-picking. Totally 486,584 particles were auto-picked from 2997

micrographs for further processing. After one round of reference-free

2D classification, 387,806 particles were then subjected to 3D

classification using the previously reconstructed 3D map

(EMDB:5197) at 20 Å resolution as the initial model. Two rounds of

3D classification were performed to remove the obvious bad parti-

cles in the first round and accumulate the most homogeneous

population of particles in the second round. A final dataset of

115,039 most homogeneous particles were subjected for final

refinement to generate a 4.4 Å resolution map through the process

of auto-refinement with C2 symmetry imposed (gold-standard FSC

0.143 criteria) (Chen et al., 2013), particle polishing, and post-pro-

cessing with auto-mask and the manual-bfactor option (B-factor of

−60 Å2) in RELION. In a final step, a soft mask was imposed on the

rigid central portion of the map to improve the density quality by

continuing run of the auto-refinement in RELION. This yielded a final

3D map of the central portion at an average of 4.0 Å resolution

(corrected gold-standard FSC at 0.143).

Model building into the cryo-EM map

The crystal structure of mTOR (1385–2549aa)/mLST8 (PDB ID:

4JSN) (Yang et al., 2013) was docked into the mTORC1 cryo-EM

map using EMfit (Rossmann et al., 2001) while maintaining the two-

fold symmetry. The rest parts of mTOR, including N-HEAT and

M-HEAT domains, were built by placing the ideal alpha-helices into

the density using COOT (Emsley et al., 2010). The caspase-like

domain and WD40 domain of Raptor were built by docking the

crystal structures of caspase-9 (PDB ID: 2AR9) and WD40 domain

(PDB ID: 4J87) into the density. The HEAT repeat domain of Raptor

was built manually in COOT (Emsley et al., 2010). The coordinates

of the final structure were refined in the real space using phenix.

real_space_refine (Adams et al., 2010). Model validation was per-

formed with PROCHECK (Laskowski et al., 1993) and the

WHATCHECK routine of WHAT IF (Vriend, 1990).
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