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1 Introduction

In this paper we will study the system of k NS5-branes in type II string theory. We will

take the fivebranes to wrap R4 × S1, and focus on states that carry momentum P and

winding W around the S1. For general (P,W ), the lowest lying states with these quantum

numbers preserve four of the sixteen supercharges preserved by the fivebranes. Thus, they

can be thought of as quarter BPS states in the fivebrane theory.
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The states in question have the same quantum numbers as the three-charge black

holes that were studied extensively in the last twenty years in the context of providing a

microscopic interpretation of black hole entropy, starting with the work of [1]; for a recent

review see [2]. They also figure prominently in the fuzzball program that attempts to

describe these microstates by horizonless geometries [3, 4]. In these cases, one needs to

replace the R4 that the fivebranes are wrapping by a compact manifold, such as T4, and

we will discuss this case as well.

Our main interest will be in the dependence of the spectrum of the above states on the

positions of the fivebranes. We will see that it is qualitatively different when the fivebranes

are separated by any finite distance, and when they are coincident. The two cases are

separated by a string-black hole transition. This may seem surprising, since separating the

fivebranes corresponds in the low energy theory to Higgsing a non-abelian gauge group, and

one would expect that if the W-boson mass scale is low, the physics of high mass states,

such as the ones we will study, should not be affected. We will discuss why it nevertheless

happens, and comment on some implications.

In the context of black hole physics, the above system is usually discussed in the full,

asymptotically flat space transverse to the fivebranes. However, one can also study it in the

theory obtained by restricting to the near-horizon geometry of the fivebranes. This theory

is known as Little String Theory (LST). As we review in section 2, it can be alternatively

defined by taking a certain scaling limit of the full string theory.

In the near-horizon geometry of the coincident fivebranes, the three-charge black holes

are described by certain BPS black hole solutions in an asymptotically linear dilaton space-

time, which carry the charges (P,W ); see e.g. [5, 6] and references therein. The entropy of

these black holes is given by the familiar result (see section 6)

SBH = 2π
√
kPW . (1.1)

On the other hand, if one separates the fivebranes in the transverse R4, one can study

these states as conventional perturbative string states in a spacetime of the form T4×S1×
M4, where M4 is the background associated with directions transverse to the fivebranes.

It includes a non-compact direction associated with the radial direction away from the

fivebranes, and some compact directions associated with the angular part of the geometry.

The precise background depends on the positions of the fivebranes.

If the separations of the fivebranes are sufficiently large, the string coupling in this

background is small everywhere (unlike the case for coincident fivebranes, where it diverges

as one approaches the fivebranes), and the description of these states as perturbative string

states mentioned above is valid. Thus, one can use standard techniques to count them.

A convenient object for this purpose is the elliptic genus of the worldsheet CFT cor-

responding to M4. We review the definition of this object and study its properties in

our case in sections 3 and 4. As we discuss there, it can be written as a power series in

a parameter q. The coefficient of qN is the (graded) number of BPS states with charges

(P,W ) satisfying PW = N . These states are standard perturbative BPS states [7], for

which the right-movers on the worldsheet are in the ground state while the left-movers are
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in a general excited state. Thus, they satisfy

NR = 0 , NL = N = PW ,

M =

∣∣∣∣PR +
WR

α′

∣∣∣∣ , (1.2)

where NL and NR are the excitation levels for left and right-movers on the worldsheet, R

is the radius of the circle the fivebranes wrap, and M is the mass of the BPS state.

We use the elliptic genus to calculate the entropy of perturbative string states with

the same quantum numbers as the black holes mentioned above, and find the result (for

large PW )

Sstring = 2π

√(
2− 1

k

)
PW . (1.3)

This does not agree with the entropy of black holes with the same quantum numbers (1.1).1

We argue that the system exhibits a phase transition: when the fivebranes are coincident,

quarter BPS states with the quantum numbers (P,W ) correspond to black holes, while

when they are separated they correspond to fundamental strings. This phenomenon is an

example of UV-IR mixing in LST — turning on a small IR scale (the masses of W-bosons

corresponding to the separations between the fivebranes) has a large effect on the spectrum

of massive states (the quarter BPS states discussed above). This UV-IR mixing is possible

due to the fact that LST is not a local QFT.

As mentioned above, the black hole point of view requires us to compactify the world-

volume of the NS5-branes from R4 × S1 to, say T4 × S1. In the compact case, the theory

on NS5-branes becomes (0 + 1) dimensional (i.e. it becomes quantum mechanics). In this

case, the positions of NS5-branes are no longer well defined; instead, the ground state

corresponds to a wavefunction on the classical moduli space. The transition mentioned

above has a slightly different flavor in this case — the quantum theory of NS5-branes has

non-trivial vacuum structure. In one vacuum, the fivebranes are coindicent and the entropy

of BPS states is given by SBH, while in another they are separated and the entropy is given

by Sstring. The UV-IR mixing manifests itself in this theory as the fact that although the

vacuum wavefunction in the string phase has support in the region where the fivebranes are

arbitrarily close to each other, this phase is nevertheless distinct from the black hole phase,

in which the fivebranes are all coincident. The two phases differ in their UV behavior.

We next turn to the development of the picture presented above in more detail, starting

from the definition and properties of LST and in particular its holographic description.

1Although the result Sstring is derived when the separations between the fivebranes are sufficiently large

that the string coupling is small everywhere, we argue in section 5 that it is actually valid whenever the

fivebranes are separated by any finite amount.
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2 Little String Theory and its scaling limit

2.1 Little String Theory

The dynamical degrees of freedom localized on NS fivebranes can be decoupled from bulk

degrees of freedom by taking a limit in which the string coupling gs → 0, with the energy

scale E held fixed relative to the string scale, E ∼ ms. The resulting theory, known as Little

String Theory, is an interacting six-dimensional theory which does not include gravity,

but otherwise shares many similarities to string theory in asymptotically flat spacetime,

including a Hagedorn density of states2 and T-duality [8–10]. For reviews see [11, 12].

LST has a holographic description in terms of string theory in the near-horizon geom-

etry of the fivebranes [13]. For k coincident fivebranes, the near-horizon metric is given

by [14, 15]

ds2 = dxµdxµ + dφ2 + 2kdΩ2
3 , (2.1)

where xµ (µ = 0, 1, .., 5) parametrize the flat worldvolume of the fivebranes, φ is a (function

of the) radial coordinate in the directions transverse to the fivebranes, and dΩ2
3 is the line

element on the corresponding angular three-sphere. The dilaton and H-flux in the near-

horizon geometry can be written in the form

Φ = −Q
2
φ, Q =

√
2

k
, (2.2)

and

H = 2kVolS3 , (2.3)

where we took α′ = 2. The four-dimensional space transverse to the NS5-branes is de-

scribed by an exactly solvable conformal field theory [14, 15], the Callan-Harvey-Strominger

(CHS) CFT,

Rφ × SU(2)k , (2.4)

that contains a linear dilaton direction with background charge Q, a bosonic SU(2) Wess-

Zumino-Witten (WZW) model at level k−2 with currents j̃a (a = 1, 2, 3), and four fermions

ψI = (ψa, ψφ). The central charge is

c = cφ + cSU(2) + cf =
(
1 + 3Q2

)
+

(
3− 6

k

)
+ 2 = 6 , (2.5)

as expected. The total SU(2) currents of the supersymmetric SU(2) WZW model at level

k are given by

J̃a = j̃a − i

2
εabcψbψc . (2.6)

2String theory in asymptotically flat spacetime exhibits a Hagedorn density of states in an intermediate

energy regime, while at asymptotically high energies the entropy grows faster with the energy. In LST, the

Hagedorn behavior persists up to arbitrarily high energies.
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For later convenience we define

ψ± =
1√
2

(ψφ ± iψ3) , ψ̃± =
1√
2

(ψ1 ± iψ2) , (2.7)

which can be bosonized as

ψ± = e±iH , ψ̃± = e±iH̃ . (2.8)

It will be useful in our later analysis to note that one can also describe the supersym-

metric SU(2)k WZW model as a Zk orbifold of the tensor product of the supersymmetric

U(1)k WZW model and a coset CFT, SU(2)k/U(1),

SU(2)k '
(

U(1)k ×
SU(2)k
U(1)

)
/Zk . (2.9)

In this description, the compact boson Y of the U(1)k WZW model is related to the current

J̃3 via

J̃3 = j̃3 + ψ+ψ− = i

√
k

2
∂Y . (2.10)

The SU(2)k/U(1) coset is equivalent to an N = 2 minimal model whose central charge is

c = 3− 6
k .

The CHS conformal field theory has N = 4 superconformal symmetry with the super-

conformal generators

GI = i
(
ψI∂φ+Q∂ψI

)
−QηaIJjaψJ +

i

6
QεIJKLψ

JψKψL , (2.11)

and the SU(2)R currents at level one

JaR = − i
2
η̄aIJψ

IψJ . (2.12)

Here the ’t Hooft tensors ηaµν and η̄aµν are antisymmetric in (µ, ν) and construct the Lie

algebra of SU(2) from self-dual and anti-self-dual combinations of SO(4) generators. They

are defined explicitly as

ηabc = εabc , ηab4 = δab ,

η̄abc = εabc , η̄ab4 = −δab . (2.13)

In particular, the current J3
R is given by

2J3
R = ψ+ψ− + ψ̃+ψ̃− = i∂H + i∂H̃ . (2.14)

The normalizable primary vertex operators of the CHS CFT can be expressed as follows:

O = e−Q(j+1)φei(αH+ᾱH̄)ei(βH̃+β̄ ¯̃H)Φsu
j̃,m̃, ¯̃m

, (2.15)
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where Φsu
j̃;m̃, ¯̃m

are primary operators of the bosonic SU(2)k−2 current algebra. The confor-

mal dimensions and R-charges of O (2.15) are given by

h = −j(j + 1)

k
+
j̃(j̃ + 1)

k
+
α2 + β2

2
,

r = α+ β . (2.16)

In terms of the decomposition
(

U(1)k × SU(2)k
U(1)

)
/Zk, one can rewrite the contribution of

the supersymmetric SU(2)k WZW model to (2.15) as

eiβH̃eiβ̄
¯̃HΦsu

j̃;m̃, ¯̃m
= e

i
√

2
k [(m̃+β)Y+( ¯̃m+β̄)Ȳ ]Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) , (2.17)

where Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) denotes primary operators of the N = 2 minimal model. Their confor-

mal weights are

h =
j̃(j̃ + 1)− (m̃+ β)2

k
+
β2

2
. (2.18)

As explained in appendix A, the two parameters β and β̄ can be understood as spectral

flow parameters in the supersymmetric minimal model.

In the CHS background (2.4), the string coupling varies with the distance from the

fivebranes as follows:

g2
s ' e−Qφ . (2.19)

Thus gs → 0 at large distance (φ→∞). This is the boundary of the near-horizon geometry,

analogous to the boundary of AdS for gauge/gravity duality. At the same time, as one

approaches the fivebranes (φ → −∞), the string coupling diverges. Hence, the exact

background (2.4) is not useful for worldsheet calculations, which rely on weak coupling.

To make it useful, we need to do something about the strong coupling region. One way to

deal with it is described in the next subsection.

2.2 Double scaling limit

From the discussion in the previous subsection, it is clear that the CHS geometry is ap-

plicable only for k ≥ 2 (coincident) fivebranes, since otherwise the bosonic SU(2) WZW

model at level k − 2 does not make sense. Thus, fundamental strings propagating in the

vicinity of a single NS5-brane do not see a CHS throat geometry (2.4). As a consequence,

in the near-horizon geometry of k separated fivebranes, the string coupling is bounded from

above [16, 17]. The maximal value of gs depends on the separations of the fivebranes.

One can arrange the separations such that the coupling is small everywhere. This

amounts to demanding that the masses of D-strings stretched between different NS5-

branes in type IIB string theory,3 denoted collectively by MW , are much larger than the

string scale,

MW � ms . (2.20)

3The IIA case is very similar.

– 6 –



J
H
E
P
1
2
(
2
0
1
5
)
1
4
5

Figure 1. NS5-branes on a circle.

As we review below, the resulting theory can be studied using perturbative string techniques

where ms/MW plays the role of the string coupling. This theory is known as Double Scaled

Little String Theory (DSLST) [16, 17].

For example, consider a configuration of fivebranes arranged equidistantely on a circle

of radius R0 in R4, depicted in figure 1. In this configuration, the SU(k) gauge symmetry

on the fivebranes is broken to U(1)k−1 at the scale MW ∼ R0/gsl
2
s . To study the dynamics

of the fivebranes in this case, we can take the double scaling limit

gs → 0 ,
R0

ls
→ 0 with

R0

gsls
fixed.

Keeping the dimensionless constant R0
gsls

fixed means keeping the masses of W-bosons fixed

in string units. If these masses are large relative to ms, the theory is weakly coupled and

can be studied using worldsheet techniques; it is a special case of the DSLST construction

mentioned above.

While the DSLST construction is general, the configuration of figure 1 is special in

that the corresponding worldsheet CFT is solvable, which is not the case for generic points

in the moduli space of DSLST. The CHS background (2.4) is replaced in this case by

Rφ ×
(

U(1)k ×
SU(2)k
U(1)

)
/Zk →

(
SL(2,R)k

U(1)
× SU(2)k

U(1)

)
/Zk . (2.21)

The coset SL(2,R)k
U(1) describes a σ-model on a cigar with asymptotically linear dilaton. The

string coupling grows towards the tip of the cigar, and attains its largest value at the tip,

gs(tip) ' ms

MW
' gsls

R0
(2.22)

One way to understand this relation is to note that D-strings stretched between the five-

branes correspond in the deformed theory (2.21) to D0-branes located at the tip of the

cigar (and particular boundary states in the N = 2 minimal model). Note that (2.22) has

the property that as R0 increases, the maximal value of the string coupling decreases. On

the other hand, as R0 → 0 the string coupling at the tip of the cigar grows without bound.

These properties are in agreement with the expectations mentioned above — the length of

the fivebrane throat increases with decreasing R0 and vice versa.
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The relation between the CHS background (2.4) corresponding to coincident fivebranes

and the background corresponding to fivebranes on a circle (the r.h.s. of (2.21)) can be

understood by looking at the region far from the tip of the cigar. We will refer to it below

as the CHS region. In that region, the cigar geometry reduces to a cylinder Rφ × S1, and

the CFT on the r.h.s. of (2.21) reduces to that on the l.h.s. which, as explained above, is

equivalent to (2.4). This agrees with the intuition that far from the fivebranes one does not

notice that they are separated, and the background of separated fivebranes should reduce

to that of coincident ones.

Both the SL(2,R)/U(1) and the SU(2)/U(1) CFT’s have N = 2 superconformal sym-

metry. We will denote their U(1)R currents by J sl
R and J su

R , respectively. Some basic

properties of these two coset models are summarized in appendix A. While the tensor

product of cigar and minimal models preserves N = 2 superconformal symmetry, one can

show that the Zk orbifold in (2.21) enhances the superconformal symmetry to N = 4,

in agreement with the fact that the background (2.21) can be thought of as describing a

near-singular non-compact K3 surface.

The CSA of the SU(2)R current that belongs to the N = 4 algebra can be taken to be

2J3
R = J sl

R + J su
R . (2.23)

The factor of two on the l.h.s. is due to the fact that N = 4 supercharges transform as a

doublet under SU(2)R, and hence naturally have U(1)R charge ±1/2, while the U(1)R cur-

rent in the N = 2 algebra is usually normalized so that the supercharges carry charge ±1.

Finally we discuss the normalizable vertex operators in the CFT (2.21). The primary

operators of the cigar CFT, V susy
j;m,m̄(α, ᾱ), are defined and discussed in appendix A. They

have conformal weight and U(1)R charge

h =
(m+ α)2 − j(j + 1)

k
+
α2

2
,

r =
2(m+ α)

k
+ α . (2.24)

In the CHS region, the vertex operator V susy
j;m,m̄(α, ᾱ) behaves like

V susy
j;m,m̄(α, ᾱ) ' e−Q(j+1)φeiαHeiᾱH̄e

i
√

2
k [(m+α)Y+(m̄+ᾱ)Ȳ ] . (2.25)

Note that the parameters α and ᾱ can be identified as spectral flow parameters.

The primary operators of the minimal model Ṽ susy

j̃;m̃, ¯̃m
(β, β̄), are similarly defined and

discussed in appendix A. Their conformal weight and U(1)R charge are

h =
j̃(j̃ + 1)− (m̃+ β)2

k
+
β2

2
,

r = −2(m̃+ β)

k
+ β (2.26)

In the CHS region one has

e
i
√

2
k [(m̃+β)Y+( ¯̃m+β̄)Ȳ ]Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) ' eiβH̃eiβ̄

¯̃HΦsu
j̃;m̃, ¯̃m

. (2.27)
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This can be used to construct a normalizable vertex operator in the full DSLST back-

ground (2.21), that is asymptotic to the vertex operator (2.15) in the CHS region,

V susy
j;m,m̄(α, ᾱ) · Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) → e−Q(j+1)φei(αH+ᾱH̄)ei(βH̃+β̄ ¯̃H)Φsu

j̃,m̃, ¯̃m
(2.28)

with

m+ α = m̃+ β ,

m̄+ ᾱ = ¯̃m+ β̄ . (2.29)

3 Elliptic genus of DSLST

The holographic worldsheet description of DSLST at a generic point in its moduli space

involves the background M5,1 × M4, where M4 (M5,1) is a CFT associated with the

directions transverse to (along) the fivebranes. A natural quantity to consider is the elliptic

genus of the CFT on M4, defined as

EDSLST = TrHRR

[
(−1)F qL0− c

24 q̄L̄0− c̄
24 e2πiz(2J3

R)0

]
, (3.1)

where q = e2πiτ , c = c̄ = 6 are the left and right-moving central charges, and J3
R is a

Cartan generator of the left-moving SU(2)R symmetry. The trace is taken over states

in the Ramond-Ramond sector of the SCFT. We discussed the spacetime significance of

this quantity in the introduction. In this section, we will calculate it using worldsheet

techniques. In particular the calculation will be performed at the point in moduli space

corresponding to figure 1, where

M4 =

(
SL(2,R)k

U(1)
× SU(2)k

U(1)

)
/Zk (3.2)

but, as we will discuss later, the result is independent of the moduli.

We will see that the elliptic genus is not holomorphic in q unlike the situation for

compact SCFT’s. This is because both discrete and continuum states can contribute to

the elliptic genus [18–21]. We will discuss a physical way to separate the elliptic genus into

two contributions, corresponding to the discrete and continuum states, respectively.

Some properties of the elliptic genus of DSLST will be discussed in the next section.

3.1 Cigar CFT

We can describe the cigar CFT as a two dimensional N = (2, 2) non-linear σ-model whose

Lagrangian takes the form

L = −gij̄∂µφi∂µφ̄j̄ + igij̄ψ̄
j̄
−D+ψ

i
− + igij̄ψ̄

j̄
+D−ψ

i
+ +Rij̄kl̄ψ

i
+ψ

k
−ψ̄

j̄
−ψ̄

l̄
+ , (3.3)

where the target space metric is

ds2 = k
(
dr2 + tanh2 rdθ2

)
. (3.4)
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The non-linear σ model also includes a non-trivial dilaton profile, which will not play a

role in what follows. The four global supercharges are given by

Q± =

∫
dσ 2gij̄∂±φ̄

j̄ψi± , Q̄± =

∫
dσ 2gij̄ψ̄

j̄
±∂±φ

i . (3.5)

Using supersymmetric localization, one can reduce the path-integral of the cigar CFT to a

finite dimensional integral over the holonomy-torus [22, 23],

Ecig(τ, z) = k

∫ 1

0
ds1

∫ 1

0
ds2

∑
(n,w)∈Z2

ϑ1 (τ, s1τ + s2 + z(1 + 1/k))

ϑ1 (τ, s1τ + s2 + z)

× e−2πizwe
−πk
τ2

∣∣s1τ+s2+n+τω
∣∣2
, (3.6)

where ϑ1(τ, z) denotes the odd Jacobi theta function given by

ϑ1(τ, z) = −iq1/8eπiz
∞∏
n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn−1) . (3.7)

Using the Poisson resummation formula, one can rewrite the elliptic genus as

Ecig(τ, z) =
√
kτ2

∫ 1

0
ds1

∫ 1

0
ds2

∑
(p,w)∈Z2

ϑ1 (τ, s1τ + s2 + z(1 + 1/k))

ϑ1 (τ, s1τ + s2 + z)

× e−2πizwe−2πis2pql0 q̄ l̄0 , (3.8)

where

l0 =
1

4k
(p− k(w + u2))2 , l̄0 =

1

4k
(p+ k(w + u2))2 . (3.9)

The integers (p, w) are the momentum and winding around the cigar.

Following the treatment in [18, 19, 22, 23], one can show that

Ecig = Ed + Ec , (3.10)

where the contribution from the discrete spectrum is

Ed = +
iϑ1(τ, z)

η(q)3

k−1∑
α=0

∑
w∈Z

q(−α+kw)we2πiz(−α/k+2w)

1− e2πizq−α+kw

= +
iϑ1(τ, z)

kη(q)3

k∑
β,γ=1

e2πiβγ
k

∑
w∈Z

q
(kw+β)2

k

(
e2πiz

)2 kw+β
k

1− (e2πiz)
1
k q

kw+β
k e2πi γ

k

(3.11)

and that of the scattering states is

Ec = −ϑ1(τ, z)

2η(q)3

∑
p,w∈Z

∫ ∞
−∞

dK
1

π

[
1

K + i(p+ kw)

]
(qq̄)

K2

4k q
1
4k

(p−kw)2

q̄
1
4k

(p+kw)2

e2πiz( p
k
−w)

= −ϑ1(τ, z)

2η(q)3

∑
p,w∈Z

∫ ∞
0

dK
1

π

[
1

K + i(p+ kw)
+

1

−K + i(p+ kw)

]
(qq̄)

K2

4k

× q
1
4k

(p−kw)2

q̄
1
4k

(p+kw)2

e2πiz( p
k
−w) (3.12)
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When p + kw = 0, we choose the integration contour in (3.12) slightly above the real

axis. The discrete contribution to the elliptic genus is holomorphic in q but not modular,

while the contribution from the scattering states restores modularity at the cost of a loss

of holomorphy. Note that the scattering state contribution to the elliptic genus at z = 0,

i.e. to the Witten index, vanishes.

Below we discuss a more physical way to compute the contribution of the scattering

states to the elliptic genus. This method should be applicable to any non-compact CFT,

and in particular to DSLST at a generic point in its moduli space.4 The reader not

interested in the details can skip section 3.2 and proceed directly to section 3.3.

3.2 Spectral asymmetry and non-holomorphic contributions

The contribution of the continuum of δ-function normalizable states to the elliptic genus

is related to the difference between the densities of bosonic and fermionic states. These

densities can be computed from the corresponding scattering phase shifts. The individual

phase shifts for bosons and fermions are non-trivial, but the difference between them can

be computed exactly using only asymptotic data. The general idea goes back to calcula-

tions of the Witten index in supersymmetric quantum mechanics with non-compact target

space [25–27].

In order to perform this computation, we first consider the Scherk-Schwarz reduction

of the cigar σ-model in a sector with winding number w to quantum mechanics, i.e. we take

∂1r = 0 , ∂1θ = w . (3.13)

The bosonic part of the resulting Lagrangian takes the form

LBQM =
k

2

(
dr

dt

)2

+
k

2
tanh2 r

(
dθ

dt

)2

− k

2
w2 tanh2 r . (3.14)

This Lagrangian describes the center of mass motion of a string winding the cigar w times.

The attractive potential, the last term in (3.14), is due to the fact that the string can

decrease its energy by moving towards the tip of the cigar.

Quantizing the system, the fermion operators have to satisfy the canonical anticom-

mutation relations {
ψ̄+, ψ+

}
=
{
ψ̄−, ψ−

}
=

1

k
, (3.15)

where ψ± = emψ
m
± (m = 1, 2) with an orthonormal frame em. They can be represented by

four-dimensional Dirac gamma matrices

√
kψ̄+ =

σ1 + iσ2

2
⊗ 12 ,

√
kψ+ =

σ1 − iσ2

2
⊗ 12 ,

√
kψ̄− = σ3 ⊗ σ1 + iσ2

2
,

√
kψ− = σ3 ⊗ σ1 − iσ2

2
, (3.16)

4The universality of this contribution played an important role in [24].
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where ~σ represent the Pauli matrices. The fermion number operator then becomes

F =
1− σ3

2
⊗ 12 + 12 ⊗

1− σ3

2
. (3.17)

One can regard the wavefunctions as 4-component spinors, two of which are bosonic and

the others are fermionic, i.e.,

〈x|B1〉 = f1(r, θ)|+ +〉 ,
〈x|F1〉 = g1(r, θ)| −+〉 ,
〈x|B2〉 = f2(r, θ)| − −〉 ,
〈x|F2〉 = g2(r, θ)|+−〉 . (3.18)

Their left and right-moving U(1)R charges denoted by U(1)l and U(1)r respectively are

summarized, up to overall constants, in the table below

|B1〉 |F1〉 |B2〉 |F2〉
U(1)l −1

2 −1
2 +1

2 +1
2

U(1)r −1
2 +1

2 +1
2 −1

2

.

For the scattering states, the asymptotic behavior of f1,2(r, θ) and g1,2(r, θ) in (3.18)

can be described as follows

f1(r, θ) →
(
e−iKr + e2iδ1

B(K)e+iKr
)
· eipθ ,

g1(r, θ) →
(
e−iKr + e2iδ1

F (K)e+iKr
)
· eipθ ,

f2(r, θ) →
(
e−iKr + e2iδ2

B(K)e+iKr
)
· eipθ ,

g2(r, θ) →
(
e−iKr + e2iδ2

F (K)e+iKr
)
· eipθ . (3.19)

The boson and fermion scattering states are paired by the supercharges Q+ and Q̄+. More

precisely,

Q+|B1〉 ∼ |F1〉 , Q+|F2〉 ∼ |B2〉 , (3.20)

which implies that, in the limit r →∞,[
− i√

k

∂

∂r
− 1√

k

∂

∂θ
− i
√
kw

]
f1(r, θ) ∝ g1(r, θ) ,[

− i√
k

∂

∂r
− 1√

k

∂

∂θ
− i
√
kw

]
g2(r, θ) ∝ f2(r, θ) . (3.21)

These relations provide very strong constraints between phase-shift factors,

e2i(δ1
B(K)−δ1

F (K)) = −K + i(p+ kw)

K − i(p+ kw)
,

e2i(δ2
B(K)−δ2

F (K)) = −K − i(p+ kw)

K + i(p+ kw)
. (3.22)
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This result can be verified directly by using the exact results for the bosonic and fermionic

phase shifts [20, 28]. Note that the individual phase shifts receive non-trivial stringy

corrections that play an important role in the discussion of [29, 30]. However, these stringy

corrections cancel in the difference of phase shifts, which is given exactly by the quantum

mechanical result.

Using the standard relation between the spectral density and the phase shift in quan-

tum mechanics,

ρB(E)− ρF (E) =
1

π

∂

∂E
(δB(E)− δF (E)) , (3.23)

one obtains the difference in the density of states

ρ1
B(K)−ρ1

F (K) = −ρ2
B(K)+ρ2

F (K) =
1

2πi

[
1

K+i(p+kw)
+

1

−K+i(p+kw)

]
. (3.24)

This result implies that, unless one turns on a chemical potential z for the R-charge, there

is no spectral asymmetry. It explains why the scattering state contribution to the Witten

index vanish, Ec(τ, z = 0) = 0.

In a sector with winding w around the cigar, the contribution of scattering states to

the elliptic genus with chemical potential z can be expressed as

EQMc (w) =
∑
p∈Z

∫ ∞
0

dK
[ (
ρ1
B(K)− ρ1

F (K)
)
e−πiz +

(
ρ2
B(K)− ρ2

F (K)
)
e+πiz

]
×
(
e−2πτ2

)E(K,p,w) (
e2πiτ1

)P (p,w)
e2πizJ(p,w) , (3.25)

where

E(K, p,w) =
K2

2k
+
p2

2k
+
kw2

2
,

P (p, w) = −pw ,

J(p, w) =
p

k
− w . (3.26)

Using the result (3.24), one can rewrite the index EQMc in the following form

EQMc (w) = − sinπz
∑
p

∫ ∞
0

dK
1

π

[
1

K + i(p+ kw)
+

1

−K + i(p+ kw)

]
(qq̄)

K2

4k

× q
1
4k

(p−kw)2

q̄
1
4k

(p+kw)2

e2πiz( p
k
−w) . (3.27)

Since the difference in the spectral densities is not affected by the oscillator modes of the

string, the continuum part of the elliptic genus can be written as

Ec = Eosc
c × Ecom

c , Ecom
c =

∑
w

EQM
c (w) , (3.28)

where the contribution from the oscillator modes is

Eosc
c =

∞∏
n=1

[(
1− qne2πiz

) (
1− qne−2πiz

)
(1− qn)2

]
. (3.29)
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Using the definition of the Jacobi theta function ϑ1(τ, z) and the Dedekind eta function

η(q), one can rewrite Ec in the form

Ec = −ϑ1(τ, z)

2η(q)3

∑
p,w∈Z

∫ ∞
0

dK
1

π

[
1

K + i(p+ kw)
+

1

−K + i(p+ kw)

]
(qq̄)

K2

4k

× q
1
4k

(p−kw)2

q̄
1
4k

(p+kw)2

e2πiz( p
k
−w) , (3.30)

which agrees with (3.12).

3.3 Mock modularity

There is a close relationship between mock modular forms and the elliptic genera of non-

compact CFT’s [18, 19]. In fact, one can show that the discrete part (3.11) can be written

as follows

Ed = +
iϑ1(τ, z)

kη(q)3

k∑
β,γ=1

e2πiβγ
k q

β2

k
(
e2πiz

) 2β
k A1,k

(
τ,
z + βτ + γ

k

)
, (3.31)

where the Appell-Lerch sum is a well-known mock modular form defined by [19]

A1,k(τ, z) =
∑
t∈Z

qkt
2 (
e2πiz

)2kt
1− (e2πiz) qt

. (3.32)

On the other hand, from an integration formula,∫
R∓iε

dp
1

p− iλ
e−αp

2
= iπsgn(λ± ε)Erfc

(√
α|λ|

)
eαλ

2
(α, ε > 0 and λ ∈ R) , (3.33)

one can express the continuum part (3.12) as

Ec =
iϑ1(τ, z)

2η(q)3

2k−1∑
l=0

R−k,l(τ)ϑk,l

(
τ,
z

k

)
, (3.34)

where the non-holomorphic Eichler integrals R±k,l(τ) are defined as

R±k,l(τ) =
∑

λ=l+2kZ

sgn(λ± ε)Erfc

(√
πτ2

k
|λ|
)
q−

λ2

4k , (3.35)

and ϑk,l(τ, z) denote Jacobi theta functions at level k

ϑk,l(τ, z) =
∑

λ=l+2kZ

qλ
2/4ke2πizλ . (3.36)

Since the Eichler-Zagier involution maps a Jacobi theta function at level k to a different

Jacobi theta function

1

k

k∑
β,γ=1

e2πiβγ
k q

β2

k
(
e2πiz

)2β
ϑk,l

(
τ, z +

βτ + γ

k

)
= ϑk,2k−l (τ, z) for l ∈ Z2k , (3.37)
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(3.34) can be written in the form

Ec =
iϑ1(τ, z)

η(q)3
· 1

k

k∑
β,γ=1

e2πiβγ
k q

β2

k

(
e2πi z

k

)2β
·

(
−1

2

2k∑
l=1

R+
k,l(τ)ϑk,l

(
τ,
z + βτ + γ

k

))
.

(3.38)

Collecting all the results, one can finally observe that the full elliptic genus can be expressed

in terms of the non-holomorphic modular completion of the Appell-Lerch sum A1,k(τ, z),

Ecig = Ed + Ec = +
iϑ1(τ, z)

kη(q)3

k∑
β,γ=1

e2πiβγ
k q

β2

k
(
e2πiz

) 2β
k Â1,k

(
τ,
z + βτ + γ

k

)
, (3.39)

where

Â1,k(τ, z) = A1,k(τ, z)− 1

2

2k∑
l=1

R+
k,l(τ)ϑk,l(τ, z) . (3.40)

Thus, the elliptic genus of the cigar CFT is expressed as the Eichler-Zagier involution [31]

of the modular completion of Appell-Lerch sum, Â1,k(τ, z).

3.4 Character decomposition

We now discuss the expansion of the elliptic genus Ecig (3.11) in terms of N = 2 supercon-

formal characters in the Ramond sector with an insertion of (−1)F .

Let us first introduce the N = 2 character formula with ccig = 3
(
1 + 2

k

)
> 3 of discrete

representations [32, 33]

Chcig
l,n(τ, z) = q

n2−(l−1)2

4k
(
e2πiz

)n
k

1

1− e2πizq
n−l+1

2

· iϑ1(τ, z)

η(q)3
, (3.41)

where 1 ≤ l ≤ k+ 1. The conformal weight h and the U(1)R charge r of an N = 2 primary

corresponding to each character are

• n− l + 1 ≥ 2:

hl,n −
ccig

24
=
n2 − (l − 1)2

4k
,

rl,n =
n

k
− 1

2
. (3.42)

• n− l + 1 ≤ −2:

hl,n −
ccig

24
=

(k − n)2 − (k − l + 1)2

4k
,

rl,n = −k − n
k

+
1

2
. (3.43)

• n− l + 1 = 0:

hl,n −
ccig

24
= 0 ,

rl,n =
n

k
− 1

2
. (3.44)
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The N = 2 characters enjoy a Z2 reflection symmetry

Chcig
l,n(τ, z) = Chcig

(k+2)−l,k−n(τ,−z) , (3.45)

and transform under the spectral flow by α units as

q
ccig

6
α2 (

e2πiz
) ccig

3
α

Chcig
l,n(τ, z + τα) = (−1)αChcig

l,n+2α(τ, z) . (3.46)

It is straightforward to show that the discrete part of the elliptic genus of the SL(2)k
U(1) CFT

can be expanded as

Ed =
k−1∑
l̃=0

∑
w∈Z

Chcig

l̃+1,−l̃+2kw
(τ, z) . (3.47)

3.5 Minimal model

The Landau-Ginzburg theory with a superpotential

W = Xk+2 + Y 2 + Z2 , (3.48)

is well-known to flow in the infrared to the level k SU(2)/U(1) Kazama-Suzuki model,

whose central charge is given by cmin = 3
(
1− 2

k

)
< 3.

The elliptic genus of this minimal model can also be computed by supersymmetric

localization with the result [34]

Emin(τ, z) =
ϑ1

(
τ,
(
1− 1

k

)
z
)

ϑ1

(
τ, 1

kz
) . (3.49)

The N = 2 superconformal character formulae of the SU(2)/U(1) Kazama-Suzuki

model at level k are

Chmin
l,n (τ, z) = χln,1(τ, z)− χln,3(τ, z) , (3.50)

where the branching functions χlm,s(τ, z) are defined by [35]

χ
ŝu(2)k−2

l (τ, w) · χû(1)2
s (τ, w − z) =

2k−1∑
n=0

χû(1)k
n (τ, w − 2z

k + 2
) · χln,s(τ, z) , (3.51)

where χ
ŝu(2)k
l (τ, z) and χ

û(1)k
n (τ, z) denote the ŝu(2)k and û(1)k characters given by

χ
ŝu(2)k
l (τ, z) =

ϑk+2,l+1(τ, z/2)− ϑk+2,−l−1(τ, z/2)

ϑ2,1(τ, z/2)− ϑ2,−1(τ, z/2)
(l = 0, 1, .., k) ,

χû(1)k
n (τ, z) =

ϑk,n(τ, z/2)

η(q)
(n = 0, 1, .., 2k − 1) . (3.52)

The minimal model characters are periodic in m with period 2k,

Chmin
l,n (τ, z) = Chmin

l,n+2k(τ, z) , (3.53)
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and also enjoy a Z2 reflection symmetry

Chmin
l,n (τ, z) = −Chmin

(k−2)−l,k+n(τ, z) . (3.54)

Using these two properties, one can always choose (l, n) to satisfy the constraint

0 ≤ |n∓ 1| ≤ l . (3.55)

Then, the conformal weight h and r charge of the highest weight representation corre-

sponding to Chmin
l,n (τ, z) are

hl,n −
cmin

24
=

(l + 1)2 − n2

4k
,

rl,n = −n
k
± 1

2
. (3.56)

Under spectral flow by α units, the N = 2 characters Chmin
l,n transform as

q
cmin

6
α2 (

e2πiz
) cmin

3
α

Chmin
l,n (τ, z + ατ) = (−1)αChmin

l,n+2α(τ, z) . (3.57)

We can then express the elliptic genus of the N = 2 SU(2)
U(1) minimal as

Emin(τ, z) =
k−1∑
l=1

Chmin
l−1,l(τ, z) , (3.58)

where the N = 2 characters can be written as

Chmin
l−1,l(τ, z) =

iϑ1(τ, z)

η(τ)3
e−2πiz l

k

∑
w∈Z

qkw
2+lw

[
1

1−ql+kwe2πiz
+

1

1−qkwe−2πiz
−1

]
. (3.59)

Note that the N = 2 characters Chmin
l−1,l(τ, z) correspond to primary vertex operators

Ṽ susy
l−1
2

; l−1
2
, l−1

2

(
1
2 ,

1
2

)
. This implies that the elliptic genus Emin receives contributions only

from the characters associated with the Ramond ground states.

3.6 DSLST

We saw earlier that the holographic dual of DSLST at the particular point in the moduli

space corresponding to the brane configuration of figure 1 contains the Zk orbifold of the

product of an N = 2 cigar SCFT and an N = 2 minimal model:(
SL(2)k
U(1)

× SU(2)k
U(1)

)
/Zk . (3.60)

The Zk orbifold action, that is generated by e2πi(2J3
R) with

2J3
R = Jcig

R + Jmin
R , (3.61)

is necessary for space-time supersymmetry.5

5And worldsheet N = 4 superconformal symmetry.
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In the case of this particular class of orbifold theories, we can use the results of [36] to

obtain (see e.g. [37–39])

EDSLST(τ, z) =
1

k

k−1∑
α,β=0

q
ĉ
2
α2 (

e2πiz
)ĉα Ecig(τ, z + ατ + β)Emin(τ, z + ατ + β) , (3.62)

where the elliptic genera of the two coset models are given by (3.39) and (3.49), and the

central charge is

ĉ =
ccig

3
+
cmin

3
= 2 . (3.63)

Clearly we obtain a non-holomorphic elliptic genus since the cigar elliptic genus is not holo-

morphic. The contribution from the discrete states of DSLST can be read off from (3.31),

EdDSLST(τ, z) =
1

k

k−1∑
α,β=0

q
ĉ
2
α2 (

e2πiz
)ĉα Edcig(τ, z + ατ + β)Emin(τ, z + ατ + β) . (3.64)

Using (3.58) and (3.47), it is also useful to rewrite the discrete part of the elliptic genus in

terms of N = 2 superconformal characters as

EdDSLST =
k−1∑
α=0

k−1∑
l=1

k−1∑
l̃=0

∑
w∈Z

δ(l + l̃ − k) · Chcig

l̃+1,−l̃+2α+2kw
(τ, z) · Chmin

l−1,l+2α(τ, z) . (3.65)

The Zk projection gives rise to the Kronecker delta in the above expression.

In the next section we discuss various features of the discrete contribution to the elliptic

genus and their physical implications.

4 Properties of the Elliptic Genus

4.1 N = 4 Character Decomposition

The superconformal field theory appearing in the holographic description of DSLST has an

N = 4 superconformal algebra with c = 6. It must therefore be possible to decompose the

discrete contribution to the elliptic genus into a (in general infinite) sum of N = 4 char-

acters. The irreducible highest weight representations V
(m)
h,j of the N = 4 superconformal

algebra with c = 6(m− 1) are labelled by h and j, the eigenvalues of L0 and
(
2J3

R

)
0
. We

define the Ramond sector characters as

ch
(m)
h,j (τ, z) = Tr

V
(m)
h,j

[
(−1)F e2πiz(2J3

R)0qL0−c/24
]
. (4.1)

These characters are given by [40]

ch
(m)
m−1

4
,j

(τ, z) = iµ
(m)
j (τ, z)

(ϑ1(τ, z))2

ϑ1(τ, 2z) · η(τ)3
(4.2)
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for the massless or BPS characters with h = m−1
4 and j ∈ {0, 1, · · ·m− 1}, and by

ch
(m)
h,j = i(−1)jqh−

m−1
4
− j2

4m (ϑm,j(τ, z)− ϑm,−j(τ, z))
(ϑ1(τ, z))2

ϑ1(τ, 2z) · η(τ)3
(4.3)

for the massive or non-BPS characters with h > m−1
4 and j ∈ {1, 2, · · ·m − 1}. Here the

function

µ
(m)
j (τ, z) = (−1)j+1

∑
k∈Z

qmk
2 (
e2πiz

)2mk j+1∑
a=−j

(
e2πizqk

)a
1− e2πizqk

, (4.4)

is a generalized Appell-Lerch sum and for m = 2 is closely related to the Appell-Lerch sum

µ(τ, z) that plays a prominent role in Zwegers influential work on mock theta functions [41].

One can show that the second Taylor coefficients of N = 4 massless and massive characters

are given by(
1

2πi

)2 d2

dz2
ch

(m)
m−1

4
,0

(τ, z)

∣∣∣∣∣
z=0

= 4
∞∑
n=1

qn
(

1− qmn2
)

(1− qn)2
−mnq

mn2
(1 + qn)

1− qn

 ,
(

1

2πi

)2 d2

dz2
ch

(m)
h,1 (τ, z)

∣∣∣∣∣
z=0

= −2qh−
m−1

4 ϑ
(1)
m,1(τ) . (4.5)

It is not hard to see that the decomposition into N = 4 characters involves the massless

character ch
(2)
1
4
,0

with multplicity (k−1). As discussed in section 4.4, these correspond under

spectral flow to the chiral operators in the NS sector that can be understood as the relative

translation modes of the fivebranes. In terms of world-volume fields on IIB fivebranes

they belong to the same supermultiplet as the k − 1 massless gauge bosons in the Cartan

subalgebra of SU(k). Denoting the multiplicities of massive characters by an we thus have

the decomposition

EdDSLST(τ, z) = (k − 1)ch
(2)
1
4
,0

(τ, z) +

∞∑
n=1

anch
(2)
1
4

+n,1
(τ, z) . (4.6)

Based on non-trivial numerical experimentation, we believe that the second Taylor

coefficient of EdDSLST(τ, z) for arbitrary k is(
1

2πi

)2 d2

dz2
EdDSLST(τ, z)

∣∣∣∣∣
z=0

= 4Fk,12 , (4.7)

and thus the coefficients an satisfy the relation

−1

2
ϑ

(1)
2,1(τ)

∑
n=1

anq
n− 1

8 = Fk,12 (q)− (k − 1)F2,1
2 (q) (4.8)

with

Fk,12 =

 ∑
r,s∈Z

0<s<kr

−k
∑
r,s∈Z

0<ks<r

 sqrs =

∞∑
n=1

qn
(

1− qkn2
)

(1− qn)2
− knq

kn2
(1 + qn)

1− qn

 . (4.9)
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Here ϑ
(1)
2,1(τ) denotes the first Taylor coefficient of a Jacobi theta function with level 2,

ϑ2,1(τ, z),

ϑ
(1)
2,1(τ) =

∑
n∈Z

(1 + 4n)q
(4n+1)2

8 = η(q)3 . (4.10)

The Fk,12 are mixed mock modular forms of weight two that played an important role in

the analysis of [42]. It is natural to expect a relation between the second derivative of

EdDSLST(τ, z) at z = 0 and the spacetime BPS index computed in [42] since they are both

weight two (mixed) mock modular forms computed in the SCFT describing the holographic

background of DSLST.

For later convenience, we present the first few coefficients an (k > 2) below

a1 = 2k − 4 , a2 = 8k − 20 , a3 =

{
6 if k = 3

22k − 66 if k > 3
, (4.11)

and so on. At k = 2, all the coefficients an vanish and the elliptic genus is simply given by

the N = 4 massless character with j = 0

EdDSLST(τ, z) = ch
(2)
1
4
,0

(τ, z) at k = 2 . (4.12)

4.2 Comments on k = 2

Note that the N = 2 minimal model contribution to the elliptic genus is not present at

k = 2. It is therefore natural to ask how our result at k = 2 is related to the elliptic genus

of the Z2 orbifold of the cigar theory at k = 2 studied in [18–20].

Using the results of [36], the elliptic genus of the Zk orbifold of the coset CFT takes

the general form

EDorb(τ, z) =
1

k

k−1∑
α,β=0

(−1)D(α+β+αβ)e2πi ĉ
2
αβq

ĉ
2
α2 (

e2πiz
)ĉα Ecig(τ, z + ατ + β) , (4.13)

where D is an integer satisfying

Dk = ĉk mod 2 . (4.14)

For a generic k, we can choose D = 1 satisfying the relation (4.14),

k =

(
1 +

2

k

)
k mod 2 . (4.15)

and the elliptic genus then becomes

ED=1
orb (τ, z) =

1

k

k−1∑
α,β=0

(−1)(α+β)e2πi 1
k
αβq

ĉ
2
α2 (

e2πiz
)ĉα Ecig(τ, z + ατ + β) , (4.16)
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which agrees with the results in [18–20]. When k = 2, one can show that

ED=1
orb (τ, z) =

iϑ1(τ, z)

η(q)3
·
∑
m∈Z

q2m2
ξ2m

1− ξ
1
2 qm

=

(
1 +

1√
ξ

)
+

(√
ξ + 1

)3 (√
ξ − 1

)2
ξ

3
2

q +O(q2) , (4.17)

where ξ = e2πiz. However, the above result cannot be decomposed into N = 4 supercon-

formal characters. This implies that N = 2 supersymmetry can not be enhanced to N = 4

supersymmetry when k = 2 and D = 1. Furthermore, there are states in (4.17) that carry

fractional U(1) R-charges indicating that the choice D = 1 leads to a theory which is not

compatible with spacetime supersymmetry of DSLST.

It is interesting to understand where the discrepancy between the two results (4.12)

and (4.17) at k = 2 comes from. In fact, for k = 2 we find that there is another solution

to (4.14), namely D = 2 since

D · 2 =

(
1 +

2

2

)
· 2 . (4.18)

The corresponding elliptic genus ED=2
orb (τ, z) turns out to coincide with a single N = 4

massless character with j = 0, i.e.,

ED=2
orb (τ, z) =

1

2

1∑
α,β=0

q
ĉ
2
α2 (

e2πiz
)ĉα Ecig(τ, z + ατ + β)

= ch
(2)
1
4
,0

(τ, z) , (4.19)

which now in turn agrees perfectly with the elliptic genus of double-scaled little string

theory (DSLST) at k = 2 (4.12).

4.3 Large k limit

Consider the discrete contribution to the elliptic genus of DSLST for k fivebranes in the

limit k → ∞. We might expect that it becomes easier to identify vertex operators for

various states in this limit, which will be discussed in section 4.4, since the algebraic

structure simplifies.

It is not hard to check that

lim
k→∞

Fk,12 (q) =
1− E2(τ)

24
(4.20)

with E2(τ) the quasi modular Eisenstein series of weight 2. In particular it is independent

of k at large k. We therefore have, pulling out an overall factor of k,

lim
k→∞

EdDSLST(τ, z) = k

(
ch

(2)
1
4
,0

(τ, z) +
∞∑
n=1

anch
(2)
1
4

+n,1
(τ, z)

)
(4.21)
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where ∑
n=1

anq
n−1/8 =

2

η(τ)3
F2,1

2 (q) (4.22)

It is perhaps interesting to rewrite this further using the fact [43] that

F2,1
2 (q) =

η(τ)3H(2)(τ)

48
+
E2(τ)

24
(4.23)

where

H(2)(τ) = 2q−1/8
(
−1 + 45q + 231q2 + 770q3 + · · ·

)
(4.24)

is the weight 1/2 mock modular form connected to Mathieu Moonshine [44] that appears

in the decomposition of the the elliptic genus of K3 into N = 4 characters. We thus have

∑
n=1

anq
n−1/8 =

H(2)(τ)

24
+

E2(τ)

12η(τ)3
(4.25)

The elliptic genus of K3 has a decomposition into characters of the N = 4 SCA given

by

EK3(τ, z) = 24ch
(2)
1
4
,0

(τ, z) +
∞∑
n=0

cnch
(2)
1
4

+n,1
(τ, z) (4.26)

with
∞∑
n=0

cnq
n−1/8 = H(2)(τ) . (4.27)

We thus have

lim
k→∞

EdDSLST(τ, z) = k

(
EK3(τ, z)

24
+ Zquasi(τ, z)

)
(4.28)

where

Zquasi(τ, z) =
∞∑
n=0

bnch
(2)
1
4

+n,1
(τ, z) (4.29)

and
∞∑
n=0

bnq
n−1/8 =

E2(τ)

12η(τ)3
(4.30)

This shows that the large k limit of the DSLST elliptic genus is not modular since E2

is only quasi modular. It would be interesting to develop a physical interpretation of the

above decomposition of the large k limit of the DSLST elliptic genus into a modular part,

proportional to the elliptic genus of K3, and a quasi-modular part.

4.4 Vertex operators and null states

The elliptic genus of DSLST, EDSLST, is independent of the position of the fivebranes (see

section 5). Thus, if we make the radius of the circle in figure 1, R0, large, the naive

expectation is that the fivebranes do not interact with each other and the elliptic genus

should be proportional to k.
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However we can see from (4.6) and (4.11) that the elliptic genus of DSLST exhibit a

more complicated dependence on k,

EdDSLST(τ, z) = (k − 1)ch
(2)
1
4
,0

(τ, z) + 2(k − 2)ch
(2)
1
4

+1,1
(τ, z) + · · ·

= (k − 1)

[
1 +

(
e4πiz − 2e2πiz + 2− 2e−2πiz + e−4πiz

)
q +O(q2)

]
,

+ 2(k − 2)

[ (
−e2πiz + 2− e−2πiz

)
q +O(q2)

]
+O(q2) . (4.31)

We will explain in section 5 that this result does not contradict the fact that the elliptic

genus is independent of the positions of the fivebranes. Here we will try to identify the

vertex operators that correspond to the first few terms in (4.31).

To find vertex operators contributing to the elliptic genus, the expression (3.65) in

terms of N = 2 superconformal characters is very useful. The terms in (3.65) corresponding

to the primary operators that contribute the N = 4 massless character ch
(0)
1
4
,0

are

Chcig
l+1,l(τ, z)Chmin

k−l−1,k+l(τ, z) = 1 + 2
(
2− e2πiz − e−2πiz

)
q +O(q2) (4.32)

where l = 2, .., k − 2 and

Chcig
2,1(τ, z)Chmin

k−2,k+1(τ, z) = 1 +
(
3− e2πiz − 2e−2πiz

)
q +O(q2) ,

Chcig
k,k−1(τ, z)Chmin

0,2k−1(τ, z) = 1 +
(
3− 2e2πiz − e−2πiz

)
q +O(q2) . (4.33)

From these expressions, we can identify the vertex operators of the lowest conformal weight

h− c
24 = 0 as

O(0)
j,0 ≡ V

susy
j;j+1,j+1

(
−1

2
,−1

2

)
· Ṽ susy

j;j,j

(
+

1

2
,+

1

2

)
, (4.34)

where j = 0, 1
2 , ..,

k−2
2 . Note that the operators O(0)

j,0 are related to the translational modes

of the fivebranes via spectral flow. This explains why the N = 4 massless character

contributions are proportional to (k − 1) rather than k. It is due to the fact that, as will

be discussed in details in section 5, we need to exclude a non-normalizable translational

mode corresponding to the center of mass of the system.

The other vertex operators in (4.32) and (4.33) of higher conformal weights can be

obtained by acting with N = 2 superconformal currents of cigar and minimal CFTs on

O(0)
j,0 . For instance, we can show from the OPEs in appendix A that there are (2k − 3)

vertex operators of conformal weight h− c
24 = 1 and U(1)R charge r = +1[(

G+
cig

)
−1
,O(0)

j,0

]
∝ O(0)

j,1 ≡ V
susy
j;j,j+1

(
1

2
,−1

2

)
· Ṽ susy

j;j,j

(
+

1

2
,+

1

2

)
, (4.35)

where j = 0, 1
2 , ..,

k−2
2 , and[(

G+
min

)
−1
,O(0)

j,0

]
∝ Õ(0)

j,1 ≡ V
susy
j;j+1,j+1

(
−1

2
,−1

2

)
· Ṽ susy

j;j−1,j

(
+

3

2
,+

1

2

)
, (4.36)
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where j = 1
2 , 1, ..,

k−2
2 . Note that superficially the number of states of the form (4.35), (4.36)

should be proportional to k − 1, like that of the states (4.34). However, this is not the

case due to the presence of null states, in this case associated with the action of
(
G+

min

)
−1

on O(0)
j=0,0.

The other terms in (3.65) relevant to find the vertex operators of conformal weight

h− c
24 = 1 and positive U(1)R charge r > 0 are

Chcig
l+1,l+2(τ, z)Chmin

k−l−1,k+l+2 =
(
e4πiz − 2e2πiz + 1

)
q +O(q2) , (4.37)

where l = 1, 2, .., k − 2, and

Chcig
k,k+1(τ, z)Chmin

0,1 (τ, z) =
(
e4πiz − e2πiz

)
q +O(q2) . (4.38)

From these N = 2 characters, it is straightforward to identify the (k− 1) vertex operators

of conformal weight h = 1 + 1
4 and U(1)R charge r = 2,

O(1)
j,2 ≡ V

susy
j;j+1,j+1

(
+

1

2
,−1

2

)
· Ṽ susy

j;j,j

(
+

3

2
,+

1

2

)
, (4.39)

where j = 0, 1
2 , ..,

k−2
2 . These operators are in fact N = 4 descendants in the massless

characters [(
J++

R

)
−1
,O(0)

j,0

]
= O(1)

j,2 , (4.40)

which explains why their contributions are proportional to (k− 1). Here J++
R = J1

R + iJ2
R.

On the other hands, the (2k− 3) vertex operators in (4.37) and (4.38) of conformal weight

h− c
24 = 1 and R-charge r = 1 can be obtained from acting with G−cig and G−min on O(2)

j,2 ,

[(
G−cig

)
0
,O(1)

j,2

]
∝ O(1)

j,1 ≡ V
susy
j;j+2,j+1

(
−1

2
,−1

2

)
· Ṽ susy

j;j,j

(
+

3

2
,+

1

2

)
, (4.41)

where j = 0, 1
2 , ..,

k−2
2 , and

[(
G−min

)
0
,O(1)

j,2

]
∝ Õ(1)

j,1 ≡ V
susy
j;j+1,j+1

(
+

1

2
,−1

2

)
· Ṽ susy

j;j+1,j

(
+

1

2
,+

1

2

)
, (4.42)

where j = 0, 1, .., k−3
2 . In this case there is a null state associated with the action of

(
G−min

)
0

on O(0)

j= k−2
2
,0

.

To summarize, we constructed (4k−6) vertex operators of conformal weight h− c
24 = 1

and R-charge r = 1 that contribute to the elliptic genus. Among them, one can show that

certain linear combinations of O(0)
j,1 and Õ(0)

j,1 , and those of O(1)
j,1 and Õ(1)

j,1 for j = 0, 1
2 , ..,

k−2
2

are in fact N = 4 descendants of the ground state, and thus belong to the massless

character. The remaining 2(k − 2) linear combinations of these operators, orthogonal to

the above N = 4 descendants, belong to the massive character ch
(2)

1+ 1
4
,0

(τ, z).
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4.5 Density of states at large level

In preparation for a discussion of the black hole/string transition in section 6 we now turn

to an estimate of the entropy of states contributing to the elliptic genus. The entropy

formula can be read off from the asymptotic behavior of the level density for highly excited

perturbative string BPS states. In other words, we would like to determine the large level

N behavior of D(N, z) defined by

D(N, z) =

∮
dq

2πi

EdDSLST(τ, z)

qN+1
, (4.43)

where a small circle around the origin is chosen as a contour.

To evaluate the above contour integral for large N , we first need to know how the

discrete part of the elliptic genus EdDSLST(τ, z) behaves as q → 1−. It is straightforward to

estimate crudely that EdDSLST is asymptotic to

EdDSLST ∼ Exp

[
C(z)

1− q

]
as q → 1− (4.44)

with

C(z) =
(

Li2(1)− Li2(ξ) + Li2(ξ1/k)− Li2(ξ1−1/k)
)

+ c.c. , (4.45)

where ξ = e2πiz and Li2(x) =
∑
m=1

xm

m2
.

While we could estimate the asymptotic behavior at any value of z, there is cancel-

lation between fermion and boson states at z = 0 while at z = 1
2 the elliptic genus is

essentially the partition function in the Ramond-Ramond sector with boson and fermion

states contributing with equal signs. Since physically we are interested in the density of

the total number of states we are most interested in the asymptotic behavior at z = 1
2 .

Mathematically we note that by using the identity

Li2(e2πix) + Li2(e−2πix) = 2π2

(
x2 − x+

1

6

)
, (4.46)

we can show that C(z) has a maximum at z = 1
2 and

C

(
z =

1

2

)
= 2π2

(
1

2
− 1

2k

)
. (4.47)

We now continue with the saddle point approximation to evaluate the above contour

integral (4.43) at z = 1
2 . One finds the saddle point for q near 1. Indeed the integrand at

q = 1− ε

Exp

[
C(1

2)

1− q
− (N + 1) log q

]
' Exp

[
C(1

2)

ε
+ (N + 1)ε

]
, (4.48)

becomes stationary at

ε '

√
C(1

2)

N + 1
as N →∞ . (4.49)
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Therefore, the leading behavior of the degeneracy at high level N is

D

(
N,

1

2

)
' e2π

√
(1− 1

k )N . (4.50)

After including the additional contribution from R1,4 × S1, we can determine the

entropy of Dabholkar-Harvey states at high energy in DSLST as

Sstring = 2π

√(
1 + 1− 1

k

)
N . (4.51)

This agrees with a naive application of the Cardy formula for a theory with ceff = 6(2− 1
k ),

as in [5].

5 (In)dependence of moduli

In our discussion above we focused on the elliptic genus of Little String Theory at a

particular point in its moduli space at which the fivebranes are placed equidistantly on a

circle in the transverse R4. More general points in the moduli space correspond to other

distributions of fivebranes in R4 and it is natural to ask how the answer depends on the

positions of the fivebranes.

Superficially, we expect the elliptic genus to be independent of the moduli since, as

we explained before, it encodes the number of spacetime 1/4 BPS states with particular

momentum and winding (P,W ) on a longitudinal S1. The mass of these states (1.2) is

independent of the position moduli, and their degeneracy is an integer that cannot depend

on continuous parameters such as positions of fivebranes.6

This leaves the possibility of jumps in the number of such states at some specific values

of the moduli, that is a wall-crossing phenomenon that is known to occur for some BPS

states in field and string theory. In particular, our analysis above is directly applicable

when the string coupling of DSLST in small, i.e. when the mass of a D1-brane stretched

between any two NS5-branes is much larger than ms. As mentioned above, in that regime

the states in question are perturbative string states, quite analogous to the perturbative

BPS states studied in [7].

One might wonder whether there are possible jumps in the spectrum when the DSLST

coupling is of order one, and the perturbative analysis may receive order one corrections.

We do not expect such jumps when the fivebranes are separated. In general, the jumps are

due to the fact that the supersymmetric central charges carried by the BPS states depend

on the moduli; they occur when the central charge vectors of different BPS states align.

In our case, the charges carried by the states in question are independent of the position

moduli. As we will see below, the spectrum of BPS states however does exhibit jumps

at points in moduli space where fivebranes collide. At such points, the spectrum of BPS

states goes from that of strings to that of black holes.

6A related point is that one can think of the fivebrane background (3.2) as a non-compact K3, and it is

well known that for compact K3’s the elliptic genus is independent of the moduli.
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(a) (b)

Figure 2. (a) k fivebranes on a single circle are separated into groups of (k1, k2, .., kn) fivebranes

on n circles, (b) a single throat of k fivebranes is divided into smaller throats of k1 and k2 fivebranes

where k = k1 + k2.

In this section we will stay in the realm of weakly coupled DSLST, where the spectrum

of BPS states is expected to be independent of the positions of the fivebranes. This

independence may seem surprising from the spacetime point of view. Consider, for example,

a deformation that takes the original configuration of k fivebranes on a circle to one where

they are separated into groups of (k1, k2, · · · , kn) fivebranes that live on n well separated

circles, depicted in figure 2 (a). The discrete part of the elliptic genus receives contributions

from normalizable states that live in the fivebrane geometry. Let us denote the number

of such states with given (P,W ) in the single circle configuration of figure 1 by FP,W (k).

If we separate the fivebranes into n circles, as in figure 2 (a), and assume that the states

that contribute to the elliptic genus are localized in the vicinity of the individual circles,

then the number of states in the second configuration should be
∑n

i=1 FP,W (ki). Since

the degeneracy of states with given (P,W ) must be independent of the positions of the

fivebranes, we conclude that

FP,W (k) =

n∑
i=1

FP,W (ki) (5.1)

for all ki satisfying
∑n

i=1 ki = k. However, we saw in previous sections that the degeneracies

computed from the elliptic genus do not actually satisfy this relation. For instance, see

equation (4.31). In this section we will discuss the origin of this discrepancy.

While the states we are interested in are 1/4 BPS, it is useful first to recall the situation

with 1/2 BPS states. These are the modes that correspond to the positions of NS5-branes

in R4, and their partners under spacetime supersymmetry. The translational modes can

be viewed as deformations of the harmonic function

H = l2s

k∑
j=1

1

|~x− ~xj |2
, (5.2)
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which determines the metric, dilaton and NS two-form B-field of fivebranes located at

~x = ~xj , j = 1, 2, · · · , k,

ds2 = dxµdx
µ +H(~x)d~x · d~x ,

e2(Φ−Φ0) = H(~x) ,

Hmnp = −εqmnp∂qΦ . (5.3)

Thus, they can be thought of as gravitons with wave functions obtained by replacing

~xj → ~xj + ~δj in (5.2), and expanding in ~δj .

The term in H(~x) that goes like δs (or, more precisely, δj1δj2 · · · δjs with the vector

indices on δj suppressed), behaves at large |~x| like 1/|~x|s+2, i.e. like 1/|~x|s relative to the

leading 1/|~x|2 term. Expanding the gravitational action, taking into account the factor of

exp(−2Φ) in front of the Einstein term, we see that the behavior of the norm at large |~x|
is given by ∫

d|~x|
|~x|
|~x|2−2s . (5.4)

Therefore, the s = 1 perturbation is non-normalizable. Looking back at (5.2), we see that

this perturbation corresponds to displacing the center of mass of the fivebrane system in

R4. The fact that it is non-normalizable in the near horizon geometry of the fivebranes was

found in the original work [14], who showed that the wavefunction of this mode is centered

in the transition region between the near-horizon geometry and the asymptotically flat

space far from the branes. In terms of LST, this implies that the low energy theory on k

NS5-branes in type IIB string theory has gauge group SU(k) rather than U(k).

On the other hand, the modes with s > 1 are normalizable. Their wavefunctions can

be obtained by performing the expansion described above. We will not need the details of

this expansion, except for the fact that the corresponding wavefunctions are centered in the

region near the fivebranes. Far from the fivebranes, the wavefunctions decay exponentially

in the natural variable ln |~x|.
Using this picture, we can now revisit the question of the (in)dependence of the spec-

trum of BPS states on the positions of the fivebranes. The number of translational modes

of the fivebranes and their superpartners is clearly independent of the positions of the

fivebranes. With the center of mass excluded, it is given by 4(k − 1). Superficially, this

is inconsistent with the discussion around the equation (5.1), but now we can resolve

the discrepancy.

Consider the multi-circle configuration of fivebranes depicted in figure 2 (a). Following

the analysis above, we know that each cluster of ki fivebranes gives rise to 4(ki − 1) trans-

lational modes, with the center of mass degrees of freedom excluded. This gives rise to

4
∑

i(ki − 1) = 4(k − n) modes, that are localized near the respective circles. The missing

4(n− 1) modes are easy to identify — they correspond to modes that preserve the center

of mass of the whole fivebrane configuration, but not the centers of mass of the separate

groups of ki fivebranes. As in [14], their wave functions are not localized near the individ-

ual circles in figure 2 (a). Such a configuration can be thought of as a single throat of k
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fivebranes at large |~x| that splits into smaller throats of the individual groups of fivebranes

as |~x| decreases, as depicted in figure 2 (b). The wave functions of the 4(n − 1) missing

multiplets are supported in the transition regions between the large throat and the smaller

ones, and lead to a violation of the logic that led to (5.1).

So far we discussed the behavior of the 1/2 BPS states, which can be identified as

Ramond-Ramond ground states leading to the constant contribution to the elliptic genus

given by (4.31). In particular, we explained why their contribution (k − 1) is independent

of the positions of the fivebranes, and yet is not proportional to k. A key point was that the

wave functions of these states do not satisfy decoupling, i.e., if we split the fivebranes into

arbitrarily well separated groups, these groups remain entangled via their centers of mass.

As discussed in previous sections, the full elliptic genus can be decomposed into the

contributions of different representations of the N = 4 superconformal algebra, which is

present everywhere in the moduli space of the multi-fivebrane CFT. The massless N = 4

character contribution in (4.31) corresponds to states that can be thought of as the 1/2

BPS states discussed above acted on by left-moving N = 4 superconformal generators.

Thus, the wave functions of these states are the same as those of the 1/2 BPS states, and

our discussion of the latter applies directly to them.

Massive N = 4 character contributions are in general more complicated, as can be seen

from (4.31). At the special point in the moduli space described by figure 1, we demonstrated

in section 4.4 that these states can be obtained by acting on the 1/2 BPS states with left-

moving N = 2 generators of the SL(2,R)/U(1) and SU(2)/U(1) factors. We also found

that null states sometimes can be generated by acting on the Ramond-Ramond ground

states with such N = 2 superconformal generators, which explains why their contribution

is not even proportional to (k − 1).

However, at generic points in moduli space, the chiral algebra of the model is just the

N = 4 superconformal algebra, and such a description is not available. Nevertheless, we

expect the wave functions of these states to have the same qualitative structure as that of

states in the massless N = 4 characters, for the following reason. All states contributing to

the elliptic genus are Ramond ground states in the right-moving worldsheet sector. At large

k, we can think of them as zero modes of the Dirac equation in the fivebrane background.

Squaring this equation gives the massless Klein-Gordon equation, whose solution is the

harmonic function (5.2). Thus, the properties of these states as we change the moduli

should be the same as those in the massless N = 4 representations.

6 Black holes versus perturbative string states

In the previous section we saw that the contribution of normalizable LST states to the

elliptic genus is independent of the positions of the fivebranes in R4. In weakly coupled

DSLST these states can be thought of as perturbative string states living in the fivebrane

background, but the corresponding spectrum can be extended to regions in moduli space

where the DSLST coupling is of order one. As mentioned in the previous section, this pic-

ture is expected to be valid for separated fivebranes, but it receives important modifications

when fivebranes are allowed to coincide.
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Consider, for example, the configuration of fivebranes on a circle of radius R0 in the

transverse space R4 depicted in figure 1. For R0 > 0 we expect the analysis of the previous

sections to be valid. However, for R0 = 0 there is another competing contribution to

the elliptic genus from a black hole with the same quantum numbers as the perturbative

string states described above. To construct this black hole, we start with the coincident

fivebrane background [14], R4,1 × S1 × Rφ × SU(2)k, and look for solutions that carry the

two charges P (momentum) and W (winding) along the S1 of radius R that the fivebranes

wrap. In string theory, it is convenient to label these charges in terms of left and right

moving momenta,

(PL, PR) =

(
P

R
− WR

α′
,
P

R
+
WR

α′

)
. (6.1)

For PL = PR = 0, the black hole solution takes the form SL(2,R)k/U(1)×R4×S1×SU(2)k.

It describes the background of k non-extremal fivebranes, with the value of the dilaton at

the horizon labeling the energy density above extremality. For general (PL, PR), one can

find the black hole solution by reduction of the three-dimensional rotating, charged black

string background obtained from the uncharged black hole solution by a sequence of boosts

and T dualities. Algebraically, this leads to a CFT in which the SL(2,R)k/U(1) × S1

factor above is replaced by SL(2,R)k×U(1)
U(1) , where the embedding of the gauged U(1) into

U(1) × U(1) ⊂ SL(2,R) × U(1) is determined by the charges (PL, PR). For a review of

this construction, as well as for the precise sigma-model background fields in the general

two-charge case, see e.g. [5, 45].

A tractable special case, which has all the essential ingredients is PL = 0. The corre-

sponding charged black hole has metric, dilaton and gauge field,

ds2 = −fdt2 +
kα′

4

dr2

r2f
,

Φ = −1

2
ln

(√
k

α′
r

)
,

At =
α′

2r
PR , (6.2)

where the function f(r) is

f =
(

1− r−
r

)(
1− r+

r

)
, (6.3)

and the inner and outer horizons of the black hole are at

r± =
α′

2

(
MBH ±

√
M2

BH − P 2
R

)
. (6.4)

The entropy of this black hole, and its generalization to generic (PL, PR,MBH) is given

by [5]

SBH = πls
√
k

(√
M2

BH − P 2
L +

√
M2

BH − P 2
R

)
. (6.5)

For the extremal case MBH = |PR|, this takes the form

SBH = 2π
√
kPW , (6.6)
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familiar from studies of three-charge black hole. The above entropy formula (6.6) can be

derived microscopically by computing the high energy density of states of the CFT on

the system of coincident NS5-branes and fundamental strings [1]. Looking back at the

analogous expression for perturbative strings (4.51) of the same charges (PL, PR),

Sstring = 2π

√(
2− 1

k

)
PW , (6.7)

we see that the two are qualitatively similar, but the factor (2 − 1
k ) in the fundamental

string entropy is replaced by k for black holes. Thus, the black hole entropy is always

larger for k ≥ 2.

We conclude that as the fivebranes approach each other, the number of 1/4 BPS LST

states jumps from (6.7) to (6.6). At first sight this is rather surprising — the positions of

the fivebranes are moduli in the theory, and can be thought of as Higgsing the SU(k) gauge

group to U(1)k−1. When the fivebranes are nearly coincident, the symmetry breaking scale,

namely the mass of W-bosons corresponding to D-strings stretched between NS5-branes,

becomes very low. We would not expect it to influence the physics of very massive states,

such as the BPS states contributing to the elliptic genus. Indeed, in a local QFT such a

phenomenon could not occur. However, LST is not a local QFT, and the states we are

interested in can probe the non-locality; e.g., T-duality, which is often cited as evidence

for non-locality of LST, acts non-trivially on them. We therefore believe that the jump in

the spectrum of 1/4 BPS states is an example of UV/IR mixing in LST. The Higgs scale

(IR) influences the spectrum of very massive BPS states (UV).

Another element of the above discussion that we need to address concerns the (non)

compactness of the worldvolume of the fivebranes. Above, we took it to be R4,1 × S1, but

this leads to the following issue. We see from (6.2) that the two dimensional string coupling

is determined by the mass of the (extremal) black hole,

e−2Φ(r±) =

√
k

2
MBH , (6.8)

where we set α′ = 2 for simplicity. If the four dimensional space along the fivebranes, M4,

is non-compact, the six dimensional string coupling in the directions along the fivebranes

is infinite. Hence, the coset description cannot be studied at small string coupling.

To avoid these singularities it is convenient to compactify the worldvolume R4 to

T4. However, this raises another issue that needs to be addressed. When the fivebrane

worldvolume is taken to be T4 × S1, the LST in question lives in 1 + 0 dimensions. Thus,

the moduli corresponding to positions of fivebranes cannot be taken as fixed, but are

rather fluctuating quantum mechanical degrees of freedom. The states of the theory are

characterized by wave functions on the classical moduli space. This leads to the question

what is the correct interpretation of our results above in these low dimensional vacua

of LST.

Our view on this is that compactified LST has a discrete set of vacua labeled by the

number of coincident fivebranes, which ranges from 0 to k (or, more generally, the numbers
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of coincident fivebranes (k1, · · · , kn) with
∑

i ki = k). The vacuum with no coincident

fivebranes has an elliptic genus that was computed in previous sections. It can be thought

of as due to perturbative string states in the separated fivebrane background. The elliptic

genus of the vacuum with k coincident fivebranes, defined formally as the object counting

spacetime 1/4 BPS states, is dominated by the contribution of the black hole described in

this section. For intermediate numbers of coincident fivebranes we have a combination of

the two effects.

Note that the above picture is reminiscent of, but not identical to, the one discussed

in [46]. There, the fivebranes were always coincident and the strings were part of the back-

ground. The issue was what is the 1 + 1 dimensional low energy theory on the system of

strings and fivebranes, and it was argued that it splits into Coulomb and Higgs branch

CFT’s with different central charges. The Coulomb branch corresponds to strings propa-

gating in the vicinity of, but outside the fivebranes. The Higgs branch describes the theory

of strings dissolved in the fivebranes as self-dual Yang-Mills instantons. An important role

in their separation is played by the fivebrane throat of [14] seen by strings propagating in

the fivebrane background.

In our case, the only branes in the background are the fivebranes. We are interested

in the full theory rather than just its low energy limit, and the different branches of the

theory correspond to different numbers of coincident fivebranes. However, the difference

in the entropy of BPS states between (6.7) and (6.6) is the same as in [46]. In the Higgs

branch this can be read off the Cardy formula with central charge c = 6k. In the Coulomb

branch one has c = 6 but the object that governs the high energy density of states is

ceff = 6(2− 1
k ). The fivebrane throat plays an important role in our discussion as well since

in a sector of the Hilbert space of LST with W 6= 0, we effectively have strings propagating

in the vicinity of the fivebranes, as in [46].

Another closely related phenomenon is the string-black hole transition discussed in [5].

There, it was shown that the high energy spectrum of string theory in asymptotically linear

dilaton vacua (i.e. vacua of LST) is dominated for k > 1 by black holes, while for k < 1 the

black holes are non-normalizable, and the spectrum is that of perturbative strings. The

dependence of the entropy on the slope of the linear dilaton, Q, that can be parametrized

by the number of fivebranes k in this paper via the relation Q =
√
α′/k for strings and

black holes is precisely the same as in our analysis above. However, unlike in [5], we work

at a fixed k > 1, and the transition between strings and black holes in our case is between

different branches of the theory of k fivebranes. It would be interesting to understand the

relation between the two phenomena better.

7 Non-extremal case

In the previous sections we saw that LST on T4×S1 exhibits a non-trivial vacuum structure.

Classically, the number of 1/4 BPS states carrying the charges (6.1) jumps when fivebranes

coincide. Quantum mechanically, the theory splits into distinct sectors labeled by the

numbers of coincident fivebranes, each with its own spectrum of BPS states.
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In this section we would like to briefly comment on the physics of near-BPS states

in this theory. Consider a point in the moduli space of LST at which the fivebranes are

separated, such that the string coupling is everywhere small. In that case, we can compute

the entropy of near-BPS states using perturbative string techniques. It is given by

Sstring = πls

√
2− 1

k

(√
M2

BH − P 2
L +

√
M2

BH − P 2
R

)
. (7.1)

In the BPS case, MBH = |PR|, this reduces to (6.7).

The energy above the BPS bound effectively makes the fivebranes non-extremal. Thus,

their gravitational attraction exceeds the repulsion due to their Bµν charge, and the moduli

associated with their positions develop an attractive potential. Thus, the problem becomes

time-dependent. However, if the system is near-BPS, the timescale associated with the

motion of the fivebranes towards each other is large, and one can treat the problem in the

adiabatic approximation.

In particular, there is a long time period in which the thermodynamics of the system is

that of fundamental strings, and the entropy is given by (7.1). Eventually, as the fivebranes

get closer, the effective string coupling becomes of order one. In this regime, the time

evolution becomes rapid and the adiabatic approximation breaks down.

When t → ∞, the fivebranes approach each other, and the effective string coupling

in their vicinity becomes large. In this limit, one can again do thermodynamics, but this

time it is governed by the black hole solutions discussed in the previous section. The

corresponding entropy is given by (6.5), which has the same form as (7.1), with 2− 1
k → k.

As expected, the entropy increases with time.

The discussion of the non-extremal case above is useful for understanding the jump

in the BPS entropy discussed in the previous sections. In the non-extremal problem the

behavior of the entropy is a smooth function of the two parameters in the problem: time,

t, and the energy above extremality, ε. We start with the system of separated fivebranes

(MW 6= 0), and take the limit ε → 0 (the BPS limit) and t → ∞. This limit can be

taken in two ways that give different answers. If we first take ε→ 0, and then t→∞, we

get the fundamental string entropy (7.1). On the other hand, if we take t → ∞ first and

then ε → 0, we get the black hole answer (6.5). Slightly away from extremity, the time

dependence interpolates smoothly between the two.

8 Discussion

In this paper we saw that string theory in a background with k NS5-branes wrapping

T4×S1 has non-trivial vacuum structure. We studied the spectrum of 1/4 BPS states in the

different vacua and saw that when the fivebranes are coincident, they can be described as

black holes carrying the relevant charges, while along the Coulomb branch they correspond

to pertubrative string states in the separated fivebrane geometry.

We computed the degeneracies of the two kinds of states, and found that they do not

agree. In particular, at the origin we found the entropy (6.6), while along the Coulomb
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branch it was (6.7). We interpreted this discrepancy as due to a non-trivial vacuum struc-

ture of the fivebrane theory.

We pointed out that this phenomenon is counterintuitive, since the origin is a finite

distance away from points along the Coulomb branch, and the metric on the Coulomb

branch does not receive quantum corrections. In terms of the theory of the fivebranes,

known as Little String Theory, it is possibly due to the non-locality of the theory and it

implies that it exhibits UV/IR mixing.7

Our analysis is based on the elliptic genus of DSLST at the special point in the moduli

space that allows the weakly-coupled solvable CFT description (2.21). Using various prop-

erties of the elliptic genus discussed in section 4, we argued in section 5 that the elliptic

genus is independent of the positions of the NS5-branes. This result is consistent with the

fact that, when the LST is defined on T4 × S1, the notion of classical moduli space is not

well defined and the ground state of the theory can be characterized by a wavefunction on

the position moduli space. Finally, we obtained the degeneracy of such ground states (4.51)

from the asymptotic behavior of the elliptic genus at large level.

Our results have implications to other issues. One is the program to describe mi-

crostates of supersymmetric black holes in terms of horizonless geometries [3, 4]. The

quarter BPS black holes that figured in our analysis are nothing but the three-charge black

holes whose microstates are discussed in that program. Usually, these black holes are stud-

ied in the full, asymptotically flat, spacetime of string theory. However, as discussed in

the present work, one can also study them in the near-horizon geometry of the fivebranes,

which is an asymptotically linear dilaton spacetime.

The main idea of the microstate program is to find geometries that look asymptotically

far from the horizon like the corresponding black hole, but that deviate from it near the

location of the would-be horizon, and in particular do not have a horizon themselves. The

hope is that the entropy of these horizonless geometries agrees with the Bekenstein entropy

of the black hole.

Our results point to a subtlety with this program. We saw that when the fivebranes

are separated, even by a small distance, the BPS states can be thought of as standard fun-

damental string states in the smooth background of the fivebranes. One can describe these

states by vertex operators in the fivebrane background, but one can also write the super-

gravity fields around the strings that carry momentum and winding. In flat spacetime this

was done in [47, 48], and a similar construction should work in the fivebrane background.

The supergravity fields around these fundamental strings are presumably essentially

the same as those describing the black hole solution with the same charges, at least at large

distance from the horizon. Thus, one might be tempted to think of them as microstates

of the black hole. However, the picture we were led to in this paper is different. The

horizonless geometries corresponding to the fundamental string states in the separated

fivebrane background and the black hole are different objects. In fact, they live in different

vacua of the fivebrane theory, and their entropies are not the same. Thus, our results

suggest that a horizonless geometry that approximates well the black hole geometry outside

of the would be horizon can not necessarily be thought of as a microstate of the black hole.

7Other manifestations of UV/IR mixing in LST have been studied in [29, 30].
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Our point of view is compatible with that of [49], where it was argued that horizonless

geometries and black holes with the same quantum numbers correspond to different states.

In that case the different descriptions were valid in different duality frames, i.e. different

regions in coupling space, whereas for us the black holes and fundamental strings describe

the BPS states in different vacua of the same theory. Our picture also seems to be related

to that of [50], although the precise relation remains to be understood.

Our discussion in section 7 is reminiscent of other phenomena in string theory. For

example, the authors of [51] discussed the transition from fundamental strings to black

holes that happens as a function of the string coupling. In particular, they argued that

if one considers a typical highly excited fundamental string state, and continuously raises

the string coupling, at some point the Schwarzschild radius of a black hole with the same

mass and charges as the fundamental string exceeds the string scale, and the fundamental

string description gives way to a black hole one.

Something similar happens dynamically in our system. If we start with non-extremal

fivebranes in the region where the effective LST string coupling is small, the entropy is

dominated by fundamental string states. As time goes by, the fivebranes approach each

other, the effective string coupling grows, and at late time the system is better described

as a black hole. Thus, our system can be used to study the transition of [51] in a con-

trolled setting.

Another related problem is that discussed in [52]. These authors studied the thermo-

dynamics of weakly coupled string theory in asymptotically flat spacetime, and emphasized

that due to the Jeans instability, thermodynamics does not really make sense in this system.

Rather, at any finite density the system will develop time dependence. However, if the time

variation is sufficiently slow, one can still study weakly coupled string thermodynamics,

and the resulting description is valid for a long time.

The bulk description of our system (in terms of an asymptotically linear dilaton space-

time) is similar to that of [52]. Away from extremality, the system is time dependent, but

if the fivebranes are sufficiently well separated and the non-extremality is sufficiently small,

the time evolution is slow. Thus the fundamental string picture is valid for a long time, but

it eventually breaks down when the fivebranes get close and the system makes a transition

to a black hole phase. In our case we have an alternative description of the dynamics in

terms of fivebrane physics (due to LST holography), and one can use it to shed additional

light on the discussion of [52].

The discussion of this paper can be generalized in a number of directions. We studied

the vacuum structure of six dimensional LST, but one could generalize the analysis to other

dimensional vacua of LST, e.g. those studied in [53]. There are reasons to believe that the

study of such vacua involves new qualitative and quantitative phenomena.

In our analysis, the degeneracy of BPS states on the Coulomb branch was obtained by

studying string propagation in the fivebrane background. It is natural to ask whether the

results could alternatively be obtained from the holographically dual point of view. (IIB)

LST reduces in the IR to six dimensional N = (1, 1) supersymmetric Yang-Mills theory,

and it would be interesting to see how much of the structure we found can be understood

in that theory, e.g. along the lines of [54].
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A Review on coset CFTs

A.1 Cigar CFT

The supersymmetric SL(2)k WZW model can be described by SL(2) currents J i and three

free fermions ψi (i = 1, 2, 3) satisfying the OPEs below

J i(z)J j(0) ∼
k
2η

ij

z2
+ iεijk

Jk(0)

z

J i(z)ψj(0) ∼ iεijkψk(0)

z

ψi(z)ψj(0) ∼ ηij

z
, (A.1)

where ηij = diag(+1,+1,−1). Let us define a new SL(2,R) current ji,

ji = J i +
i

2
εijkψjψk . (A.2)

One can then show that the currents ji commute with three fermions ψi and generate a

bosonic SL(2) WZW model at level k + 2. Let us define ψ± = 1√
2

(
ψ1 + iψ2

)
for later

convenience.

The supersymmetric SL(2)/U(1) coset model can be obtained by gauging the U(1)

N = 1 supermultiplet that contains the primary λ3 and J3 = {G−1/2, λ3}. Then the coset

has an enhanced N = 2 algebra generated by

G±cig =

√
2

k
j∓ψ±

J sl
R =

k + 2

k
ψ+ψ− +

2

k
j3 = λ+λ− +

2

k
J3 . (A.3)

We denote by x, H, X, and XR the bosonizations of various currents j3, ψ+ψ−, J3

and JR,

j3 = −
√
k + 2

2
∂x ,
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ψ+ψ− = +i∂H ,

J3 = −
√
k

2
∂X ,

JR = +i

√
k + 2

k
∂XR . (A.4)

Note that two U(1) currents J3 and JR commute. From (A.2) and (A.3), one can show that

x =

√
k + 2

k
X + i

√
2

k
XR ,

iH =

√
2

k
X + i

√
k + 2

k
XR . (A.5)

Using the non-compact parafermion fields π, π†, the ladder operators j± then can be ex-

pressed as follows

j+ =
√
k + 2 · π(z) · e−

√
2
k+2

x(z)
,

j− =
√
k + 2 · π†(z) · e+

√
2
k+2

x(z)
. (A.6)

The two supercurrent G±cig can be then expressed as

G+
cig =

√
2(k + 2)

k
· π†(z) · ei

√
k
k+2

XR(z)
,

G−cig =

√
2(k + 2)

k
· π(z) · e−i

√
k
k+2

XR(z)
, (A.7)

Vertex Operators. Let us discuss the primaries of the coset model. We start with the

SL(2) vertex operator Φsl
j;m,m̄ of conformal weight − j(j+1)

k . One can define the SL(2)/U(1)

vertex operator V susy
j;m,m̄(α, ᾱ) by removing the U(1)J3 part of the operator Φsl

j;m,m̄,

eiαHeiᾱH̄Φsl
j;m,m̄ ≡ e

√
2
k ((m+α)X+(m̄+ᾱ)X̄)V susy

j;m,m̄(α, ᾱ) . (A.8)

The conformal weight and U(1) R-charge of V susy
j;m,m̄(α, ᾱ) are

h =
(m+ α)2 − j(j + 1)

k
+

1

2
α2 ,

h̄ =
(m̄+ ᾱ)2 − j(j + 1)

k
+

1

2
ᾱ2 , (A.9)

and

r =
2(m+ α)

k
+ α ,

r̄ =
2(m̄+ ᾱ)

k
+ ᾱ . (A.10)
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From the definition of the primary operator V B
j;m,m̄ for the bosonic SL(2)/U(1) at

level k + 2

Φsl
j;m,m̄ ≡ e

√
2
k+2

(mx+m̄x̄)
V B
j;m,m̄ , (A.11)

we have

V susy
j;m,m̄(α, ᾱ) = V B

j;m,m̄e
i 2√

k(k+2)
(mXR+m̄X̄R)

e
i
√
k+2
k (αXR+ᾱX̄R) , (A.12)

where XR denotes the bosonization of the U(1) R-current J sl
R (A.4). From the well-known

equivalence between the non-compact parafermionic primaries,

V B
j;m,m̄ = V B

k−2
2
−j; k+2

2
+m, k+2

2
+m̄

, (A.13)

we can verify an interesting property that V susy
j;m,m̄(α, ᾱ) should satisfy

V susy
j;m,m̄(α, ᾱ) = V susy

k−2
2
−j;± k+2

2
+m,± k+2

2
+m̄

(α∓ 1, ᾱ∓ 1) . (A.14)

Useful OPEs. Finally, let us summarize several useful OPEs for primaries. The para-

fermionic primaries V B
j;m,m̄ satisfy the following OPEs

π(z)V B
j;m,m̄(0) ∼ m+ (j + 1)√

k + 2

1

z1− 2m
k+2

Vj;m+1,m̄(0) ,

π†(z)V B
j;m,m̄(0) ∼ m− (j + 1)√

k + 2

1

z1+ 2m
k+2

Vj;m−1,m̄(0) . (A.15)

Then, one can easily show that

G+
cig(z)V susy

j;m,m̄(α, ᾱ)(0) ∼ m− (j + 1)

z1−α

√
2

k
V susy
j;m−1,m̄(α+ 1, ᾱ) + · · · ,

G−cig(z)V susy
j;m,m̄(α, ᾱ)(0) ∼ m+ (j + 1)

z1+α

√
2

k
V susy
j;m+1,m̄(α− 1, ᾱ) + · · · . (A.16)

A.2 Minimal model

The supersymmetric SU(2)k WZW model can be described by SU(2) currents J̃a and three

free fermions ψa (a = 1, 2, 3) satisfying the OPEs below

J̃a(z)J̃b(0) ∼
k
2δ
ab

z2
+ iεabc

J̃c(0)

z

J̃a(z)ψb(0) ∼ iεabcψc(0)

z

ψa(z)ψb(0) ∼ δab

z
, (A.17)

where δab = diag(+1,+1,+1). Let us define a new SU(2) current j̃a,

j̃a = J̃a +
i

2
εabcψbψc . (A.18)
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One can then show that the currents j̃a commute with three fermions ψa and generate a

bosonic SU(2) WZW model at level k − 2.

The supersymmetric SU(2)/U(1) coset model can be obtained by gauging the U(1)

N = 1 supermultiplet that contains the primary ψ3 and J̃3 = {G−1/2, ψ3}. Then the coset

has an enhanced N = 2 algebra generated by

G±min =

√
2

k
j̃∓ψ±

J su
R =

k − 2

k
ψ+ψ− − 2

k
j̃3 = ψ+ψ− − 2

k
J̃3 . (A.19)

For later convenience, let us denote by x̃, H̃, X̃, and X̃R the bosonizations of various

currents j̃3, ψ+ψ−, J̃3 and J su
R ,

j̃3 = i

√
k − 2

2
∂x̃ ,

ψ+ψ− = i∂H̃ ,

J̃3 = i

√
k

2
∂X̃ ,

J su
R = +i

√
k − 2

k
∂X̃R . (A.20)

Note that two U(1) currents J̃3 and J su
R commute. From (A.18) and (A.19), one can

show that

x̃ =

√
k − 2

k
X̃ −

√
2

k
X̃R ,

H̃ =

√
2

k
X̃ +

√
k − 2

k
X̃R . (A.21)

Using the parafermion fields π̃, π̃†, the ladder operators j̃± then can be expressed as follows

j̃+(z) =
√
k − 2 · π̃(z) · e+i

√
2

k−2
x̃
(z) ,

j̃−(z) =
√
k − 2 · π̃†(z) · e−i

√
2
k+2

x̃
(z) . (A.22)

The two supercurrent G±min can be also written as

G+
min =

√
2(k − 2)

k
· π̃†(z) · e+i

√
k
k−2

X̃R(z)
,

G−min =

√
2(k − 2)

k
· π̃(z) · e−i

√
k
k−2

X̃R(z)
, (A.23)

Vertex Operator. Let us then discuss the primaries of the supersymmetric SU(2)/U(1)

coset model. We start with the SU(2)k−2 vertex operator Φsu
j̃;m̃, ¯̃m

of conformal weight j̃(j̃+1)
k .

One can obtain the SU(2)/U(1) vertex operator Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) by removing the U(1)J̃3 part

of the operator Φsu
j̃;m̃, ¯̃m

,

eiβH̃eiβ̄
¯̃HΦsu

j̃;m̃, ¯̃m
≡ ei

√
2
k

(
(m̃+β)X̃+( ¯̃m+β̄) ¯̃X

)
Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) . (A.24)
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The conformal weight and U(1) R-charge of Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) are

h =
j̃(j̃ + 1)− (m̃+ β)2

k
+

1

2
β2 ,

h̄ =
j̃(j̃ + 1)− ( ¯̃m+ β̄)2

k
+

1

2
β̄2 , (A.25)

and

r =
2(m̃+ β)

k
+ β ,

r̄ =
2( ¯̃m+ β̄)

k
+ β̄ . (A.26)

From the definition of the primary operator Ṽ B
j̃;m̃, ¯̃m

for the bosonic SU(2)/U(1) at

level k − 2

Φsu
j̃;m̃, ¯̃m

≡ ei
√

2
k−2

(m̃x̃+ ¯̃m¯̃x)
Ṽ B
j̃;m̃, ¯̃m

, (A.27)

we have

Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) = Ṽ B

j̃;m̃, ¯̃m
e
−i 2√

k(k−2)

(
m̃X̃R+ ¯̃m ¯̃XR

)
e
i
√
k−2
k

(
βX̃R+β̄ ¯̃XR

)
(A.28)

where X̃R denotes the bosonization of the U(1) R-current J su
R (A.20). From the well-known

equivalence between the non-compact parafermionic primaries,

Ṽ B
j̃;m̃, ¯̃m

= Ṽ B
k−2

2
−j̃;− k−2

2
+m̃,− k−2

2
+ ¯̃m

, (A.29)

we can verify an interesting property that ΨB
j̃;m̃, ¯̃m

should satisfy

Ṽ susy

j̃;m̃, ¯̃m
(β, β̄) = Ṽ susy

k−2
2
−j̃;± k−2

2
+m̃,± k−2

2
+ ¯̃m

(β ± 1, β̄ ± 1) . (A.30)

Useful OPEs. Finally, let us summarize several useful OPEs for primaries. The para-

fermionic primaries Ṽ B
j;m,m̄ satisfy the following OPEs

π̃(z)Ṽ B
j̃;m̃, ¯̃m

(0) ∼ j̃ − m̃√
k − 2

1

z1+ 2m̃
k−2

Ṽ B
j̃;m̃+1, ¯̃m

(0) ,

π̃†(z)Ṽ B
j̃;m̃, ¯̃m

(0) ∼ j̃ + m̃√
k − 2

1

z1− 2m̃
k−2

Ṽ B
j̃;m̃−1, ¯̃m

(0) . (A.31)

Then, one can easily show that

G+
min(z)Ṽ susy

j̃;m̃, ¯̃m
(β, β̄)(0) ∼ j̃ + m̃

z1−β

√
2

k
Ṽ susy

j̃;m̃−1, ¯̃m
(β + 1, β̄)(0) + · · · ,

G−min(z)Ṽ susy

j̃;m̃, ¯̃m
(β, β̄)(0) ∼ j̃ − m̃

z1+β

√
2

k
Ṽ susy

j̃;m̃+1, ¯̃m
(β − 1, β̄)(0) + · · · . (A.32)
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