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Abstract We are concerned with detecting continuous
changes in stochastic processes. In conventional studies on
non-stationary stochastic processes, it is often assumed that
changes occur abruptly. By contrast, we assume that they take
place continuously. The proposed scheme consists of an effi-
cient algorithm and rigorous theoretical analysis under the
assumption of continuity. The contribution of this paper is
as follows: We first propose a novel characterization of pro-
cesses for continuous changes. We also present a time- and
space-efficient online estimator of the characteristics. Then,
employing the proposed estimate, we propose a method for
detecting changes together with a criterion for tuning its
hyper-parameter. Finally, the proposed methods are shown
to be effective through experimentation involving real-life
data from markets, servers, and industrial machines.
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1 Introduction

1.1 Motivation for and purposes of this paper

This paper addresses the issue of detecting changes in non-
stationary stochastic processes. Specifically, we focus on the
online setting. That is, when given a time series sequen-
tially, we are concerned with detecting change points in a
sequential manner. In conventional studies on change detec-
tion, researchers have sought to detect time points when the
statistical models of data suddenly change [2,9]. In real situ-
ations, however, changes may not occur abruptly, but rather
incrementally over some successive periods of time. We call
such changes continuous changes. Actually, there exist many
phenomena thatmay be characterized by continuous changes
(e.g., seismic motion before and after an earthquake, and
stock prices in markets).

In this paper, we consider the problem of detecting time
pointswhen continuous changes start. This problem isworth-
while studying from a practical point of view, because the
starting point of continuous changes can be considered a
symptom of big changes that will occur in future. There-
fore, detecting them in early stages can lead to predictions of
important events in the future. Despite the importance of con-
tinuous changes, it has not yet been explored how to detect
them. It is certain that the detection of continuous changes
has been covered in some previous studies in the context of
concept drift [3,7]. Nevertheless, they have been thought of
as succession of relatively small, ‘abrupt’ changes.

There are three purposes of this paper, and they are sum-
marized as follows: The first is to introduce a framework for
detecting continuous changes. In it, we define the magnitude
of continuous changes and formalize the problem of mea-
suring them. The second purpose is to propose an efficient
algorithm for detecting continuous changes. The third pur-
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pose is to empirically demonstrate the effectiveness of our
proposed algorithm in comparison with existing algorithms.

1.2 Novelty of this paper

The significance and novelty of this paper are summarized
as follows:

(1) A novel framework for continuous change detection: We
first define a measure of continuous changes for para-
metric models. It is designed on the basis of Kullback–
Leibler divergence between the model before and after a
change point,which has been known as a typicalmeasure
of change. In our framework, we assume that the param-
eter value changes smoothly over time. We employ a
weighted linear regression tomodel it.We thereby derive
a novel measure of change by plugging the localized
maximum likelihood estimates of the parameter and its
rate of change into the approximation of the Kullback–
Leibler divergence.We justify this measure theoretically
by proving that it is invariant with respect to parameteri-
zation. We show several examples of calculations of this
measure for parametric models, such as the independent
exponential family and auto-regression model.

(2) A novel efficient algorithm for online detection of contin-
uous changes: Real-time change point detection is more
favorable than batch detection for a variety of applica-
tions. We develop an efficient algorithm for detecting
continuous changes in an online fashion. It is designed
on the basis of the following two key ideas: (i) to effi-
ciently calculate change scores by utilizing a recurrence
relation for the weighted linear regression and (ii) to cal-
culate a threshold for scores dynamically. We establish
an alarm when the score exceeds the threshold, where
the threshold may change over time. Combining (i) with
(ii) above yields an online algorithm for detecting con-
tinuous changes in the computation time O(N ) for the
total data size N .

(3) A novel criterion for choosing hyper-parameters: We
also present a criterion that measures the fitness of the
proposed model without knowing whether there are any
changes in data. This enables us to automatically tune
the hyper-parameters of the proposed method, such that
one is no longer worried about the choice of hyper-
parameters.

(4) Empirical demonstration of the effectiveness of our
method: We used synthetic and real datasets to com-
pare ourmethod to existing online change point detection
methods in terms of how accurately and how early they
can detect continuous changes. Specifically, we applied
our method to malware detection, economic event detec-
tion, and industrial incident detection.We therefore show

that our proposed method, together with the hyper-
parameter-choosing criterion, is able to detect symptoms
of important events significantly earlier than other meth-
ods.

The following updates are made compared with the
preliminary version: (a) more comprehensive theoretical
treatments are supplied for the proposed method, especially
for the thresholding algorithms (Sect. 4.2); (b) a criterion
for choosing hyper-parameters is provided, and its validity
is empirically shown (Sects. 5 and 6.2); and (c) applicabil-
ity of the proposed method on multivariate time series is
also verified in the experiments together with a novel change
localization technique (Sect. 6.2.3).

1.3 Related work

Many methods have been proposed for detecting changes
that happen abruptly in stochastic processes [2,5,8,10,15].
Online methods for detecting them have also been developed
in [1,5,13,18–21]. Those methods somehow test whether
the two sample sets clipped from neighboring two sliding
windows are generated from an identical distribution. It is
assumed that changes occur at some discrete time points
and that the generated distribution is piecewise stationary.
Therefore, it follows that they can unnecessarily degrade
their performance in detecting continuous changes, which
take place over some periods of time rather than a discrete
point.

Change detection is related to the topic of concept drift
(see, for example, [6,7,14,22]). Changes that occur gradu-
ally over time are called incremental changes in the context of
concept drifts [7,22], but there are no studies on online detec-
tion algorithms tailored for incremental changes to the best
of our knowledge. Recently, changes in the rate of change
have been studied in the scenario of volatility shift change
detection [12]. This implicitly assumes that changes can be
continuous. Our work differs in that ours deals with the
rate of change with continuously changing smooth mod-
els, while [12] deals with that with a piecewise stationary
model.

The remainder of this paper is organized as follows: Sect. 2
introduces a measure for continuous changes. Section 3
gives a time- and space-efficient algorithm for computing
the proposed estimates, as well as a number of examples
for some statistical models. In Sect. 4, we present a method
for detecting continuous changes employing them. Section 5
provides us with a criterion for choosing hyper-parameters of
the proposed method. Section 6 shows experimental results
on synthetic and real datasets. Section 7 gives concluding
remarks.
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2 Estimating the magnitude of continuous changes

2.1 Measures of magnitude of changes

In this section, we introduce a measure for changes in
stochastic processes. Consider a parametric space of ergodic
Markov models, M = {p(·|·; θ) : θ ∈ Θ ⊂ R

d}, and
a stochastic process P = {Xt }n−1

t=0 . Let xt be an instance
of Xt drawn from parameter θt ∈ Θ given past instances
xt−1
0 = [x0, x1, . . . , xt−1], such that

dP
(
xt |xt−1

0

)
= p

(
xt |xt−1

0 ; θt

)
dxt ,

or, we may write,

Xt ∼ θt .

for t = 0, 1, . . . , t − 1. For simplicity, we here suppose that
the model spaceM satisfies some smoothness and standard
regularity conditions. Specifically, the negative logarithmic
likelihood − log p(xt |xt−1

0 ; θ) is assumed to be differen-
tiable continuous, bounded, and strongly convexwith respect
to parameter θ . It is also assumed that the Fisher informa-
tion at each point of the parametric model Θ is (symmetric)
positive definite,

I (θ)
def= lim

n→∞
1

n
Eθ

[
− ∂2

∂θ2
log p

(
Xn−1
0 ; θ

)]
� 0, (1)

where Eθ [·] denotes the expectation with respect to Xk ∼
θ (∀k), and p(xn−1

0 ; θ) = ∏n−1
t=0 p(xt |xt−1

0 ; θ) denotes the
joint probability mass (or density) function.

We stipulate that time t is a change point in the process
P if and only if θt 	= θt−1. Then, it is reasonable to estimate
whether t is a change point by estimating some divergence
measure d(θt , θt−1) and by comparing it to a threshold β.
The Kullback–Leibler (KL) divergence is one of the most
common divergence measures for such purpose. Let yt be
the KL divergence between probability densities specified
by θt and θt−1

yt
def= D(θt‖θt−1)

= lim
n→∞

1

n
Eθt

⎡
⎣log

p
(
Xn−1
0 ; θt

)

p
(
Xn−1
0 ; θt−1

)
⎤
⎦ . (2)

Henceforth, we refer to yt as themagnitude of change at time
t and consider how to estimate yt .

We say that a change is discrete if no change occurs
before and after the corresponding point. The magnitude of
a discrete change can be estimated in the following man-
ner: Assuming that the data distribution is stationary before

and after the change point t , one can estimate θt and θt−1,
respectively, with, for example, the technique of maximum
likelihood estimation. Plugging those estimates into yt gives
a simple estimator of the magnitude of the change

ŷt = D(θ̂t‖θ̂t−1).

Then, one can detect discrete changes by finding time t such
that ŷt is sufficiently large. A substantial number of previ-
ous methods for detecting change points can be viewed as a
special case of the above scheme.

By contrast, we say that a change is continuous if a change
occurs over some successive period of time. In this case,
direct estimations of θt and θt−1 as described above do not
make sense since every step of the change is surrounded
with other small changes. In order to deal with continuous
changes, we consider another characterization of the mea-
sure yt , rather than parameters themselves. In this paper, we
estimate yt through the following proxy measure:

zt
def= δ�

t I (θt )δt , (3)

where δt
def= θt − θt−1 is the rate of the parameter change.

In fact, this proxy works well where changes are relatively
small; the proxy measure coincides with 2yt in the limit of
‖δt‖ → 0. This is demonstrated by expanding yt with respect
to δt :

2yt = 2D(θt‖θt − δt )

= 2 · 1
2
δ�
t I (θt )δt + o(‖δt‖2)

= zt (1 + o(1)). (4)

Therefore, it suffices for estimating whether t is a change
point (i.e., zt 	= 0). Note that the plug-in estimation of zt
requires estimating δt , which requires the smoothness of
the parameter sequence θn−1

0 in exchange of its piecewise
stationarity. Hence, it fits better for detecting continuous
changes.

2.2 Estimating linearly changing parameters

Below we state the intuition of the proposed method for esti-
mating the proxy magnitude of changes zt = δt I (θt )δt in a
very simple case. We assume that the process changes lin-
early over time. In other words, we assume here that the
increments of the parameter, δk (k = 1, . . . , n−1), are iden-
tical to one another. Under this seemingly strong assumption,
we have the maximum likelihood estimator of θt and δt ,

(θ̂t , δ̂t ) = argmin
(θ,δ)

1

n

n−1∑
k=0

Lk(θ + (k − t)δ), (5)
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where Lk(θ) = − log p(xk |xk−1
0 ; θ) denotes the logarith-

mic loss for θ relative to the instance xk . It is immediately
apparent that there exists the unique minimizer for (5).

Proposition 1
∑n−1

k=0 Lk(θ +(k− t)δ) is strictly convex with
respect to θ and δ. Therefore, it has a unique minimizer.

Proof It immediately follows from that the objective func-
tion is a positive-weighted summation of strongly convex
functions Lk(θ + (k − t)δ) with respect to θ and δ. �

Owing to the uniqueness, the minimization is reduced to
solving the following equations:

n−1∑
k=0

∂Lk

∂θ
(θ̂t + (k − t)δ̂t ) = 0,

n−1∑
k=0

(t − k)
∂Lk

∂θ
(θ̂t + (k − t)δ̂t ) = 0. (6)

2.3 Estimating continuously changing parameters

It is not reasonable to assume that the process changes lin-
early over time in most practical cases. We rather assume
that the process changes linearly over a local range of time.
Under this more realistic assumption, we present the corre-
sponding general form of the proposed method. Consider the
minimization (5) putting a weight on each term that appears
in the sum. By introducing a weight sequence {wi }i∈R (0 ≤
wi < ∞), we are able to fit the linear model locally. We
define the localized maximum likelihood estimator by

(θ̂t , δ̂t ) = argmin
θ,δ

∑
k∈Λ

wk−t Lk(θ + (k − t)δ) + g(θ, δ), (7)

where Λ ⊂ [0, n) ⊂ R is the finite set of extended indices
with even intervals that denotes the points of observations
on the real line. Here, we added a convex (and smooth) reg-
ularizing term g(θ, δ) to stabilize the estimate for a small
sample size |Λ|. The regularizer g(θ, δ) is equivalent to the
prior ∝ exp {−g(θ, δ)}. Therefore, (θ̂t , δ̂t ) is a MAP esti-
mate. Since wi is nonnegative and g(θ, δ) is convex, the
uniqueness of the minimizer can be shown in the same vein
as in Proposition 1. Thus, it can be solved with

∑
k∈Λ

wk−t
∂Lk

∂θ
(θ̂t + (k − t)δ̂t ) + gθ (θ, δ) = 0,

∑
k∈Λ

(t − k)wk−t
∂Lk

∂θ
(θ̂t + (k − t)δ̂t ) + gδ(θ, δ) = 0, (8)

where gx = ∂g
∂x denotes the derivative of g(θ, δ)with respect

to x .

Here, we design the weights and regularizer properly in
order to infer the parameter value and its time derivative at
point t . In order to fit the linear model locally, we reduce wi

when |i | becomes sufficiently large. In addition, to take the
balance between both sides of time point t , we calibrate the
first-order moment of the weights,

∑
k∈Λ

(k − t)wk−t = 0. (9)

Note that, conversely, t can be seen as the center of the
weights given by

t =
∑n−1

k=0 kwk−t∑n−1
k=0 wk−t

. (10)

This localized maximum likelihood estimate is also able
to detect discrete changes. For instance, assume that each
sample xk is independent of the others and that there exists a
discrete change point t such that there exist two parameters
θ− and θ+ (θ− 	= θ+) and that θk = θ− if k < t , otherwise
θk = θ+. Then, as in the following proposition, the resulting
estimate of the magnitude ẑt is bounded away from zero
in probability in the limit of large |Λ|. It implies that the
proposed estimate works well even if changes are discrete.

Proposition 2 Assume that the weight sequence {wi }i∈R
uniformly converges to aRiemann integrable function {w̄i }i∈R,
where 0 <

∫ n
0 w̄k−t dk < ∞. Then, under the preceding

assumption of discrete changes, δ̂t given in (7) is bounded
away from zero—except with a small probability for large
|Λ|. Therefore, the estimated magnitude ẑt is also asymptot-
ically bounded away from zero in probability.

Proof See “Appendix 1.”

3 Approximating estimates

Although the idea behind the proposed estimate is very
simple, there is a difficulty specific to the problem of detect-
ing changes: Since the solution of (8) is often analytically
intractable, it becomes computationally intractable as the
number of observations |Λ| grows. Even if it is calculated,
there is another undesirable property: the resulting value of
the estimated measure, δ̂�

t I (θ̂t )δ̂t , depends on the parame-
terization of model space Θ .

Utilizing the smoothness of the loss function Lk , we now
derive an approximation of the estimate. Applying the tech-
nique of the local linear approximation on (8) yields

L0,1
n (θ̂t ) + δ̂�

t L1,2
n (θ̂t ) + gθ (θ̂t , δ̂t ) = 0,

L1,1
n (θ̂t ) + δ̂�

t L2,2
n (θ̂t ) + gδ(θ̂t , δ̂t ) = 0, (11)
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where we define L j,l
n (θ)

def= ∑n−1
k=0 wk−t (k− t) j

(
∂
∂θ

)l
Lk(θ).

Note that we rescale the time indices of observation such
that the weights {wi } are defined on integers. The solution
to the approximated equations is not only computationally
tractable inmany cases, but also has the followingnoteworthy
property.

Proposition 3 Let (θ̂t , δ̂t ) be the approximated estimate
solving (11) and let ẑt = δ̂�

t I (θ̂t )δ̂t . Then, ẑt is invariant
with respect to the parameterization of model space Θ if
condition (1) holds.

Proof See “Appendix 2.”

So far we have presented a general scheme for estimat-
ing the magnitude of continuous changes. In the rest of this
section, we give two examples of how to calculate estimates
for concrete statistical models: the independent exponential
family and Gaussian autoregressive (AR) models.

3.1 Independent exponential family

Suppose Θ is a member of the exponential family. We have

p(xt |xt−1
0 ; θt ) = exp{θ�

t T (xt ) − A(θt ) − B(xt )},

where T (·) denotes the sufficient statistics, and then

∂Lk

∂θ
(θ) = −T (xk)

� + τ(θ)�,
∂2Lk

∂θ2
(θ) = ∂τ

∂θ
(θ),

where τ(θ)
def= ∂

∂θ
A(θ) = Eθ [T (X)] denotes the expectation

parameter. The regularizer is chosen as follows:

g(θ, δ) = −γ0(θ
�τ0 − A(θ)) + γ1

2
δ�K δ (12)

Therefore, Eq. (11) is reduced to

0 = γ0(−τ0 + τ(θ̂t ))

+
n−1∑
k=0

wk−t

{
−T (xk) + τ(θ̂t ) + (k − t)

∂τ

∂θ
(θ̂t )δ̂t

}
,

0 = γ1K δ̂t

+
n−1∑
k=0

wk−t (k − t)

{
−T (xk) + τ(θ̂t ) + (k − t)

∂τ

∂θ
(θ̂t )δ̂t

}
.

Thus, by taking τ̂t = τ(θ̂t ), ξ̂t = ∂τ
∂θ

(θ̂t )δ̂t and K = I (θ̂t ),
we have
[
T 0
n + γ0τ0

T 1
n

]
= W (n)

[
τ̂t

ξ̂t

]
, (13)

where

W (n)
def=
[
W 0

n + γ0 W 1
n

W 1
n W 2

n + γ1

]
⊗ Id ,

W j
n

def=
n−1∑
k=0

(k − t) jwk−t ,

T j
n

def=
n−1∑
k=0

(k − t) jwk−t T (xk).

Because we calibrated the weights so that W 1
n = 0, Eq. (13)

can be further reduced to

τ̂t = T 0
n + γ0τ0

W 0
n + γ0

, ξ̂t = T 1
n

W 2
n + γ1

. (14)

Remember that the magnitude of change can be calculated as
ẑt = ξ̂�

t Ĩ (τ̂t )ξ̂t , where Ĩ (·) denotes the Fisher information
with respect to τ , since it is invariant to parameter transfor-
mation as proved in Proposition 3.

Note that the resulting estimate is nothing other than the
locally weighted least squares regression on sufficient statis-
tics {T (xt )}, such that

(τ̂t , ξ̂t ) = argmin
n−1∑
k=0

wk−t‖T (xk) − τ − (k − t)ξ‖22, (15)

if γ0 = γ1 = 0. This implies that, even if we employ a mis-
specified statistical model Θ , the estimate measures changes
by projecting data to the space of sufficient statistics. For
example, we can employ a multivariate independent Gaus-
sian model:

Θ
def=
{
(μ,�) ∈ R

d × R
d×d | � � 0, � = ��} ,

such that

p(xt |xt−1
0 ;μ,�) = exp

{− 1
2 (xt − μ)��−1(xt − μ)

}
√
2π

d |�|1/2
.

Then, the sufficient statistics are given by T (x) = x ⊕
vec(xx�), which are the first and second moments of the
data. Therefore, it is able to detect changes regardless of the
true distributions, when the data changes in terms of its low-
est two moments x and xx�.

3.2 Gaussian autoregressive models

Let Θ be an autoregressive model with Gaussian noise of
order p. The conditional density function is given by

p(xt |xt−1
0 ; ν, σ 2) = 1√

2πσ 2
exp

{
− 1

2σ 2 (xt − ν�ut )2
}

,

where ν ∈ R
p+1 and ut

def= [
1 xt−1 xt−2 · · · xt−p

]�
.Letϕ

denote the trivial parameterization, (ν, σ 2), and θ denote the
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natural parameterization, (νσ−2,−σ−2/2). Then, by anal-
ogy with the exponential family, we have

∂Lk

∂θ
(θ) = −T (xl , uk)

� + τ(θ, uk)
�,

∂2Lk

∂θ2
(θ) = τ ′(θ, uk)

∂ϕ

∂θ
,

where

T (xk, uk)
def=
[
xkuk
x2k

]
,

τ (θ, uk)
def= Eθ [T (Xk, uk)] =

[
(uku�

k )ν

ν�(uku�
k )ν + σ 2

]
,

τ ′(θ, uk)
def= ∂τ

∂ϕ
(θ, uk) =

[
uku�

k 0
2ν�(uku�

k ) 1

]
.

Now consider the following regularization over (θ, δ):

g(θ, δ) = γ0(−θ�τ0 + A0(θ)) + γ1

2
δ�K δ,

τ0 =
[

0
b0

]
(b0 ∈ R),

A0(θ) = ν�ν

2σ 2 + 1

2
log 2πσ 2. (16)

Replacing (∂L/∂θ) and (∂2L/∂θ2) in (11) employing the
above equations, we then have

[
C0
n

S0n + γ0b0

]
=
[

(U0
n + γ0 Ip+1)ν̂t

ν̂�
t (U0

n + γ0 Ip+1)ν̂t + σ̂ 2
t (W 0

n + γ0)

]

+
[
U1
n 0

2ν̂�
t U

1
n W 1

n

][
δ̂ν,t

δ̂σ 2,t

]
,

[
C1
n

S1n

]
=
[
U1
n ν̂t

ν̂�
t U

1
n ν̂t + σ̂ 2

t W
1
n

]

+
[
U2
n + γ1 Ip+1 0

2ν̂�
t (U2

n + γ1 Ip+1) W 2
n + γ1

][
δ̂ν,t

δ̂σ 2,t

]
,

(17)

where

C j
n

def=
n−1∑
k=0

(k − t) jwk−t xkuk,

S j
n

def=
n−1∑
k=0

(k − t) jwk−t x
2
k ,

U j
n

def=
n−1∑
k=0

(k − t) jwk−t uku
�
k ,

W j
n

def=
n−1∑
k=0

(k − t) jwk−t ,

K =
[
Ip+1 2ν̂t
2ν̂�

t 4ν̂�
t ν̂t + 2

]
,

for j = 0, 1. Noticing the upper row in Eq. (17), we have

[
ν̂t

δ̂ν,t

]
= U (n)−1

[
C0
n

C1
n

]
, (18)

where

U (n)
def=
[
U 0
n + γ0 Ip+1 U 1

n

U 1
n U 2

n + γ1 Ip+1

]
.

Note that U (n) is invertible if γ0, γ1 > 0 since it is positive
definite,

U (n) =
n−1∑
k=0

wk−t

[
1 k − t

k − t (k − t)2

]
⊗ uku

�
k +

[
γ0

γ1

]
⊗ Ip+1.

The rest of the estimator, (σ̂ 2
t , δ̂σ 2,t ), can be calculated easily

from (17) and (18).

4 Algorithm for detecting changes

In this section, we describe an efficient online algorithm for
detecting continuous changes utilizing the proposed estimate
ẑt = δ̂�

t I (θ̂t )δ̂t given by (11). Specifically, in monitor-
ing changes in a data stream, it is often desirable to detect
changes as soon as possible after they happen. To this end,
one may choose weights such that later points of observa-
tion are assigned with more weights. One example of such
weights is exponentially discounting sequence. Now let {wi }
be an exponentially discounting weight sequence given by

wi
def= (1 − r)−i

where 0 < r � 1 denotes the discounting rate. The rate r can
be seen as the resolution parameter that controls the time con-
stant c = −1/ log(1− r) ≈ r−1 in which the weight decays
to 1/e times. This means that each observation remains to
be effective on the value of ẑ(n) during the period of length
proportional to c.

We regard the estimate ẑt as a change score of the stream
given observations until point n, where t is automatically
given by (10). To clarify the dependence of ẑt to n, we refer
ẑ(n) as to ẑt from now on. We also define t (n), θ̂ (n), and
δ̂(n) in the same vein.

In the remainder of this section, we first give an effi-
cient method for solving (11) with exponentially discounting
weights. We then give a procedure for generating alarms to
indicate changes.
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4.1 Computing weighted summations

We here propose an efficient method for computing the esti-
mator satisfying (11). Our focus is on computing a weighted
sum that frequently appears in the estimation process:

f mn
def=

n−1∑
k=0

(k − t)mwk−t f (x
k
0 ),

for a function defined over the space of the data, f . Let Δ

denote the lag in detection, Δ = n − t (n). We have the
following recurrence relation:

f mn =
n+Δ−1∑
k=Δ

(k − n)m(1 − r)n−k f (xk−Δ
0 )

= Cm f (xn−1
0 ) +

n+Δ−2∑
k=Δ

(k − n)m(1 − r)n−k f (xk−Δ
0 )

= Cm f (xn−1
0 ) + (1 − r)

m∑
j=0

(−1) j
(
m

j

)
f j
n−1, (19)

where Cm
def= (Δ − 1)m(1 − r)1−Δ. Because we only need

m ≤ 2 for the proposed method, it follows that updating
f mn given

{
f mn−1

}
m=0,1,2 can be done within a constant time

and that the computational complexity of entire sequence
{ f mn }Nn=1 achieves the optimal rate O(N ) if the evaluation of
f can be done within a constant time.

4.2 Making alarms with threshold

We now connect the estimate ẑ(n) with an algorithm for
detecting continuous changes. We activate an alarm when
ẑ(n) exceeds a threshold where the desirable value of the
thresholdwill changeover time.This is because ẑ(n) is biased
in the positive direction, even if there is no change occurred
and the bias could be vary as n increases.

Let z̄(n) be an estimate for the expected value of ẑ(n) in
the case of no change—i.e., Xk ∼ θ for all 0 ≤ k ≤ n − 1—

z̄(n) ≈ Eθ [ẑ(n)].

Then, we raise alarms if ẑ(n) exceeds β z̄(n); the detection
alarm for proposed method is given by

an
def=
{
0 (ẑ(n) ≤ β z̄(n))

1 (ẑ(n) > β z̄(n))
,

with a constant β > 0. In other words, we calculate a scale-
corrected score of change sn , such that

sn
def= ẑ(n)

z̄(n)
,

Algorithm 1 LLR(r, γ0, γ1)
Input: data stream {xk}∞0 and threshold β

for n = 0, 1, . . . do
Solve regression (11) to get (θ̂(n), δ̂(n))

Compute score ẑ(n) = δ̂(n)� I (θ̂(n))δ̂(n)

Compute scale-corrected score sn = ẑ(n)/z̄(n)

if sn > β then
Raise alarm

end if
end for

Algorithm 2 LLR(r, γ0, γ1) for exponential family
Input: data stream {xk}∞0 and threshold β

for n = 0, 1, . . . do
Update T 0

n and T 1
n using T (xn)

Update W 0
n ,W 1

n ,W 2
n , V 0

n , V 1
n and V 2

n
Compute LLR estimates:
τ̂ (n) = (T 0

n + γ0τ0)/(W 0
n + γ0), ξ̂ (n) = T 1

n /(W 2
n + γ1)

Compute score ẑ(n) = ξ̂ (n)� Ĩ (τ̂ (n))ξ̂ (n)

Compute scale-corrected score sn = (W 2
n )2 ẑ(n)/V 2

n d
if sn > β then
Raise alarm

end if
end for

and we raise an alarm if and only if sn exceeds a constant β.
For the independent exponential family, estimate z̄(n) can

be approximated by χ2 statistics,

z̃(n) = Eθ

[
Tr
{
Ĩ (τ̂ (n))ξ̂ (n)ξ̂ (n)�

}]

≈ Tr
{
Ĩ (τ )Eθ

[
ξ̂ (n)ξ̂ (n)�

]}

=
Tr
{
Ĩ (τ )Eθ

[
T 1
n T

1�
n

]}

(W 2
n )2

= V 2
n

(W 2
n )2

χ2
d , (20)

whose mean is analytically given as V 2
n d/(W 2

n )2 where d

is the dimensionality of the parameter space Θ , and V j
n

def=∑n−1
k=0(k − t) jw2

k−t . Here, V
j
n is also computed employing a

recurrence formula similar to (19). Note that this works well
when each statistic T (Xi ) is uncorrelated with the others.
If they are strongly correlated, one has to consider a further
correction on sn . If the correlation is time-invariant, however,
the correction can be offset by the threshold β.

The entire algorithm for continuous change detection is
shown in Algorithm 1. For reference, the same algorithm
specialized for the independent exponential family is also
shown in Algorithm 2.

5 Choosing hyper-parameters

Because change detection is a task of unsupervised learning,
we cannot “train” hyper-parameters in an explicit manner.
Therefore,wepropose criteria for choosing those parameters.
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The criteria are to be minimized in reference to “training
period” of data.

The proposed method has two hyper-parameters, r and
β. We focus on choosing the optimal discounting rate r that
induces the best estimate of (θn, δn). In contrast, we believe
that there is no best value of the threshold β, since it controls
the trade-off relation between the false-positive and false-
negative rate of the alarm {an}. The optimal balance of these
false-alarm rates should be determined at a higher level (e.g.,
by users).

The hyper-parameter r controls the trade-off between the
accuracy and delay (i.e., the variance and bias) of the alarms
generated by the proposed method. The lag in the alarm in
the proposedmethod, n−t (n), coincides approximately with
r−1 according to (10),

n − t (n) =
∑n−1

k=0(n−k)(1−r)−k

∑n−1
k=0(1−r)−k

≈ r−1, (21)

where the last approximation holds for large n and small r .
Thus, small r biases the estimate (θ̂(n), δ̂(n)) and delays the
detection.On theother hand, small r also reduces the variance
of the estimate. For example, the variance of the estimate cal-
culated with a model for the independent exponential family
is evaluated as

V

[
θ̂ (n)

]
=
∑n−1

k=0 w2
k−tV[T (Xk)]
(W 0

n )2
≈ r

2
C0,

V

[
δ̂(n)

]
=
∑n−1

k=0(k − t)2w2
k−tV[T (Xk)]

(W 2
n )2

≈ r3

4
C2, (22)

whereC0 andC2 denote the averaged covariance of sufficient
statistics,

C0 =
∑n−1

k=0 w2
k−tV[T (Xk )]∑n−1
l=0 w2

l−t
,

C2 =
∑n−1

k=0(k−t)2w2
k−tV[T (Xk )]∑n−1

l=0 (l−t)2w2
l−t

. (23)

Therefore, the choice of r has a direct effect on the perfor-
mance of the score sn .

Let us now define our criterion for choosing the discount-
ing rate r . In the first place, theweights are designed such that
the resulting estimate (θ̂(n), δ̂(n)) approximates the current
parameter and derivative (θn, δn) utilizing the past obser-
vations xn−1

0 . Hence, we are encouraged to evaluate the
trade-off relationship in terms of a predictive error on an
unseen sample xn . We define the sequential predictive error,

ε(xn−1
0 ) = −

n−1∑
k=0

log p(xk; θ̂ (k) + (k − t (k))δ̂(k)), (24)

and choose r to minimize it,

r̂(xn−1
0 )

def= argmin
r∈R

ε(xn−1
0 ), (25)

where R is a set of relevant values for the discounting rate.
For the independent exponential family, we predict the

sufficient statistics T (xn) rather than raw data xn itself. It is
because of the aforementioned close relationship between
proposed estimates and the least squares regression on
{T (xn)}. The predictive density of T (xn) according to the
regression is given by the normal distribution with mean
μ̂T (n) = τ̂ (n) + (n − t (n))ξ̂ (n) and covariance �̂T (n) =
I (θ̂(n)). Then, the cumulative predictive error is given by

ε(xn−1
0 ) = −

n−1∑
k=0

logN
[
T (xk); μ̂T (k), �̂T (k)

]
. (26)

Note that the above criterion can be applied not only in order
to choose r but also to select the statistical model M itself.

6 Experiments

In this section, we show experimental results comparing the
proposed method to conventional ones. First, the quantita-
tive results on synthetic experiments are presented. Next, the
qualitative results on experiments with three real-life data are
exhibited.

6.1 Synthetic datasets

Now, we demonstrate the validity of the proposed method
empirically using synthetic data. First, we explain how we
generated the synthetic dataset. We generated three kinds
of step-formed sequences, all 10,000 in length. For each
of them, the underlying distribution changed continuously
through nine periods, of length h starting from n = 1000i
(i = 1, 2, . . . , 9). Each sequence xn (n = 0, 1, . . . , 9999)
was independently drawn from the univariate Gaussian dis-
tribution with mean μn and variance 1, where

μn =∑9
k=1(10 − k)S(n − 1000k + 1).

Here, S(t) denotes a slope function with slope length h,

S(t) =
⎧⎨
⎩
0 (t < 0)
t/h (0 ≤ t < h)

1 (h ≤ t)
.

Note that the changes occur abruptly when h = 1.
Next, we introduce the online change detection method

employed in this experiment. For the proposed method, we
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Fig. 1 Predictive errors of LLR on the training data with discount-
ing rates r ∈ {.001, .002, .005, .01, .02, .05, .1, .2, .5}. The horizontal
axis represents the discounting rate, and the vertical axis represents the
samplewise predictive error ε(x99990 )/10,000. The minimum is attained
with r = 0.05

employed as the statisticalmodel the univariateGaussian dis-
tributions with unknown mean and unknown variance. We
refer to this as local linear regression (LLR). In addition
to LLR, we employed three other algorithms for compari-
son, both of which are designed to detect abrupt changes in
an online fashion: (1) Page–HinkleyTest (PHT) [17], which
is one of the most widely used methods of change mon-
itoring, (2) change finder (CF) [18,19,21], as a the state
of the art of abrupt change detection, and (3) the Bayesian
method proposed by [1], which we refer to here as Bayesian
online change point detection (BOCPD). To compare the
performance of PHT with ours, we calculated the scores of
change as the reciprocal of estimated run length given by
PHT. Similarly, we compute the change scores of BOCPD as
the posterior variance of parameters θt utilizing the posterior
probability Pn(l) of run length.

Although those four methods involve several parameters,
we tuned them such that they perform their best with regard
to the ROC-AUC score that we describe below. Specifically,
for LLR, we have three hyper-parameters, r , γ0, and γ1. We
chose r = 0.05 to minimize predictive errors over training
data (see Fig. 1). We also set γ0 = γ1 = 0 (i.e., no regu-
larization) because the univariate Gaussian model has only
two parameters (μ, σ 2) and then not worth worried about its
over-fitting.

In evaluating these methods, we first fixed β to a constant
and converted change point scores {sn} into binary alarms
{an} thresholding with β

an
def=
{
1 (sn ≥ β),

0 (sn < β).

Then, we evaluated the change detection algorithms in terms
of the benefit and false-alarm rate defined as follows: Let

T be the maximum tolerant delay of the change detection.
When a change occurred at point t∗, we define the benefit of
an alarm at time t with respect to t∗,

b(t; t∗) =
{
1 (0 ≤ t − t∗ < T ),

0 (otherwise),

as considered in [4]. The total benefit of alarm sequence an−1
0

is calculated as

B({an}) def=
9999∑
k=0

ak max
t∗∈S b(k; t

∗).

Here, S denotes the set of all the change points. The number
of false alarms is calculated as

N ({an}) def=
9999∑
k=0

akI(∀t∗ ∈ S, b(k, t∗) = 0)

=
9999∑
k=0

ak − B({an}),

where I(t) denotes the binary function that takes 1 if and
only if proposition t is true. Finally, we visualized the per-
formance by plotting the true-positive rate (TPR), B/ supβ B,
against the false-positive rate (FPR), N/ supβ N , with a
varying threshold parameter β. Through these performance
metrics, we regard the alarms raised by T step after true
changes as correct detection and the others as false detec-
tion. Specifically, for T = 0, we can evaluate the usefulness
of change score sn to detect changes as they are occurring.
This scheme of evaluation is adopted since early detection of
ongoing changes and subsequent countermeasures are impor-
tant especially in the scenarios where continuous changes are
expected.

The thresholdβ strongly affects the benefit and thenumber
of false alarms. In order to evaluate the performances inde-
pendent of the choice of β, we employed the area under the
receiver operator characteristics (ROC) curve (ROC-AUC).
ROC-AUC integrates TPR and FPR over all the possible val-
ues of threshold β. ROC-AUC takes one if there exists an
ideal threshold, such that TPR attains its maximum keeping
FPR zero. By contrast, it takes about 0.5 for random i.i.d.
scores {sn}.

The results of the experiment are summarized in Figs. 2
and 4. The top part of Fig. 2 shows an example of the gen-
erated sequences, and the bottom three parts show examples
of how the three different scores varied over time. One can
see in Fig. 2 that LLR had less delay than BOCPD and
that LLR suppressed noise constantly, while the score of
CF included considerable noise. Figure 3 shows examples
of the ROC curves with tolerance T = 50, and that LLR and
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Fig. 2 Example of data and
corresponding scores of change.
The horizontal axis of each plot
represents time. The top plot
shows an example of synthetic
data with h = 100. The bottom
three plots show corresponding
scores sn given by different
methods, LLR, PHT, BOCPD,
and CF. The periods of change
are indicated with red shading
(color figure online)

Fig. 3 Example of ROC curves with h = 100 and T = 50. The hori-
zontal axis represents the false-positive rate (FP/(FP + FN)), and the
vertical one represents the true-positive rate (TP/(TP + TN)). Areas
under the curves indicate the performance of corresponding methods

PHT performswell in particular with the low-false-alarm set-
ting. We evaluated the performance with respect to averages
and standard deviations of ROC-AUC over five indepen-
dent sequences with tolerant delay T = 0 and T = 50,

respectively (Fig. 4). As seen in the figure, LLR improved
ROC-AUC compared to the other methods with the all con-
figuration of h and T . Noticing that the performance of LLR
and CF is robust with respect to the change in tolerance T
and that those of PHT and BOCPD drastically degrade when
T = 0 and h is small, one can see that LLR and CF are good
at early detection of changes. Specifically, it is remarkable
thatLLR,whosehyper-parameters are selected automatically
and independently to the ROC-AUCmetric outperformed the
other methods, whose hyper-parameters are tuned in order to
maximize ROC-AUC. Also note that LLR outperformed the
others even in the discrete case (h = 1). This is because
the former merely detects whether there is a trend in the
change, whereas the latter detects individual changes and
ignores their trends.

6.2 Real datasets

With three distinct real-world datasets, we qualitatively com-
pared change detectionmethods, including LLR.We used (1)
malware attack data, (2) economic time series data, and (3)
industrial boiler data.
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(a) T=0

(b) T=50

Fig. 4 Areas under the ROC curves with various T ∈ {0, 50} and
h ∈ {1, 2, 5, 10, 20, 50, 100, 200}. The horizontal axes represent the
size of the periods of changes, h, and the vertical ones represent the
area under the ROC curve (ROC-AUC). The vertical error bars show
the standard deviations of ROC-AUC

6.2.1 Malware detection

First, we used eighteen days of transaction records logged on
a server system when a backdoor was planted on it. This
dataset was provided by LAC Corporation (http://laccorp.
com/). It is known that some types of malware, such as a
backdoor reveal symptoms (e.g., scanning) in the trans-
actions before the attack actually starts. Such symptoms can
be discovered by detecting the starting point of continuous
changes in the transaction data.

We counted the maximum number of transactions having
the identical IP address to an identical URL each second. The
total length of the data was 1,551,498, and it was very sparse.
We refer to this statistic as MNT and employed them as the
input sequence for this experiment. Meanwhile, we counted
the number of transactions in which the server returned the
message 500ServerError. We refer to this statistic as
500SE. 500ServerError is known as a sign of an attack
through backdoors. We applied to 500SE the Kleinberg’s

Fig. 5 Predictive errors of LLRduring the first week ofmalware detec-
tion data. The horizontal axis represents the discounting rate, and the
vertical one represents the samplewise predictive error. The twelve can-
didates are shown as blue dots in the figure. The minimum was attained
with r = 0.0003 (color figure online)

burst-detection algorithm [15] [henceforth, burst detection
(BD)]with base 2 and transition cost 1 in order to detect bursts
of500ServerErrormessages. The detected bursts can be
thought of as the time points for the emergence of the attack.
Thus, we utilized it to validate change scores. In summary,
we attempted to find the appearance of attacks observing only
MNT, without 500SE, and compared the resulting score of
change with 500SE.

As shown in top of Fig. 6, two groups of attacks can be
distinguished in the transaction data. The starting points of
those two attacks were at 13:01:45 on July 18 and
at 01:18:49 on July 28. We applied three methods:
burst detection, change finder and local linear regression.
Because MNT is too long for the naive algorithm of BOCPD
in terms of its computational complexity, we did not employ
it in this experiment. We employed the Poisson distribution
for our method to model counting processes. The optimal
value of the discounting rate is given as r = 0.0003 (see
Fig. 5), where γ0 = γ1 = τ0 = 1. The bottom three
plots in Fig. 6 show that LLR and BD detected bursts of
500ServerError, whereas CFs score was very noisy.
Note that the performance of LLR with the automatically
chosen hyper-parameter r is comparable to that of BD with
a manually chosen hyper-parameters.

6.2.2 Dow Jones returns

To investigate LLR’s capability of detecting changes in auto-
correlated sequences, we used part of the economic time
series1 that was originally used in [11] and in [1]. It is a
sequence of daily returns of the Dow Jones Industrial Aver-

1 http://hips.seas.harvard.edu/content/bayesian-online-changepoint-
detection.
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Fig. 6 Malware detection data
and corresponding scores of
change. The top plot shows the
burst level of
500ServerError message
calculated with burst detection
with the bold orange line. The
gray line shows MNT with the
bold black line of 500SE
overlaid. The bottom three plots
show change scores of MNT
given with burst detection,
change finder and our method
(in this order). Bold red lines
show the top 5 percent of the
respective scores (color figure
online)

Fig. 7 Predictive errors of LLR during the first year of the market data.
The horizontal axis represents the discounting rate, and the vertical one
represents the regularization parameter. The minimum is dotted with a
red triangle at r = 0.02 and γ0 = γ1 = 0.002 (color figure online)

age from July 5, 1972 to June 3, 1975 (top of Fig. 8). The
returns are calculated as Rn = pn/pn−1 − 1, where pn
denotes the closing price of day n. In the sequence, the
variance of daily returns tended to change continuously or
suddenly in association with various world events.

We applied LLR, BOCPD, and CF to this sequence and
investigated how their scores were related to the three events:
(1) the conviction ofG.GordonLiddy and JamesW.McCord,
Jr. in the Watergate incident; (2) the declaration of the oil

embargo by the Organization of Petroleum Exporting Coun-
tries (OPEC) against the USA; and (3) the resignation of then
President Richard Nixon. Here we took b0 = 1. The rest of
the regularization parameters of LLR, γ0 and γ1, are tuned to
minimize themean predictive error as well as the discounting
rate r (Fig. 7).

Figure 8 shows change scores of the respective methods
versus time. The bottom three plot in Fig. 8 shows that the two
conventional methods clearly captured the latter two events
but gave vague or delayed scores for the first one. On the
other hand, LLR raised its scores not only for the latter two,
but also for the first one. This is supposed to be because a
continuous change occurred around the first period.

6.2.3 Tube failure of industrial boiler

Finally, we examined the time series of forty sensors on
an industrial boiler, as a typical multivariate time series. This
data was provided by Toray Industries, Inc. The duration
of the data was about three weeks, and the sampling rate
was 1/30Hz (the total length is N = 59,041). The most
important fact is that a tube failure in the boiler likely due
to its deterioration was logged at the very end of the data.
Moreover, it oscillates during a period of eight hours by the
normal operation. Thus, the data are highly non-stationary in
shorter ranges, but the non-stationarity of data is not essential
with respect to the incident.
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Fig. 8 The top plot shows the
daily returns of the Dow Jones
Industrial Average from July 5,
1972 to June 30, 1975. The
bottom three show change
scores given by three different
methods with blue lines. Each
plot has three vertical orange
lines in it, which respectively
show major historical events
that may have affected the
market index: (1) the conviction
of G. Gordon Liddy and James
W. McCord, Jr., former Nixon
aids, on January 30th, 1973; (2)
the beginning of the oil embargo
by OPEC against the USA on
October 19th, 1973; and (3) the
resignation of then President
Richar Nixon on August 9th,
1974 (color figure online)

Fig. 9 Predictive error of LLR during the first week of the industrial
boiler data. The horizontal axis represents the discounting rate, and the
vertical one represents the mean predictive error. The minimum was
attained with r = 1/2880

If the failure is due to deterioration, there should be symp-
toms in the data. Therefore, we applied the proposed method
in order to determine whether one could detect them in
advance. To make the data stationary, we took the differ-
ence in the data as shown in the top and middle plot in
Fig. 10. Then, we employed the proposed method with a
forty-variate normal distribution. In order to prevent over-
fitting, we set the regularization parameters as γ0 = γ1 = 1
and τ0 = τ(μ = 0, � = I40). The optimal discounting rates
was selected at 1/2880 from nine candidates
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such that it minimizes predictive errors during the first week
(see Fig. 9). Since the corresponding time constant is c =
2880, which amounts to a day, the resulting score sequence
is supposed to be immune to the normal oscillation, whose
period is eight hours (i.e., 960 observations).

The score of the proposed method is shown in the bottom
of Fig. 10. As seen in the figure, the proposed method did
spot changes about one week before the tube failure. We
further investigated the cause of the peak of the score by
decomposing ẑ(n),

ẑ(n) =∑d
i=1 |vi |2, (27)

where v
def= I (θ̂(n))1/2δ̂(n) ∈ R

d . Note that d = 860
denotes the dimensionality of the 40-variate Gaussian dis-
tribution. By looking into some largest components in the
sum, we found that only three largest components out of the
860 components contribute up to 70% of the score at the peak
moment as shown in Fig. 11a. Further, as vi can be regarded
as the degree of change in θi measured by the Fisher metric,
the indices corresponding to large |vi |2 can be thought of as
major causes of the detected change. We found that the three
largest components are corresponding to the variance of the
measured value of the 34–36th sensors as shown in Fig. 11b.
In fact, there was substantial decrease in the variance of those
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Fig. 10 Selected axes of the
industrial boiler data and the
corresponding scores of change.
Top and middle the 2nd and 36th
axes of the industrial boiler data.
Anomalous values due to the
tube failure of the boiler can be
observed at the right end of both
plots. In the middle plot, the
variance of the sensor value
decreased considerably around
January 16. Bottom change
scores computed with LLR
(r = 1/2880). The tube failure
is located by the score at the
right end of the data. In addition,
a symptom of the failure was
detected around on January 16th

(a)

(b)

Fig. 11 Analysis onmost contributing components at the peakmoment
of January 16, 2016. a The contribution ratios of the largest 10 com-
ponents are shown. The vertical axis represents relative contribution
factors |vi |2/‖v‖2, while the horizontal one represents the ranks of
contribution. b The ratios of contribution corresponding to the covari-
ance parameter� at the peak is presented. The ratios are indicated with
gray scale where the vertical and horizontal axes are corresponding to
the row and column indices of the covariance matrix. There exist three
remarkably large coefficients in it, which correspond to the variances
of the 34–36th sensors

measurements at January 15, 2016, as shown in themiddle of
Fig. 10. Moreover, in response to the result of this analysis,
the company confirmed that there was a foreign object in the
pipe located upstream of those sensors after an inspection of
the boiler and that this might be the cause of the tube failure
occurred at January 21, 2016.

7 Concluding remarks

We proposed a novel model for continuously changing
stochastic processes. We also described an online algorithm
for estimating their characteristics, by employing a tech-
nique for localized linear regression. The estimate is invariant
with respect to the parameterization and is computed with
an O(1)-space and O(1)-time updating procedure. We then
examined the statistical properties of the estimates and com-
bined them into the novel algorithm for change detection. A
criterion for choosing a hyper-parameter r of the algorithm
was also proposed. In experiments with synthetic datasets,
our method outperformed conventional methods in the trade-
off between the true-positive rate and the false-positive rate
on some synthetic datasets. Specifically, we demonstrated
that our method is better at detecting continuous changes,
and more robust even in detecting discrete changes. In exper-
iments with real datasets, on the other hand, we saw that there
likely exist continuous changes in real-life data and that our
method is able to capture them well as expected.

From practical point of view, we recommend practi-
tioners to employ the exponential family of distributions
(Sect. 3.1), e.g., the (multivariate) Gaussian, Poisson, expo-
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nential, gamma, multinomial distribution. It is ensured to be
computationally effective and highly flexible to model the
statistical nature of data. If one is willing to explicitly model
temporal dependence of data, then autoregressive models
with Gaussian noise are available (Sect. 3.2).

One may wonder when the proposed approach can be
applied for real-life data. Basically, it is designed to detect
continuous and locally linear changes, but, as we have shown
in Proposition 2, it can be used for detecting abrupt changes.
Moreover, the core theoretical analysis like the parameter
independence holds independent of the actual nature of data.
On the other hand, asymptotic validation of the method is
based on the assumption that data are distributed according
to the employed statistical model and that changes can be
captured by linear regression.We consider that these assump-
tions is not very restrictive but unfortunately difficult to verify
in practice. Then, we recommend to test several statistical
models on training datasets and choose the one with the
smallest predictive error (given in Sect. 5).

The scalability is also of great interest in practice. For
the length scalability, we have mentioned in Sect. 4 that our
method runs in optimal time rate (e.g., linear with respect to
the length of the data). For dimensional scalability, it depends
on statistical models and individual analyses are needed. For
instance, atmost square timewith respect to the dimensional-
ity is required for multivariate Gaussian distributions, which
is likely to be irreducible since just updating the likelihood
costs square time.

The following problems remain for future study:

(1) Further analysis of the statistical properties of the
estimates. The statistical distribution of the estimate
(θ̂(n), δ̂(n)) plays an important role in our methodology.
We have shown that it is approximated with χ2 distri-
bution. However, we feel the need of further analysis in
cases of strongly correlated processes, specifically on the
tail probability of ẑ(n). It induces the desirable value of
threshold βα given the permissible rate of false alarms
α.

(2) Extension toward a theory of predicting changes. The
starting point for continuous changes can be thought of
as a symptom of a big change. In future research, we
shall extend our framework to cover other various types
of symptoms of changes.

(3) Methodology of detecting anomalous changes. For mul-
tidimensional statistical models, changes should be
localized to a specific dimension (or tuple of dimensions)
of the parameter in order to understand the cause of the
change. We demonstrated such a localization technique
in an ad hoc manner in Sect. 6.2.3, but more compre-
hensive research on this topic is a future task. Moreover,
it is necessary to discriminate whether such localized
changes are anomalous, since some kinds of changes are

sometimes not anomalous and out of interest in practical
situations.
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Appendix 1: Proof of Proposition 2

Since the loss function Lk is bounded and strongly convex,
the estimate (θ̂t , δ̂t ) given by (7) converges. Let us now pre-
sume that (θ̄ , 0) is the limit value of the estimate and derive
a contradiction. From asymptotic evaluation of the gradient,
we have

∂

∂θ

[
1

|Λ|
∑
k∈Λ

wk−t Lk(θ)

]

θ=θ̄

= 1

|Λ|
∑
k∈Λ

wk−t
∂

∂θ
Lk(θ̄)

→ c−Eθ−

[
∂

∂θ
L0(θ̄)

]
+ c+Eθ+

[
∂

∂θ
Lt (θ̄)

]
= 0, (28)

and, employing (9),

∂

∂δ

[
1

|Λ|
∑
k∈Λ

wk−t Lk(θ̄ + (k − t)δ)

]

δ=0

= 1

|Λ|
∑
k∈Λ

(k − t)wk−t
∂

∂θ
Lk(θ̄)

= 1

|Λ|
∑

k∈Λ<t

(k − t)wk−t
∂

∂θ
Lk(θ̄)

+ 1

|Λ|
∑

k∈Λ≥t

(k − t)wk−t
∂

∂θ
Lk(θ̄)

→ c1

{
Eθ+

[
∂

∂θ
Lt (θ̄)

]
− Eθ−

[
∂

∂θ
L0(θ̄)

]}
= 0,

(29)

where c−
def= ∫ t

0 w̄k−t dk, c+
def= ∫ n

t w̄k−t dk and c1
def=∫ n

t (k − t)w̄k−t dk. Note that we can ignore the regularizer
since |Λ| is large. Then, we have
[
c− c+
−c1 c1

][
Eθ−

∂
∂θ
L0(θ̄)

Eθ+
∂
∂θ
Lt (θ̄)

]
= 0. (30)

Since c−, c+, and c1 are all positive constants, it follows
that Eθ−

∂
∂θ
L0(θ̄) = Eθ+

∂
∂θ
Lt (θ̄) = 0. Therefore, we have
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θ− = θ̄ = θ+ since L(θ) is strictly convex. However, this is
in contradiction with t being a change point. �

Appendix 2: Proof of Proposition 3

Considering another parameterization τ with a non-singular
bijection U : θ �→ τ , we have

∂Lk

∂θ
(θ̂t ) + (k − t)δ̂�

t
∂2Lk

∂θ2
(θ̂t )

= ∂ L̃k

∂τ
(τ̂t )

∂τ

∂θ
+ (k − t)δ̂�

t
∂τ

∂θ

� ∂2 L̃k

∂τ 2
(τ̂t )

∂τ

∂θ

=
{

∂ L̃k

∂τ
(τ̂t ) + (k − t)ξ̂�

t
∂2 L̃k

∂τ 2
(τ̂t )

}
∂τ

∂θ
, (31)

where L̃k(τ )
def= Lk(U−1(τ )). Here τ̂t and ξ̂t denote the esti-

mates of the parameter and its time derivative with respect
to the new parameterization τ ,

(τ̂t , ξ̂t )
def=
(
U (θ̂t ),

∂τ
∂θ

δ̂t

)
. (32)

Ensuring that bijection U : R
d → R

d is non-singular,
the Jacobian ∂τ/∂θ is full rank. Therefore, multiplying the
inverse Jacobian ∂θ/∂τ to both sides of (11) and (31) respec-
tively from the right yields

L̃0,1
n (τ̂t ) + ξ̂�

t L̃1,2
n (τ̂t ) + g̃θ (τ̂t , ξ̂t ) = 0,

L̃1,1
n (τ̂t ) + ξ̂�

t L̃2,2
n (τ̂t ) + g̃δ(τ̂t , ξ̂t ) = 0,

where g̃(τ̂t , ξ̂t )
def= g(U−1(τ̂t ),

∂θ
∂τ

ξ̂t ) denotes the regularizer
on (τ, ξ) induced with mapping U . Note that bijection U is
non-singular in general if the two parameterizations satisfy
the condition (1). Consequently, it has been proved that the
estimator (τ̂t , ξ̂t ) solves the Eq. (11) with parameterization
τ . It follows that the estimate of magnitude zt with respect
to alternative parameterization τ coincides with the original
one,

ẑt = δ̂�
t I (θ̂t )δ̂t

= δ̂�
t

∂τ

∂θ

�
Ĩ (τ̂t )

∂τ

∂θ
δ̂t = ξ̂t

�
Ĩ (τ̂t )ξ̂t .

Here Ĩ (τ )
def= limn→∞ 1

n Eτ

[
− ∂2

∂τ 2
log p(Xn−1

0 ;U−1(τ ))
]

is the Fisher information with respect to parameterization
τ . �
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