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Abstract

Background: Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is
transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a
number of medical maladies.
Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are
either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing
unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of
important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate
detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and
quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events
that can trigger abnormalities in transport.

Results: In this article, a semi-analytical methodology that determines the probability distribution function of
motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the
underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact
determination of motor configurations, from which meaningful inferences on transport characteristics of the original
model can be derived.

Conclusions: Under this novel probabilistic approach new insights about the mechanisms of action of these proteins
are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments.
The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein
dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has
allowed to provide a possible explanation for possible mechanisms under which motor proteins could coordinate
their motion.
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Background
The behavior ofmotor proteins is relatively well character-
ized when one motor protein is involved in the transport
of a cargo. Indeed, it is possible to monitor the motion of a
single molecular motor under highly tunable experimen-
tal conditions and obtain measurements with sufficiently
accurate spatial and time resolution [1-3]. The resulting
experimental data has led tomany theoretical descriptions
of motor-protein mechanisms which take into account the
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complex mechanochemical processes involved and yield
insights into transitions between the multiple conforma-
tional states possible [4].
In vivo, often, an ensemble of molecular motors is

responsible for the transport of a common cargo [5,6]. In
vitro and simulation studies where multiple motors are
involved in transport have provided unique insights into
features of a common cargo being transported by many
motors (see for example, [7,8]).
The dynamics when multiple motors transport cargo

can be considerably more involved where a number
of significant questions remain open. For example, it
is not yet clear when and if motors synchronize their
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behavior, whether they move independently and whether
they are antagonistically engaged in a “tug-of-war” [6,9].
Despite major improvements in instrumentation and
techniques, understanding behavior of multiple coupled
motors remains extremely challenging. The main diffi-
culty is the substantially higher spatial and temporal res-
olution needs imposed by the fractional motion of the
cargo and the increased number of possible transitions
between conformational states [8,10]; possibilities intro-
duced by the multiplicity of motors carrying a single
cargo.
The available detailed characterization of how single

motors transport cargo can be leveraged to develop mod-
els that describe how multiple-motors coordinate the
motion of a common cargo. Indeed, using single molecule
experimental data, accurate descriptions on the proba-
bility that a motor takes a step and its dependence on
environmental factors such as temperature and ATP con-
centration, are reported in [11-13]. Similar estimates on
the attachment and detachment rates of molecular motors
to and from a microtubule can be found in [13-15]. A
model that describes how multiple motors carry a com-
mon cargo can be obtained by using the information on
single motor protein behavior and by introducing the cou-
pling of the individual motor-proteins via the dynamics
of the shared common cargo. Using Monte-Carlo sim-
ulations on such a model [7], reported novel insights
into the behavior of kinesin motors, such as, a smaller
velocity of transport of cargo when carried by multiple
motors as opposed to a single one, and a dependence
of the expected run-length on the stiffness of the motor
linkage. While Monte-Carlo techniques form an impor-
tant set of tools, they involve a trade-off between the
accuracy desired and the computational effort needed.
As a consequence, important features of the dynamics,
especially if associated with rare events, can be missed.
This aspect takes particular significance in the study
of biological systems, where pathological behaviors are
caused or triggered by events which are improbable under
normal conditions but occur with significant adverse
impact.
Existing approaches have utilized models with sim-

plifying assumptions that can be treated analytically or
semi-analytically in order to understand the basic features
of the coordinated motion of motor proteins. For exam-
ple, in [16] mean-field theory is applied for analyzing
large ensembles of motors, whereas, in [17] the coop-
erative transport of cargo realized by two motor pro-
teins is studied in order to identify distinct operational
regimes. In [14] apart from providing estimates of attach-
ment and detachment rates of motors to microtubules,
analytical dependence of run-length on the number of
motors involved in the transport of a common cargo is
obtained.

In this article, we present a general methodology which
determines the probability distribution function of var-
ious motor behaviors. This different approach provides
several advantages over Monte-Carlo simulation based
methods. In our method the probabilities of outcomes are
determined exactly, unlike Monte-Carlo simulation based
methods; however, our method does not sacrifice the
detailed description of the system possible with Monte-
Carlo simulations. Our strategy is particularly well suited
for characterizing rare-events that take prohibitive num-
ber of simulations in a Monte-Carlo setting. Moreover,
in the new framework, delineation of the detailed causes
of an observed functionality is straightforward (which
involves a simple step of identifying states that are asso-
ciated with the observation and analyzing these states).
At the same time, our model has a high level of accu-
racy and detail. Compared with other analytical studies,
such as the ones previously reported, a larger number of
motors can be studied. In [18] and [17] the study is limited
to only two motors and certain simplifying assumptions
are often made (i.e. the aggregation of microstates with
same energy in [18]). In [18] a stochastic model that
takes into account only the number of motors engaged
on the microtubule is adopted in order to understand the
level of coupling among two motor proteins carrying a
common cargo. In [16] groups of more than two motor
proteins are studied. Related work [14] alluded to earlier
analyzes the run-length, average velocity, steady state dis-
tribution of bound motors and effects of load force on
velocities. In both, themean-field approach of [16] and the
approach in [14], the proteins are not individually mod-
eled anymore (for example, it is assumed that the load
is equally shared on all the engaged motors). Under the
methodology described in this paper, each motor is indi-
vidually modeled and analytical or semi-analytical results
can still be provided. Thus, more accurate conclusions
on how the interaction between multiple-motors affects a
transportation modality can be reached.
The article develops a Markov model, where the num-

ber of motors at any particular location on the micro-
tubule lattice form states, and such a state determines
the location of the common shared cargo. Here the tran-
sition probabilities between states can be derived from
studies on single motor-protein based transport. The
physics of the system is utilized to project the result-
ing infinite dimensional model onto a finite dimensional
one. We show that the finite dimensional model, apart
from the benefit of increased computational tractability,
has other important features such as the existence of a
unique steady-state probability distribution. Furthermore,
we demonstrate that the probability distribution of the
projectedmodel can be used to answer most of the biolog-
ically relevant queries on transport modality. In particular,
probabilities of rare events and the related mechanisms
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can be unraveled. The capabilities of the methodology are
tested with existing data and via extensive Monte-Carlo
simulations. These features can significantly ease the com-
putational burden as well as provide unique insights into
transport modalities.

Methods
Here we provide a methodology for analyzing the dynam-
ics of an ensemble of motor proteins carrying a single
cargo on a microtubule lattice. Each individual motor
behavior is described stochastically: it can detach or
attach to the microtubule and take steps on the filament
according to prescribed probabilities that are governed by
specified transition rates. The derived stochastic model
provides an intuitive representation of the physical sys-
tem, but, being infinite-dimensional, is not tractable and
provides no general guarantees on the existence of sta-
tionary steady behavior. This impasse is overcome by
building an alternative, and effective, Markov model with
the advantage of being described by a finite number of
states. In this model only the information pertinent to the
relative configuration of the motor-proteins is incorpo-
rated where the relative positions of motor proteins with
respect to each other determine the state. The evalua-
tion of the probability distribution for all these possible
arrangements can be determined by computing the expo-
nential of a matrix with a dimension that is dependent on
the number of arrangements.We show that the number of
states does not become excessively large and that the solu-
tion via matrix exponential is viable, allowing a direct way
to compute the probability distribution of motor arrange-
ments. Furthermore we show how quantities of interest
such as, average cargo run-length, average number of
engaged motors and average speed of the cargo can be
derived, from the determined probability distribution on
the relative configurations.
We instantiate the methodology to the case where car-

goes are transported by multiple kinesin motors. Despite
being specific to these molecules, most of these strategies

can be extended or adapted to other classes of motor pro-
teins and also to model a cargo transported by multiple
species of proteins, as well.

Description of the system andmain modeling assumptions
The motion of a motor occurs by discrete steps on a
microtubule. Their heads move forward by hydrolyzing
ATP and producing shear forces against specific binding
sites that are equally spaced (see Figure 1).
Every motor of the ensemble is bound to the cargo

molecule via a flexible linkage.We assume that the linkage
has a known rest length l0, which behaves like an elas-
tic spring when stretched, and offers no resistance when
compressed [7]. In particular, the exerted force F, as a
function of its length l, is expressed as

F(l) =
⎧⎨
⎩
kel(l + l0) if l ≤ −l0
0 if |l| < l0
kel(l − l0) if l ≥ l0,

(1)

where kel is the stiffness of the linkage. If the linkage is
stretched beyond a certain stalling force Fs, the motor
can not take any forward step. We remark that Fs is
typically measured in order to quantify the number of
motors that are actively pulling a cargo. Backward steps
are neglected in the model and the motors are irreversibly
bound to the cargo particle. A motor head that is attached
to the microtubule has a certain chance of detaching from
it, while a motor head that is not attached has a cer-
tain chance of binding to the microtubule. An unbound
motor-protein can bind to the microtubule at a location
only when it is within a distance l0 of the cargo. Thus a
floating motor binds to the microtubule without stretch-
ing its linkage. The cargo is subjected to a constant load
Fload that opposes the motor motion. The cargo position
is described in probabilistic terms by a Gaussian distri-
bution with variance σth and truncated on the interval
[−3σth, 3σth]. The mean position of the cargo xeq is the
equilibrium position determined by the load Fload on the

Figure 1 Four stages describing the processive motion of a single molecular motor on a microtubule. The microtubule is represented as a
sequence of equally spaced locations (yellow and green color). The motor protein consists of two heads represented in light and dark gray and a
linkage depicted as two intertwined filaments (red and blue color). In the first stage the light gray head is connected to the microtubule. In the
second stage the dark gray head binds as well. The hydrolization of a molecule of ATP properls the light gray head forward (third stage). In the forth
stage both heads are again bound to the microtubule but this time the dark gray one is located behind. By repeating these stages, the motor
protein transports the cargo particle (cyan color).
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cargo and forces exerted by the motors through their link-
ages. The effect of thermal fluctuations is incorporated
into the probabilities of cargo position by determining the
variance parameter σth of the cargo position in a steady
state situation.
When a motor steps forward or detaches, the probabil-

ity distribution of the position of the cargo is assumed to
reach a new distribution with negligible transient. Thus
we assume that the time scale of the cargo dynamics is
much faster than the rate at which motor configurations
change. The system is assumed to be spatially invari-
ant: its stochastic behavior does not change if the motor
ensemble and the cargo shift to a new position along the
microtubule. Finally, if, at any time, there are no motors
engaged with the microtubule, the cargo is assumed to be
“lost” which forms the stopping criterion for the stochastic
model.
The microtubule is modeled as a sequence of equally

spaced locations ak = a0+kds where ak represents the lin-
ear position of the k-th location, k is an integer index and
ds is the periodicity of the filament (in the case of micro-
tubules ds = 8 nm). We assume that m motors constitute
the ensemble. They are all permanently bound to the
cargo particle while they can be engaged or not with the
microtubule. We represent the locations of motors with
a bi-infinite sequence of natural numbers Z := {zk}k∈I
where the zk are the number of motors engaged on the
microtubule at the location ak and I is the set of integer
numbers. This bi-infinite sequence Z provides the abso-
lute configuration of the motors on the microtubule lattice
(see Figure 2).
In the model, it is assumed that multiple proteins could

share the same location on the microtubule, even though
the motor proteins actually bind to physically different
areas of the cargo macromolecule. The motivation and
justification for this assumption are provided later.
We denote the set of all absolute configurations as Z.

For any absolute configuration Z, we define the right-shift
operator ρ that moves all the terms zk by one place to the

right. In a similar manner we define the left-shift opera-
tor ρ−1 and generalize the notation to ρα for a shift by
α places. For a fixed value of Fload > 0, the mean cargo
position xeq is a function of the absolute configuration Z,
that is xeq = xeq(Z). There are only three possible tran-
sitions from one configuration Z to another Z′: a motor
can step forward to the next location; if attached then
it can detach from the microtubule; and if unattached it
can attach to the microtubule. We represent the transi-
tion from an absolute configuration Z to another absolute
configuration Z′ as Z → Z′ = Z + R, where R is a suit-
able sequence that characterizes the specific transition.
For example, in the case of a motor at location ak stepping
forward, the transition is represented as follows

Z =

⎛
⎜⎜⎜⎜⎝

...
zk
zk+1
...

⎞
⎟⎟⎟⎟⎠

STEP−→

⎛
⎜⎜⎜⎜⎝

...
zk
zk+1
...

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

...
−1
+1
...

⎞
⎟⎟⎟⎟⎠ = Z + R(step)

k .

Analogously, for a attachment/detachment transition at
location ak , we have

Z =

⎛
⎜⎜⎜⎜⎝

...
zk
zk+1
...

⎞
⎟⎟⎟⎟⎠

ATT/DET−→

⎛
⎜⎜⎜⎜⎝

...
zk
zk+1
...

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

...
±1
0
...

⎞
⎟⎟⎟⎟⎠ = Z ± R(att)

k

where the plus sign (+) is for the attachment transition
and the minus sign (−) is for the detachment transition.
The sequences R(step)

k and R(att)
k represent the change in

number of motors from the starting configuration Z to
the ending configuration Z′. Assuming that the probabil-
ity rate of the transition Z → Z + R is known and is given
by λabs(Z+R,Z), it is possible to define an infinite dimen-
sional Markov model, analogous to the ones described in
[19,20]. Here λabs(Z′,Z)�t denotes the probability that
the absolute configuration is Z′ at time t+�t given that it
was Z at time t. Implicit is the assumption that λabs does

Figure 2 Schematic representation of the configuration of an ensemble of motors. The microtubule is represented as a bi-infinite filament
with equally spaced location {. . . , a−1, a0, a1, . . . a7, . . . }. The rear-guard motor is engaged at location a0, two are engaged in configuration a3 and
a fourth one is engage at location a6.
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not depend on t. It follows that, given an initial time t0
and an initial state Z, for t ≥ t0, Pabs(Z, t|Z, t0), the prob-
ability of the absolute configuration being equal to Z at
time t given that it was equal to Z̄ at t0 satisfies the Master
Equation

∂

∂t
Pabs(Z, t|Z, t0) = −Pabs(Z, t|Z, t0)

∑
Z′∈Z

λabs(Z′,Z)

+
∑
Z′∈Z

λabs(Z,Z′)Pabs(Z′, t|Z, t0),

(2)

that represents the conservation law of the probability
measure. We will drop the conditioning on the initial
absolute configuration being Z̄ at time t0 and assume
that all probabilities described below are implicitly condi-
tioned on (Z̄, t0).
We also observe that the spatial invariance hypothesis

translates into an immediate condition on the transition
rates, namely that λabs(Z′,Z) = λabs(ρ

αZ′, ραZ) for any
integer α. This condition, along with the presence of
a stalling force for the motors, is used to arrive at an
effective finite-dimensional Markov model.

Derivation of an effective finite-dimensional Markovmodel
The representation of an ensemble of motors as a bi-
infinite sequence allows one to describe the system in
a rather intuitive manner and highlights the similarities
with a Gillespie model for the purpose of stochastic simu-
lations [19,20]. However, such a model is ill-suited for an
exact analysis because of its infinite dimension. A finite
dimensional model can be obtained by aggregating (or
projecting) states of the infinite dimensional model into
“macro-states”. In general, this approach leads to the loss
of theMarkov property. However, in the following we pro-
vide a projection of the infinite states of the original model
on a finite set in such a way that the Markov property
is preserved. This allows us to pursue an exact analysis
and determine explicit formulas for the computation of
biologically relevant quantities.
To arrive at the relative configuration description, we

represent the arrangement of motors using strings of two

symbols. The empty string Ø refers to the case where
there are no motors engaged on the microtubule (loss of
the cargo). The engaged motor that lags behind all the
other motors is the “rear-guard” motor and serves as a
reference. Starting with the rear-guard motor we write a
symbol (’M’) for a motor in each location and use a sepa-
rator (’|’) to distinguish distinct locations. As an example,
the configuration of four motors shown in Figure 3(a) is
represented as “M||MM||M” and, after the leading motor
has stepped, the representation changes to “M||MM|||M”
(see Figure 3(b)).
This intuitive string representation provides the rela-

tive configurationwhich characterizes how variousmotors
carrying the cargo are positioned with respect to each
other.
We make the following observations:

• Strings representing relative configurations can have
arbitrary length.

• Two different absolute configurations of the motors,
Z′ and Z, on the microtubule may have the same
relative configuration if Z is a “shifted version” of Z′.
Two absolute configurations have the same relative
configuration, if and only if the relative distances
among the engaged motors of the ensemble are the
same. This defines a class of equivalence on absolute
configurations: two absolute configurations belong to
the same equivalence class if both have the same
relative configuration.

• From a relative configuration we can obtain the
relative positions of the motors, but not their
absolute positions on the microtubule lattice.

Consider the following assumptions on the model,

1. An ensemble containsmmolecular motors (which is
the number of motors attached to the cargo)

2. Motor linkages are elastic springs with constant kel
and rest length l0

3. There is constant load Fload on the cargo
4. The stalling force is Fs
5. An unattached motor can attach to the microtubule

only to locations that are within distance l0 from the

Cargo
Cargo

(b)(a)
Figure 3 The string representation for the arrangement of four motors in (a) is “M||MM||M” and, after the leading motor has stepped, the
representation changes into “M||MM|||M”, as depicted in (b).
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cargo center of mass (the attachment occurs a
locations that are close enough not to stretch the
linkage)

6. All motors are attached at the same location on the
cargo and multiple motors can share the same
microtubule location.

The last assumption is introduced for the following rea-
son. From a mathematical perspective, there is no loss
of generality on assuming that all molecular motors are
bound to the same cargo location. Indeed it is possible
to apply a coordinate change to each motor’s position
whereby all motors are attached at the same location on
the cargo. With this assumption we have to allow for mul-
tiple motors to be attached to the same microtubule loca-
tion, as, identically stretched motors that are physically
attached to the cargo at different locations get mapped, in
the new coordinate system, as being attached at the same
location on the cargo and the microtubule.
Under the above assumptions we have established that

the maximum distance (expressed in number of locations
on the microtubule) between the vanguard motor and
rearguard motor is bounded by

n :=
⌈
max

{
mFs − Fload

kelds
+ 1,

Fload
kelds

}
+ 2l0

ds
+ 6σth

ds

⌉
(3)

where �·� represents the ceiling function. The main intu-
ition on how the various factors in (3) contribute follows
from the stall condition on the motors, where, a motor
cannot step forward if it experiences a force greater than
the stall force Fs. For example, mFs−Fload

kelds + 1 is the maxi-
mum distance between the rearguard and vanguardmotor
possible, beyond which motors stall, 6σth

ds accounts for the
thermal noise contribution, whereas, 2�0

ds accounts for the
possibility that motors are within a distance 2�0 where the
motors are not stretched at all.
We will establish the above result precisely when there

is at least one motor opposing the motion of the cargo
in the absence of thermal noise (the other cases are less
involved and are based on similar arguments). Without
any loss of generality, let us consider the cargo equilib-
rium position xeq = 0. Let positions of the motors that
assist the motion be xv, xv−1, . . . , x1 with xv ≥ xv−1 ≥
. . . ≥ x1 ≥ �0 and the corresponding forces exerted by
motors be F+

v , F
+
v−1, . . . , F

+
1 . Similarly let the positions of

motors opposing themotion be given by−y1, −y2, . . .−yr
with yr ≥ yr−1 ≥ . . . ≥ y1 ≥ �0 > 0 and the corre-
sponding forces on the cargo be F−

1 , F
−
2 , . . . , F−

r (these
forces oppose the motion of the cargo). Note that F+

j =
kel(xj − �0) and F−

j = kel(yj − �0) and the separation S
(which we term extent) between the vanguard and rear-
guard motors is xv + yr . We also note that F−

r = kel(yr −

�0) = kel(yr + xv − xv − �0) = kelS − F+
v − 2kel�0. Under

equilibrium it follows that

Fload = F+
v + ∑v−1

i=1 F
+
i − ∑r−1

j=1 F
−
j − F−

r
= F+

v + ∑v−1
i=1 F

+
i − ∑r−1

j=1 F
−
j − kelS + F+

v + 2kel�0
and thus

kelS = 2F+
v + ∑v−1

i=1 F
+
i − ∑r−1

j=1 F
−
j + 2kel�0 − Fload.

Now suppose that the vanguard motor (and therefore all
motors) is not stalled (that is F+

v ≤ Fs) then it follows that

kelS = 2F+
v + ∑v−1

i=1 F
+
i − ∑r−1

j=1 F
−
j + 2kl�0 − Fload

≤ 2F+
v + ∑v−1

i=1 F
+
i + 2kel�0 − Fload

≤ m̄Fs + 2kel�0 − Fload

Let s(max) := m̄Fs−Fload
kel +2�0 +ds. It follows that if none of

the motors are stalled then the extent S ≤ s(max) − ds.
Now we can assert that if the extent was less than or

equal to s(max) then for any subsequent change in the
configuration, the extent will still remain less than s(max).
Indeed, consider the case where the current configuration
is such that the extent S ≤ s(max). There are two possibil-
ities for the current configuration (a) the vanguard motor
is stalled in which case the extent can only decrease in any
subsequent change in the configuration as the vanguard
motor cannot step forward and the rearguard motor can-
not step backwards (b) the vanguard motor in the current
configuration is not under stall in which case the extent
S ≤ s(max) − ds. In any subsequent change the only means
to increase the extent is when the vanguard motor takes
a step with a step-size ds where the extent still remains
bounded by s(max). Thus we have shown that if the extent
of an absolute configuration is smaller than a bound s(max)

then for all future configurations this bound is respected.
Using combinatorial calculus, it follows that the number

N of possible relative configurations is

N = 1 +
m∑

m=1

(n + m − 2)!
(n − 1)! (m − 1)!

. (4)

Each bi-infinte sequence Z that codes the absolute con-
figuration, determines in a unique way a string repre-
sentation that codes its relative configuration, and thus
transitions Z → Z + R of the infinite dimensional model
determine transitions from one string representation to
another. In Figure 4 we provide an example of a graph
representing the symbolic dynamics in the case of m =
2 where the maximum distance between the vanguard
motor and the rearguard motor is four locations. A red-
dotted arrow is used to represent a detachment transition,
a green-dashed arrow represents an attachment event,
and a black-solid arrow represents a forward step of one
of the two motors.
Notice that physically different simple events can give

rise to the same transition in the symbolic dynamics of the
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Figure 4 The graph that represents the symbolic dynamics in the
case ofm = 2 with the simplifying additional assumption that
the twomotors are never at a distance larger than four locations
from each other. A red arrow represents a detachment, a green
arrow represents an attachment and a black arrow represents a
forward step of one of the two motors. As it can be seen the
undirected version of this graph is connected.

strings. For example, from the stringM|M it is possible to
reach the string M because of a detachment of either the
vanguard or the rearguard motor.
What has been achieved so far is a projection of the model
dynamics from the set of absolute configurations (Z) with
infinitely many elements to a space of relative configu-
rations (σ ) with finitely many configurations. We denote
the projector operator as σ = 	(e)(Z) where the absolute
configuration Z has a relative configuration σ .
Also, we define the set Z(σ ) of all absolute configura-

tions with the same relative configuration σ .

Z(σ ) := {Z|	(e)(Z) = σ }
In general projections do not preserve theMarkov prop-

erty of a model. However, in this case, we can show
that the dynamics on the string space still maintains the
Markov property. More importantly, the transition rate
λrel(σ

′, σ) from one string σ to another string σ ′ can
be meaningfully defined and can be computed from the
knowledge of the rates λabs(Z′,Z) of the original Gillespie
model. We now determine λrel(σ

′, σ).
For small �t, note that the probability that the absolute

configuration is Z′ at time t + �t given that it was at Z
at time t is given by Pabs(Z′, t + �t|Z, t) = λabs(Z′,Z)�t.
Similarly, let Prel(σ ′, t + �t|σ , t) = λrel(σ

′, σ , t)�t denote
the probability that the relative configuration is at σ ′ at
time t+ �t given that it was at σ at time t. We now derive
the transition probabilities in the relative configuration
space from the transition probabilities in the absolute
configuration space. It is evident from Bayes’ rule that

Prel(σ ′, t + �t|σ , t) = Prel(σ ′, t + �t, σ , t)/Prel(σ (t)).

where Prel(σ ′, t + �t, σ , t) is the probability that the rela-
tive configuration at time t is σ and is σ ′ at time t + �t.
Prel(σ ′, t + �t, σ , t) can be obtained by summing over the

probabilities Pabs(K ′, t + �t,K , t) of all pairs of absolute
configurations K and K ′ that have relative configurations
σ at time t and σ ′ at time t + �t respectively i.e.

Prel(σ ′, t + �t, σ , t) =
∑

K∈Z(σ )

∑
K ′∈Z(σ ′)

Pabs(K ′, t + �t,K , t)

and similarly it follows that Prel(σ (t)) = ∑
K∈Z(σ ) Pabs

(K , t). Now, arbitrarily choose Z′ and Z such that
	(e)(Z′) = σ ′ and 	(e)(Z) = σ . From the translation
invariance property it follows that Z(σ ) = {ραZ : α ∈ I}
and Z(σ ′) = {ρβZ′ : β ∈ I} where ρα denotes a shift
by α positions along the microtubule and I denotes the
set of integers. Thus, all absolute configurations with a
relative configuration σ can be obtained by taking one
absolute configuration Z with relative configuration σ and
forming the set of all possible shifts of the one absolute
configuration Z. Thus, it follows that

Prel(σ ′, t + �t|σ , t) = Prel(σ ′, t + �t, σ , t)/Prel(σ (t))

=
∑

K∈Z(σ )

∑
K ′∈Z(σ ′)Pabs(K ′, t+�t,K , t)∑
K∈Z(σ ) Pabs(K , t)

= 1∑
α Pabs(ραZ, t)

∑
α

∑
β
Pabs(ρβZ′, t

+ �t, ραZ, t)

= 1∑
α Pabs(ραZ, t)

∑
α

∑
β
Pabs(ρβZ′, t

+ �t|ραZ, t)Pabs(ραZ, t)

= 1∑
α Pabs(ραZ, t)

∑
α
Pabs(ραZ, t)

×
∑
β

Pabs(ρβZ′, t + �t|ραZ, t)

= 1∑
α Pabs(ραZ, t)

∑
α
Pabs(ραZ, t)

×
∑

β
Pabs(ρ(β−α)Z′, t + �t|Z, t)

= 1∑
α Pabs(ραZ, t)

∑
α
Pabs(ραZ, t)

×
∑

β
Pabs(ρβZ′, t + �t|Z, t)

=
∑

β
Pabs(ρβZ′, t + �t|Z, t)

=
∑

β
λabs(ρ

βZ′,Z)�t

=
∑

K ′∈Z(σ ′)
λabs(K ′,Z)�t

(5)

where the first three equalities have been explained
before, the fourth follows from Bayes’rule and the fifth
is evident. The sixth equality uses translation invariance
where the absolute configurations at t and t+ �t are both
shifted by ρ−α , the seventh follows from the fact that the
set {ρ(β−α) : β ∈ I} = {ρβ : β ∈ I} where α is fixed and
β is any integer (with I denoting the set of integers).
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Note that in Equation (5), Z was arbitrarily chosen such
that 	(e)(Z) = σ . Thus, the relation must hold for every
Z ∈ Z(σ ), yielding

Prel(σ ′, t+�t|σ , t)=
∑

K ′∈Z(σ ′)
λabs(K ′,Z)�t for all Z ∈ Z(σ ).

Thus, we can write

Prel(σ ′, t + �t|σ , t) = min
K∈Z(σ )

∑
K ′∈Z(σ ′)

λabs(K ′,K)�

where the min operator has been introduced just to obtain
a term that formally depends on σ and σ ′ only.
We can define the rate of transition from the relative

configuration σ to a relative configuration σ ′ as λσ (σ ′, σ)

where Prel(σ ′, t + �t|σ , t) = λrel(σ
′, σ)�t with

λrel(σ
′, σ) := min

K∈Z(σ )

∑
K ′∈Z(σ ′)

λabs(K ′,K). (6)

The knowledge of the transition rates (6) can be
exploited, using the Bayes’ rule and the law of total proba-
bility, to obtain

∂

∂t
Pabs(σ , t) = − Pabs(σ , t)

∑
σ ′∈Q

λabs(σ
′, σ)

+
∑
σ ′∈Q

λabs(σ , σ ′)Pabs(σ ′, t)
(7)

where Q represents the set of all the possible N rela-
tive configurations of motor-proteins. Thus, the Master
equation does hold in terms of the transition probabilities
and this implies that the underlying model that governs
the dynamics of relative configurations is indeed Markov.
By enumerating the strings σ1, ..., σN that represent rel-

ative configurations, we let P1(t), ...,PN (t) represent the
probabilities of having the system in each one of the string
configurations and define, the probability vector P(t) =
(P1(t), ...,PN (t))T . Using the expressions of the transition
rates λrel(σj, σi) and Equation (7) it can be shown that
the Markov model that describes the time dynamics of

the probability vector P(t) is given by

d
dt

P(t) = AP(t) (8)

whereA ∈ 	N×N is a sparse stochastic matrix completely
determined by the transition rates λabs(σj, σi): if i 
= j then
Aji = λabs(σj, σi), otherwise Aii = 1 − ∑

j 
=i λabs(σj, σi).
Starting from an initial probability vector P(t0), it holds
that

P(t) = exp(A(t − t0))P(t0) (9)

where exp(At) is the matrix exponential.
In the specific of kinesin motors, for realistic values of

the system parameters and number of motors (m ≤ 8),
the dimension of A is in the order of 105 − 107, making

the problem of computing exp(A) manageable for a stan-
dard desktop computer. For more complex scenarios (i.e.
multiple species of motor proteins or larger ensembles)
the problem is still tractable using computer clusters or
supercomputers

Determination of biologically relevant quantities
In the previous section, starting from an infinite dimen-
sional model that describes the system dynamics, we have
defined a finite dimensional model that keeps track of the
relative distances among the motors of the ensemble. The
effectiveness of this finite dimensional model is given by
the fact that biologically relevant quantities of the system
can be computed using explicit formulas without taking
recourse to Monte Carlo simulations. Indeed, the prob-
ability distribution P(t) of the different configurations
provides detailed information about the system, since it
provides the probability associated with every specific rel-
ative arrangement of motors on the microtubule. Once
the probability of having a certain pattern of motors with
all the associated relative distances is known, it is possi-
ble to determine many quantities of biological interest for
the system. In the following, we provide the expressions of
certain biologically relevant quantities, as obtained from
our finite dimensional model. They will be considered for
the validation of the methodology and in the discussion of
novel results.

Average number of engagedmotors
At any time t, the average of the number of engaged
motorsm(t) is given by

E[m(t)]=
N∑
i=1

M(σi)Pi(t). (10)

where M(σ ) represents the number of symbols ’M’ in the
string σ .

Average velocity and average runlength
To arrive at the average run-length and average velocity,
we will first determine the expected change in the cargo
position in a time �t given that the relative configuration
changes from σ at time t to a relative configuration σ ′ at
time t+�t. This expected value can be obtained from the
following steps (a) determining the change

d(Z′,Z) = xeq(Z′) − xeq(Z)

in the cargo equilibrium position for every possible tran-
sition from an initial absolute configuration Z at time
t to the final absolute configuration Z′ at time t + �t,
where, Z and Z′ have relative configurations σ and σ ′. (b)
Determine, for every eligible (Z′,Z) pair, the probability
P(Z′, t+�t,Z, t|σ ′, t+�t, σ , t) of transitioning from Z →
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Z′ conditioned on the specification that relative configu-
ration transitions from σ to σ ′. (c) Form a weighted sum
of d(Z′,Z) with weights given by probabilities P(Z′, t +
�t,Z, t|σ ′, t + �t, σ , t).
We first note that the change in the equilibrium posi-

tion of the cargo is translation invariant. That is if the
initial and the final absolute configurations are translated
by the same amount then the change in the cargo position
remains unaltered. Thus d(Z′,Z) = d(ραZ′, ραZ) for any
absolute configurations Z and Z′.
As in the determination of the transition rates λrel, fix

two arbitrary absolute configurations Z and Z′ such that
	(e)(Z) = σ and 	(e)(Z′) = σ ′. The expected change in
the cargo position when the relative initial and final con-
figurations at t and t + �t are restricted to be σ and σ ′
respectively is given by

dav(σ ′, σ) :=
∑

K ′∈Z(σ ′)

∑
K∈Z(σ )

d(K ′,K)P(K ′, t + �t,K , t|σ ′, t

+ �t, σ , t)

=
∑
α

∑
β

d(ρβZ′, ραZ)P(ρβZ′, t + �t, ραZ, t|σ ′, t

+ �t, σ , t)

=
∑
α

∑
β

d(ρβZ′, ραZ)

× P(ρβZ′, t + �t, ραZ, t, σ ′, t + �t, σ , t)
Prel(σ ′, t + �t, σ , t)

=
∑
α

∑
β

d(ρβZ′, ραZ)
Pabs(ρβZ′, t + �t, ραZ, t)

Pσ (σ ′, t + �t, σ , t)

=
∑
α

∑
β

d(ρβZ′, ραZ)
λabs(ρ

βZ′, ραZ)PZ(ραZ, t)
λrel(σ ′, σ)Prel(σ , t)

= 1
λrel(σ ′, σ)Prel(σ , t)

∑
α

Pabs(ραZ, t)

×
∑
β

d(ρβZ′, ραZ)λabs(ρ
βZ′, ραZ)

= 1
λrel(σ ′, σ)Prel(σ , t)

∑
α

Pabs(ραZ, t)

×
∑
β

d(ρβ−αZ′,Z)λabs(ρ
β−αZ′,Z)

= 1
λrel(σ ′, σ)Prel(σ , t)

∑
α

Pabs(ραZ, t)

×
∑
β

d(ρβZ′,Z)λabs(ρ
βZ′,Z)

= 1
λrel(σ ′, σ)

∑
β

d(ρβZ′,Z)λabs(ρ
βZ′,Z)

= 1
λrel(σ ′, σ)

∑
K ′∈Z(σ ′)

d(K ,Z)λabs(K ′,Z)

where the above equalities follow using similar argu-
ments utilized in deriving relations in (5). We observe that

the result is identical for all configurations Z such that
	(e)(Z) = σ . Thus, we can write

dav(σ ′, σ) = min
K∈Z(σ )

∑
K ′∈Z(σ ′)

d(K ,Z)λabs(K ′,K)

in order to obtain a right hand side that is formally a
function of σ and σ ′ only.
Once the expected value dav(σ ′, σ) of the change in

cargo position in a time �t when the transitions are
restricted to have relative configuration σ at time t and
σ ′ at t + �t respectively, is found, the expected change in
cargo position in a time �t can be determined via

��t := ∑
σ∈Q

∑
σ ′∈Q dav(σ ′, σ)Prel(σ ′, t + �t, σ , t)

:= ∑
σ∈Q

∑
σ ′∈Q dav(σ ′, σ)λrel(σ

′, σ)�tPrel(σ , t).

Thus the average velocity is found to be

v(t) = ��t/�t =
∑
σ∈Q

∑
σ ′∈Q

dav(σ ′, σ)λrel(σ
′, σ)Prel(σ , t).

An important quantity that can be experimentally
measured in experiments is the expected run-length of
the motors, that is the average length traveled by the
cargo/motor complex before movement is arrested or the
motor detaches from the microtubule lattice. The average
run-length can be determined from the knowledge of the
probability vector P(t) on relative configurations.
Then, the average length is given by

Average Runlength =
∫ +∞

0
v(t)dt

=
∫ +∞

0

∑
σ∈Q

∑
σ ′∈Q

dav(σ ′, σ)λrel(σ
′, σ)

Prel(σ , t)dt.

Distribution of step length
The knowledge of the probability of the relative config-
urations allows one to determine the distribution of the
length of the steps observed in the cargo motion. Let
g(Z, l) be the set of all absolute configurations such that,
if Z′ ∈ g(Z, l), xeq(Z′) − xeq(Z) = l. Then, the probabil-
ity rate μ(l,Z)(l,Z) of having a step of length l given the
absolute configuration Z is

μ(l,Z)(l,Z) =
∑

Z′∈g(Z,l)
λabs(Z′,Z)Pabs(Z, t). (11)

By summing over all the shifted configurations of Z we
obtain the probability rate μ(l,σ ,t)(l, σ , t) of having a step
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of length l given the relative configuration σ = 	(e)(Z) at
time t

μ(l,σ ,t)(l, σ , t)=
+∞∑

α=−∞

∑
Z′∈g(ραZ,l)

λabs(Z′, ραZ)Pabs(ραZ, t)

(12)

=
+∞∑

α=−∞

∑
ραZ′∈g(ραZ,l)

λabs(ρ
αZ′, ραZ)

× Pabs(ραZ, t) (13)

=
+∞∑

α=−∞

∑
Z′∈g(Z,l)

λabs(Z′,Z)Pabs(ραZ, t)

(14)

= Prel(σ , t)
∑

Z′∈g(Z,l)
λabs(Z′,Z). (15)

As a consequence, summing over all the relative config-
urations σ1, ..., σN allows one to obtain the probability rate
μ(l,t)(l, t) of a step of length l at time t

μ(l,t)(l, t) =
N∑
i=1

P(σi, t)
∑

Z′∈g(Z,l)
λabs(Z′,Z). (16)

Since the probability rate of the length of a step is propor-
tional to its frequency, the probability P(l,t)(l, t) of a step
of size l at time t is

P(l,t)(l, t) = μ(l,t)(l, t)∑
x∈χ μ(x,t)(x, t)

(17)

where χ = {x : μ(x,t)(x, t) 
= 0}. This formula provides
an exact computation of the distribution of the step size
from the model parameters without relying on histograms
obtained fromMonte Carlo simulations.

Results and discussions
Methodology validation
While themethods developed in this article can be applied
to study ensembles of motor proteins of any class, valida-
tion will be presented on kinesin motors. We first derive
the transition rates λabs between absolute configurations
for an ensemble of kinesin motors.

Obtaining transition rates on the absolute configuration
space
The determination of transition rates are based on exper-
imental data and theoretical considerations, where, rates
from single-motor experiments are used to derive transi-
tion rates in the case where an ensemble of motors are
involved in transport. Most of the modeling assumption
are the same as made in [7] with minor differences which
are described next.

Probability of stepping under a force F for kinesin
During a step a protein M converts ATP into kinetic
energy and ADP

M+ATP
kon
�
koff

M ATP kcat→ M+ADP+Pi+energy. (18)

Following [11], Michaelis-Menten dynamics predicts a
ATP hydrolysis rate equal to kcat[ATP] /([ATP]+km),
where km = (kcat + koff )/kon. In addition, the free head
of the motor is assumed to bind to the microtubule loca-
tion with a defined probability (or efficiency) ε. In this
scenario, the probability Pstep of stepping
for a single motor is given by

Pstep = kcat[ATP]
[ATP]+km

ε. (19)

The force F that the cargo exerts on the motor is
assumed positive when it opposes the motor motion.
When the force exceeds the stalling force Fs, it causes the
motor to stall. Following [7], the force F is assumed to
affect the motor dynamics by changing the probability ε

of binding to the microtubule, following the relation

ε(F) =

⎧⎪⎨
⎪⎩
1 ifF ≤ 0

1 −
(

F
Fs

)2
if 0 < F < Fs

0 otherwise.
(20)

In [7] it is assumed that the force F also influences the
kinetics of the ATP hydrolysis. In particular it is assumed
that koff increases with increasing F according to the rela-
tion koff = k0off eFdl/KbT , where k0off is the backward
reaction rate of the hydrolysis when F = 0,Kb is the Boltz-
mann constant, T is the temperature and dl is a parameter
that can be experimentally determined. Thus, the tran-
sition rate for a step under a constant force F is given
by

Pstep(F) = kcat[ATP]

[ATP]+ kon+koff (F)

kcat

ε(F). (21)

Under the assumption that the cargo position follows a
truncated Gaussian distribution with probability density,
for |x| < 3σth,

φ(x) =
(
e
− x2

2σ2th

)
/

(
2

∫ 3σth

0
e
− x2

2σ2th dx
)
, (22)

the transition rate is determined averaging over the posi-
tion of the cargo

λabs(Z,Z + R(step)
k ) =zk

∫ xeq(Z)+3σth

xeq(Z)−3σth
Pstep(F(x − ak))

φ(x − xeq(Z))dx
(23)

where the term zk represents the number of motors in
the k-th location (the transition rate is proportional to the
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number of motors in the location) and the term ak is the
position of the k-th location.

Probability of detachment
From [Schnitzer et al. 2000], the processivity L is

L = ds[ATP]Ae−Fδl/KbT

[ATP]+B(1 + A)e−Fδl/KbT
, (24)

where A, B and δl are again parameters that can be exper-
imentally determined. Since the processivity represents
how far a motor can move, on average, before detach-
ing from the microtubule, we find a relation between the
probability of stepping and the probability of detachment.

Pstep(F)

Pdetach(F)
= L

ds
= [ATP]Ae−Fδl/KbT

[ATP]+B(1 + A)e−Fδl/KbT
. (25)

Thus, so long as F < Fs,

Pdetach(F) = [ATP]+B(1 + A)e−Fδl/KbT

[ATP]Ae−Fδl/KbT
Pstep(F).

(26)

When F ≥ Fs, in [7] a constant detachment rate is
assumed Pdetach(F) = Pback = 2s−1. Analogously to
the previous case, the transition rate associated to the
detachment event is

λabs(Z,Z − R(att)
k ) = (27)

zk
∫ xeq(Z)+3σth

xeq(Z)−3σth
Pdetach(F(x−ak))φ(x−xeq(Z))dx. (28)

Probability of attachment
Experimentally, it is found in [21,22] that the probabil-
ity of a kinesin motor attaching to the microtubule is
Patt � 5s−1. If the motor is linked to the cargo, it
is assumed that it attaches to the microtubule without
stretching its linkage. Thus, the only admissible locations
of attachment are the locations at a distance from the
cargo that is less than l0. They are also assumed all equally
likely.

Numerical parameters
The numerical parameters that we have considered in our
analysis of Kinesin-I ensembles, when not otherwise spec-
ified, are kcat = 105 s−1, kon = 2 · 106 M−1s−1, k0off =
55 s−1, [ATP]= 2 · 10−3 M, Fs = 0.006 nN , ds = 8 nm,
dl = 1.6 nm, δl = 1.3 nm, A = 107, B = 0.029 μM,
T = 300K kel = 0.32 · 10−3 nN/nm. All these parame-
ters are the same used in [7] and have been experimentally
determined.
Using these parameters an upper-bound on s(max) (see

Equation (3)) on the extent of any relative configura-
tion is found to be 320 nm, for ensemble of at most 4
motors. This extent is rather large given that the length of

a Kinesin molecule is in the hundreds of nanometer range.
We remark that the s(max) is an upper bound on the possi-
ble extent. Thus there are avenues to be explored where a
smaller extent can be assumed. We enumerated the finite
number of relative configurations as σ1, . . . , σN and deter-
mined transition rates λrel(σ1, σ2), from a relative con-
figuration σ1 to another relative configuration σ2, using
Equation (6).
As in [7], we have considered ensembles of at most

four motors, and, we computed the probability vector
P(t) exactly. We remark that P(t) depends on the ini-
tial probability P(t0), as shown in Equation (9). In all our
computations for validation purposes we have assumed
the same initial probability distribution P(t0) that is used
in [7].

Validation of the average velocity and average run-length
Average Runlength: In [7], in one scenario (Model A) the
authors neglect the effect of thermal noise, and in another
scenario (Model B) they introduce a dynamic model for
the Brownianmotion of the cargo.We have performed the
same kind of separated analysis following our approach.
First, we have fixed the variance of the cargo position σth
to zero, making our model analogous to “Model A” in [7].
For the initial distribution we consider that at time

t = −1 sec exactly one motor is attached to the micro-
tubule and that the cargo is not being lost before time t =
0. In the time interval [−1 sec, 0 sec] the motors behave
as usual. The probability distribution of their configura-
tions at time t = 0 is the initial probability distribution for
all our simulations. This initialization is similar to the one
described in [7].
The results of this noiseless analysis are reported in

Figure 5 using both a coarse grid (solid lines) and a fine
grid (dashed lines) for the load force. The coarse grid has
a resolution of 1 pN , exactly as for the run-length curves
computed in [7], while for the finer grid we have chosen a
resolution of 0.2 pN .
We find a practically exact quantitative agreement of

our exact results and the one based on Monte Carlo sim-
ulations as presented in [7] which correspond to a coarse
grid resolution of 1 pN, when there is no noise (compare
Figure 5(a) with Figure 5(a) in [7]). In particular, for all
possible sizes of the ensembles, we find run-length curves
that are monotonically decreasing with higher loads. In
a similar manner a near quantitative agreement is found
when noise is present (compare Figure 5 with Figure 5(b)
in [7]).
Under the condition that the cargo is not lost, a steady

state probability distribution will be reached. The corre-
sponding vector of probabilities 	 can be used to deter-
mine the average velocity of the cargo when at least
one motor is engaged on the microtubule. Results in
Figure 6(a) are based on the noiseless scenario equivalent
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Figure 5 Average run-length as a function of the load applied to the cargo neglecting the thermal noise component (a) and considering
it (b). The solid lines have been plotted for loads that are multiple values of 0.001 nN and agree with the Monte Carlo simulations in [7] using the
same set of parameters. The dashed lines are the same plots for loads that are multiple values of 0.0002 nN. Observe the presence of peaks that were
unnoticed at the previous resolution.

to Model A in [7]. Analogous results are reported in
Figure 6(b) for the noisy scenario. Our results match with
the results obtained in [7] using Monte Carlo simulations
(see Figure 3(a) and Figure 3(b) in [7]). Indeed, one of the
findings in [7] was that at low loads a cargo carried by one
single motor moves faster than a cargo carried by more
motors. The main difference is that the results obtained
using our probabilistic method are exact and based on a
precise definition of steady state. Conversely, in [7] certain

approximations are required (i.e. a maximal duration for
the transient is assumed) and the accuracy depends on the
number of simulations performed.

Discussion
The methodology developed in this article allows one
to determine how the probabilities of different relative
arrangements of molecular motors on a microtubule
change over time.
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Figure 6 Average velocity of the cargo as a function of the load in the case of ensemble of motors of different sizes (from onemotor to
four motors) in a case where thermal fluctuations are neglected (a) and where they are approximated with a truncated Gaussian (b).
These curves, obtained via our exact method, reproduce the Monte Carlo simulation results in [7] for the same set of parameters.
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This information is contained in the probability vector
P(t) (see Equation 9). For physical values of the model,
the number N of arrangements is limited and allows its
direct computation. The knowledge of P(t) offers, from
a biological perspective, detailed information about the
system. In fact, except for the absolute position of the
motor ensemble on the microtubule (that is lost in the
string representation), the information about the system
is completely preserved. When P(t) is known, it is pos-
sible to determine, via explicit formulas, many quantities
of biological interest, such as the average run-length of
the ensemble, the average number of engaged or active
motors, the average instantaneous velocity at which the
cargo moves and the probability distribution of the step
sizes observed in the cargo motion. Contrary to other
methods, the final accuracy of the results does not depend
on any specific simulation technique or on the number
of stochastic simulations that are performed. Also, the
method is extremely efficient: even for practically sized
ensembles with (m ≤ 8), results can be computed on a
standard desktop computer and general purpose software.

For a large range of physically meaningful values of the
parameters, the number N of possible string configura-
tions is in the order of about 105 − 107. Furthermore, the
matrix A, that defines the dynamics of the ordinary dif-
ferential equation to be solved, is sparsely populated. The
manageable dimension of the system state and the high
sparsity of A make the computation of the exponential of
A feasible even with a limited amount of memory. As evi-
dence for this, all the results shown in this article have
been obtained using a machine equipped with a quadcore
processor and 4 Gb memory (the algorithm was imple-
mented using MATLAB, TheMathWorks, Natick, MA).
For the study of larger groups of motor proteins, the adop-
tion of computer clusters or super-computers still remains
a viable solution.

Presence of a steady state
The probability vector P(t) for the different arrangements
of motors of the ensemble depends on the initial prob-
ability P(t0), as shown in Equation (9). A fundamental
question is whether starting from any arbitrary initial

Figure 7 Probability of having 1, 2, 3 or 0 motors engaged on the microtubule as a function of time t (a). Probability of having 1, 2, 3 motors
engaged on the microtubule as a function of time t under the condition that there is at least one motor engaged (b). The probability of having no
engaged motors converges to 1 as time goes to infinity. Observe, instead, that a constant probability distribution is reached in case (b) where it is
assumed that at least one motor is engaged.
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condition, after a transient period, the motor ensemble
eventually behaves according to a fixed probability distri-
bution which does not depend on the initial distribution
ofmotors. A property of this kind would justify the experi-
mentally observed robustness of the system. Furthermore,
it would make it possible to determine the generality of
certain observations, independent from the initial distri-
bution P(t0).
In order to illustrate how to define a meaningful notion

of steady state, it is useful to start considering how the
probability distribution of the number of motors engaged
on the microtubule changes over time. In Figure 7(a), the
knowledge of P(t) is used to determine the probability of
having a given number of motors engaged on the micro-
tubule at time t, assuming an ensemble of three motor
proteins (m = 3).
The probability of having no engaged motors on the

microtubule slowly converges to 1 as t goes to infinity.
This corresponds to an intuitive fact: the loss of the cargo
is an irreversible event for the system and, sooner or
later, it is to be expected that all motors will detach from
the microtubule. According to the model formulation, the
loss of the cargo is always the final event and, as such,
it trivially represents the only steady state condition of
the system. However a non-trivial, and biologically more
meaningful, notion of “steady state” can be introduced.
Figure 7(b) shows the conditional probability distribution

of the number of motors engaged on the microtubule
at time t, given that at least one motor is engaged. This
conditional probability distribution converges to a non-
trivial distribution. Thus, under the assumption that the
cargo has not been lost, the number of motors reaches a
probability distribution that does not depend on its initial
condition. This holds not only for the probability distribu-
tion of the number of engagedmotors, but, more generally
for the probability distribution of relative configurations,
as we will show at the end of this section.
In other words, under the hypothesis that the cargo has

not been lost, the relative arrangements of the motors
on the microtubule reach a stable (conditional) proba-
bility distribution 	 ∈ 	N−1. The determination of 	,
once P(t) is known, is quite straightforward and can be
obtained directly from the definition of conditional prob-
ability. The knowledge of this steady state 	 provides key
insights into the behavior of a group of motors.
For m = 3, we have computed the steady state condi-

tional probability	 of the motor arrangements in two dif-
ferent cases: cargo subject to low load (Fload = 0.0002nN)

and cargo subject to high load (Fload = 0.008nN). The
results are depicted in Figure 8(a) and in Figure 8(b),
respectively.
Data in Figure 8(a-b) provide the following insight. The

rearguard motor is always assumed as a reference and the
x-y axes represent the relative distances of the first and
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Figure 8 A representation of the steady state probability distributions � for an ensemble of three motors with low load (a) and high load
on the cargo (b). The rear-guard motor is taken as a reference. The x and the y axes represent the distance of the other two motors from the
rear-guard one. The distance is expressed in number of locations on the microtubule. The z axis represent the probability associated with a specific
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second motors of the ensemble from the rearguard one.
Thus, each point x-y represents an arrangement of the
ensemble. On the z axis we report the probability of that
specific arrangement. The probabilities of configurations
with less than three motors engaged are not reported in
the two figures because that would make the visualization
difficult. What is important to notice is how the presence
of either a low load or a high load leads to two different
steady state situations. Thus under a low load the motors
tend to spread out almost uniformly, instead, under a high
load, a certain pattern of configurations emerge as being
more likely. The most likely configurations lie along the
diagonal x = y, with a prominent peak around the origin
x = y = 0. This means that, under a high load, eventu-
ally it is more likely to find all the three motors clustered
together (represented by the peak at the origin). The high
frequency of configurations along the x = y diagonal sug-
gests that it also likely to find two close leading motors
with the third one lagging behind. Observations like this
would be difficult to obtain using Monte Carlo simula-
tions. Instead, an exact computation of the probabilities
allows to infer these characteristics of the motion in a
comprehensive manner.

Existence and uniqueness of the conditional stationary
distribution
In this section we provide the proof that there is a unique
non-trivial (conditional) stationary distribution for the
relative configurations σ1, ..., σN under the assumption
that there is at least one motot attached to the micro-
tubule. Without any loss of generality assume that σN = ∅
is the state associated with the loss of the cargo and that
σ1 =′ M′ is the state associated with exactly one motor
attached to the microtubule. Observe that in graph asso-
ciated with this Markov system all state σ2, ..., σN−1 can
reach σ1 via a sequence of detachments. Again without
any loss of generality, let us reorder the states assum-
ing that the first Na, σ2, ..., σNa , can be reached from σ1
in the graph associated with the Markov model and that
the states σNa+1, ..., σN−1 can not be reach from σ1. The
uniqueness of the stationary distribution is equivalent to
showing that there is a unique vector (	1, ...,	N−1)T such
that

∑N−1
j=1 	j = 1 and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1,1+AN ,1 A1,2 . . . A1,Na A1,Na+1 . . . A1,N−1
A2,1 A2,2 . . . A2,Na A2,Na+1 . . . A2,N−1
...

...
. . .

...
. . .

...
ANa ,1 ANa ,2 . . . ANa ,Na ANa ,Na+1 . . . ANa ,N−1
0 0 . . . 0 ANa+1,Na+1 . . . ANa+1,N−1
...

. . .
...

...
. . .

...
0 0 . . . 0 AN−1,Na+1 . . . AN−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

	1
	2
...

	Na
	Na+1

...
	N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=
(
A(11) A(12)

0 A(22)

)⎛
⎜⎝

	1
...

	N−1

⎞
⎟⎠ = 0.

where

• each column of the matrix sums up to zero
• the upper triangular structure of the matrix derives

from the particular way we have reordered the states
in accessible from σ1 and not accessible from σ1

• the top left entry A1,1 + AN ,1 derives from having
removed the state σN = ∅ since we are looking for
the conditional distribution of the relative
configurations given that the cargo has not been lost.

The bottom right block A(22) is such that (A(22))N−1

is a strictly diagonally dominant matrix, since it is possi-
ble to reach σ1 from each of the states σNa+1, . . . , σN−1.
This implies necessarily that 	Na+1 = 	Na+2 = . . . =
	N−1 = 0. Instead, the top left block of the matrix is an
irreducible matrix (in the associated graph each state can
reach any other one passing through σ1) implying that the
elements 	1,	2, . . . ,	Na and are uniquely determined
and strictly positive. Thus, there is a unique stationary
conditional distribution given that at least one protein is
attached to the microtubule.

Enabling finer analysis
As our method yields an exact probability distribution, it
facilitates a finer analysis. For example, the dependence
of the average run length on the load, under the pres-
ence and absence of thermal noise, is of interest. In [7],
Monte Carlo methods yield the dependence, where the
average run-length is obtained with respect to load in
steps of 1 pN . With our method it is straightforward to
obtain the exact values at this force resolution. However,
we can obtain this dependence at a finer force resolu-
tion of 0.2 pN . Using the finer scale, we noticed peaks in
the run-length curves for m > 2, that are not evident at
the coarse resolution of 1 pN . These peaks correspond
to loads that are multiples of the stalling force Fs. These
peaks, ascertained by our method provides the follow-
ing insight. Let us consider the curve corresponding to
m = 2 for simplicity. When only one motor is engaged
and Fload is close to (but less than) the stalling force
Fs, the probability of detachment becomes small, as evi-
dent from Equation (26). In this condition the loss of the
cargo becomes unlikely. Thus, the disengaged motor, on
average, has enough time to attach back to the micro-
tubule, catch up with the leading motor and move the
cargo a little further leading to a net increase in the
run-length. For m > 2, equivalent arguments can be pro-
vided and the peaks on the other curves can be similarly
explained. This mechanism shows how, in the absence
of the Brownian motion of the cargo, the expected run-
length tends to increase while the load approaches val-
ues that are multiple of the stalling force. When the
Brownian motion of the cargo is taken into account (see
Figure 5 (b)) the peaks are smoothed down, but do not
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Figure 9 Computed probabilities for different step sizes for the cargo in the case of an ensemble of twomotors (a) and an ensemble of
three motors (b). In the case of two motors, observe the presence of the possibility (with an extremely low probability) of observing steps in the
cargo position at about 12 nm of length.

disappear, thus they represent a robust characteristic of
the model. This kind of non-monotonic behavior for the
computed average run-length curve can be a drawback
of the detachment rate model, when F is close to Fs. In
such a case, our approach can be seen to identify spe-
cific inaccuracies of the model. However, it is also possible
that the finer analysis indicates a behavior that is exhib-
ited by an ensemble of motors carrying a cargo and the
deviation from a monotonic behavior are not artifacts
of the model. In such a case, the finer analysis identi-
fies a mechanism of “coordination” among the motors
that optimizes the average run-length in situations close
to a stalling scenario. Experiments can be designed and
conducted in order to determine whether this mecha-
nism is a model artifact or if it is actually occurring
in the physical system. Related but different study on
the relationship of velocities and run-length is reported
in [23].

Detection of rare events
The exact determination of the probability distribution of
the different configurations allows for the detection of rare
events quantifying their probabilities. For example, from
P(t) it is possible to determine the probability of the differ-
ent steps sizes for an ensemble of 2 motors as represented
in Figure 9.
We notice two prominent peaks corresponding to 8 nm

and 4 nm. These peaks correspond to the case where there
is one active motor before and after the step and to the
case where there are two active motors before and after
the step, respectively. There are also different predicted
step sizes close to 2 nm, 6 nm and around 4 nm. They
correspond to situations where there are different num-
ber of active motors before and after the step. We also
find a small probability of steps larger than 8 nm which
are closer to 11 nm. Since the probability distribution of

steps is exactly calculated, there must be events leading
to a change in the equilibrium position of the cargo with
length longer than 8 nm. This is unexpected. Indeed, since
each motor can advance only by 8 nm, the cargo equi-
librium itself can advance by, at most, 8 nm. In order to
identify the possible causes of these anomalous steps, we
have taken into account all the possible transitions from
one absolute configuration to another and we have flagged
those ones producing “11 nm steps”. With these exhaus-
tive analysis, we have determined that there are situations
where the cargo equilibrium can advance by more than
8 nm steps. Indeed, all these situations corresponds to
cases where the rearguard motor, which is actively pulling
the cargo, detaches from the microtubule. This scenario is
schematically represented in Figure 10.
Thus, these “11 nm steps” are not associated to any

actual stepping event of a motor, but exclusively to detach-
ment events of the rearguard motor. This situation is

Cargo

(a)

Cargo

(b)

Figure 10 The mechanism under which steps longer than 8nm
can be observed in the cargo motion. The rearguard motor on the
left is actively pulling back the cargo (a). When it detaches from the
microtubule, the cargo equilibrium position can advance by more
than 8 nm (b).
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rare in a bead-assay experiment, but it is known that
two motors frequently pull the shared microtubule in
two opposite directions in a gliding assay experiment
(see [8]). Our analysis indicates that a cargo movement
with step sizes larger than 8 nm is still viable in a bead
assay, though infrequent. Our approach can identify the
causes for such rarer modalities of transport. Thus, steps
larger that 8 nm as those described in [8] could well
be originated by a mechanism of this kind. The proba-
bility distribution of the step size for an ensemble of 3
motors is reported in Figure 9 where the steps longer than
8 nm (at about 11 nm, 15 nm and 20 nm) have similar
interpretation.

Conclusions
In conclusion, a framework and model for the study of
the coordinated behavior of molecular motors has been
introduced. The main novelty of the approach lies in the
adoption of methods of analysis that obviate the need of
Monte Carlo simulations.
The methodology is applied to the analysis of ensem-

bles of Kinesin-I motors. Results that had been previously
found using Monte Carlo methods are accurately repro-
duced, validating the methodology. More importantly,
under this novel probabilistic approach new insights
about the mechanisms of action of these proteins are
found, suggesting hypothesis about their behavior and
driving the design and realization of new experiments.
For example, a possible mechanism under which motor
proteins could coordinate together in order to increase
their overall processivity is identified. Furthermore, the
probabilistic framework allows the determination of
steady state conditions for groups of molecular motors.
The model predicts that, regardless of their initial con-
figuration, the molecular motors will reach a situa-
tion where their relative distances on the microtubule
will follow the same probability distribution. This pro-
vides an explanation for the robustness of the sys-
tem with respect to the fluctuations of the surrounding
environment.
The advantages provided in accuracy and efficiency

make it possible to detect rare events in the motor pro-
tein dynamics, that could otherwise pass undetected using
standard simulation methods. In this respect, the model
has allowed to provide a possible explanation for infre-
quent steps of length longer that 8 nm that had been
observed in bead assay experiments [8].
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