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methamphetamine-mediated increase in IL-6 and
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Abstract

Methamphetamine (MA) is one of the commonly used illicit drugs and the central nervous system toxicity of MA is
well documented. The mechanisms contributing to this toxicity have not been fully elucidated. In this study, we
investigated the effect of MA on the expression levels of the proinflammatory cytokines/chemokines, IL-6 and IL-8
in an astrocytic cell line. The IL-6 and IL-8 RNA levels were found to increase by 4.6 ± 0.2 fold and 3.5 ± 0.2 fold,
respectively, after exposure to MA for three days. Exposure of astrocytes to MA for 24 hours also caused increased
expression of IL-6 and IL-8 at the level of both RNA and protein. The potential involvement of the nuclear factor-
Kappa B (NF-�B) pathway was explored as one of the possible mechanism(s) responsible for the increased
induction of IL-6 and IL-8 by MA. The MA-mediated increases in IL-6 and IL-8 were significantly abrogated by
SC514. We also found that exposure of astrocytes to MA results in activation of NF-�B through the phosphorylation
of I�B-a, followed by translocation of active NF-�B from the cytoplasm to the nucleus. In addition, treatment of
cells with a specific inhibitor of metabotropic glutamate receptor-5 (mGluR5) revealed that MA-mediated
expression levels of IL-6 and IL-8 were abrogated by this treatment by 42.6 ± 5.8% and 65.5 ± 3.5%, respectively.
Also, LY294002, an inhibitor of the Akt/PI3K pathway, abrogated the MA-mediated induction of IL-6 and IL-8 by
77.9 ± 6.6% and 81.4 ± 2.6%, respectively. Thus, our study demonstrates the involvement of an NF-�B-mediated
signaling mechanism in the induction of IL-6 and IL-8 by MA. Furthermore, we showed that blockade of mGluR5
can protect astrocytes from MA-mediated increases of proinflammatory cytokines/chemokines suggesting mGluR5
as a potential therapeutic target in treating MA-mediated neurotoxicity.
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Introduction
Methamphetamine (MA) is a psychostimulant in the
amphetamine class of drugs and is one of the most com-
monly abused agents by illicit-drug users. The effects of
MA are primarily attributed to its action on dopamine
(DA) receptors and transporters [1,2]. Furthermore, the
interaction of MA with DA receptors and transporters
has been shown to be associated with oxidative stress,
which is among the several different mechanisms
believed to be responsible for the central nervous system

(CNS) toxicity associated with MA [3-5]. In addition to
oxidative stress, MA has been shown to increase mito-
chondrial dysfunction, excitotoxicity [6], blood brain bar-
rier (BBB) damage [6-8] and monocyte infiltration into
the CNS [9] along with increased levels of inflammatory
markers such as IL-6 and TNF-a [10].
The proinflammatory cytokines/chemokines IL-6 and

IL-8 are among the inflammatory responses associated
with various neurological disorders including Parkinson’s
disease [11], Alzheimer’s disease [12], and amyotrophic
lateral sclerosis (ALS) [13]. A single high dose of MA has
been shown to induce IL-6 and TNF-a in the striatum
and hippocampus of mice [14,15] and IL-1b in the
hypothalamus of rats [16]. However, the specific molecular
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mechanism(s) involved in the increased expression of
these proinflammatory cytokines is still unknown. It is
generally accepted that MA induces oxidative stress,
which can increase proinflammatory cytokines by increas-
ing the activities of transcription factors such as nuclear
factor-Kappa B (NF-�B), activator protein-1 (AP-1) and
the cAMP-response element-binding protein (CREB)
[17,18]. Furthermore, the role of dopamine receptors and
transporters in MA-mediated oxidative stress and neu-
roinflammation has been extensively investigated [19,20].
A more direct cytotoxic role of MA has been demon-
strated to be mediated by the c-Jun N-terminal kinases/
mitogen-activated protein kinase (JNK-MAPK) pathway
followed by the activation of caspases and the induction of
apoptosis [21]. However, the role of astrocytes has been
relatively unexplored in terms of the regulation of inflam-
matory cytokines and the mechanisms underlying MA-
mediated expression of proinflammatory cytokines.
Low levels of cytokines and chemokines are constitu-

tively expressed by microglia in the CNS and these can
be induced to higher levels by inflammatory mediators
[22,23]. However, astrocytes constitute the major cell
type present in the brain. Astrocytes are also involved in
regulation of numerous pro- and anti-inflammatory cyto-
kines [24]. Oxidative stress in astrocytes is found to be
mediated via Akt/PI3K, Nrf2 and NF-�B pathways [25].
Increased inflammatory markers released from astrocytes
is associated with a variety of CNS complications such as
Alzheimer’s disease [26], multiple sclerosis, glaucoma
[27] and Parkinson’s disease [28]. Furthermore, astrocyte
activation has been shown to be critical in the regulation
of the rewarding effects induced by drugs of abuse [29].
Thus, it is important to consider the role of astrocytes in
neuroinflammatory signaling induced by MA. Our pre-
sent study was undertaken to address whether MA
induced proinflammatory cytokines in astrocytes and to
determine the mechanisms responsible for MA-mediated
expression of these cytokines.

Materials and methods
Cell culture and reagents
All the experiments were performed using SVGA, a clone
of SVG astrocytes [30]. The cells were cultured at 37°C in
a humidified chamber with 5% CO2 in Dulbecco’s Modi-
fied Eagle’s Medium supplemented with 10% FBS, 1%
L-glutamine, 1% sodium bicarbonate, 1% non-essential
amino acids and 0.1% gentamicin. The cells were allowed
to adhere overnight before any treatment. All the experi-
ments lasted for three days and were performed in T-75
flasks. For MA treatments the cells were treated once a
day with the drug.
MA and MPEP (an mGluR5 antagonist) were obtained

from Sigma (Sigma-Aldrich, St. Louis, MO, US). SC514
and LY294002 were obtained from Cayman chemicals

(Cayman Chemicals, Ann Arbor, MI, US). The antago-
nist treatment was given 1 hour prior to the treatments
with MA every day. Specific antibodies against Phospho-
I�B-a (Ser32) (14D4), b Tubulin (D-10), Actin (C-2),
I�B-a, Lamin B (C-20) and NF-�B p50 (H-119) were
obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, US).

Real time RT PCR
The mRNA expression levels of IL-6 and IL-8 were quan-
tified by amplifying the total RNA obtained after the treat-
ments. The cells were harvested and total RNA was
isolated using an RNeasy mini kit (QIAGEN, Valencia,
CA, US) according to the manufacturer’s protocol. RNA
was then reverse transcribed using RT enzyme for 30 min-
utes at 50°C. The reverse transcribed product was then
amplified for IL-6 and IL-8 and Hypoxanthine-guanine
phosphoribosyl transferase (HPRT) with the forward pri-
mers, reverse primers and probes as shown in Figure 1E.
Briefly, the reverse transcribed cDNA were denatured at
95°C for 15 minutes and amplified for 45 cycles (95°C for
15 seconds, 54°C for 30 seconds and 76°C for 30 seconds).
The Ct values for IL-6 and IL-8 were normalized using
HPRT expression levels and the fold change in expression
levels were calculated using the 2-ΔΔCt method as dis-
cussed in [31].

Immunoblot
SVGA astrocytes were harvested and lysed using RIPA
buffer (Boston BioProducts, Ashland, MA, US) upon ter-
mination of the treatments to obtain whole cell lysates.
Nuclear and cytoplasmic extracts of the cells were pre-
pared using a NE-PER Nuclear Extraction kit (Thermo
Fisher, Rockford, IL, US) according to the manufacturer’s
protocol. The proteins were separated and visualized using
western blot analysis as mentioned previously [32].

Cell viability assay
SVGA astrocytes were enzymatically isolated in the cul-
ture medium and stained with 0.4% W/V trypan blue.
The total cell count was obtained using a hemocytometer
chamber by excluding the dead cells which were stained
with the dye.

Immunocytochemistry
SVGA cells (4 × 105) were cultured on glass cover slips in
a 12-well plate and treated with 500 μM of MA. The cul-
ture media was supplemented with 1 mg/ml GolgiStop™
(BD Biosciences, San Jose, CA, US) 6 hours prior to termi-
nation of the incubation in order to prevent the release of
the cytokines. After 24 hours of incubation with MA the
cells were fixed with 1:1 ice-cold methanol for 20 minutes
at -20°C. The cells were rinsed three times with cold PBS
and permeabilized with PBS containing 0.1% Triton X-100
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(PBST). The cells were washed three times with PBS fol-
lowed by blocking with 1% BSA in 0.1% PBST for 30 min-
utes at room temperature. All the antibodies were diluted
in blocking buffer. After blocking, the cells were incubated
with either rabbit anti-IL-6 (1:500) or rabbit anti-IL-8
(1:500) and mouse MAb anti-GFAP (GH5) (1:1500) at 4°C
overnight in a humidified chamber. After three washes for
5 minutes each with PBS, the cells were incubated in the
dark for 1 hour at room temperature with blocking buffer
containing either anti-mouse antibody conjugated with
Alexa Fluor 555 (1:1000), or anti-rabbit antibody conju-
gated with Alexa Fluor 488. Finally, the cells were washed
three times with PBS for 5 minutes each and mounted on

a slide with 10 μl of Vectashield mounting medium with
DAPI (Vector Laboratories, Burlingame, CA, US). The
fluorescence was observed using a fluorescent Nikon
Eclipse E800 confocal microscope (Nikon Instruments,
Melville, NY, US). The images were captured using a 60×
zoom lens.

Statistical analysis
All the data are expressed as mean ± SE of three inde-
pendent experiments with each experiment done in tri-
plicate. The statistical significance was calculated using
Student’s t-test and a significant value of P < 0.05 was
considered to be statistically significant.

Figure 1 Methamphetamine increases the expression of IL-6 and IL-8 in astrocytes. 0.8 × 106 SVGA astrocytes were treated with different
doses of MA for 24 hours and total mRNA was isolated. The relative expression levels of IL-6 (A) and IL-8 (B) were measured using real time RT-
PCR as compared to untreated control. 0.8 × 106 SVGA were treated with 500 μM of MA for three days in flasks and the cells were harvested 24
hours after the last dose. Total mRNA was isolated and the relative levels of IL-6 (C) and IL-8 (D) were determined using real time RT-PCR as
compared with untreated control. (E) Primer sequences used in order to measure the mRNA expression of IL-6 and IL-8 using real time RT-PCR.
Each bar represents the mean ± SE of three experiments with each experiment performed in triplicate. The statistical significance was calculated
using student’s t-test and ** denotes P ≤0.01. MA, methamphetamine.
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Results
Methamphetamine increases the expression of
proinflammatory cytokines/chemokines in astrocytes
The neurotoxic effects of MA have been attributed to its
potential for inducing oxidative stress through dopamine
(DA) receptor and dopamine transporter (DT) dependent
mechanisms reviewed in [33-35]. We wished to deter-
mine whether MA could increase the expression of
proinflammatory cytokines/chemokines such as IL-6 and
IL-8 in astrocytes. SVGA astrocytes were treated with
250 μM, 500 μM and 1000 μM of MA for 24 hours. The
doses of MA were physiologically relevant based on the
levels of MA found in post-mortem brain samples from
MA abusers (0.8 to 1 mM) [36]. The mRNA expression
levels of IL-6 and IL-8 showed a dose-dependent
increase. The MA-induced expression of IL-6 and IL-8
was found to be 1.7 ± 0.1, 2.7 ± 0.1, and 4.2 ± 0.2 fold
and 1.4 ± 0.1, 3.5 ± 0.2 and 5.6 ± 0.2 fold, respectively for
250 μM, 500 μM and 1000 μM of MA, respectively
(Figure 1A, B). Furthermore, we also wanted to deter-
mine the effect of chronic exposure of MA on astrocytes.
We treated the astrocytes with 500 μM MA for three
days, once a day, as the dose is relevant to the levels
found physiologically in MA abusers [36]. The chronic
treatment with MA resulted in increased expression of
IL-6 and IL-8 by 4.6 ± 0.2 fold and 3.5 ± 0.2 fold, respec-
tively (Figure 1C, D). These results clearly indicate that
MA can increase the expression of proinflammatory
cytokines/chemokines such as IL-6 and IL-8.

Methamphetamine increases intracellular levels of IL-6
and IL-8
After determining that MA increased levels of IL-6 and
IL-8 mRNA we wanted to confirm that increased levels
of RNA were reflected in increased production of IL-6
and IL-8 protein. SVGA astrocytes were treated with 500
μM MA for 24 hours and intracellular levels of IL-6 and
IL-8 proteins were observed using immunhistochemistry.
Although in the control cells there were only minor
amounts of IL-6 or IL-8 proteins, in cells treated with
MA for 24 hours increased levels of Il-6 and IL-8 pro-
teins were clearly visible (Figure 2).

Methamphetamine-mediated induction of
proinflammatory cytokines/chemokines is mediated via
NF-�B pathway
We then wished to determine the signaling mechanism
involved in MA-mediated increased expression of IL-6
and IL-8. The potential involvement of the NF-�B path-
way was investigated because the promoters for both IL-6
and IL-8 contain a binding site for NF-�B and this tran-
scription factor is known to be involved in neurological
disorders associated with increased inflammation [37-40].

In order to determine whether MA can induce NF-�B
activation and translocation, SVGA astrocytes were treated
with 500 μM MA over a time period of 0 to 6 hours. The
cytoplasmic and nuclear fractions of the astrocytes were
collected and the levels of p50 in cytoplasmic and nuclear
fractions were measured in MA treated cells and com-
pared to untreated controls (Figure 3A, B). Clearly, MA-
treated cells showed a time-dependent increase in p50
translocation from the cytoplasm to the nucleus, with the
greatest translocation observed at 3 hours (2.2 ± 0.1 fold).
In order to further confirm these results we measured

the phosphorylated form of I�B-a in the whole cell
lysates of the astrocytes treated with 500 μM of MA
over a period of 0 to 120 minutes. Consistent with the
previous results, MA treatment was found to increase
the phosphorylation of I�B-a, as evidenced by the
increased levels of p-I�B-a in MA-treated astrocytes at
10 minutes (Figure 3C).
We also evaluated the effect of SC514, a specific inhi-

bitor of inhibitory Kappa B kinase (IKK) on the expres-
sion levels of IL-6 and IL-8 in MA-treated astrocytes.
The cells were treated with 10 μM SC514 (IC50 = 14.5
μM) one hour prior to each MA treatment over the
three-day course of the experiment. The concentration
of the antagonist was determined based on the IC50
value of the SC-514 and the viability of the cells, which
was found to be approximately 90% at the concentration
that was used (data not shown). The mRNA expression
levels of IL-6 and IL-8 were measured using real time
RT-PCR and the percent inhibition of MA-mediated
expression levels of IL-6 and IL-8 were found to be 56.7
± 5.1% and 78.4 ± 7.8%, respectively (Figure 3D, E).
Together, all these results strongly suggest that induc-
tion of IL-6 and IL-8 by MA involves the activation and
translocation of NF-�B.

Role of mGluR5 and Akt/PI3K in MA-mediated expression
of proinflammatory cytokines/chemokines
Having established the role of the NF-�B pathway in the
induction of IL-6 and IL-8 by MA, we were interested in
the receptor involved in mediating this response. There is
an extensive body of literature demonstrating that many
of the effects of MA are mediated through the DA recep-
tor/DA transporter (DT). However, recent reports also
suggest the possible involvement of metabotropic gluta-
mate receptors in MA-mediated neurotoxicity and/or cog-
nitive impairment [41-43]. In order to determine whether
the metabotropic glutamate receptor-5 (mGluR5) plays a
role in the MA-mediated increase in IL-6 and IL-8 levels
in astrocytes, we treated the astrocytes with 25 μM of
MPEP, a specific inhibitor of mGluR5, one hour prior to
MA treatment for three days once in a day (o.i.d.). The
dose of MPEP was determined based on the cell viability
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as observed by trypan blue staining (data not shown). We
observed that MPEP abrogated the MA-induced expres-
sion levels of IL-6 and IL-8 by 42.6 ± 5.8% and 58.1 ±
2.9%, respectively (Figure 4A, B). Thus, these results
clearly indicate an interaction of the mGluR5 receptor
with MA, which leads to increased expressions of proin-
flammatory cytokines/chemokines.
In order to determine the downstream signaling cascade

leading to the NF-�B pathway, we investigated the poten-
tial role of the Akt/PI3K pathway. The metabotropic

glutamate receptor pathway requires the activation of the
Akt/PI3K signaling cascade for its activity [44-46]. There-
fore, we treated the astrocytes with 10 μM of LY294002, a
specific inhibitor of Akt/PI3K, for 1 hour prior to MA
treatment for each of three days. The dose of LY294002
was determined based on the cell viability as observed by
trypan blue staining (data not shown). As per our hypoth-
esis, LY294002 did abrogate the MA-mediated expression
levels of IL-6 and IL-8 by 77.9 ± 6.6% and 81.4 ± 2.6%,
respectively (Figure 4C, D). Thus, these results provide

Figure 2 Methamphetamine treatment increased the expression of IL-6 and IL-8 in the astrocytes. SVGA astrocytes were grown on
coverslips and were treated with 500 μM of methamphetamine (MA) for 24 hours followed by methanol-fixation. Golgi-Stop™ was added 6
hours prior to fixing in order to block the release of the cytokines from the cells into the supernatants. The coverslips were blocked, and then
incubated with primary antibody for IL-6/IL-8 and Glial Fibrillary Acidic Protein (GFAP) and secondary antibodies conjugated with
Alexafluor488 to detect IL-6 and IL-8 and an antibody conjugated with Alexafluor555 to detect GFAP. The coverslips were then mounted using
medium containing DAPI and were observed under a confocal microscope to determine the localization and expression of IL-6 (A) and IL-8 (B).
Untreated cells were stained individually for IL-6, IL-8 and GFAP and did not show any non-specific fluorescence (data not shown).
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strong evidence for the involvement of the Akt/PI3K sig-
naling mechanism in the induction of IL-6 and IL-8 by
MA.

Discussion
In the CNS, astrocytes are the most abundant cells and
they are associated with several functions including meta-
bolic support of neurons and modulation of neurotrans-
mission. In the present study, we investigated the role of
astrocytes in neuroinflammation produced by MA. We
found that MA treatment of astrocytes can result in
increased levels of IL-6 and IL-8 in a dose dependent man-
ner. Furthermore, we demonstrated that the increases in
IL-6 and IL-8 expression observed at the level of RNA
were consistent with our observation of increased expres-
sion of IL-6 and IL-8 proteins. A single dose of MA in
mice has been found to be associated with neurotoxicity
mediated by increased expression of proinflammatory

cytokines such as TNF-a, IL-1b and IL-6 [10,15]. In this
study, we investigated the effect of multiple doses of MA
on the expression of proinflammatory cytokines in astro-
cytes. Our results demonstrate that MA can produce neu-
roinflammation in prolonged treatments. Furthermore, the
expression of these cytokines is more pronounced with
increasing doses of MA, indicative of increased neurotoxi-
city at higher doses of MA.
We next investigated the signaling mechanisms respon-

sible for the MA-mediated increases in expression of IL-6
and IL-8. MA-mediated oxidative stress and mitochon-
drial dysfunction are found to play a major role in its
neuroinflammatory effects [6,47,48]. The induction of a
neuroinflammatory response due to MA has been shown
to be associated with increased activities of certain tran-
scription factors, including STAT1, STAT3, AP1, CREB
and NF-�B [17,49]. Since NF-�B has also been found to
be associated with multiple neurological disorders and

Figure 3 Methamphetamine induction of IL-6 and IL-8 is mediated via NF-�B pathway. (A) The proteins from the nucleus and cytoplasm
of SVGA cells were collected after various time-periods as indicated and the translocation of p50 was measured by comparing the expression in
the nucleus and cytoplasm. The expression in the nucleus and cytoplasm were normalized with laminB and b-Tubulin, respectively, as
housekeeping genes. (B) The bar chart represents the mean ± SE of three independent experiments and the blot is a representation of three
experiments. (C) SVGA cells were treated with 500 μM of MA for the specified time and the total cell lysates were collected as mentioned in
Materials and Methods. Total I�B-a was used as an experimental control and actin was used as a loading control. The blot is representative of
three independent experiments. SVGA astrocytes were treated with 10 μM of SC514 for one hour prior to MA treatment every day for three days
and the total mRNA was isolated 24 hours after the last dose. The expression levels of IL-6 and IL-8 were measured with real time RT-PCR and
the percent mRNA expression of IL-6 (D) and IL-8 (E) were calculated relative to MA-mediated expression levels. SC514-treated cells did not alter
the basal expression levels of IL-6 and IL-8 (data not shown). Each bar represents the mean ± SE of three experiments with each experiment
performed in triplicate. The statistical significance was calculated using student’s t-test and * and ** denotes P ≤ 0.05 and ≤ 0.01, respectively.
MA, methamphetamine.
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neuroinflammatory complications, we investigated
whether NF-�B plays any role in the increased cytokine
expression induced by MA. Our studies clearly showed
multiple lines of evidence that support our hypothesis
that the MA-mediated increase of proinflammatory cyto-
kines/chemokines is dependent on the NF-�B pathway.
To our knowledge, this is the first demonstration that
MA-induced increases in proinflammatory cytokines/
chemokines are mediated through the NF-�B pathway.
Thus, the NF-�B pathway appears to be involved in med-
iating the induction of proinflammatory cytokines/che-
mokines by MA, as well as in mediating the response to
oxidative stress induced by MA. The role of the dopa-
mine receptor and transporters has been extensively stu-
died to address the neuroinflammatory roles of MA in
the CNS [33-35]. Recently, however, the effect on the
excitatory neurotransmitter via glutamate receptors has
also been shown to be responsible for MA-mediated cog-
nitive impairments [43]. Furthermore, inhibition of the

metabotropic glutamate receptors, mGluR5 in particular,
has been shown to reduce the self-administration of MA
in rats [50]. MA-mediated extracellular glutamate is
found to augment the excitotoxicity in the striatums of
rats [51]. Furthermore, our results in the present study
clearly demonstrate that mGluR5 plays a role in the MA-
mediated induction of IL-6 and IL-8. Thus, our study
suggests a possible link between the oxidative stress and
mGluR5 activity since both phenomena are due to MA
treatment. Furthermore, recent studies in spinal cord injury
and neonatal excitotoxic lesions have suggested the poten-
tial utilization of mGluR5 as a therapeutic target [52,53].
Our findings also suggest mGluR5 as a therapeutic target
for abrogation of MA-mediated expression of neuroinflam-
matory cytokines/chemokines. Furthermore, we sought to
investigate a link between the effects of MA on mGluR5
and NF-�B activation. Since the classical Huntington’s dis-
ease pathway involves activation of the Akt/PI3K pathway,
which is mediated via the mGluR5 receptor [54], we

Figure 4 Role of mGluR5 and Akt/PI3K in MA-mediated expression of IL-6 and IL-8. SVGA astrocytes were treated with 25 μM of MPEP or
10 μM of LY294002 for 1 hour prior to the MA treatment every day for three days and the total mRNA was isolated 24 hours after the last
treatment of MA. The relative mRNA expression levels were measured for IL-6 and IL-8 using real time RT-PCR and the % mRNA expression levels
of IL-6 and IL-8 due to MPEP (A, B, respectively) and LY294002 (C, D, respectively) were determined relative to cytokine levels measured from
SVGA cells treated with MA in the absence of the inhibitors. Cells treated with inhibitors alone did not alter the basal expression levels of IL-6
and IL-8 (data not shown). Cytokine expression levels of MA-treated cells relative to untreated controls were similar to those levels shown in
Figure 1C and D. Each bar represents the mean ± SE of three experiments with each experiment performed in triplicate. The statistical
significance was calculated using student’s t-test and ** denotes P ≤ 0.01. mGluR5, metabotropic glutamate receptor-5; MA, methamphetamine.
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hypothesized a role for Akt/PI3K in the signaling cascade
induced by MA. Our results support this hypothesis,
because the antagonist for Akt/PI3K abrogated MA-
mediated expression of IL-6 and IL-8.
In conclusion, we demonstrated that MA could

increase the expression of proinflammatory cytokines/
chemokines in astrocytes in a dose-dependent manner.
MA alters the mGluR5 receptor activity, which acti-
vates the Akt/PI3K cascade. This may further activate
the phosphorylation of I�B-a via the kinase activity of
IKK releasing the free form of the heterodimeric NF-
�B (p50-p65). Finally the active NF-�B then translo-
cates from cytoplasm to the nucleus and promotes the
transcription of IL-6 and IL-8 (Figure 5). The temporal
relationship between the pathways that is presented in
Figure 5 is based upon the work presented here and
also includes findings from other laboratories. The acti-
vation of PI3/Akt has been shown to be mediated
through mGluR5 [44,55]. Furthermore, involvement of

the NF-�B pathway in the regulation of various pro-
inflammatory cytokines/chemokines has been well
reported [37-40]. In our study, we demonstrated abro-
gation of MA-mediated IL-6 expression with the use of
both mGluR5 and Akt/PI3K inhibitors. Thus, in addi-
tion to the current paradigm presented in the litera-
ture, our study provides essential evidence suggesting
involvement of these pathways with regard to MA-
mediated signaling. Thus, our study provides vital
information to understand better the role of MA in the
expression of proinflammatory cytokines/chemokines
in astrocytes and provides an insight in the develop-
ment of therapeutic strategies to counteract MA-
mediated inflammation.
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