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Abstract Molecular networks provide a powerful tool for the study of biomedical
systems, in particular several studies have detected alterations of the network struc-
ture associated to disease states. Here we propose that diseases cannot only alter the
structure of the network but also its stability. To evaluate network stability we have
developed a new methodological framework. Our approach is an adaptation of the
classical Deterministic Simulated Annealing algorithm to work with discrete states.
Adjusted energy values are used to compare the network stability in disease and con-
trol states. The results show that cancer networks are less stable than the Alzheimer’s
disease (AD) ones. These results can be interpreted in terms of our previous observa-
tions on cancer and AD inverse comorbidity, i.e. AD patients have lower than expected
risk to suffer cancer.
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1 Introduction

Neurological disorders and cancer are two current global health priorities. Interest-
ingly, epidemiological evidence ismounting that patientswith certain neurological dis-
orders, including those suffering from Schizophrenia (SCZ) and Alzheimer’s disease
(AD), have a lower than expected tendency to develop some forms of cancer (Behrens
et al. 2009, 2012; Tabarés-Seisdedos and Rubenstein 2013; Tabarés-Seisdedos et al.
2011). Hence, we performed a systematic meta-analysis of gene expression in order to
investigate the molecular mechanisms that might underlie such inverse comorbidity,
identifying genes and pathways differentially expressed in neurological disorders and
some types of cancer (Ibáñez et al. 2014). Interestingly, we found a common set of
genes and biological processes thatwere apparently deregulated in opposing directions
in cancers and neurological disorders.

Here, we set out to broaden our understanding of the molecular basis underlying
the differences between cancers and neurological conditions. As such, and given that
the central dogma of molecular biology dictates that information flows from genes
to proteins via RNA (Crick 1970), we integrated gene expression data with protein–
protein interaction networks (PPINs) in order to study these differences in terms of
network organization rather than at the level of individual genes. Gene expression
data informs whether a gene that encodes a given protein is active or not. Yet proteins
function in the context of their interactions with other proteins, interactions that are
described in PPINs in which each protein represents a node in the network.

In PPINs, it is assumed that proteins corresponding to genes that are not active (i.e.:
unexpressed) will not interact with their potential partners. Therefore, the production
of RNA by genes is commonly used as a proxy of the activity of the gene, and this
is correlated with the activation of molecular systems within PPINs that underlie
physiological and developmental processes. Indeed, in many cases, deregulation of
gene expression provokes dramatic phenotypic changes, as occurs in several diseases
(Kaern et al. 2005).

Protein interaction maps have been used to study the molecular organization of
cellular systems and the perturbations in them created by disease. PPINs reflect the
functionality of interacting proteins and for example, the consequence of a single
gene deletion in the yeast Saccharomyces cerevisiae would appear to depend on the
position of the gene product within the PPIN (Jeong et al. 2001). Thus, the proteins
most important for a cell’s survival are highly connected (Jeong et al. 2001; Wuchty
and Almaas 2005) and altering them has profound effects on the PPIN. In terms of
cancer, it is thought that cancer related proteins correspond to central hubs and that they
are highly connected within networks (Jonsson and Bates 2006). Indeed, the genomic
and network characteristics of genes mutated in cancer seem to confirm that these
genes tend to encode central hubs within PPINs (Rambaldi et al. 2008). In addition,
PPINs have been used as background layers when mapping gene expression data in
order to gain information about the state of the nodes and their possible dynamics
(Börnigen et al. 2013; Chuang et al. 2007; Hudson et al. 2009; Komurov and Ram
2010; Liu et al. 2013; Milanesi et al. 2009; Pujana et al. 2007; Schramm et al. 2010;
Teschendorff and Severini 2010; Pel et al. 2013; West et al. 2012). For example, genes
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that are over expressed in lung cancer are more strongly connected than those that are
suppressed or selected at random (Wachi et al. 2005).

We hypothesize that PPINs related to cancer are more unstable than those based
on neurological data. This may be because there are more active interactions between
cancer related proteins and thus, a mutation or change in any of these would cause an
important destabilization of the network. By contrast, proteins corresponding to genes
affected in neurological disorders have less active connections and consequently, they
are less susceptible to destabilization. In this context, we present an approach based on
the combination of gene expression data and PPINs to study the relationship between
cancers and neurological disorders. To achieve this we associate each protein (or node)
in the network with a state that is directly related to the level of expression of the corre-
sponding gene. The expression data used is derived from a large series of experiments
carried out on cancer and neurological disorders in humans, information that makes
the PPINs disease specific and that allows comparative studies to be performed.

In terms of the computational methodology to study the differences between dis-
ease specific networks, we have found an appropriate equivalence in the Deterministic
Simulated Annealing (DSA) algorithm proposed previously (Duda et al. 2007). The
DSA algorithm was designed to find the optimal solution inspired by different bio-
logical or physical phenomena. The DSA is based on the shifting of metals from an
unstable state as a liquid to a stable solid state, a process mediated by a decrease in the
temperature of the material. These transformations can be simulated by the evolution
of the states of interconnected network nodes that evolve until an optimal solution with
minimal energy is reached. This evolution is controlled through an energy minimiza-
tion process that determines the network’s stability as the energy decreases. Therefore,
lower energies correspond to greater stability.

Inspired by the DSA algorithm, we designed and implemented a new method to
measure the stability of PPINS based on a defined energy function. In this approach
the concept of stability differs from that in the original DSA, in which the network
evolves towards states with different stabilities via temporal transitions or another
equivalent value (Cruz García et al. 2011, 2002; Pajares and Cruz 2004; Sánchez-
Lladó et al. 2011). The proposed approach used in this study computes energy based
on existing interactions and it computes the energy difference between two states, such
as disease and control samples. In this manner, the temporal aspect of the original DSA
is reduced to the comparison between a reference and a newmodel. The reference state
can be considered to be equivalent to the initial state and the new model as a single
progressive step. Furthermore, any simulated annealing process (DSAor probabilistic)
is driven by an optimization process in order to achieve stable states (minimum energy
values). By contrast, since only one transition is considered in our approach, there is no
optimization process involved and local minima energy are avoided. These substantial
differences from the original DSA are introduced tomake it possible to perform a large
scale systematic comparison of networks associated to cancer, neurological disorders
and normal controls for which the information available comes from experiments
carried out at only one time point, representing a single state of these conditions.
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2 Materials and methods

2.1 Materials

The protein interaction and gene expression data used in this study were obtained from
PPIN and Gene expression data sets.

2.1.1 The protein–protein interaction network (PPIN)

We used the human PPIN from the protein interaction network analysis data-
base (PINA, http://cbg.garvan.unsw.edu.au/pina/interactome.stat.do, version October
2011. Online Resource 1:Wu et al. 2009). PINA is an integrated platform of PPIN data
that has been extracted from six different public databases: IntAct, MINT, BioGRID,
DIP, HPRD, and MIPS/MPact. It includes self-interactions, interactions predicted by
computational methods, and interactions between human proteins and proteins from
other species. Moreover, it has recently been used in other similar studies (Xia et al.
2011; Laakso and Hautaniemi 2010).

Besides the PINA network, we also used two additional PPINs in order to guar-
antee that a similar outcome was obtained: The Human Protein Reference Database
(HPRD, http://www.hprd.org/download, version April 2010) that contains pairs of
human protein interactions based on experimental evidence from the literature and that
has been used in several studies (Teschendorff and Severini 2010; West et al. 2012);
and the Human Integrated protein–protein interaction rEference (HIPPIE, http://
cbdm.mdc-berlin.de/tools/hippie/download.php, version September 2014) that incor-
porates a human PPI dataset with a normalized scoring scheme, integrating data from
HPRD, BioGRID, IntAct, MINT, Rual05, Lim06, Bell09, Stelzl05, DIP, BIND, Col-
land04, Lehner04, Albers05, MIPS, Venkatesan09, Kaltenbach07 and Nakayama02.
We selected the interactions from these PPINs with a curated score above 0.73 in order
to be confident that the pairs of proteins interact (Schaefer et al. 2012).

2.1.2 Gene expression data sets

Measuring gene expression with microarrays is now a common molecular biology
approach in biomedicine, making it possible to simultaneously measure the relative
expression of thousands of genes under different experimental conditions (Current
Topics in Computational Molecular Biology, 2002). Thousands of gene expression
data sets are available in public databases, each containing a description of the corre-
sponding biomedical origin of the sample, the analytic procedures followed and the
experimental results in terms of expression (i.e.: the amount of RNA produced for
each gene in the genome).

Raw experimental gene expression data (CEL files) for Ovarian, Colon, Liver and
Kidney datasets were downloaded from the Barcode human transcriptome repository
(Gene Expression Barcode, http://barcode.luhs.org/), and for the SCZ andADdatasets
theywere downloaded from theNCBIGEO omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo) and Stanley Medical Research Institute Online Genomics Database (SMRI,
https://www.stanleygenomics.org: Online Resource 2). Importantly, each dataset cor-
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Fig. 1 Flow chart of the overall study

responds to a collection of disease and control samples. For the analysis we filtered
out the cases with too few disease/control cases (less than 9) and we only used those
produced in the same platform (Affymetrix array GeneChip Human Genome U133
Plus 2.0), rendering information on 23,945 human genes. This technical platform has
been widely used, and using the same platform on all data sets facilitates comparative
studies and ameliorates potential experimental errors.

2.2 Methods

In order to study the stability of the PPIN in cancer, neurological and normal
samples, we implemented an original method inspired by the well-known DSA
approach that was customized to study neighbor-energy (nE). In this case, stabil-
ity describes a network state that is not significantly altered, even when fundamental
properties have changed or perturbations have been introduced. From the biologi-
cal point of view, network instability could reflect a situation where mutations in
a key protein involved in many interactions will alter several associated biological
processes.

Afiltered PPIN (Sect. 2.2.1), and preprocessed and normalized gene expression data
(Sect. 2.2.3) for three different conditions (cancer, normal and neurological disorders),
were the inputs for our approach (Sect. 2.2.4). A scheme of the workflow is presented
in Fig. 1, where preprocessing and filtering are clearly represented as two separate
modules.

2.2.1 Protein–protein interaction network filtering

Data from thePINAnetworkwere filtered by requiring experimental evidence for PPIs,
removing redundancy and self-interactions, as well as interactions involving proteins
thatwere not fromHomo sapiens. Thus,we only considered those interactions between
proteins that were also detected in the Human Genome U133 Plus 2.0 microarray
platform. The resulting filtered PINA network contains 10,650 proteins with 63,119
interactions. Each node denotes a protein encoded by a gene and each edge denotes
an interaction between two proteins (Fig. 2a).
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Stability of protein interaction networks 231

Fig. 2 a Filtered PPIN. b Preprocessed and normalized gene expression data. cRepresentation of the nodes
in a PPIN sub-network and application of the algorithm to a PPIN sub-network

2.2.2 Sub-network related to the synaptic vesicle cycle

A sub-network of proteins encoded by genes related to the synaptic vesicle cycle was
analyzed, retrieving proteins in the synaptic vesicle (SV) cycle from the KEGG path-
way (http://www.genome.jp/dbget-bin/www_bget?pathway:hsa04721, version Sep-
tember 2014). The number of genes involved in the SV cycle pathway are 63, and 50
out of 63 genes were detected in microarrays. The resulting sub-network contains 50
proteins and 3815 interactions.

2.2.3 Microarray gene expression preprocessing

Handlingmicroarrays requires the preprocessing of each individual microarray to esti-
mate the expression of each gene in the array. Gene expression data from Ovarian,
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Colon, Liver and Kidney cancers, and from SCZ and AD samples, were normalized
by frozen Robust Multiarray Analysis (fRMA: (McCall et al. 2012) from the R Affy
package (Gautier et al. 2004). Background-corrected gene intensities were obtained
by applying fRMAprocesses to each array individually, and accounting for probe vari-
ability, batch effects, probe effects, array-to-array variability and background noise.
The samples were then processed using Barcode (McCall et al. 2012) in order to
convert gene intensities into estimates of gene expression (Z-score, Fig. 2b). Addi-
tionally, gene intensities were mapped into a binary vector of “ones” and “zeros” that
denote whether a gene was expressed (1, when the Z-score is higher than a threshold
value: 4.98 by default) or not (0) in each sample (Fig. 2b and Supplementary Material:
McCall et al. 2011; Zilliox and Irizarry 2007). These values were used in Eq. 1, in
which it is not necessary to specify whether a gene is expressed or not.

To compare the Z-score between these diseases, we normalized them using the
pnorm function of the R stats package to calculate the normal distribution function
of each Z-score. This normalization step is commonly employed to avoid values in a
given range dominating other values. High Z-scores indicate intense gene expression,
while small Z-scores correspond to weak expression. For expressed genes, defining S
as the normalized Z-score, S = pnorm(Z-score), represents the probability of the gene
being expressed. When the gene is not expressed, S = 1 − pnorm(Z-score) indicates
the probability of the gene not being expressed. These S values were used in Eq. 2.
Hence, each state in the system would represent the significance (S) of the expression
of each gene (Fig. 2b). In summary, for each disease we associated a binary value
reflecting whether or the gene is expressed (one or zero, respectively), attributing a
value and a significance to the expression each of the 10,650 genes in the network
(Fig. 2b).

2.2.4 Adapted simulated annealing approach

To study network stability we adopted an approach based on the SA concept, a proba-
bilistic method that allows the global minimum of a generic cost function to be found
(Kirkpatrick et al. 1983; Cerny 1985). This procedure reproduces the way the struc-
ture of a solid reaches its minimum energy configuration through cooling, becoming
“frozen” at this minimum energy.

A full description of the DSA is included in Online Resource 3 (Duda et al. 2007;
Haykin 1994), which also follows a physical analogy based on a set of interconnected
nodes, each one with its associated state. During the cooling process forces between
interconnected nodes act on the structure, which evolves until each node reaches a
stable state. Thus, the nodes interacting with other nodes within the system influence
one another with a defined weight.

Our algorithm is inspired on the definition of a nE function that measures the
stability of the network, as well as on the general deterministic approach whereby a
lower nE is related to greater stability. In our case, using a nE function that decreases in
function of the interactions or over time does not make sense given the characteristics
of the biological problem. Indeed, our approach does not evolve through iterations or
time and thus, this part of the algorithm was not considered.
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Our system is represented by a PPIN in which nodes represent proteins associated
to the expression of the corresponding gene (Si describes the significance (S) of a
gene i being expressed or not). The DSA approach is applied to estimate the dynamic
structures in the PPIN (Fig. 2c), where Si represents the state of the node in the original
DSA approach and the edges reflect the interactions existing between proteins. Each
Wi j represents the weight required (Eq. 1), where Wi j is inversely associated to the
existence of the interaction between two proteins. If the two genes i and j are both
expressed, then the two corresponding proteins can interact (Wi j value−1). The value
of Wi j will be +1 if the interaction is not possible because one of the two genes is not
expressed.

Wi j =
⎧
⎨

⎩

−1 i f i expressed, j expressed
+1 i f i or j not expressed
+1 i f i not expressed, j not expressed

(1)

Consistent with the main idea of the SA algorithm, the local_nE is defined as the
sum of the energy from all the nodes connected to a given node i . This influence is
calculated bymultiplying the expression of each gene (normalized value of expression,
S) by the associated weights of the connected nodes (Wi j ), as summarized in (2).

local_nE(i) = −
∑

j

Wi j ∗ Si ∗ S j (2)

According to the definition in Eq. 2, the local_nE is maximal when Wi j ∗Si ∗S j is at its
minimum, representing active connections between nodes of expressed genes (Eq. 1,
case 1) and indicating that any alteration in this node will destabilize the network.

The value of the local_nE decreases for those node connections that involve at least
one gene that is not expressed in that condition, reflecting the fact that the interactions
cannot take place (Eq. 1, cases 2 and 3). In these situations, the local_nE achieves its
minimum values indicating network stability.

The local_nE functionmeasures the stability of a single protein or node i in function
of its neighborhood, i.e. only with respect to the directly interacting partners and not
within the entire network. The global nE value (Eq. 3), and therefore the stability of the
entire network, will be a consequence of the equilibrium between interactions among
active (corresponding to the expressed genes) and inactive nodes (corresponding to
non-expressed genes).

nE =
∑

i

local_nE(i) (3)

2.2.5 Computation of network robustness

To assess the robustness of the system, we analyzed how the network structure changes
as nodes are removed in accordance with previously defined procedures (Iyer et al.
2013). Changes in the network structure are evaluated in terms of the size of the
largest connected component of the network.Networks inwhich the largest component
decreases faster than that of the original network are considered to be less robust to
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perturbations. Thus, nodes were removed in decreasing order of their local_nE scores
(Eq. 2), removing the proteins (or nodes) with higher local_nE values first (i.e.: those
with more active connections) and those with the lowest local_nE scores last (i.e.:
those less connected to their neighbors) .

Network robustness was measured through the R-index in Eq. 4, where α corre-
sponds to the size of the largest connected component within the network after a node
is removed.

R = 1

N

N∑

i=1

α(i/N ) (4)

We computed the R-index for cancer and normal control samples at each step after the
removal of nodes in function of the order of local_nE scores.

3 Results

Using this new approach, we have analyzed four gene expression datasets for cancer
(Ovarian, Colon, Liver and Kidney), four data sets for SCZ and five for AD (Online
Resource 1), each having sufficient disease and control samples, and fulfilling our
quality control criteria (see Sect. 2). For each disease and data set, PPIN stability
was assessed in both the disease and control samples. In other words, we simulated
a weighted interaction network for each sample, mapping S into the PPIN, directly
applying the proposed algorithm and obtaining a nE value. The distribution of the nE
values for the normal (N) and disease (C) conditions were then studied (Fig. 3) and a
global nE was obtained for each disease.

3.1 Increased neighbor-energy in cancer tissue

The cancer PPINs present characteristic instability, reflected by higher nE values than
their normal control samples (Fig. 3a). A Mann–Whitney (Wilcoxon-rank) test was
used to evaluate whether the medians of a test variable differed significantly between
the normal and cancer samples,which proved to be the case for each tissue (represented
below the x-axis). Indeed, very significant Wilcoxon test p values were obtained for
the Ovarian, Colon, Liver and Kidney data sets (3.11e−04, 2.62e−03, 2.10e−05 and
2.33e−08, respectively), indicative of meaningful and important differences between
the nE distributions in cancer and normal samples, with cancer samples being consid-
erably less stable than their normal counterparts.

3.2 Decreased neighbor-energy in tissues from neurological disorders

Significant differences in nE distributions were evident when AD (C) and normal (N)
samples were compared (Fig. 3b), and significant Wilcoxon p values were obtained
for the nE distribution in virtually all of the AD studies. AD samples had smaller nE
values than the normal samples, reflecting increased stability (decreased instability)
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a

b

c

Fig. 3 The nE distribution that maps all the genes in the PINA network in the: a normal (N) and cancer
(C) states (Ovarian, Colon, Liver and Kidney); b normal (N) and AD (C); c normal (N) and SCZ disease
(C) state. The Wilcoxon-rank p value is presented below the x-axis

in the AD network. By contrast, we only observed relevant differences between the
nE distributions of the normal and disease states for one of the four SCZ data sets
available (Fig. 3c). This discrepancy between the different SCZ networks suggests
that further studies are required for this condition and the underlying cause is unlikely
to be revealed until new, high quality experimental datasets become available.

Similar results were obtained when networks other than PINA networks were used,
including a smaller HPRD network (Online Resource 4) and a larger HIPPIE one
(Online Resource 5). It is important to clarify whether these differences are the product
of general differences in expression between cancer, normal and neurological disease
tissues. However, the normalized expression data (Fig. 4) indicated that there was no
difference between the global levels of normalized expression in this study.

3.3 Consistency of the results

In order to assess the consistency of the results we analyzed sub-networks obtained
by randomly sampling the complete network. Accordingly, 86% of the sub-networks
containing 10% of the proteins of the original PINA network produced similar results
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a

b

c

Fig. 4 Gene expression distribution in: a normal (N) and cancer (C) states (Ovarian, Colon, Liver and
Kidney); b normal (N) and AD (C) conditions; and c normal (N) and SCZ (C) conditions

to the complete network. In other words, not only was there significant instability in
the overall network but most of the regions of the network conformed to this behavior,
with only a few of them behaving distinctly (Online Resource 6 which includes the
nE scores for the first one hundred random sub-samples).

3.4 Increased neighbor-energy in cancer evolution

To further study the network instability in cancer, we assessed whether tumor pro-
gression might be related with increased instability. Indeed, the initial results showed
a significant increase in network instability when the datasets obtained at different
stages of tumor progression were compared (Fig. 5).

3.5 Network stability towards perturbations

Stability has previously been described as a relatively invariant network state when
perturbations are introduced. Thus, it is necessary to perform additional experiments
to show that our definition of network stability measured through the nE score corre-
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a b

Fig. 5 The nE distributions mapping all the genes at: a evolving stages of hepatocellular carcinoma
(HCC)—normal, very early HCC (veHCC), early HCC (eHCC), cirrhosis with HCC (cirr_aHCC) and
advanced HCC (aHCC); and b progressive stages of colon cancer stages I, II, III and IV

lates well with this classical definition of robustness. Removing nodes from a network
and then studying the evolution of the network’s connectivity provides a natural model
to study the robustness of networked systems (Iyer et al. 2013; Callaway et al. 2000;
Cohen et al. 2000). Accordingly, the R-index can be used to quantify network robust-
ness (see Sect. 2.2.5).

The successive removal of nodes according to their local_nE score produced a sig-
nificant difference between the perturbation robustness in cancer and normal samples
(Fig. 6a), and in AD and normal samples (Fig. 6b). When nodes were removed in a
descending order of local_nE scores, greater robustness was evident in normal con-
trol networks (R-index = 0.52) than in cancer networks (R-index = 0.33: Fig. 6a). By
contrast, AD networks are more robust (R-index = 0.50) than their corresponding nor-
mal control networks (R-index = 0.39: Fig. 6b). Hence, the definition of the nE score
appears to be closely associated to network stability and as such, with the network’s
robustness to perturbation.

3.6 Decreased instability in biological pathways implicated in Alzheimer’s disease

We analyzed the decreased network instability observed for AD samples inmore detail
and in particular, we investigated the possible role of the proteins implicated in vesicle
trafficking at synapses. Communication between neurons is mediated by the release
of neurotransmitter from SVs and the expression of a group of genes involved in SV
trafficking is reduced in brain tissues from AD cases. Indeed, the loss of synapses
has been correlated with cognitive decline in AD and a malfunction of SV trafficking
could be implicated in disrupting neuronal circuits in AD (Yao et al. 2003).

As for the complete PPIN, there was a consistent decrease in instability in the SV
related sub-network of proteins fromADsamples (OnlineResource 7a). The difference
in the nE score suggests that important hubs within the network are expressed and
regulated in opposite directions in AD and normal samples. Indeed, nine genes related
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a b

Fig. 6 Perturbation robustness against local_nE sorted score in: a cancer samples (dotted line) and normal
controls (solid line); and in b AD samples (dotted line) and normal controls (solid line)

to endocytosis were expressed in opposite manners in normal and AD samples: KIT,
CLTA,CLTB,AP2M1,AP2S1,AP2B1,HLA-B1,AP2A2, andRAB11FIB2. Three genes
associated with SV trafficking (SYP, STX1A and UNC13B) were inversely expressed
in both conditions and they were highly connected in the protein network (hubs).
In particular syntaxin 1A (STX1A) is known to regulate the exocytosis of SVs and
neurotransmitter release (Bennett and Scheller 1993; Greengard et al. 1993; Hosaka
et al. 1999). There was a clear trend towards reduced STX1A expression in all AD
samples, which had a lower nE score than in normal control samples. Indeed, when
the STX1A gene was not expressed (in blue) nor were its neighbors and conversely,
when the STX1A gene was expressed (in red) so were most of its neighbors (Online
Resources 7b and 7c). Accordingly, the stability of a particular sub-network relevant
to a neurological disease under study is affected in the same way as the stability of the
entire network.

4 Discussion

In this work we have designed an approach inspired on SA, representing PPINs as
systems of nodes that are dynamically updated towards a global state of stability.
Our strategy is based on the definition of a neighbor-energy function that measures
the stability of the network in the general deterministic approach, where nE indicates
network stability, and it can be interpreted in terms of resistance to alterations and
perturbations. In this study, we analyzed a large set of experimental data on gene
expression and various PPINs.

The first significant finding of this study is that networks containing information
about expression in four human cancers (Ovarian, Colon, Kidney and Liver) are less
stable than the control networks of normal samples. Moreover, this instability in the
network seems to increase as these cancers evolve, at least in the tumor progression data
sets analyzed. The approach employed is based on the analyses of samples in different
conditions and it does not include temporal evolution per se. Thus, the results obtained
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by analyzing the temporal progression of tumors can be taken as an indication of
network evolution towards a less stable state and away of reconciling ourmethodology
with the standard SA applications.

The randomness or disorder in the local flux distribution surrounding any given
node in the network i has been quantified (West et al. 2012), showing that cancer is
characterized by an increase in network entropy. This observation could be considered
as independent confirmation of our general conclusion. Indeed, when gene expression
data was previously integrated with a PPIN for six cancer tissues (Teschendorff and
Severini 2010), an increase in network entropywas again seen to be associated to cancer
based on a fluctuation theorem of dynamic systems theory. At the biological level
cancer has been associated with a general destabilization of cellular processes related
to the organization of the genome, its replication and repair (Murga and Fernández-
Capetillo 2007). A conceptual framework explains howmutations in genes that control
genetic stability are selected during tumor progression (Loeb 2011;Negrini et al. 2010;
Solé et al. 2014;Wadhwa et al. 2013). Therefore, our observation of network instability
in cancers fits well with current ideas in this field.

Technically, our approach offers important advantages. First, raw gene expression
data sets are divergent and independent, which represents an important difference.
Additionally, we use a high quality filtered and curated PPIN, which while having
practically the same number of total nodes it is less connected than those used in
earlier studies. To deal with our biological problem we need to consider both the state
of the nodes as well as the strength of the connections between them. This is possible
with methods where these two important issues are considered, such as DSA, one of
the generic means to resolve the optimization problem (Kirkpatrick et al. 1983).

Our second important finding is that the AD network is more stable than its control
normal network, with a significant increase in the nE of the corresponding networks.
This is an interesting behavior that contrasts with that of cancers, and as far as we know
is detected here for the first time. One possible interpretation of these results would be
that cancer implies a general deregulation of cell growth through the hyperactivation
of certain pathways, resulting in a destabilization of their interactions, while AD
and other neurological disorders imply the stabilization of biological processes and
network interactions, and their general slowing down. The striking contrast in the
behavior of cancer and AD networks, from less to more stable networks, should be
considered in the context of the observed “inverse comorbidity” of these two groups
of diseases. A substantial number of epidemiological studies have shown that there is
an inverse relationship between cancer and several central nervous system diseases,
including AD. In other words, patients with AD tend to less frequently suffer some
types of cancer (Tabarés-Seisdedos and Rubenstein 2013; for a complete meta-study
of the available epidemiological studies see Catalá-López et al. 2013).

Finally, given the importance of the diseases discussed in this work, it is neces-
sary to make these results accessible for future experimental analysis. In this sense,
an initial study of the molecular basis of this inverse comorbidity identified sets of
genes expressed weakly in AD and strongly in cancers (Ibáñez et al. 2014). The new
methodological approach developed here represents a further advance with respect
to that initial approximation, where genes are not considered as independent units
but rather as part of a connected network. This approach could be used as a classi-
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fier to distinguish cancer and normal samples. Another possibility will be to cluster
the results of this procedure in order to extract specific proteins for which additional
experimental information could be available, or could be tracked in direct experiments.
Furthermore, this scheme could be also applied to any network system where the ele-
ments are characterized by a state Si and their interactions associated to a weight Wij.
In a biological context there are numerous systems with these characteristics, such as
protein interaction and gene control networks. In the future, the application of cluster-
ing techniques to disease networks, such as Self Organizing Maps (SOM), will render
information not on single genes but on clusters of collaborating genes, moving towards
the study of the molecular causes of comorbidity to the level of systems biology.
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