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Abstract

subsets and antibody levels.

seven-color flow cytometry.

Background: The chemokines and cytokines CXCL13, CXCL12, CCL19, CCL21, BAFF and APRIL are believed to play a
role in the recruitment of B cells to the central nervous system (CNS) compartment during neuroinflammation. To
determine which chemokines/cytokines show the strongest association with a humoral immune response in the
cerebrospinal fluid (CSF), we measured their concentrations in the CSF and correlated them with immune cell

Methods: Cytokine/chemokine concentrations were measured in CSF and serum by ELISA in patients with non-
inflammatory neurological diseases (NIND, n=20), clinically isolated syndrome (CIS, n=30), multiple sclerosis (MS,
n=20), Lyme neuroborreliosis (LNB, n=8) and patients with other inflammatory neurological diseases (OIND,
n=30). Albumin, IgG, IgA and IgM were measured by nephelometry. CSF immune cell subsets were determined by

Results: CXCL13 was significantly elevated in the CSF of all patient groups with inflammatory diseases. BAFF levels
were significantly increased in patients with LNB and OIND. CXCL12 was significantly elevated in patients with LNB.
B cells and plasmablasts were significantly elevated in the CSF of all patients with inflammatory diseases. CXCL13
showed the most consistent correlation with CSF B cells, plasmablasts and intrathecal Ig synthesis.

Conclusions: CXCL13 seems to be the major determinant for B cell recruitment to the CNS compartment in
different neuroinflammatory diseases. Thus, elevated CSF CXCL13 levels rather reflect a strong humoral immune
response in the CNS compartment than being specific for a particular disease entity.
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Background

B cells play an essential role in the humoral immune re-
sponse in neuroinflammation and serve as antigen pre-
senting cells for T cells. Recruitment, clonal selection and
expansion of B cells require a specialized milieu of sec-
ondary lymphoid organ chemokines and cytokines [1].
Chemokines, such as CCL19 (MIP-3p, Macrophage
Inflammatory Protein-3), CCL21 (SLC, secondary lymph-
oid-tissue chemokine), CXCL12 (SDF-1, stromal cell-
derived factor-1) and CXCL13 (BCA-1, B cell attracting
chemokine-1), are known to influence migration of B
cells [2]. These chemokines are constitutively expressed
in lymphoid organs and regulate the migration and
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compartmentalization of lymphocytes and antigen pre-
senting cells [3,4]. Some of the chemokines are present in
the cerebrospinal fluid (CSF) and central nervous system
(CNS), especially during neuroinflammation.

CXCL13 is produced by stromal cells, binds to the
CXCR5 receptor and regulates homing of B cells and
subsets of T cells to lymphoid follicles [5-7]. In addition,
CXCL13 seems to play a role in the formation of ectopic
lymphoid tissues within the CNS in chronic inflamma-
tory CNS diseases [8,9]. Elevated CXCL13 levels were
found in the CSF of patients with MS, neuroborreliosis
and other inflammatory neurological diseases [4,10-13].
Furthermore, CXCL13 levels correlated with B and T cell
numbers in the CSF and intrathecal immunoglobulin
production [10]. CXCL13 has recently been suggested as
a prognostic marker for multiple sclerosis and clinically

© 2012 Kowarik et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


https://core.ac.uk/display/81781977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hemmer@lrz.tu-muenchen.de
http://creativecommons.org/licenses/by/2.0

Kowarik et al. Journal of Neuroinflammation 2012, 9:93
http://www.jneuroinflammation.com/content/9/1/93

isolated syndrome (CIS) [12-14]. Based on the observa-
tion that high CXCL13 levels are found in the CSF of
patients with acute neuroborreliosis, CXCL13 was pro-
posed as a specific diagnostic marker and a key regulator
for B cells in acute Lyme neuroborreliosis [11,15-17].

CXCL12 binds to the receptor CXCR4 [18] and acts as
a potent chemoattractant for B cells, plasma cells, T cells
and monocytes [4,10]. The chemokine plays an import-
ant role in germinal center organization. CXCL12 is also
expressed in the normal brain and is crucial for neuronal
guidance [10,19]. Higher CSF levels of CXCL12 were
found in inflammatory CNS diseases. CXCL12 was also
found in MS lesions but CSF levels were only slightly
elevated in these patients [1,10].

CCL19 and CCL21 bind to the CCR7 receptor, which
is present on activated B cells, naive and central memory
T cells, and dendritic cells. Both chemokines strongly
guide subsets of T cells, B cells and mature dendritic
cells into secondary lymphatic organs [1,20,21]. Add-
itionally, CCL19 levels have been shown to be increased
in the CSF of patients with inflammatory neurological
diseases and MS [1,22]. CCL19 mRNA was shown to be
overexpressed in MS lesions [4,22].

The cytokines BAFF (B cell activating factor) and
APRIL (A Proliferation Inducing Ligand) are members of
the TNF (Tumor Necrosis Factor) family and are both
expressed by monocytes, macrophages, dendritic cells,
astrocytes and, at lower levels, by T cells [23]. APRIL
binds to the receptors BCMA (B cell maturation), TACI
(transmembrane activator and CAML interacting pro-
tein) and syndecan-1 (CD138), BAFF receptors comprise
BAFE-R, TACI and BCMA. These receptors are mainly
expressed on B cells and to a lower extent on T cells
[23,24]. APRIL and BAFF are key factors for the develop-
ment and survival of B cells; furthermore, BAFF acts as a
potent B cell activator [25]. It has been shown that BAFF
mRNA is up-regulated in MS lesions and secreted by
astrocytes upon stimulation [25]. APRIL protein expres-
sion was up-regulated in astrocytes in MS patients
whereas APRIL protein levels were not elevated in the
CSF [26-28].

Taken together, these data suggest a possible role for
each of these chemokines and cytokines in neuroinflam-
mation. So far, most cytokines and chemokines were
studied in small cohorts of patients often focusing on a
single specific neuroinflammatory disease.

To obtain a more complete picture of these cytokines
and chemokines, we performed a study in a set of 108
patients with non-inflammatory neurological diseases
(NIND), clinically isolated syndrome (CIS), multiple
sclerosis (MS), Lyme neuroborreliosis (LNB) and patients
with other inflammatory neurological diseases (OIND).
The objective of the present study was to determine
which cytokines and chemokines are most strongly
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associated with the occurrence of B cells, plasmablasts
and the secretion of antibodies in the CSF compartment,
irrespective of the specific disease. In parallel to mea-
surements of chemokine and cytokine concentrations by
ELISA, seven-color flow cytometry was performed in
107 patients to dissect the major immune cell subsets in
the CSF.

Methods

Patients

Patients were recruited at the Department of Neurology
of the Technische Universitit Miinchen. All CSF samples
were primarily obtained for routine diagnostic work-up,
patients consented to the scientific use of their biosamples.
Furthermore, the ethics committee of the Technische
Universitit Miinchen approved the scientific use of CSF
biosamples.

A total of 20 patients with NIND, 30 patients with CIS,
20 patients with relapsing remitting MS, 8 patients with
LNB, and 30 patients with OIND were included in this
study. Patients with non-inflammatory neurological dis-
eases suffered from headache (6), hypesthesia of un-
known origin/somatoform disorders (7), Bell’s palsy (2,
LNB and herpes virus infection were excluded), ischemic
optic neuropathy/stroke (2), epileptic seizure (1), normal
pressure hydrocephalus (1) and pseudotumor cerebri (1).
Patients with other inflammatory neurological diseases
had the following diagnoses: autoimmune cerebellitis (1),
sarcoidosis (1), bacterial meningoencephalitis (3, Cam-
pylobacter fetus, Haemophilus influencae, Listeria mono-
cytogenes), viral meningoencephalitis (3, herpes virus),
meningoencephalitis of unknown origin (6) and HIV
(16). HIV patients suffered from meningoencephalitis (3,
unknown pathogen), meningoradiculitis (1), myelitis of
unknown origin (1), syphilis (3) and unspecific neuro-
logical symptoms (8). Concerning HIV therapy, six
patients received an antiretroviral therapy, six patients
did not receive an antiretroviral therapy. No information
on treatment was available for four HIV patients. None
of the patients had received any immunomodulatory
drugs before a spinal tap was performed. Two MS
patients were treated with steroids before a spinal tap
was performed. All other patients were steroid naive at
the time of spinal tapping. Further details are displayed
in Table 1.

Specimen handling and routine CSF testing

A total of 5 to 15 ml CSF was obtained by lumbar spinal
tap with an atraumatic needle. Ten milliliters of EDTA
blood were drawn for immunophenotyping and 10 ml of
whole blood for serum analyses of albumin and IgG. CSF
and blood from each patient were always drawn on the
same occasion (a maximum of 10 minutes apart). Sam-
ples were processed according to the BioMS guidelines



Kowarik et al. Journal of Neuroinflammation 2012, 9:93 Page 3 of 11
http://www.jneuroinflammation.com/content/9/1/93
Table 1 Demographic data and CSF parameters

NIND cls MS LNB OIND
Demographic data
Samples 20 30 20 8 30
Samples for 19/13 30/28 20/15 8/3 30/24

Immuno-phenotypingCSF/Blood

Age (years) 32(18to0 77) 31 (17 to 51) 38 (18 to 69) 57 (37 t0 78) 41 (18 to 73)

Sex female/male 10/10 15/15 11/9 6/2 11/19

Phase of disease Acute? Acute? Acute? Acute? (6), Acute? (22),

(Number of patients) symptoms relapse (27), relapse (15), chronic® (2) remission (2),
(20) remission (3) remission (5) unknown (6)

CSF parametes

CSF cell count per pl 2(1to5) 7 (1 to 29) 7 (0 to 81) 106 (9 to 280) 33 (2to 512)

Qalbumin 5(3.0t096) 5(3.1to 10.1) 5(33t075) 12 (6.0 to 25.9) 8 (3.7 to 55.5)

Intrathecal IgG production 0/20 17/30 13/18 7/8 10/29

Intrathecal IgA production 0/20 0/30 2/18 5/8 9/29

Intrathecal IgM production 0/20 4/30 5/18 6/8 6/29

OCBs (+/-) 0/20 (25/0)° (19/1) (6/2) (13/17)

Impairment blood-CSF barrier 2/18 8/30 3/20 6/8 21/30

@ Acute: onset of symptoms within four weeks.
P Chronic: duration of symptoms for at least six months.
€ In five patients a single band in the CSF was observed.

Abbreviations: CIS clinically isolated syndrome, CSF cerebrospinal fluid, LNB Lyme neuroborreliosis, MS multiple sclerosis, NIND non-inflammatory neurological
diseases, OCBs oligoclonal bands, OIND patients with other inflammatory neurological diseases; +/— sample positive/negative.

and stored at -80°C [29]. The average time between
sample collection and freezing was 57 minutes (mini-
mum 15 minutes, maximum 2 hours 25 minutes).

For routine CSF workup, CSF mononuclear cells were
immediately (that is, within 30 minutes after the spinal
tap) counted in a Fuchs Rosenthal chamber (Roth,
Karlsruhe, Germany). Total protein, albumine, IgG, IgM
and IgA concentrations in CSF and serum were deter-
mined by nephelometry (Siemens ProSpec®, Eschborn,
Germany, according to the manufacturer's instructions)
and oligoclonal bands were investigated by isoelectric fo-
cusing followed by silver staining. Qalb, QIgG, QIgA and
QIgM were calculated as described before [30].

ELISA

All ELISA Kits were evaluated in duplicates and showed
a variability of 2.2 to 5.3% for the same samples (APRIL
ELISA: 5.3% (average deviation from the mean), BAFF
ELISA: 2.9% (average deviation from the mean),
CXCL12 ELISA: 4.7% (average deviation from the
mean), CXCL13 ELISA: 4.5% (average deviation from
the mean), CCL19 ELISA: 2.2% (average deviation from
the mean) and CCL21 ELISA: 4.8% (average deviation
from the mean)).

We pretested more than 100 samples for assay variabil-
ity and consistency before we conducted the final experi-
ment with all samples at the same time. Given the
limitation in CSF sample volume, the need to avoid

thawing and refreezing of samples and the aim to keep
the assay times as short as possible (that is, avoid lengthy
washing and processing times), we performed the final
experiments with single wells in order to allow measure-
ment of all serum and CSF samples in the same ELISA
assays at the same time. Nunc-ImmunoMaxisorb 96-well
immunoplates (Nunc, Roskilde, Denmark) were coated
with 100 pL of 2 pg/ml CXCL13 capture antibody (Duo-
Set R&D, Minneapolis, MN, USA), 2 pg/ml CXCL12 cap-
ture antibody (DuoSet R&D), 0.8 pg/ml CCL19 capture
antibody (DuoSet R&D,), 4 pg/ml CCL21 capture antibody
(DuoSet R&D), 0.5 pg/ml APRIL capture antibody
(Bender, Vienna, Austria) or 1 pg/ml BAFF capture anti-
body (Antigenix, Huntington Station, NY, USA) in phos-
phate-buffered saline (PBS) (PAA, Pasching, Austria) at
4°C overnight. Plates were washed with PBS/0.05%
Tween-20 (PBST) (Sigma-Aldrich, St. Louis, MO, USA)
and nonspecific binding sites were blocked with 200 pL
of 1% bovine serum albumin (BSA) (Sigma-Aldrich, St.
Louis, MO, USA) in PBST for 2 h. After three washing
cycles, 100 pL of undiluted CSF were added for 2 h at
room temperature (RT). Plates were washed three times
with PBST and incubated with 100 ul of respective bio-
tinylated detection antibody according to the manufac-
turer’s instructions. Plates were washed three times with
PBST and were incubated with streptavidin-horseradish-
peroxidase conjugate at RT. Reaction was stopped after
10 to 15 minutes and absorbance was read at 405 nm.
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Serial dilutions of respective proteins were used as stan-
dards and standard curves were generated to determine
protein concentrations.

Immunophenotyping

Flow cytometric analysis of immune cell subsets was per-
formed as described previously [31]. Fresh CSF was im-
mediately spun down at 300 G for 10 minutes. The
supernatant was removed and the pellet resuspended in
180 ul phosphate-buffered saline (PBS) (PAA, Pasching,
Austria) with 2% fetal calf serum (FCS) (Invitrogen,
Darmstadt, Germany). A minimum number of 6,000 to
10,000 cells (yielding 2,500 cells per analysis) were used
for the staining with a volume of 30 pl in each well of a
96-well plate (Nunc, Roskilde, Denmark). For cell stain-
ing, the pellet was resuspended in 15 pl antibody solu-
tion and incubated for 20 minutes at 4°C. After a
washing step with 180 pl (PBS) supplemented with 2%
(FCS), the pellet was resuspended in 180 pl of PBS wash
solution for flow cytometric analysis (Beckman Coulter
Cyan, Brea, CA, USA).

The following monoclonal antibodies were used for
staining: CD4 PerCP, CD3 APC-Cy7, CD45 VM (all BD
Bioscience, Bedford, MA, USA), CD19 ECD, CD56 APC,
CD14 FITC and CD138 PE (all Beckman Coulter). This
allowed to differentiate CD4" T cells (CD45" CD3" CD4"),
CD8" T cells (CD45" CD3" CD8"), monocytes (CD45"
CD14"), NK cells (CD45" CD56"), B cells (CD45" CD19"
CD138) and plasmablasts (CD45" CD19" CD138).

Statistical analysis

The data were analyzed with the Kolmogorov-Smirnov
test and did not show a Gaussian distribution. Therefore,
the Kruskal-Wallis test with Bonferroni correction for
multiple testing (Dunn's procedure) was applied to test
for significant differences among the different patient
cohorts. Values of P <0.05 were considered to be signifi-
cant. In order to test for correlations between the differ-
ent parameters, Spearman test was applied. Furthermore,
we applied stepwise multiple regression analysis.

Results

Cytokine levels in the CSF

We determined the CSF cytokine and chemokine levels
in NIND, OIND, CIS, MS and LNB patients (Figure 1).
The most pronounced effects were observed for
CXCL13. Patients with CIS, MS, Lyme disease and
OIND all showed higher CSF CXCL13 levels than
patients with NIND (P <0.001, P <0.01, P <0.001 and P
<0.001 respectively). The highest concentrations were
found in LNB patients, who had significantly higher
levels than patients with CIS or MS patients (P <0.01
and P <0.05) but not OIND patients. Patients with
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OIND and LNB showed a heterogenous expression and
both patient groups displayed a subpopulation with very
high values. In the subgroup of OIND patients, highest
CSF CXCL13 levels were similar to those observed in
patients with acute Lyme disease. The latter OIND
patients comprised HIV infections (5), bacterial menin-
goencephalitis (2), severe viral encephalitis (1), meningo-
encephalitis of unknown origin (1) and neurosarkoidosis
(1). These findings are largely in line with previous stud-
ies, which have also reported elevated CSF levels in
patients with MS, CIS, LNB and other inflammatory dis-
eases [10,12,14].

CXCL12 was found in all CSF samples (Figure 1).
Patients with LNB showed the highest levels, which were
higher than those of patients with NIND, CIS and MS (P
<0.05, P <0.01 and P <0.01). Patients with OIND had
higher values than patients with CIS (P <0.05). We
found no differences between patients with NIND, CIS
and MS, which is in line with two previous studies
[1,14]. Only one other study found significantly higher
CXCL12 concentrations in MS patients [10].

CCL19 was also detectable in all CSF samples
(Figure 1). Patients with CIS, MS, OIND and LNB
showed slightly higher levels than patients with NIND
but the differences failed to reach significance. This con-
trasts with a previous study which found significantly
higher CCL19 values during inflammatory diseases such
as MS and OIND [1].

BAFF was detectable in the CSF of most patients except
10 with NIND, 12 with CIS, 2 with MS and 3 with OIND
(Figure 1). The highest BAFF concentrations were found
in patients with LNB and OIND, where levels were sig-
nificantly higher than those in patients with NIND, CIS
and MS (P <0.001, P <0.01, and P <0.05 in LNB and
resp. P <0.001, P <0.001 and P <0.05 in OIND). CSF
levels of MS and CIS patients were also slightly elevated
compared to patients with NIND, but the differences
failed to reach statistical significance. This is in line with
a previous study that could not find significant differ-
ences among CIS, MS and NIND patients [26].

APRIL was detectable in all CSF samples except one
with NIND, five with CIS and two with OIND. Patients
with CIS showed a homogeneous expression, which was
significantly lower than those found in patients with MS,
LNB and OIND (P <0.01, P <0.01 and P <.001). There
were no significant differences among the other groups.
In previous studies, no significant differences were
observed among patients with MS, CIS and NIND [27,28].

CCL21 was not detectable in the CSF as reported be-
fore [22].

In serum, only minor differences among the patient
groups were observed (Additional file 1: Figure SI).
CXCL13 was higher in OIND patients compared to
NIND and MS patients (P <0.01, P <0.05). BAFF serum
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Figure 1 Chemokine/Cytokine levels in CSF. CXCL13, CXCL12, CCL19, BAFF and APRIL CSF levels of patients with non-inflammatory
neurological diseases (NIND), clinically isolated syndrome (CIS), multiple sclerosis (MS), Lyme neuroborreliosis (LNB) and patients with other
inflammatory neurological diseases (OIND) are shown. CCL21 was not detectable in the CSF. Horizontal line indicates median, significant P-values
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concentrations were higher in LNB and MS than in
NIND patients (P <0.05, P <0.05). APRIL levels were
higher in the serum of LNB than CIS patients (P <0.05).
All patients with impaired blood-CSF barriers (defined
as albumin quotient ((Albumincgp/ Albuminger,m) x 10°%)
>8.0) showed higher chemokine/cytokine levels in CSF
than patients with intact barriers. We found no evidence
that gender impacts on the level of chemokine/cytokine
levels in serum or CSF. We also did not observe a major
impact on age of the patient and the relevant levels of
cytokine/chemokines in blood and CSF.

Immune cell subsets within the CSF of different patient
cohorts

In all CSF samples, immune cell phenotyping was per-
formed and the distribution compared among the differ-
ent patient groups (Figure 2). The fraction of B cells was
elevated in patients with CIS, MS, LNB and OIND when
compared to patients with NIND (P <0.001 for all four
patient cohorts). Patients with LNB displayed the high-
est values, the difference reached significance when
compared to patients with MS and OIND (P <0.05
and P <0.01).
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Figure 2 Immune cell subsets in CSF. The percentage of B cells, plasmablasts, T cells and monocytes in the CSF of patients with NIND, CIS, MS,
LNB and OIND are shown. Values are given as the proportion of flow cell count in the CSF, the horizontal line indicates median. Significant P-

Also the fraction of plasmablasts was elevated in
patients with CIS, MS, LNB and OIND compared to
patients with NIND (P <0.001, P <0.001, P <0.001 and
P <0.01). Again, patients with LNB showed the highest
median values which were higher than in patients with
OIND (P <0.05).

Concerning T cells, MS patients had slightly elevated
fractions compared to patients with NIND (P <0.05), LNB
(P <0.01) and OIND (P <0.05). Also patients with CIS dis-
played higher values than patients with LNB (P <0.05).

Regarding monocytes, patients with CIS, MS, LNB
and OIND had lower values than patients with NIND
(P <0.001 for all four patient cohorts).

Correlation among chemokine/cytokine levels, CSF
parameters and immune cell subsets

CSF levels of CXCL13, CXCL12, CCL19, BAFF and
APRIL were compared to CSF parameters, the proportion
of all CD19" B cells, CD19"CD138™ B cells, CD19"CD138"
plasmablasts, CD3" T cells and CD14" monocytes.

The concentration of all cytokines/chemokines signifi-
cantly correlated with CSF cell count and albumin quo-
tient (Table 2). CXCL13 showed the lowest P and
highest r values (P <0.0001, r=0.7583, resp. P <0.0001,

r=0.5066). Concerning the intrathecal IgG synthesis,
only CXCL13 correlated with the extent of intrathecal
IgG synthesis (P <0.0002, r=0.3540). APRIL, BAFF,
CXCL12 and, especially, CXCL13 levels (P <0.0001,
r=0.3965) in CSF significantly correlated with the extent
of intrathecal IgA synthesis. APRIL, BAFF and CXCL13
levels (P=0.0002, r=0.3567) in CSF correlated with
intrathecal IgM synthesis. CXCL13 showed the lowest P
and highest r values for all correlations with IgG, IgA
and IgM. Only CXCL13 showed a significant correlation
with the presence of oligoclonal bands (OCBs) in the
CSF (P=0.0104, r=0.2539).

The proportion of all CD19" B cells correlated with
CSF levels of BAFF (P=0.0478, r=0.1918), CXCL12
(P=0.0312, r=0.2084) and CXCL13 (P <0.0001,
r=0.6264). CD19°CD138 B cells only correlated with
CXCL13 (P <0.0001, r=0.5756). CD19"CD138" plasma-
blasts correlated with APRIL (P=0.0317, r=0.2078),
BAFF (P=0.01, r=0.2481), CXCL12 (P=0.0426,
r=0.1965), CCL19 (P=0.0067, r=0.2605) and CXCL13
(P <0.0001, r=0.5828) CSF levels. The proportion of T
cells inversely correlated with CXCL12 (P=0.0036,
r=-02861) and CCL19 (P=0.0337, r=-02105). A
negative correlation was observed between all cytokine/
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Table 2 Correlation of CSF cytokine/chemokine levels and CSF parameters
APRIL BAFF CXCL12 CXCL13 CCL19
Cell count P <0.0001 P <0.0001 P <0.0001 P <0.0001 P <0.0001
r=0.4350 r=0.4967 r=0.4954 r=0.7583 r=0.5461
Qaib P=0.0067 P=0.0003 P <0.0001 P <0.0001 P <0.0001
r=0.2669 r=0.3507 r=0.5011 r=0.5066 r=0.4600
Intrathecal IgG P=09332 P=0.2370 P=0.8147 P=0.0002 P=0.0808
r=10.008406 r=0.1175 r=-0.02337 r=0.3540 r=0.1737
Intrathecal IgA P=0.0305 P=0.0034 P=0.0060 P <0.0001 P=0.2992
r=0.2143 r=0.2863 r=0.2692 r=0.3965 r=0.1038
Intrathecal IgM P=0.0018 P=0.0330 P=0.0540 P=0.0002 P=0.5006
r=0.3049 r=0.2103 r=0.1904 r=0.3567 r=0.06745
OCBs P=0.5013 P=0.8673 P=0.0971 P=0.0104 P=0.8844
r=-0.06767 r=001684 r=-0.1660 r=0.2539 r=0.01465
All B cells P=04474 P=0.0478 P=0.0312 P <0.0001 P=0.0855
(CD19%) r=0.07422 r=0.1918 r=0.2084 r=0.6264 r=0.1670
B cells P=08110 P=0.0945 P=0.0859 P <0.0001 P=0.2317
(CD19'D138) r=0.02339 r=0.1625 r=0.1668 r=0.5756 r=0.1166
Plasmablasts P=0.0317 P=0.0100 P=0.0426 P <0.0001 P=0.0067
(CD19*CD138") r=0.2078 r=0.2481 r=0.1965 r=0.5828 r=0.2605
T cells P=0.7699 P=0.1733 P=0.0036 P=05173 P=0.0337
(CD3%) r=-0.02931 r=-0.1359 r=-0.2861 r=-0.06485 r=-0.2105
Monocytes P=0.0050 P <0.0001 P=0.0034 P <0.0001 P=0.0030
(CD14%) r=-0.2706 r=-0.3866 r=-0.2819 r=-0.5834 r=-0.2861

Spearman test was applied to correlate CSF cytokine/chemokine levels with CSF parameters or percentage of immune cells. All samples (with and without an
intact blood-CSF barrier) were included in the analysis, significant values are displayed in bold. Abbreviations: CSF cerebrospinal fluid, Qg albumin quotient, OCBs

oligoclonal bands.

chemokine CSF levels and the proportion of monocytes
in CSF; CXCL13 again showed the strongest correlation
(P <0.0001, r =-0.5834) (Figure 3, Table 2).

In patients with intact blood CSF barrier, only the chemo-
kines CXCL12, CCL19, and most pronounced CXCL13 cor-
related with CSF cell count (P <0.0001, r=0.5978).
Intrathecal IgG synthesis correlated with CSF BAFE, CCL19
and CXCL13 levels (P <0.0001, r=0.5445). Only CXCL13
correlated with intrathecal IgA synthesis (P=0.0130,
r=0.3089). Intrathecal IgM synthesis significantly correlated
with APRIL and CXCL13 levels (P=0.0109, r=0.3164).
Again, only CXCL13 significantly correlated with oligoclo-
nal bands (P =0.0109, r = 0.3089). CXCL13 CSF levels corre-
lated with all CD19" B cells (P <0.0001, r=0.666), CD19
"CD138" B cells (P <0.0001, r=0.6889), CD19"CD138"
plasmablasts (P <0.0001, r=0.5818) and inversely with
monocytes (P >0.0001, r=-0.5980) in patients with intact
blood-CSF barrier. Also CCL19 significantly correlated with
B cells, plasmablasts and inversely with monocytes. Again,
CXCL13 showed lowest P and highest r values for correla-
tions with IgG, IgA, IgM, B cells and plasmablasts (Add-
itional file 2: Table S1).

Correlation analysis was also performed with absolute cell
counts of the different immune cell subsets again suggesting
a major role for CXCL13 for the recruitment of B cells
(Additional file 3: Table S2).

Further correlation subanalyses of the quotient Qcsg,
serum (quotient CSF cytokine/chemokine and serum cyto-
kine/chemokine) and B cells revealed that only the Qcsg/
serum Of CXCL13 significantly correlated with CD19" B
cells (P <0.0001, r=0.4049), CD19'CD138" B cells
(P=0.0002, r=0.3698) and CD19*CD138" plasmablasts
(P=0.0007, r=0.3392).

Levels of APRIL (P=0.0003, r=0.3559), BAFF
(P=0.0048, r=0.2796) and CXCL13 (P <0.0001,
r=0.3825) correlated between CSF and serum. In sam-
ples with an intact blood-CSF barrier APRIL (P =0.0250,
r=0.3048) and CXCL13 (P=0.0018, r=0.4018) CSF
values significantly correlated with serum values.

In samples with an intact blood-CSF barrier, we observed
no correlation among the concentrations of the different
cytokines/chemokines in the CSF. In contrast, samples with
a disrupted blood-CSF barrier showed a significant correl-
ation among all cytokines/chemokines.
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Figure 3 Correlation analysis. Correlations among CXCL13 CSF levels and CSF cell subsets (all B cells (CD19%), B cells (CD197CD138),
plasmablasts (CD19*CD138%) and monocytes (CD14")) are shown. The P-values for the correlation analysis are given in Table 2.
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Stepwise multiple regression

In order to further clarify the impact of the different che-
mokines on the CSF cell subpopulations, we performed
stepwise multiple regression. All chemokines/cytokines
were introduced into the regression model and in a first
step separately tested for a correlation with the different
immune cell subsets. Thereby the chemokines/cytokines
had to fulfill the entry criteria of P <0.05. In a second
step, the included chemokines/cytokines were tested in
parallel to evaluate the factor with the highest predictive
potency for the presence of a specific immune cell subset
in the CSF.

For CSF B cells, CXCL13, CXCL12 and BAFF were
included into the regression model as predictive factors
and CXCL13 turned out to be the most predictive factor.
CXCL13 and BAFF were included in the regression
model for plasmablasts with CXCL13 being the most
predictive factor. Concerning CSF T cells, BAFF and
APRIL were included in the statistical model, and BAFF
showed a stronger correlation with T cells than APRIL.
For monocytes no chemokines/cytokines passed the
entry criteria for the regression model (Table 3).

Discussion

In order to further understand mechanisms that influ-
ence B cell trafficking into the CNS, we studied CSF
levels of the B cell attracting chemokines CCL19, CCL21,
CXCL12, CXCL13 and cytokines BAFF and APRIL. These
findings were compared to baseline CSF parameters and

detailed immune cell phenotyping of CSF cells in differ-
ent groups of patients with neurological diseases. In con-
trast to previous studies, which had already shown an
impact of different cytokines/chemokines on the fraction
of B cells in the CSF compartment, we aimed to investi-
gate the full repertoire of relevant chemokines/cytokines
to understand the contribution and importance of each
of them for humoral immune responses across different
neuroinflammatory diseases.

CXCL13 turned out to show the strongest association
with neuroinflammatory diseases. CXCL13 values were
significantly elevated in patients with CIS, MS, LNB and
OIND when compared to patients with NIND. Patients
with OIND and LNB displayed highest values. However,
the presence of very high CXCL13 levels in CSF is not
specific for LNB as suggested previously [11,15-17]. Also
CXCL12 and BAFF showed an association with neuroin-
flammation in patients with LNB and OIND. We
observed highest CXCL12 CSF concentrations in patients
with LNB and a subgroup of patients with OIND. Ele-
vated BAFF levels were observed in patients with LNB
and OIND compared to patients with NIND, CIS and
MS. CSF levels of APRIL were slightly higher in patients
with MS, Lyme disease and OIND. CCL19 CSF levels
did not differ significantly among patients.

We observed a strong correlation between cytokine/
chemokine levels in the CSF and other humoral and cel-
lular CSF parameters. CD19" B cells significantly corre-
lated with CXCL13, CXCL12 and BAFF levels, with
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Table 3 Stepwise multiple regression
Stepwise multiple regression Predictor variables
Model Variable Beta P
F df P R?
B cells all 21650 3 0.000 0391 CXCL13 0.745 0.000
CXCL12 -0.490 0.001
BAFF 0320 0.012
B cells 18.098 2 0.000 0.262 CXCL13 0616 0.000
CXCL12 -0.271 0.010
Plasmablasts 20.265 2 0.000 0.287 CXCL13 0413 0.000
BAFF 0234 0.009
T cells 6.001 2 0.003 0.110 BAFF —0498 0.001
APRIL 0.296 0.05
Monocytes No variables included

Stepwise multiple regression was applied to determine the most predictable cytokine/ chemokine for the presence of certain immune cells in the CSF. Variables
(cytokines/ chemokines), which fulfilled the entry criteria of P <0.05 for the regression model, are displayed. For B cells and plasmablasts, CXCL13 turned out to be

the most predictable chemokine.

CXCL13 showing the strongest correlation. All chemo-
kine and cytokine concentrations examined in this study
significantly correlated with CD19"CD138" plasmablasts
in the CSE again CXCL13 showed the lowest P- and
highest r values. The impact of CXCL13 on the local
humoral immune response was further strengthened by
a strong correlation with intrathecal IgG, IgA and IgM
synthesis and oligoclonal bands. Although IgA synthesis
additionally correlated with APRIL, BAFF and CXCL12
and IgM synthesis with APRIL and BAFF, the correlation
of CXCL13 showed lowest P- and highest r values. Simi-
lar findings were obtained when a subgroup of patients
with an intact blood CSF barrier was examined.

In particular, the multiple regression analysis suggests
that CXCL13 is the most important chemokine for the
recruitment of B cells to the CNS compartment. CXCL13
and, to a lesser extent, BAFF seem to play a major role in
the recruitment of plasmablasts. The source of the cyto-
kines found in the CSF is uncertain. They might be pro-
duced locally in the CNS or originate from the periphery,
especially in patients with a disrupted blood-CSF barrier.
Given the high levels of some chemokines/cytokines in
the CSF, which often exceed serum levels (for example,
CXCL13) and the low transfer rate of proteins across the
blood-CSF barrier (<1%) [30], it is conceivable to assume
that at least in patients with an intact barrier most of the
cytokines/chemokines found in the CSF are produced
within the CNS compartment.

Furthermore, the significant correlation of cytokines/che-
mokines between each other in patients with a disrupted
blood-CSF barrier suggests that the different cytokines/che-
mokines are regulated in parallel in patients with neuroin-
flammation. By means of stepwise multiple regression, we
could further evaluate the effects among the different

cytokines/chemokines and again point out the major role of
CXCL13 for the presence of B cells and plasmablasts in the
CSE.

Conclusions

Our findings are consistent with previous studies, which
suggested CXCL13 to be an essential chemokine in control-
ling the recruitment of B cells to the CNS in specific inflam-
matory diseases like multiple sclerosis [14] and Lyme
neuroborreliosis [11]. However, none of the cytokines/che-
mokines that we studied is specific for a defined disease en-
tity as suggested previously [11,15-17]. Taken together, our
study provides a detailed analysis on cytokines/chemokines
in the CSF of patients with a broad range of different neu-
roinflammatory diseases and points out the role of CXCL13
as the major chemoattractant for B cells. The results are
helpful for future studies, which will address the kinetics of
these cytokines during the course of disease and its relation
to particular disease endophenotypes.

Additional files

Additional file 1: Figure S1. Chemokine/Cytokine levels in serum.
CXCL13, CXCL12, CCL19, CCL21 and BAFF and APRIL serum levels of
patients with NIND, CIS, MS, LNB and OIND are shown. Significant P-
values for the comparison between groups are displayed.

Additional file 2: Table S1. Correlation of CSF cytokine/chemokine
levels and CSF parameters or percentage of immune cells. Samples with
an intact blood-CSF barrier.

Additional file 3: Table S2. Correlation of CSF cytokine/chemokine
levels and CSF parameters or absolute count of immune cells. All
samples.
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