Ethnomedicine

Research

Open Access

Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China

Khasbagan* and Soyolt

Address: Institute of Ethnobotany, Inner Mongolia Normal University, Huhhot, 010022, Inner Mongolia, P.R. China

Email: Khasbagan* - ethnobiology@imnu.edu.cn; Soyolt - soyolt@imnu.edu.cn

* Corresponding author

Published: 16 January 2008

Journal of Ethnobiology and Ethnomedicine 2008, 4:2 doi:10.1186/1746-4269-4-2

This article is available from: http://www.ethnobiomed.com/content/4/1/2

© 2008 Khasbagan and Soyolt; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 27 February 2007 Accepted: 16 January 2008

Abstract

Folk names of plants are the roots of traditional plant biodiversity knowledge. This paper mainly records and analyses the wild plant folk names of the Mongolians in the Ejina desert area based on a field survey for collection and identification of voucher specimens. The results show that a total of 121 folk names of local plants have correspondence with 93 scientific species which belong to 26 families and 70 genera. The correspondence between plants' Mongol folk names and scientific species may be classified as one to one correspondence, multitude to one correspondence and one to multitude correspondence. The Ejina Mongolian plant folk names were formed on the basis of observations and an understanding of the wild plants growing in their desert environment. The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. It is very useful to take an inventory of biodiversity, especially among the rapid rural appraisal (RRA) in studying biodiversity at the community level.

Background

Indigenous knowledge is the systematic information that remains in diverse social structures. It is usually unwritten and preserved only through oral tradition, and it refers to the knowledge system of indigenous people and minority cultures. Traditional knowledge of biodiversity concerns the names, uses, and management of plants and animals as perceived by the local and or indigenous people of a given area. Folk names of plants and animals are the roots of traditional biodiversity knowledge. Berlin has indicated a strong need for linking the scientific and folk systems of classification [1]. Examples of such links have been quoted by Berlin et al. who has looked at the relationship between folk names and scientific names [1-4]. For this reason, it has been brought into "Convention on Biological Diversity" (CBD). Precisely, in article 8 of CBD

which describes that "subject to its national legislation, respect, preserve and maintain knowledge, innovations and practices of indigenous and local communities embodying traditional lifestyles relevant for the conservation and sustainable use of biological diversity and promote their wider application with the approval and involvement of the holders of such knowledge, innovations and practices and encourage the equitable sharing of the benefits arising from the utilization of such knowledge, innovations and practices". Besides, folk systems of naming and classification transmitted from generation to generation, is constantly recreated by communities and groups in response to their environment. In this case, it undoubtedly fell into the category of "Intangible Cultural Heritage" (ICH) of humanity. In "Convention for the Safeguarding of the Intangible Cultural Heritage", "oral traditions and expressions, including language as a vehicle of the intangible cultural heritage" and "knowledge and practices concerning nature and the universe" were domains of the ICH.

In pace with social change and development, the Mongols are changing from nomadic people into settlement residents. The knowledge concerning grassland ecosystems is vanishing gradually because the related knowledge is no longer useful to the Mongols who are settled down or engaged in farming or other economic pursuits. The Mongolians in Inner Mongolia have been influenced by the Chinese culture, e.g. in some areas Han Chinese words, including plant names, are more or less mixed up with the Inner Mongolians' spoken language. This may be leading to the Mongols forgetting traditional botanical knowledge related to the language of plant folk names and classifications.

Both artificial and natural factors lead to degradation of the grassland and desertification. As a result, plant diversity that Mongolians traditionally named and used has decreased. The reduction of plant diversity may also lead to the extinction of the related knowledge of biodiversity. Thus it will be impossible to hand down to future generations. For this reason, collection and analysis of plant folk names of the Mongolians is extremely important.

Ethnobotanical studies in Inner Mongolia have been carried out since the 1980s, having studied useful plants of herdsmen [5], folk nomenclature [6,7]. However, ethnobotanical findings are still preliminary and fragmentary. Particularly, indigenous Mongolian traditional knowledge of desert plant diversity has been neglected by biologists and anthropologists. Biodiversity has social, economic, ecological and ethical value. Understanding ecological functions of biodiversity, respecting the ethics and social importance of biodiversity, and the appropriate exploitation and use of biodiversity are the global issues facing biodiversity today. Scientists have paid close attention to the relationships between biodiversity and cultural diversity [8-11].

Mongolian traditional knowledge of biodiversity includes aspects of folk nomenclature, and traditional use and management of regional biodiversity. In this paper, in accordance with the ethnobotanical collections of the Mongolian folk names of wild plants in the Ejina desert area, the relationship between folk names and scientific names are studied, and the structure of Ejina Mongolian folk botanical nomenclature is also analyzed.

Materials and methods Study area and ethnic group

The Ejina desert area is located in western Inner Mongolia of China, at 39°52'20" ~ 42°47'20"N and 97°10'23" ~ 103°7'15"E, with a land area of 102461.30 km², the altitude ranges from 820 m to 1400 m. This area has a temperate zone continental climate, with an average annual temperature of 8.3°C, and a mean rainfall of only 38.2 mm. The frost-free period in the area is 145 days [12]. The Ejina desert area is part of the Alashan desert, which is a part of the Middle Asian desert region of the Asia African Desert region. According to the flora regional system of Inner Mongolia, the area belongs to Typical Desert Zone of the Warm-Temperate Desert Zone [13,14]. The main landscape of this area is desert, which includes sandland, oasis, gobi and lower mountain-monadnock rocky desert etc.

According to related materials [13-16], and our investigations, nearly 200 species of vascular plants are distributed in this area. Scientists have attached importance to the biodiversity of the Ejina desert area. Biological and ecological research projects have been carried out in the area. However, previous research mainly focused on the natural ecology [17-21]. Few scientists paid attention to ethnobiological problems of the interrelationship between local people and biodiversity.

Local peoples in this area are the Torgod Mongolians, one of the descendent tribes of the Mongolian nationality. From 1731 A. D. they have occupied this area and engaged in a traditional nomadic livelihood. At present there are more than 5000 Mongolians in this area.

Methods

During 2001 to 2005, the authors have been to the Ejina Banner 6 times. Field work was done in 12 villages and 55 local Mongol herdsmen (informants) were interviewed. Methods of ethnobotanical interviewing, including key informant interviews, free-listing, and open-ended questionnaires were used. After going to each village, the authors identified elder herdsmen's families and paid a formal visit. Mongolian oral language was used as the working language and findings were originally recorded in Mongolian written language. Scientific names of plants are defined through collection and identification of voucher specimens.

Results and discussion

A total of 119 folk names of local plants are recorded. Based on the results of identifying the specimens, the folk names corresponded with 91 scientific species which belong to 26 families and 70 genera. The rate of Correspondence was 76.47% between folk Mongol names and scientific names (table 1).

Table I: The Correspondence between folk names of the Mongolians in Ejina desert area and scientific classification

Family	Folk names	Scientific names	
Apocynaceae	olus	Poacynum pictum (Schrenk) Baill.	
sclepiadaceae	hucu	Cynanchum cathayense Tsiang et Zhang	
oraginaceae	dumug	Arnebia guttata Bunge	
Doraginaceae	begesun zhanggu; nas wugai ebes	Lappula deserticola C. J. Wang	
Chenopodiaceae	0 00 / 0	Agriophyllum pungens (Vahl) Link ex A. Dietr.	
	noosut; noosut hamhag	Bassia dasyphylla (Fisch. et Mey.) O. Kuntze	
	temljgen; noil	Chenopodium acuminatum Willd.	
	noil	•	
		Chenopodium album L.	
	noil	Chenopodium glaucum L.	
	cagan keres; kerest hamhag	Corispermum mongolicum Iljin.	
	keres	Halogeton glomeratus (Bieb.) C. A. Mey.	
	zag; sagleger zag; xikur zag; yabgan zag	Haloxylon ammodendron (C. A. Mey.) Bunge	
	xira kureg; kureg	Kalidium foliatum (Pall.) Moq.	
	kureg	Kalidium sinicum (A. J. Li) H. C. Fu et Z. Y. Chu	
	har keres; narin cagan	Kochia scoparia (L.) Schrad.var. sieversiana (Pall.) Ulb	
	hushit	Micropeplis arachnoidea (Moq.) Bunge	
	bor budrgen	Salsola passerina Bunge	
	baglur	Salsola pestifer A. Nelson	
	wurgest	Salsola pellucida Litv.	
	cagan but	Sympegma regelii Bunge	
Compositae	wunurt xiaralj	Artemisia caespitosa Ledeb.	
	cagan xiabag; agi	Artemisia dalai-lamae Krasch.	
	xiaralj; agi	Artemisia frigida Willd.	
	xiar xiabag; tatenghai	Artemisia songarica Schrenk.	
	xiar mod	3	
		Asterothamnus centrali-asiaticus Novopokr.	
	honggurzul	Cirsium arvense (L.) Scop.	
	kuji ebes	Inula salsoloides (Turcz.) Osteuf.	
	sutai nogo	Ixeris chinensis (Thunb.) Nakai	
	dalen tobqi	Karelinia caspia (Pall.) Less.	
	gaxiun	Serratula centauroides L.	
	gaxiun ebes	Sonchus arvensis L.	
	sutai nabqi	Taraxacum leucanthum (Ledeb.) Ledeb.	
Convolvulaceae Cruciferae	oryamug	Convolvulus arvensis L.	
	cagan tolgait; elkendeg	Cardaria pubescens (C. A. Mey.) Jarm.	
	lalajing	Lepidium obtusum Basin.	
	shaga	Pugionium cornutum (L.) Gaertn.	
Cynomoriaceae	wulan goyo; sozhung	Cynomorium songaricum Rupr.	
yperaceae	xirki	Eleocharis mitracarpa Steud.	
71	xirki	Scirpus strobilinus Roxb.	
laeagnaceae	jigd	Elaeagnus angustifolia L.	
phedraceae		Ephedra przewalskii Stapf	
	zergen	·	
rankeniaceae	kureng ebes	Frankenia pulverulenta L.	
Gramineae	tongge; deres	Achnatherum splendens (Trin.) Nevski	
	ilbar	Aristida adscenionis L.	
	cagan ebes	Cleistogenes squarrosa (Trin.) Keng	
	budnur; hazaar ebes	Crypsis aculeata (L.) Ait.	
	kag	Leymus secalinus (Georgi) Tzvel.	
	hulus; acamag; shagxig hulus; shaorag hulus; hanan hulus;ajirgan hana	Phragmites australis (Cav.) Trin. ex Steud.	
	suli	Psammochloa villosa (Trin.) Bor.	
	narin ebes	Puccinellia hauptiana (Trin.) Krecz.	
ridaceae	cakildag; cakirma	Iris lactea Pall.var. chinensis (Fisch.) Koidz.	
guminosae	cegereg	Alhagi maurorum Medic.var. sparsifolium (Shap.) Yako	
Laminosac	munk hargen	Ammopiptanthus mongolicus (Maxim.) Cheng f.	
	hatinggir	Astragalus hamiensis S. B. Ho	
	alten hargen	Caragana leucophloea Pojark.	
		Glycyrrhiza uralensis Fisch.	
	xiker buyaa		
	zara wurges; ortud	Oxytropis aciphylla Ledeb.	
	hor;tom; sogtu ebes	Oxytropis galbra (Lam.) DC.	
	horen buyaa	Sophora alopecuroides L.	

Table 1: The Correspondence between folk names of the Mongolians in Ejina desert area and scientific classification (Continued)

		•
	porqigenur; honht ebes	Sphaerophysa salsula (Pall.) DC.
Liliaceae	humel	Allium mongolicum Regel
	taan	Allium þolyrhizum Turcz. ex Regel
Orobanchaceae	cagan goyoo	Cistanche deserticola Ma
	budergen in goyoo; zag in wug	Cistanche sinensis G. Beck
Plumbaginaceae	zer in deleng	Limonium aureum (L.) Hill ex O. Kuntze
	zer in deleng	Limonium bicolor (Bunge) O. Kuntze
	zer in deleng	Limonium tenellum (Turcz.) O. Kuntze
Polygonaceae	torleg	Calligonum gobicum (Bunge) A. Los.
	torleg; but	Calligonum mongolicum Turcz.
	wuyet wulan	Polygonum aviculare L.
	bajun	Rheum nanum Siewers
	kureng keres	Rumex marschallianus Rchb.
Ranunculaceae	moren hucu	Clematis orientalis L.
Rosaceae	hatu har; boiles	Prunus mongolica Maxim.
Salicaceae	torai; nailjag; zulzagan torai	Populus euphratica Oliv.
	burgas	Salix cheilophila Schneid.
Scrophulariacea	zer in del	Dodartia orientalis L.
е		
Solanaceae	nohai harmeg ; wurgest harmeg	Lycium ruthenicum Murr.
Tamaricaceae	wulan budergen; budergen	Reaumuria soongarica (Pall.) Maxim.
	yamaan suhai	Tamarix leptostachys Bunge
	wulan suhai	Tamarix ramosissima Ledeb.
Zygophyllaceae	wuseg	Nitraria roborowskii Kom.
	tosun harmeg; cagan harmeg	Nitraria sibirica Pall.
	temer wuseg; wuseg	Nitraria sphaerocarpa Maxim.
	wusun wuseg	Nitraria tangutorum Robr.
	wumkei ebes	Peganum harmala L.
	yamaan zhanggu	Tribulus terrestris L.
	botgen tabeg; hulen nai wumdan	Zygophyllum fabago L.
	argal in wumd	Zygophyllum gobicum Maxim.
	wulen nai botgen tabeg	Zygophyllum loczyi Kanitz
	bojignur; nohai xiereng	Zygophyllum xanthoxylum (Bunge) Maxim.

The correspondence between plant folk names & scientific names

The plants folk names and scientific names (species) are not a simply one to one correspondence. It may be organized as below:

- (a) One to one correspondence One folk name has correspondence with one scientific species. For example, the folk name **sulker** only corresponds with *Agriophyllum pungens*, **zhergen** with *Ephedra przewalskii*, **jigd** with *Elaeagnus angustifolia*, **chegereg** with *Alhagi maurorum* var. *sparsifolium*, **suli** with *Psammochloa villosa*, **baglur** with *Salsola pestifer*, **humel** with *Allium mongolicum*, **taan** with *Allium polyrhizum* and **olus***Poacynum pictum* etc.
- (b) Multitude to one correspondence Two or more folk names have correspondence with only one scientific species. For example, **bor bodurgen** and **xira huhurgene** correspond with *Kalidium foliatum*, **wulan goyo** and **sozhung** with *Cynomoricum songaricum*; **zag**, **sagleger zag**, **xikur zag**, **yabgan zag** correspondence with *Haloxylon ammodendron*; **hulus**, **acamag**, **shagxig hulus**, **shaorag hulus**, **hanan hulus**, **ajirgan hana** correspondence with *Phrag-*

mites australis etc. In this case, those folk names correspondence with one scientific name are regarded as a folk synonym.

(c) One to multitude correspondence One folk name corresponds with two or more scientific species. For example, **zherin deleng** corresponds with *Limonium aureum*, *Limonium tenellum* and *Limonium bicolor*, **noil** with *Chenopodium acuminatum and Chenopodium album*, **xirki** with *Eleocharis mitracarpa* and *Scirpus strobilinus* etc. In this case, those folk names with correspondence with two or more scientific names are regarded as folk homonyms.

Structure of Ejina Mongolian Folk Botanical Nomenclature

A basic step in analyzing the structure of folk botanical nomenclature is to tell the difference between primary and secondary names and to distinguish between the various primary names [22]. According to the result of the Mongolian linguistic analysis, the Mongolian folk names of wild plants in the Ejina desert area are distinguished as primary names and secondary names.

Primary names

A primary name is considered to be 'semantically unitary' which means that it is a single expression, even if composed of more than one constituent. Many primary names have just a single constituent, and they belong to simple primary names, such as bodurgan, bogqignuur, boya, chaheldeg, chaherma, chegereg, deres, goyo, hamhag, hargan, harmag, hatingir, heres, hucu, huhurgen, hulusu, humul, jigd, kag, olos, soli, sozhung, suhai, taan, torai, torlog, tunge, tunghul, wusug, xirki, zhergen etc. In the Mongolian language, these words are proper names which haven't other meanings. Other primary names are composed of more than one constituent which belongs to complex primary names. Complex primary names consist of two Mongol words. Some complex primary names include a word such as **bot** [shrub] or **ebes** [grass] which indicates the life form, such as chagan bot, chagan ebes, honht ebes, huji ebes, narin ebes, sogtuu ebes, wumhei ebes etc. In this type of folk classification, a word bot or ebes serves as a taxon such as family or genus in scientific taxonomy. These types of names belong to productive complex primary names. Other complex primary names don't include a word to express a folk taxon, belonging to the productive complex primary name, such as botgon tabag, dalan tobqi, hulnai wumdagan, wusun hor, wuyet wulan, zherin deleng etc.

Secondary names

Secondary names are formed from simple primary names by simply adding a modifier which further describes the plant. Among these types of names, simple primary names serve as a folk generic. For example, secondary names wulan suhai (*Tamarix ramosissima*) and imaan suhai (*Tamarix leptostachys*) are formed from the simple primary name suhai, and xihir boya (*Glycyrrhiza uralensis*) and horen boya (*Sophora alopecuroides*) are formed from boya. A word suhai serves as a folk generic and equals to the scientific genus *Tamarix* (*Tamaricaceae*). But a folk generic boya usually is used to name the plants which have fleshy roots, and it isn't specially appointed to a scientific genus. Among the plant folk names in the Ejina desert area, there are 10 folk generic names collected. The relationship between folk specific, folk generic and scientific species and family names can be seen in table 2.

Discussion

The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. Ejina Mongolians' folk botanical nomenclature and classification is an important part of their natural culture. This type of knowledge and culture has a great effect on their adaptation to the desert environment, utilization of plant resources and traditional biodiversity management on the community level. The collection and analysis of plant and animal folk names is very useful to the inventory of biodiversity, especially among the rapid rural appraisal (RRA) in studying biodiversity at the community level. Sometimes the folk names lead to finding new species records in a given area. In this study the plant folk name burgas was recorded in advance and based on the descriptions of the plant's char-

Table 2: Relationship between folk specific, folk generic and scientific species and family

Folk generic	Folk specific	Scientific species	Scientific family
bodurgan	bor bodurgen	Kalidium foliatum	Chenopodiaceae
	wulan bodurgan	Reaumuria soongarica	Tamaricaceae
boya	horen boya	Sophora alopecuroides	Leguminosae
	xihir boya	Glycyrrhiza uralensis	Leguminosae
goyo	chagan goyo	Cistanche sinensis	Orobanchaceae
		Cistanche deserticola	
	wulan goyo	Cynomoricum songaricum	Cynomoriaceae
hamhag	herest hamhag,	Corispermum mongolicum	Chenopodiaceae
_	noosun hamhag	Bassia dasyphylla	Chenopodiaceae
hargan	altan hargan	Caragana leucophloea	Leguminosae
-	munh hargan	Ammoþiþtanthus mongolicus	Leguminosae
harmag	chagan harmag	Nitraria sibirica	Zygophyllaceae
-	nohai harmag	Lycium ruthenicum	Solanaceae
heres	heres	Halogeton glomeratus	Chenopodiaceae
	chgan heres	Corispermum mongolicum	Chenopodiaceae
	har heres	Kochia scoparia var. sieversiana	Chenopodiaceae
hucu	hucu	Cynanchum cathayense	Asclepiadaceae
	morin hucu	Convolvulus arvensis	Convolvulaceae
suhai	imaan suhai	Tamarix leptostachys	Tamaricaceae
	wulan suhai	Tamarix ramosissima	Tamaricaceae
xiralji	xiralji	Artemisia songarica	Compositae
•	wunurt xiralji	Artemisia caespitosa	Compositae

acteristics and habitats specimens were collected afterwards by local herdsmen. The result of the identification of specimens shows that the scientific name of **burgas** is *Salix cheilophila* Schneid. Thus a folk name led to finding this species in this area for the first time.

Authors' contributions

The field work for data collection and analysis were conducted by all authors. Manuscript preparation was by Khasbagan. All authors read and approved the final manuscript.

Acknowledgements

Financial support was from National Natural Science Foundation of China (No.30160018). I am most grateful to the Ejina Mongolians for their cooperation in the interview. I am also grateful to Ms Huhtala and Dr. Richard Isenberg for their help in improving the writing.

References

- Berlin B: Ethnobiological Classification: Principles of Categorization of Plant and Animals in Traditional Societies New Jersey: Princeton University Press: 1992.
- Berlin B: Folk systematics in relation to biological classification and nomenclature. Annual Review of Ecology and Systematics 1973, 4:71-295.
- Berlin B, Breedlove DE, Raven PH: General Principles of Classification and Nomenclature in Folk Biology. Amer Anthro 1973, 75:42-214.
- Berlin B, Raven PH, Breedlove D: Principles of Tzeltal Plant Classification: An Introduction to Botanical Ethnography of a Mayan Speaking Community in Highland Ciapas New York: Academic Press; 1974.
- Khasbagan: A preliminary study on plants used as Mongolian traditional tea in Inner Mongolia. Acta Botanica Yunnanica 1990, 12(1):43-48. (in Chinese).
- Khasbagan , Chen : The cultural importance of animals in traditional Mongolian plant nomenclature. In Culture and environment in Inner Asia:2 Society and culture Edited by: Humphrey C, Sneath D. Cambridge: The White Horse Press; 1996:25-29.
- Khasbagan , Soyolt , Enhebayar : The Mongols traditional knowledge of regional plant species diversity: a case study of Arhorchin Mongolians in Inner Mongolia. In Biodiversity of the Mongolian Plateau and Adjacent Territory Edited by: Garidkhuu J. Ulaanbaatar: Mongolian Academy of Natural Sciences; 2001:202-207.
- Dasmann RF: The importance of cultural and biological diversity. In Biodiversity: culture, conservation, and Ecodevelopment Edited by: Oldfield ML, Alcorn JB. Boulder: Westview Press; 1991:7-15.
- Pei SJ: Mountain Culture and Forest Resource Management of Himalaya. In Himalaya Ecosystem Edited by: Tewari DW. Indua: Intel Book Distribution; 1995:114-120.
- Liu AZ, Pei SJ, Chen SY: Yi nationality's sacred groves and biodiversity conservation in Chuxiong, Yunnan. Chinese journal of Applied Ecology 2000, 11(4):489-492. (in Chinese).
- Pei SJ: Bio-cultural diversity and development of western China. Journal of Graduate School of the Chinese Academy of Sciences 2002, 19(2):107-115.
- Editorial Board of the Annals of Ejina Banner: Annals of Ejina Banner Beijing: Local Chronicles Press; 1998.
- Investigation group of the Chinese Academy of Sciences for Inner Mongolia and Ningxia: Vegetation of Inner Mongolia Beijing: Science Press; 1985:392-419. (in Chinese).
- Ma YQ: Flora of Inner Mongolia Volume 5. 2nd edition. Hohhot: Inner Mongolia Peoples Press; 1998. (in Chinese).
- Zhang YL: The geological study on the plant flora in Ejina county of Inner Mongolia. Arid Zone Research 1997, 14(3):23-32. (in Chinese).
- Żhu ZY, Wen DS: A report of investigation on the vegetation and flora in Ejinaqi. Acta Scientiarum Naturalium Universitatis Intramongolicae 1984, 15(4):417-431. (in Chinese).

- Wang GX, Cheng GD: Land desertification status and developing trend in the Heihe river basin. Journal of desert Research 1990, 19(4):368-374. (in Chinese).
- Wang GX, Cheng GD: Study on the landscape pattern of a desert-oasis ecological system: a spatial grid method and its application. Arid Zone Research 1999, 16(3):6-11. (in Chinese).
- Wang GX, Cheng GD: The spatial pattern and influence caused by water resources in arid desert oasis. Acta Ecologica Sinica 2000, 20(3):363-368. (in Chinese).
- Wang GX, Cheng GD, Shen YP: Dynamic tendency of arid oasis under the influence of water resources decrease-a case study of Ejina oasis in Heihe river basin. Chinese journal of Applied Ecology 2002, 13(5):564-568. (in Chinese).
- Liang CZ, Liu ZL, Zhu ZY, Wang W: Specific diversity and distribution characteristics of annual synusia in Alashan desert. Chinese journal of Applied Ecology 2003, 14(6):897-903. (in Chinese).
- Martin GJ: Ethnobotany: a methods manual London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras: Chapman & Hall; 1995.

Publish with **Bio Med Central** and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours you keep the copyright

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

