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Abstract Properties of the motion of electrically charged
particles in the background of the Gibbons–Maeda–Garfinkle–
Horowitz–Strominger black hole is presented in this paper.
Radial and angular motions are studied analytically for dif-
ferent values of the fundamental parameter. Therefore, grav-
itational Rutherford scattering and Keplerian orbits are ana-
lyzed in detail. Finally, this paper complements previous
work by Fernando for null geodesics (Phys Rev D 85:024033,
2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013)
and Blaga (Automat Comp Appl Math 22:41–48, 2013; Serb
Astron 190:41, 2015) for time-like geodesics.
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1 Introduction

The study of the motion of test particles around compact
objects is one interesting way to probe some phenomena
related to classic tests of the general relativity. In the con-
text of Einstein gravity, orbital precession experienced by
the solar planets, particularly Mercury, and the deflection of
light were studied earlier by Einstein himself [1,2] and other
renowned scientists [3,4]. Nearly a century after all that, a lot
of research has been conducted on these tests together with
other studies (time delay, strong gravity, gravitational waves,
etc.). Fundamentals and current advances can be found, for
example, in [5,6].

In other spacetimes containing black hole solutions, the
motion of particles has also received a great deal of atten-
tion from the physics community. For instance, a review of
neutral massive and massless particles moving in the back-
ground of the Schwarzschild (S), Reissner–Nordström (RN)
and Kerr (K) black holes can be found in [7]. Furthermore, the
inclusion of a cosmological constant � leads to the Kottler
solution [8], which spacetime is known as Schwarzschild–
de Sitter (SdS) if � > 0, or the Schwarzschild–anti-de Sitter
(SAdS) if � < 0. So, trajectories for neutral particles in a
purely SdS spacetime can be found in [9–12], while differ-
ent aspects of the motion of neutral particles in the back-
ground of the purely SAdS spacetime have been presented
in [13–18]. Uncharged particles in an RN black hole with
� �= 0 were studied by Stuchlík and Hledík [19], whereas
circular orbits were presented by Pugliese et al. [20]. Fur-
thermore, Hackmann et al. [21] presented analytical solu-
tions of the geodesic equation of massive test particles in
higher dimensional Schwarzschild, Schwarzschild–anti-de
Sitter, Reissner–Nordström, and Reissner–Nordström–anti-
de Sitter (RNAdS) spacetimes and they obtained complete
solutions and a classification of the possible orbits in these
geometries in terms of Weierstraß functions. Also, bounded
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time-like geodesics in a Kerr (K) spacetime are found in
[22], whereas a study of equatorial circular motion in Kerr–
de Sitter (KdS) and Kerr–Newman (KN) spacetimes was per-
formed by Stuchlík and Slany [23] and by Pugliese et al. [24],
respectively.

There is just as much literature dealing with alternatives
theories of gravitation. In fact, here we mention only a few
studies dealing with the motion of neutral particles. For
example, in conformal Weyl gravity, there are many arti-
cles studying the motion of particles in addition to some
observational tests [25–29], similar to those for asymptoti-
cally Lifshitz spacetimes [30–34]. The complete causal struc-
ture of the Bardeen spacetime was presented in [35], the
Rindler modified Schwarzschild geodesics in [36], while the
Shwarzschild version in gravity’s rainbow was performed by
Leiva et al. [37]. Not least are the contributions from string
theories. Here we can mention the works of Maki and Shi-
raishi [38], Hackmann et al. [39], Hartmann and Sirimachan
[40], and Bhadra [41], among other authors.

The motion of electrically charged particles represents
another current line of investigation, which posits interest-
ing features due to the extra interaction between the parti-
cle and the electromagnetic field of the background. In this
sense, trajectories in a dipole magnetic field and in a toroidal
magnetic field on the Schwarzschild background were per-
formed by Prasanna and Varma and Prasanna and Sengupta
[42,43], respectively, whereas Dadhich et al. [44] made cal-
culations for trajectories on the same background when the
black hole is immersed in an axially symmetric magnetic
field (Ernst spacetime). The general features of radial motion,
motion along the axis of symmetry and motion on the equa-
torial plane in the field of rotating charged black holes was
performed in two parts by Balek et al. [45,46]. Relativistic
radial motion of electrically charged particles in the field of
a charged spherically symmetric distribution of mass can be
found in [47], whereas studies of classical electrically and
magnetically charged test particles in the same spacetime
were made by Grunau and Kagramanova [48]. Trajectories
on the RN black hole were studied by Cohen and Gautreau
and Pugliese et al. when � = 0 [49,50], and by Olivares et al.
when � < 0 (RNAdS) [51]. The motion on a rotating Kerr
black hole immersed in a magnetic field has been studied
by Aliev and Özdemir [52] and by Takahashi and Koyama
[54], the non-Kerr rotating version by Abdujabbarov [53],
finally the Kerr–Newmann background has been covered by
Hackmann and Xu [55].

The main goal of this paper is to work out the motion
of electrically charged particles on the spacetime of a
black hole coming from the heterotic string theory, the
so-called Gibbons–Maeda–Garfinkle–Horowitz–Strominger
(GMGHS) black hole, the causal structure of which has been
determined by Fernando for null geodesics [56], and by Oli-
vares and Villanueva [57] and Blaga [58,59] for time-like

geodesics. In this article we use natural units with c = 1 and
G = 1, together with the value of the heterotic parameter
found earlier in [57], α = 0.359 km. Therefore, in Sect. 2
the charged black hole in heterotic string theory is presented,
and in Sect. 3 the fundamental equations of motion for elec-
trically charged particles are obtained using the Hamilton–
Jacobi method. In Sect. 4 we perform a full analysis of the
radial motion of test particles, and in Sect. 5 we solve angular
trajectories analytically and we study the gravitational scat-
tering of Rutherford in detail. Finally, in Sect. 6 we conclude
with general comments and final remarks.

2 Charged black holes in heterotic string theory

The simplest 4-dimensional black hole solutions in heterotic
sting theory, which contain mass and electric charge, are
obtained from the effective action [60]

Ihst = 1

16π

∫
d4x

√−g
[
R − 2(∇�)2 − e−2�FμνF

μν
]
,

(1)

where � is the dilaton field, R is the scalar curvature, and
Fμν = ∂μAν − ∂ν Aμ is the Maxwell’s field strength associ-
ated with a U (1) subgroup of E8 × E8 or Spin(32) [60,61].
The field equations associated with this action read

∇μ(e−2�Fμν) = 0, (2)

∇2� + 1

2
e−2�F2 = 0, (3)

and

Rμν = −2∇μ�∇ν� − 2e−2�FμλF
λ
ν + 1

2
gμνe−2�F2,

(4)

and they were solved by Gibbons and Maeda [62], and inde-
pendently by Garfinkle et al. [63], and thus this is known as
the Gibbons–Maeda–Garfinkle–Horowitz–Strominger
(GMGHS) black hole, whose metric in the Einstein frame
is given by [56,57]

ds2 = −F(r)dt2 + dr2

F(r)
+ R2(r) (dθ2 + sin2 θ dφ2). (5)

Here the coordinates are defined in the ranges 0 < r < ∞,
−∞ < t < ∞, 0 ≤ θ < π , 0 ≤ φ < 2π , and the radial
function R(r) is given by

R(r) = √
r(r − α), α ≡ Q2

M
, (6)

where M is the ADM mass, Q is the electric charge, and
F(r) is the well-known lapse function of the Schwarzschild
black hole,
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F(r) = 1 − 2M

r
= 1 − r+

r
, r+ = 2M. (7)

Since the coordinates (t, φ) are cyclic in the metric (5),
there are two conserved quantities related to two Killing vec-
tors fields:

– the time-like Killing vector ξt = (1, 0, 0, 0) is related to
the stationarity of the metric: gαβ ξα

t uβ = −F(r) ṫ =
−√

E is a constant of motion which can be associated
with the total energy of the test particles, because this
spacetime is asymptotically flat, and

– the space-like Killing vector ξφ = (0, 0, 0, 1) is related
to the axial symmetry of the metric: gαβ ξα

φ uβ =
R2(r) sin2 θ φ̇ = L is a constant of motion correspond-
ing to the angular momentum of the particles moving in
this geometry.

With all this, in the next section the basic equations gov-
erning the motion of charged particles in the spacetime gen-
erated by the GMGHS black hole are obtained by using the
Hamilton–Jacobi formalism.

3 Motion of charged particles

Let us consider the motion of test particles which possess
massm and electric charge q̃ . The Hamilton–Jacobi equation
for the geometry described by the metric gμν is given by

1

2
gμν

(
∂S

∂xμ
+ q̃ Aμ

)(
∂S

∂xν
+ q̃ Aν

)
+ ∂S

∂τ
= 0, (8)

where S corresponds to the characteristic Hamilton function
and Aμ represents the vector potential components associ-
ated with the electrodynamic properties of the black hole.
Since we are considering charged static black holes, the only
non-vanishing component of the vector potential is the tem-
poral component, At = Q/r . Also, the conservation of the
angular motion implies that the motion is developed on an
invariant plane, which we choose to be θ = π/2, so Eq. (8)
reads

− 1

F
(

∂S

∂t
+ q̃

r

√
αr+

2

)2

+F
(

∂S

∂r

)2
+ 1

R2

(
∂S

∂φ

)2
+2

∂S

∂τ
= 0.

(9)

Aiming to solve this last equation, we introduce the ansatz
[51,64]

S = −Et + S0(r) + Lφ + 1

2
m2τ, (10)

together with the re-definition of the test charge q = q̃
√

α r+
2 ,

resulting in

− 1

F
(
−E + q

r

)2 + F
(

dS0(r)

dr

)2

+ L2

R2 + m2 = 0. (11)

Therefore, we find that

S0(r) = ±
∫

dr

F
√

(E − V−) (E − V+), (12)

where the radial functions are given by

V±(r) = Vq(r) ±
√
F

(
m2 + L2

R2

)
, Vq(r) ≡ q

r
. (13)

Notice that each branch converges to the value E+ =
q/r+ at r = r+, which can be either positive or negative,
depending on the sign of the electric charge. In Fig. 1 we
show the q > 0 case in which the V− branch always is
negative (except in the region r+ < r < rq , where rq is
solution to the equation V−(rq) = 0). From now on we
will call the positive branch Veff = V+ ≡ V the effective
potential.

Employing the Hamilton–Jacobi method, it is possible to
obtain three velocities taking into account the motion of test
particles. So, taking ∂S

∂m2 = 0, ∂S
∂E = 0, and ∂S

∂L = 0, we
obtain

u(r) ≡ dr

dτ
= ±√

(E − V−) (E − V ), (14)

vt (r) ≡ dr

dt
= ± F(r) u(r)

E − Vq (r)
, (15)

and

vφ(r) = dr

dφ
= ±R2(r) u(r)

L
, (16)

respectively. Notice that the zeros in Eq. (14), and therefore
of Eqs. (15) and (16), correspond to the so-called turning
point, rt . Furthermore, these equations lead to the quadratures
that determine the evolution of the electrically charged test
particles, so the next sections are devoted to obtaining their
analytical solutions.

4 Radial trajectories

The radial motion of charged particles is characterized by
the condition L = 0, in which case the effective potential
becomes

V (r) = Vq(r) + m
√
F(r). (17)

In Fig. 2 the effective potential (17) for three different
values of the electric charge is shown. A first observation of
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Fig. 1 Plot of the effective potential V (r) for positive charged particles
(q > 0) in radial motion together with the negative branch V−(r), which
is positive in the range r+ < r < rq . Also, at the event horizon r+, each
branch converges to E+ = q/r+
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Fig. 2 Typical graphs of the effective potential as a function of the
radial coordinate. Here, we show the curves in terms of the electric
ratio q∗ = qc/q, where qc = mr+/2. Notice that if |q∗| < 1 and
m < E < Eu a frontal scattering is permitted. For |q∗| ≥ 1, the motion
is essentially the same as in the Schwarzschild case

this graph is that effective potential presents two well-defined
behaviors in the region r+ < r < ∞:

The classic domain is characterized by the absence of a
maximum, so that particles with E < m inexorably fall to
the event horizon, whereas if E > m, particles can escape
(fall) into the spatial infinity (event horizon). Essentially, the
neutral particles exhibit this same behavior in this spacetime,
which, as has been pointed out in [57], corresponds to the typ-
ical motion in the background of a Schwarzschild black hole.
In Fig. 2, the two lower curves correspond to this domain.

The electric domain allows a maximum equal to Eu =
E+ (1 + q2∗), where q∗ = qc/q is the electric ratio and qc =
m r+/2. Therefore, particles with m < E < Eu feel a radial
repulsion and cannot fall into the event horizon. Furthermore,
as in the previous case, if E > Eu , particles can escape

(fall) into the spatial infinity (event horizon). This domain is
represented by the upper curve in Fig. 2.

The extreme of the effective potential is located at

ρu = r+
1 − q2∗

, (18)

so we can conclude that if |q∗| < 1, then the position of the
maximum is in the region [r+,∞], while if |q∗| > 1, then the
location of the maximum is in the region [−∞, 0]; finally, if
q∗ = 1, then the potential has no maximum.

Ultimately, in order to simplify the calculations, it is
instructive to rewrite the square of the proper velocity (14)
in the generic form

u2(r) = (E − V )(E − V−)

=
(
m2 − E2

r2

) [
q2

m2 − E2 + 2q(m q∗ − E)

m2 − E2 r − r2
]

≡
(
m2 − E2

r2

)
p2(r), (19)

and, thus, an exhaustive study of the radial motion can be
carried out taking into account the values of the fundamental
parameters.

4.1 The classic domain

As we have said, basically this domain is analogous to the
Schwarzschild counterpart [7]. It is important to note that
the electric interaction is weak with respect to gravitational
effects, so charged particles behave like neutral particles as
we have seen pointed out in Ref. [57].

4.1.1 Bounded trajectories: |q∗| > 1 and E+ < E < m

In this case, as shown in Fig. 3, we write the polynomial as
p2(r) = (r0 − r)(r − d0), where

r0 = 1

2

(
b +

√
b2 + 4a

)
, d0 = 1

2

(
b −

√
b2 + 4a

)
,

(20)

and

a = q2

m2 − E2 , b = 2q

(
m q∗ − E

m2 − E2

)
. (21)

Inserting this polynomial into Eq. (19), and then integrat-
ing Eqs. (14) and (15), we see that the proper time is given
by

τ(r) =
√
p2(r) + g(0)

[
arctan

(
g(r)√
p2(r)

)
− π

2

]
√
m2 − E2

, (22)
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Fig. 3 Plot of the effective potential for radial charged particles in
the classic domain. Bounded trajectories: particles with electric ratio
|q∗| > 1 and energy E+ < E < m cannot escape to spatial infinity, so
the distance r0 corresponds to a turning point. Unbounded trajectories:
particles with electric ratio |q∗| = 1 and energy m < E < E∞ arrive at
spatial infinity with non-vanished kinetic energy K ≥ 0. For simplicity,
because the motion is essentially the same for all E ∈ {m, E∞}, here
we solve the case E = m and the starting point r0 has been chosen in
such way that t (r0) = τ(r0) = 0

while the coordinate time becomes

t (r) =
[
E + q

g(0)

(
E

E+
− 1

)]
τ(r) + T (r), (23)

where
T (r) = a

(
E

E+
− 1

)[
r+√
p2(r+)

log

(
(r − r+) g(r0)

r+ r + r0 d0 − (r + r+) g(0)

)

. −
√
p2(r)

g(0)

]
, (24)

where g(r) = 1
2 [(r0 − r) − (r − d0)], and we must choose

τ(r0) = t (r0) = 0. In the top panel of Fig. 4 the functions
(22) and (23) are plotted together, demonstrating that radial
charged particles present the same behavior as radial neutral
particles in this spacetime [57].

4.1.2 Unbounded trajectories: q∗ = 1 and E ≥ m

This case is characterized by the possibility that particles can
arrive at spatial infinity with non-null kinetic energy, K ≥ 0,
where the equality is satisfied when E = m; see Fig. 3.
Thus, for simplicity, we solve the latter case so the proper
and coordinate velocities become

u(r) ≡ uc(r) = ±qc
r

(25)

and
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Fig. 4 Temporal graphic for the fall of radial charged particles in the
classic domain. Basically, the behavior is the same as in the standard
spacetimes of general relativity [7]. Top panel bounded trajectory with
E+ < E < m. Bottom panel unbounded trajectory with E = m. For
convenience, in both graphics we have used the same starting point, r0

vt (r) = ± (1 − 2
m uc) uc

m − uc
. (26)

For simplicity, let us choose r0 as the starting distance,
where τ(r0) = t (r0) = 0; therefore, Eqs. (25) and (26)
become

τ(r) = ±r2 − r2
0

2 qc
(27)

and

t (r) = mτ(r) ± (r − r0) ± r+ ln

(
r − r+
r0 − r+

)
, (28)

respectively. Therefore, as we have mentioned before, the
motion of charged particles is the same as the motion in
Einstein’s spacetimes; see the bottom panel of Fig. 4.
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Fig. 5 Temporal behavior for charged particles in the frontal Ruther-
ford scattering. Here ρd represents the distance of closest approach

4.2 The electric domain

4.2.1 Frontal Rutherford scattering: |q∗| < 1 and
m < E < Eu

As we have said, the GMGHS spacetime allows Rutherford-
like scattering of radial charged particles. Thus, if the energy
of the particle E is such thatm < E < Eu , then there are two
turning points, one on each side of ρu . Thus, the turning point
ρd > ρu corresponds to a radial distance of closest approach
at the trajectory, whereas ρa < ρu is the farthest distance for
this interval; see Fig. 2. Explicitly, these distances are given
by

ρd = q (E − m q∗)
E2 − m2

(
1 +

√
1 − E2 − m2

(E − m q∗)2

)
(29)

and

ρa = q (E − m q∗)
E2 − m2

(
1 −

√
1 − E2 − m2

(E − m q∗)2

)
. (30)

Therefore, Eq. (19) can be rewritten as

u2(r) = E2 − m2

r2 h2(r), (31)

where the polynomial is given by h2(r) = |r − ρd | |r −
ρa |. Assuming that t = τ = 0 at the turning point, and
defining the radial function f (r) = 1

2 [(r − ρd) + (r − ρa)],
we found that in the proper system

τ(r) =
√
h2(r) + f (0) log

(√
h2(r)+ f (r)
1
2 (ρd−ρa)

)
√
E2 − m2

, (32)

while an external observer will measure

V (   )r    

rρa

E

E

E
V

E
N

T 
H

O
RI

Z
O

N

ρ
d

ρu

E

+

u

Fig. 6 Plot of the effective potential for radial charged particles in the
electric domain. Frontal Rutherford scattering is allowed when E+ <

E < Eu and r > ρd , while critical radial motion occurs when E = Eu

t (r) =
[
E +

(
E

E+
− 1

)]
τ(r) + T̄ (r), (33)

where

T̄ (r) = a

(
E

E+
− 1

)[
r+√
h2(r+)

log

(
(r − r+) f (ρd )

r+ r + ρd ρa − (r + r+) f (0)

)

−
√
h2(r)

f (0)

]
, (34)

for ρd < r < ∞. In Fig. 5 the proper and external temporal
behaviors are represented.

4.2.2 Critical radial motion: |q∗| < 1 and E = Eu

Particles with energy Eu satisfying the condition Eu =
V (ρu), where ρu is the location of the maximum of the effec-
tive potential, see Fig. 6, can arrive at ρu either from a dis-
tance ρ I

i < ρu (region I) or ρ I I
i > ρu (region II), depending

on its initial velocity. Eventually, if the initial conditions are
reversed, charged particles can also arrive at the spatial infin-
ity or the event horizon. Under these assumptions, and then
integrating the equations of motion, we obtain for the proper
time

τI (r) = ± 1√
E2
u − m2

[
ρu ln AI (r) − (r − ρ I

i )
]

(35)

and

τI I (r) = ± 1√
E2
u − m2

[
(r − ρ I I

i ) − ρu ln AI I (r)
]
, (36)

while the coordinate time result to be

tI (r) = Eu τI ± q√
E2
u − m2

(
Eu

E+
− 1

)
ln

A1+β
I (r)

Bβ
I (r)

(37)
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Fig. 7 Temporal behavior for charged particles in critical radial
motion, where its energy is Eu = V (ρu) and the starting point can
be placed at left, ρ I

i or right of the unstable equilibrium point. Note that
in both frames (proper and coordinate) particles arrive asymptotically
to ρu

and

tI I (r) = EuτI I (r) ∓ q√
E2
u − m2

(
Eu

E+
− 1

)
ln

A1+β
I I (r)

Bβ
I I (r)

(38)

where we have made β = r+/(ρu − r+), and

AI (r) = ρu − ρ I
i

ρu − r
, BI (r) = ρ I

i − r+
r − r+

, (39)

AI I (r) = ρ I I
i − ρu

r − ρu
, BI I (r) = ρ I I

i − r+
r − r+

. (40)

In Fig. 7 the analytical solutions (35), (36), (37), and
(38) are depicted. Clearly, an external observer will see the
particles going to ρu and spatial infinity faster than in the
proper system, while the motion on the horizon possesses
the same nature as Einstein’s spacetimes, i.e., with respect
to an observer stationed at infinity, the trajectory will take
an infinite time to reach the horizon even though by its own
proper time it will cross the horizon in a finite time [7].

5 Motion with angular momentum

Particles with angular motion are characterized by L > 0.
Explicitly, the effective potential (13) can be written as

V (r) = q

r
+

√(
1 − r+

r

) (
m2 + L2

r(r − α)

)
, (41)

which is shown in Fig. 8 for two pairs of values of the electric
charge q and angular momentum L of the test particle.

V (   )r    

rrd

E
V

E
N

T 
H

O
RI

Z
O

N

rarp

m

Fig. 8 Effective potential for charged particles with non-vanished
angular momentum. This plot contains curves for two pairs of values of
the electric charge q and angular momentum L of the test particle. The
upper curve corresponds to the typical case of dispersion in which the
trajectory approaches from infinity, reaches the turning point rd , and
then recedes to infinity again

5.1 Gravitational Rutherford scattering

Since the particle interacts with the background via the pres-
ence of the term α, the straight path is modified in such way
that a new trajectory is formed. As Fig. 8 illustrates, par-
ticles with E > m are deflected by reaching the distance
of closest approach, denoted by rd . Obviously, without the
α term the geometry becomes the Schwarzschild one, and
its counterpart does not exist (we put the interaction “off”).
Moreover, a similar effect can occur when the ratio L/M
increases, i.e., tending to the Newtonian regime (see pp. 102
of Chandrasekhar’s book [7]).

In order to obtain the mentioned trajectory, let us rewrite
Eq. (16) as

φ = L√
E2 − m2

∫ r

rd

dr√
(r − α)P(r)

. (42)

Here the characteristic polynomial P(r) is given by

P(r) = r3 − (rσ + α) r2 −
(
r2
L − α rσ

)
r + RL r

2
L , (43)

where

rσ = 2qE − m2r+
E2 − m2 , RL =

(
L2r+ − αq2

L2 − q2

)
, rL =

√
L2 − q2

E2 − m2 .

(44)

The condition P(r) = 0 allows for three real roots, which
can be written as
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rd(E) = rα + R cos ζ, (45)

rA(E) = rα − R

2
(cos ζ − √

3 sin ζ ), (46)

r3(E) = rα − R

2
(cos ζ + √

3 sin ζ ), (47)

where

rα = rσ + α

3
, R =

√
η2

3
, ζ = 1

3
arccos

η3

R3 , (48)

and

η2 = 4

[
(rσ + α)2

3
+

(
r2
L − α rσ

)]
, (49)

η3 = 4

[
2 (rσ + α)3

27
+ (rσ + α)

(
r2
L − α rσ

)
3

− RL r
2
L

]
.

(50)

Therefore, we can identify the closest approach distance
rd , and the farthest distance rA (the third solution r3 is without
importance here). Replacing P(r) = (r−rd)(r−rA)(r−r3)

in Eq. (42) and performing an integration it is possible to find
that

κ φ = ℘−1
[

1

4

(
1

r − rd
+ a1

3

)
; g2, g3

]
, (51)

where κ = 2
√
E2 − m2/L and ℘−1(x; g2, g3) is the inverse

℘-Weierstraß elliptic function with the Weierstraß invariant
given by

g2 = 1

4

(
1

3
a2

1 − a2

)
, (52)

g3 = 1

16

(
1

3
a1 a2 − 2

27
a3

1 − a3

)
, (53)

where a1 = u1 + u2 + u3, a2 = u1u2 + u1u3 + u2u3,
a3 = u1u2u3, with u1 = (rd − α)−1, u2 = (rd − rA)−1, and
u3 = (rd − r3)

−1. Therefore, the inversion of Eq. (51) and a
brief manipulation leads to the following expression for the
polar trajectory:

r(φ) = rd + 1

4℘(κ φ; g2, g3) − a1/3
, (54)

where ℘(x; g2, g3) is the ℘-Weierstraß elliptic function. In
Fig. 9 we plot the polar trajectory (54), in which we note that,
depending on the set of parameters (E , L , q, α) across Eqs.
(44–50), the trajectory will be deflected as classic Ruther-
ford scattering [65–71] or more specifically a repulsive or
attractive scattering between a massive target (composed of
a positive charged nuclei) and light projectiles (α-particles or
β-particles). Moreover, because our test particles have been

E mE 1U

Em
E

0 UE1

Θ

Fig. 9 Toppanelgravitational Rutherford scattering. This plot contains
curves for various value of the electric charge, q, and impact parameter,
b, of the test particle. Clearly, depending on the value of b, the scattering
can be either repulsive or attractive. Each circle corresponds to the
closest approach distance for a given value of the impact parameter.
Bottom panel angle of scattering against energy of the test particles. At
E = E1 the deflection angle is equal to zero, so the initial and final
direction are the same

chosen as positive, the attractive behavior is driven by the
gravitational field over the electric repulsion. From the equa-
tion of the orbit (51) it is possible to obtain the angle of
deflection � = 2φ∞ − π experienced by the test particles,
which turns out to be

� = 2

κ
℘−1

( a1

12

)
− π. (55)

Therefore, particles with E = E1 do not experience
deflection in their trajectory, where E1 is the solution to the
transcendental equation a1 = 12 ℘(κπ/2).

Also, a repulsive scattering is performed if m < E <

E1, whereas an attractive scattering is carried out if E1 <
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E < EU . For the scattering problem, the dependence of the
differential cross-section on � �= 0 is given by

d σ

d�
≡ σ [�] = b

sin �

∣∣∣∣ d b

d �

∣∣∣∣ , (56)

where b is the impact parameter. Now, we can substitute the
constants E and L by the value at spatial infinity [38]:

E = m√
1 − v2

, L = m v b√
1 − v2

= b
√
E2 − m2 (57)

where v is the velocity of the test particle at spatial infinity.
Because b = b(E), we have a1 = a1(b) and Eq. (56) is
written as

σ [�] = b

sin �

∣∣∣∣d a1

d �

∣∣∣∣
∣∣∣∣ d b

d a1

∣∣∣∣ . (58)

Finally, the differential cross-section for the scattering of
charged particles by the background of a charged black hole
in heterotic string theory is given by

σ [�] = 12 csc �

∣∣∣∣℘ ′
(

π + �

b

)∣∣∣∣
∣∣∣∣ d b

d a1

∣∣∣∣ , (59)

where ℘ ′(x) ≡ ℘ ′(x, g2, g3) represents a derivative of the
℘-Weierstraß function with respect to �. Note that this last
expression represents the exact formula for the scattering
problem. Nevertheless, due to the complexity of the relation
between the impact parameter b and the quantity a1, the term∣∣∣ d b

d a1

∣∣∣ is calculated numerically.

5.2 Keplerian orbits

As we have established, the effective potential (41) allows
motion between an apastron distance ra and periastron dis-
tance rp, as we show in Fig. 9. Therefore, considering that
E < m, it is possible to rewrite Eq. (16) as

φ = L√
m2 − E2

∫ r

ra

dr√
(r − α)P̄(r)

, (60)

where the characteristic polynomial P̄(r) is now given by

P̄(r) = −r3 + (−r̄σ + α) r2 −
(
r̄2
L − α r̄σ

)
r + RL r̄

2
L (61)

and

r̄σ = 2qE − m2r+
m2 − E2 , RL =

(
L2r+ − αq2

L2 − q2

)
, r̄L =

√
L2 − q2

m2 − E2 .

(62)

The condition P̄ = 0 allows us to get the three roots which
are given by

rp(E) = −r̄α + R̄ sin ζ̄ , (63)

ra(E) = −r̄α + R̄

2

(√
3 cos ζ̄ − sin ζ̄

)
, (64)

r f (E) = −r̄α − R̄

2

(√
3 cos ζ̄ + sin ζ̄

)
(65)

where

r̄α = r̄σ − α

3
, R̄ =

√
η̄2

3
, ζ̄ = 1

3
arcsin

η̄3

R̄3
, (66)

and

η̄2 = 4

[
(r̄σ − α)2

3
−

(
r̄2
L − α r̄σ

)]
, (67)

η̄3 = 4

[
2 (r̄σ − α)3

27
− (r̄σ − α)

(
r̄2
L − α r̄σ

)
3

− RL r̄
2
L

]
.

(68)

Defining κkep = 2
√
m2 − E2/L and then integrating Eq.

(60) we get

κkepφ = ℘−1
[

1

4

(
1

ra − r
− ā1

3

)
; ḡ2, ḡ3

]
, (69)

where the Weierstraß invariants are given by

ḡ2 = 1

4

(
1

3
ā2

1 − ā2

)
, (70)

ḡ3 = 1

16

(
1

3
ā1 ā2 − 2

27
ā3

1 − ā3

)
, (71)

where ā1 = ū1 + ū2 + ū3, ā2 = ū1ū2 + ū1ū3 + ū2ū3,
ā3 = ū1ū2ū3, and ū1 = (ra − α)−1, ū2 = (ra − rp)−1,
ū3 = (ra − r f )−1. Therefore, the polar trajectory can be
found inverting Eq. (69), which as a result turns out to be

r(φ) = ra − 1

4℘(κkep φ; ḡ2, ḡ3) + ā1/3
. (72)

In Fig. 10 we depict the Keplerian orbit in which the pre-
cession angle, � = 2φp − 2π , is given by

� = 2

κkep
℘−1

[
1

4

(
1

ra − rp
− ā1

3

)
, ḡ2, ḡ3

]
− 2π. (73)

6 Final remarks

In this paper, we have examined the motion of charged par-
ticles in the background metric and the fields of a GMGHS
black hole. The equations of motion were established and
solved exactly following the usual Hamilton–Jacobi method.
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ra rp

Fig. 10 Polar plot for Keplerian orbit performed by charged particles
in which the precession angle is given by Eq. (73)

Thus, the radial motion of the test bodies was studied in
terms of its energy E and the specific charge q∗, allowing two
regimens: the classic domain is similar to the radial motion
studied in the Schwarzschild spacetimes, thereby allowing
bounded trajectories (|q∗| > 1 and E+ < E < m) and
unbounded trajectories (|q∗| ≤ 1 and E ≥ m); and the elec-
tric domain, in which case frontal repulsive Rutherford scat-
tering is permitted (|q∗| < 1 andm < E < Eu) together with
a critical motion in which a particle falls asymptotically into
ρu (|q∗| < 1 and E = Eu). On the other hand, the motion
with non-vanishing angular momentum was studied in detail
in two general schemes: the dispersive case E > m and the
Keplerian case E < m. In the first case, we employed the
classic tools to describe the Rutherford scattering between
two electric charges (with the same sign of the charge), show-
ing that null dispersion and attractive scattering are possible
because the electric dispersion is compensated for by the
gravitational effects. Finally, for the second case, we have cal-
culated the apastron and periastron distance of the Keplerian
orbit, which is expressed in terms of the elliptic ℘-Weierstraß
function, whose periastron advance with a precession angle
� is given by Eq. (73).
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