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1 Introduction

Matrix quantum mechanics began [1] with the problem of counting planar diagrams in

field theory. In ref. [1] a single matrix was quantised and shown to be equivalent to a

free Fermi gas. In the large N (matrix size) limit the eigenvalue density was obtained

and found to have similar features to pure matrix models. The eigenvalues are confined

to finite domains such that EF − V (λ) is positive and the eigenvalue density is given by

ρ(λ) =
√

2EF − 2V (λ) in these domains with the Fermi energy EF determined from the

normalisation of the eigenvalue density. For a quartic potential the model undergoes a

one-cut two-cut phase transition [2] when the quadratic term is made sufficiently negative

and other features are broadly in line with the pure matrix model.

Interest in matrix quantum mechanics blossomed with the advent of the AdS/CFT

correspondence and multi-matrix models are fundamental to current understanding of M-

theory.

Although a non-perturbative formulation of M-theory in terms of its fundamental

degrees of freedom is still lacking, the best candidate for such a formulation appears to

be the infinite matrix size limit of a matrix model of some kind. The leading candidate

for such a formulation is the BFSS model [3, 4] which was conjectured to capture the

entire dynamics of M-theory. Relatives of this model such as the BMN model [5] or models

derived from the ABJM model [6, 7] are also considered possible viable candidates for such

a non-perturbative formulation. All of these conjectured formulations of M-theory are

regularised versions of the supermembrane and are matrix quantum mechanical systems.

They are based on the matrix regularisation of membranes introduced by Hoppe [8] and

extended to the supermembrane in [9]. They also arise as dimensional reductions of 4-

dimensional or 3-dimensional supersymmetric field theories.
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Many of these models will have regimes where commuting matrices play a rôle. It has

been suggested by Berenstein [10] that, in order to count 1/8-BPS states, a matrix model

of commuting matrices is needed.

Aside from the work of Berenstein [10] there is little known about commutative quan-

tum matrix models. Our goal in this article is to understand the quantisation and quantum

mechanics of a system of commuting matrices.

Our first observation is that the configuration space of such matrix models is curved.

The consequence of this is that there is no a priori unique quantisation of the system. This

is a classic problem when the configuration space is curved and was clarified by B. De Witt

in his seminal article [11]. There De Witt found that, if one considers a classical dynamical

system in a curved configuration space, the corresponding quantum Hamiltonian has an

additional potential given by ~2

6 R, where R is the scalar curvature of the configuration

space.1 Other values for the coefficient of the scalar curvature have been proposed [11, 13]

but since it is the quantum system that is primary the coefficient can in principal have any

value.

For the system of commuting matrices we therefore investigate the general case and

allow the coefficient have any value and comment on the different possibilities.

We begin our paper with a fresh derivation of the standard results of matrix quantum

mechanics. Using a WKB approximation for the single particle wavefunctions we obtain

a direct derivation of the eigenvalue density. We then establish the equivalence of the

Bosonic and Fermionic quantisations for the Gaussian potential. We are then in a position

to discuss the higher dimensional case where Bosonic quantisation is the relevant one.

The principal results of this paper are:

• The configuration space of p-commuting Hermitian matrices with p > 1 is curved. We

compute the curvature of this space and establish that it has a curvature singularity

when two eigenvalues approach. This singularity has a negative scalar curvature for

p > 1 independent of N .

• If no explicit curvature dependence is included in the action for the system then a path

integral quantisation of the system gives rise to a curvature term in the Hamiltonian.

We find the resulting system has no finite energy ground state.

• If the Hamiltonian is taken as primary and no explicit curvature dependence is in-

cluded in this Hamiltonian then for Gaussian commuting matrices we find

(a) For p = 2 the eigenvalue distribution is uniform within a disc of unit radius.

(b) For p = 3 the eigenvalues are confined to a ball but have divergent density as

the boundary is approached, though the distribution is integrable being

ρ3(r) =
3

2π2
√

2
3
−~r2

.

(c) For p ≥ 4 competition between eigenvalue repulsion and the attractive poten-

tial forces the eigenvalues to form a shell with eigenvalue distribution ρp(~x) =

1For a more recent discussion see [12].
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2p/2

Ωp−1
δ(1/2 − ~x2) where Ωp−1 is the volume of the unit p − 1-sphere. Note the

critical rôle played by the p = 4 case.

• We find that if we quantize the p-commuting Hermitian matrices with ξ
6R as the

scalar curvature contribution to the Hamiltonian then for ξ ≥ 1 the system has no

finite energy ground state for any polynomial potential. For ξ < 1 the system is

stable and for Gaussian potentials the effect of the curvature term is to scale the

radius by a factor of (1− ξ)1/4. As ξ → 1 we see the radius goes to zero and the

distribution collapses.

As an aside we compute the scalar curvature of a generic squashed flag manifold

where the squashing radii are given by the distances between eigenvalues. The scalar

curvature of such a flag is always positive. It is the orthogonal complement of the flag

in the configuration space of commuting matrices that gives the negative curvature. The

space can be envisaged as a warped cone over the flag.

The layout of the paper is as follows: in section two we review the one matrix case

giving a novel and explicit derivation of the eigenvalue density. We then establish, in the

case of a quadratic potential, the equivalence of the Fermionic and Bosonic quantisations.

The Bosonic quantisation will be the one relevant to the subsequent sections. In section

three we study commuting matrices observing, to begin with, that the configuration space

of such a system is curved. We relegate the derivation of the curvature to appendix A

which includes a derivation of the curvature of a generic squashed flag manifold. We then

establish, for curvature potential ξ
6R, that when ξ ≥ 1 the system has no finite energy

ground state. In section 3.1 we discuss the range ξ < 1 and find that for a quadratic

confining potential the system is well defined and the eigenvalues are distributed uniformly

within a disc for p = 2, while for p = 3 they are confined to a finite domain with the density

increasing towards the boundary in a divergent but integral form. A special rôle is played

by p = 4 in that it is the lowest dimension in which the eigenvalues are concentrated in a

spherical shell. For all p > 4 the eigenvalues form a spherical shell with the radius specified

by R2
p =

√
1− ξ /2 and as ξ approaches one the extent of the eigenvalues goes to zero.

We end the paper with discussion and set the problem in the wider context by relating

the system to Calogero-Sutherland-Marchioro models and for p = 2 to anyonic systems.

2 One matrix quantum model

In this section we revisit the quantisation of a one matrix model first presented in [1]. Our

goal is to perform a semiclassical quantisation, in the fermionic description of [1]. For the

special case of gaussian potential we also demonstrate the equivalence of the bosonic quan-

tisation of the model. It is the bosonic quantisation which admits a natural generalisation

to the case with more than one commuting matrix.

Our starting point is the classical Lagrangian:

L = tr

(

1

2
Ẋ2 − V (X)

)

, (2.1)
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where X is an N×N time dependent Hermitian matrix. The dot represents a time derivate

and V (X) is a potential which can be taken to be of the form:

V (X) =
1

2
X2 +

g

N
X4 + · · · . (2.2)

Hermitian matrices involve complex entries and the space of Hermitian matrices is endowed

with the flat metric:

ds2 = tr
(

dXdX†
)

= tr (dXdX) . (2.3)

We could proceed and directly quantise the model by using the Hamiltionian [1]:

H = −1

2
∇2 + V (2.4)

∇2 =
∑

i

∂2

∂X2
ii

+
1

2

∑

i<j

∂2

∂ReX2
ij

+
∂2

∂ImX2
ij

. (2.5)

But our interest will be in a system of commuting matrices, where the elements of the

matrices are not independent and in this case when the constraints are solved we will see

that commuting matrices have a curved configuration space. It is therefore most convenient

to perform the quantisation in the “curved” coordinates obtained by diagonalising the

matrices. These complications are not necessary in the one matrix model, where the

configuration space is flat and diagonalisation is just a change of coordinates. However, we

will still find it instructive to follow this path in the quantisation of the one matrix model.

Diagonalising the matrix X with a unitary transformation U so that X = UΛU † we

arrive at the following expression for the metric (2.3):

ds2 = tr
(

dΛ2 + [Λ, θ]2
)

=
∑

i

dλ2i + 2
∑

i<j

(λi − λj)
2θij θ̄ij (2.6)

where θ = U †dU are the Maurer-Cartan left invariant forms and λi = Λii. Furthermore,

in these coordinates the Lagrangian (2.1) is given by:

L =
1

2
tr
(

Λ̇2 + [Λ, θ̇]2
)

− trV (Λ) =
1

2

∑

i

λ̇2i +
∑

i<j

(λi − λj)
2θ̇ij

¯̇
θij −

∑

i

V (λi) , (2.7)

where θ̇ = U †U̇ . Note that the potential is independent on the θ’s (and U) and they are

cyclic variables. Our next step is to define generalised momenta:

Πλi =
∂L
∂λ̇i

= λ̇i , Πθij =
∂L
∂ ˙̄θij

= (λi − λj)
2θ̇ij , Πθ̄ij

=
∂L
∂ θ̇ij

= Π̄θij , for i < j . (2.8)

For the corresponding Hamiltonian we obtain:

H =
1

2

∑

i

Π2
λi

+
∑

i<j

ΠθijΠθ̄ij

(λi − λj)2
+
∑

i

V (λi) =
1

2
gabΠaΠb +

∑

i

V (λi) , (2.9)
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where a, b are collective indices for the λi, θij and θ̄ij components and gab is the inverse

of the metric (2.6). The general prescription for quantising the Hamiltonian (2.9) suggest

that we construct the operator:

Ĥ = −1

2

1√
g
∂a(

√
ggab∂b) + trV (λ) = − 1

2∆

∑

i

∂λi(∆ ∂λi)−
∑

i<j

LθijLθ̄ij

(λi − λj)2
+ trV (λ) ,

where ∆ =
∏

i>j

(λi − λj)
2 . (2.10)

Note that the differential operators Lθij and Lθ̄ij
are left invariant vector fields dual to the

left invariant Maurer-Cartan forms.2 The eigenvalues of the operator (2.10) determine the

energy of the system. Therefore we need to solve the corresponding Schrödinger equation:

ĤΨ = N2E(1)Ψ , (2.11)

where we use the notation of ref. [1]. Given that the potential depends only on the eigen-

values of the matrix we consider separate angular and eigenvalue dependence. Furthermore

our goal is only the ground state energy which will be given by the angular independent

wave function Ψ(λ1, . . . , λN ) , which is a function only of the eigenvalues. Following ref. [1]

we consider the redefinition:

φ(λ1, . . . , λN ) =
∏

i>j

(λi − λj)Ψ(λ1 . . . λN ) . (2.12)

Note that in order for the original wave function Ψ(λ1 . . . λN ) to be analytic as λi → λj ,

we need the new wave function φ(λ1 . . . λN ) to be completely antisymmetric, therefore the

quantisation of the model is equivalent to the quantisation of N fermions in the central

potential V . Indeed, the Schrödinger equation for the wave function (2.12) becomes [1]:

∑

i

(

−1

2

∂2

∂λ2i
+ V (λi)

)

φ = N2E(1)φ . (2.13)

The antisymmetric wave function φ can be constructed as the Slater determinant:

φ(λ1, . . . , λN ) =
1√
N !

∑

i1,...,iN

εi1...iN fi1(λ1) . . . fiN (λN ) , (2.14)

where fi are individual wave functions normalised to one and satisfying:

[

−1

2

∂2

∂λ2
+ V (λ)

]

fi(λ) = eifi(λ) (2.15)

and
∑

i ei = N2E(1), since we are interested in the ground state of the system we choose

the individual energies ei to label the first N excited states of the individual hamiltonian.

2Note also that in general there is the freedom to add to the potential a term proportional to the scalar

curvature, which for one matrix vanishes, because the metric (2.6) is flat.
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Now the distribution of the eigenvalues can be obtained from the modulus of the wave

function φ by integrating over all but one of the eigenvalues:

ρ(λ) =

∫ N
∏

k=2

dλk |φ(λ, λ2, . . . λN )|2 =
∑

i2,...,iN

εi,i2...,iN εji2···N
fi(λ)f

∗
j (λ)

N !

=
1

N

∑

i

|fi(λ)|2 . (2.16)

Therefore, we see that the distribution of the eigenvalues is given as an average over the

probability distributions determined by the individual wave functions fi. The key idea to

obtain a closed form expression for the distribution ρ valid at large N , is to notice that at

large N the semi-classical approximation to the individual wave function is well justified

and in the limit N → ∞ becomes exact. Indeed, rescaling the eigenvalues, and redefining

the wave functions, the potential and the individual energies via:

λi →
√
N λi, f̃i(λ) = N1/4 fi(

√
Nλ) , u(λ) =

1

N
V (

√
N λ) , εi =

ei
N

(2.17)

we arrive at:
[

− 1

2N2

∂2

∂λ2
+ u(λ)

]

f̃i(λ) = εi f̃i(λ) . (2.18)

We see that we have an effective Planck constant ~ ∝ 1/N , and for large N we can use a

WKB approximation for the wave functions [14] f̃i(λ):

f̃i(λ) =
C1

√

p(λ)
cos



N

λ
∫

a

dλ′ p(λ′)− π

4



 , (2.19)

p(λ) =
√

2(εi − u(λ)) (2.20)

for a ≤ λ ≤ b, where a and b are the two turning points of the classical trajectory. The

normalisation coefficient C1 is fixed by the condition:

b
∫

a

dλ|f̃i(λ)|2 ≈
C2
1

2

b
∫

a

dλ

p(λ)
=
π C2

1

2ωi
= 1 , (2.21)

where ωi = 2π/Ti is the frequency of the classical motion depending on the energy εi, and

we have used that for large N to leading order we have cos2(N
∫ λ

dλ′p(λ′)) ≈ 1/2 under the

integral in (2.21). With this normalisation, and approximating again the fast oscillating

cosine function with one half, for the absolute value square of the wave function f̃i at large

N we obtain:

|f̃i(λ)|2 =
ωi

π
√

2(εi − u(λ))
. (2.22)

Redefining the distribution for the rescaled eigenvalues (so that it is normalised to one) via:

ρ̃(λ) =
√
N ρ(

√
Nλ) =

1

N

∑

i

|f̃i(λ)|2 , (2.23)
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we obtain:

ρ̃(λ) =
1

N

∑

n

ωn

π
√

2(εn − u(λ))
. (2.24)

Our final step is to use the Born-Sommerfeld quantisation (for ~ = 1/N):

N

2π

∮

p dλ = n+
1

2
(2.25)

to obtain:

N

2π

∮

∆pn dλ =
N∆εn
2π

∮

∂pn
∂εn

dλ =
N∆εn
2π

∮

dλ

pn
=
N∆εn
ωn

= ∆n . (2.26)

The last equality allows us (in the large N limit) to express the sum over n in (2.24) as a

definite integral over ε:

ρ̃(λ) =
∑

n

∆εn

π
√

2(εn − u(λ))
=

1

π

ǫf
∫

u(λ)

dε
√

2(ε− u(λ))
=

1

π

√

2(εf − u(λ)) , (2.27)

which is our final expression for the distribution ρ̃ and agrees with the result in ref. [1], as

it should, since we have only made the semiclassical analysis more explicit.

2.1 Gaussian potential

Let us now focus on the specific case of a gaussian potential V (X) = X2/2. In this

case the rescaled individual wave functions f̃n satisfy the Schrödinger equation for the one

dimensional harmonic oscillator:
[

− 1

2N2

∂2

∂λ2
+

1

2
λ2
]

f̃n(λ) = εn f̃n(λ) , (2.28)

where:

f̃n(λ) =
Hn(λ)e

−N λ2/2

√
π1/22nn!

; εn =
(1/2 + n)

N
; (2.29)

and Hn(λ) are the Hermite polynomials. The corresponding multi-particle wave function

is given by:

φ̃(λ1, . . . , λN ) = CN

∑

i1,...,iN

Hi1(λ1) . . . HiN (λN ) e−N
∑

i λ
2
i /2

= 2
N(N−1)

2 CN

∏

i>j

(λi − λj) e
−N

∑

i λ
2
i /2 , (2.30)

where C−2
N = N !

N−1
∏

n=0
(π1/22nn!) and we have used the properties of the Hermite polynomials

to arrive at the last equality. Equation (2.30) suggests that the bosonic wave function ψ̃

before the change of variables (2.12) is given by:

Ψ̃(λ1, . . . , λN ) = 2
N(N−1)

2 CN

∏

i

e−N λ2
i /2 . (2.31)
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Therefore, the bosonic wave function of the ground state of the system is a product of

individual wave functions. We could have easily guessed this result even directly in the

bosonic description without introducing the new wave function (2.12). Note that this is

true only for the case of a gaussian potential. In fact, in the next section we will show

that this holds even for the case of more than one commuting matrices with a gaussian

potential [10].

3 Commuting matrix model

In this section we focus on the quantisation of the commuting matrix model. While we

will set up the problem for general interaction potential the main findings that we present

are for the special case of gaussian potential, first discussed in ref. [10]. Our starting point

is the lagrangian:

L = tr

(

1

2
~̇X2 − V ( ~X)

)

, (3.1)

where ~X represent a set of p commuting N ×N hermitian matrices:

~X = {X1, . . . Xp} and [Xµ, Xν ] = 0 for µ, ν = 0, . . . , p . (3.2)

Unlike the one matrix model discussed in the previous section we cannot directly write

down the corresponding hamiltonian. The problem is that the commuting matrices are not

independent and the system is constrained. This is why we will perform the quantisation

in “curved” coordinates by using the parameterisation:

Xµ = UΛµU † , for µ = 1, . . . , p , (3.3)

where Λµ are real diagonal matrices consisting of the eigenvalues of the commuting matrices

Xµ and U is an unitary matrix. Note that U is defined modulo a right multiplication by a

diagonal unitary matrix. Taking the quotient with respect to this equivalence leaves only

N2−N independent real components of the unitary matrix U , which together with pN real

degrees of the eigenvalue matrices Λµ suggests that the space of the p commuting matrices

is an N2 + (p − 1)N dimensional subspace in the pN2 space of independent hermitian

matrices. Using the natural flat metric in the space of independent hermitian matrices, for

the induced metric on the space of commuting matrices we obtain:

ds2 = tr
(

d ~X.d ~X
)

=
∑

i

d~λ2i + 2
∑

i>j

(~λi − ~λj)
2θij θ̄ij , (3.4)

where θ = U †dU are the Maurer-Cartan left invariant forms and ~λi = ~Λii are the eigenvalues

of the commuting matrices. In these coordinates the Lagrangian (3.1) is given by:

L =
1

2
tr
(

~̇Λ2 + [~Λ, θ̇]2
)

− trV (~Λ) =
1

2

∑

i

~̇λ2i +
∑

i<j

(~λi − ~λj)
2θ̇ij

¯̇
θij −

∑

i

V (~λi) , (3.5)

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
0
2
4

where θ̇ = U †U̇ . Defining the conjugate momenta:

Π~λi
=
∂L
∂~̇λi

= ~̇λi , Πθij =
∂L
∂ ˙̄θij

= (~λi − ~λj)2θ̇ij , Πθ̄ij
=

∂L
∂ θ̇ij

= Π̄θij , for i < j .

(3.6)

For the corresponding classical Hamiltonian we obtain:

H =
1

2

∑

i

Π2
~λi

+
∑

i<j

ΠθijΠθ̄ij

(~λi − ~λj)2
+
∑

i

V (~λi) =
1

2
gabΠaΠb +

∑

i

V (~λi) , (3.7)

where a, b are a collective indices for the λµi , θij and θ̄ij components of the inverse of the

metric (3.4). So far the analysis was a simple generalisation of the one performed in the one

matrix model case. However, note that unlike the metric (2.6), which is just a flat metric

written in curved coordinates, the metric (3.4) is the induced metric on the subspace of

commuting matrices and in general there is no reason to expect that it is flat and as it

turns out it isn’t. It is a well known problem in quantum mechanics in a curved space

that there is an ambiguity in the definition of the quantum Hamiltonian. In particular

there is the freedom to add a term proportional to the scalar curvature to the potential.

The coefficient in front of this term is not determined, however if one demands a path

integral quantisation with the naive classical Hamiltonian, this coefficient is fixed to 1/6.

Alternatively one could introduce an appropriate such term in the Lagrangian so that the

term generated by the measure of the path integral cancels it [11, 12] and one ends up

with a coefficient zero in the quantum Hamiltonian. It is the quantum system that is more

fundamental and since such a term is induced by the path integral measure then, when

the system is an effective low energy Lagrangian, it seems natural to allow the coefficient

to take on any value. Our strategy will be to keep this coefficient general and explore the

implications of varying it. Thus we consider the Hamiltonian.

Ĥ = −1

2

1√
g
∂a(

√
ggab∂b) + trV (~Λ) +

ξ

6
R

= − 1

2∆

∑

i

∂~λi
.(∆ ∂~λi

)−
∑

i<j

∂θij∂θ̄ij

(~λi − ~λj)2
+ trV (~Λ) +

ξ

6
R , (3.8)

where ∆ =
∏

i>j(
~λi−~λj)2 and R is the Ricci scalar curvature of the metric (3.4) for which

we obtain the expression:

R = −4(p− 1)
∑

i 6=j

1

(~λi − ~λj)2
− 3

∑

i 6=j 6=k

(~λi − ~λj)

(~λi − ~λj)2
.
(~λi − ~λk)

(~λi − ~λk)2

= −(4p+ 3N − 10)
∑

i 6=j

1

(~λi − ~λj)2
+

3

2

∑

i 6=j 6=k

(~λj − ~λk)
2

(~λi − ~λj)2(~λi − ~λk)2
. (3.9)

As one can see the curvature can be written with negative two body and positive three

body interactions, the net effect in the large N limit however is always a negative curvature.

A fact which will prove crucial for the quantisation of the model.
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Our next step is to consider a wave function Ψ, which is invariant under SU(N) gauge

transformation and thus independent of the θ’s. The resulting Schrödinger equation has a

term involving a first derivative of the wave function, which we can discard by considering

the higher dimensional analogue of the change of variables (2.12):

Φ(~λ1, . . . , ~λN ) =
∏

i>j

|~λi − ~λj |Ψ(~λ1, . . . , ~λN ) . (3.10)

Taking into account equations (3.8), (3.9) and (3.10) for the Schrödinger equation satisfyed

by Φ we obtain:

−1

2

∑

i

∂2Φ

∂~λ2i
+
3−4ξ

6
(p−1)

∑

i 6=j

Φ

(~λi−~λj)2
+
1−ξ
2

∑

i 6=j 6=k

(~λi−~λj)
(~λi−~λj)2

.
(~λi−~λk)
(~λi−~λk)2

Φ+

+
∑

i

V (~λi)Φ = N2E Φ .

(3.11)

Few comments are in order. Notice that the change of variables (3.10) does not affect

the symmetry of the wave function and the new wave function Φ is symmetric thus de-

scribing bosons.3 This is in contrast to the one dimensional case, where the Vandermonde

determinant in (2.12) implied that the new wave function is antisymmetric. Therefore,

the problem of quantising the commuting model is equivalent to finding a bosonic wave

function satisfying the Schrödinger equation (3.11), which describes p-dimensional bosonic

particles subjected to the central potential V and with two and three body interaction

terms.

Note that for ξ ≥ 1 the two and three body interactions are attractive, which naively

suggests that the model will be unstable [14]. One can of course imagine that the kinetic

energy of the particles may stabilise the system. However, as we are going to demonstrate,

doing so would require that the number of commuting matrices go to infinity in the large

N limit. Indeed, the instability arises, when the eigenvalues are close to each other. In

this limit the contribution from the two and tree-body interactions dominate and we can

ignore the central potential. Let us first consider the case ξ strictly greater than one, ξ > 1.

Assuming a fixed typical scale for the spread of the eigenvalues |~λi − ~λj | ≈ ∆R and using

equations (3.11) and (3.9), for the leading order contribution to the potential energy (at

large N) we obtain:

Epot = − ξ − 1

2∆R2
N3 +O(N2) . (3.12)

On the other hand, in p dimensions the typical scale along one of the coordinates ∆x is

related to ∆R via: ∆x2 = ∆R2/p. This suggests that the uncertainty of the momentum

along one of the coordinates is ∆q ∝ ~/∆x and therefore the kinetic energy is of order:

E kin = N p∆q2 ∝ N p2/∆R2 . (3.13)

3Note that for p = 2 an alternative quantisation is also possible. One could take the analytic square root

of the eigenvalue difference by going to complex coordinates and make contact with anyonic systems [21].
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Stabilising the model would require Ekin ∼ |Epot|, comparing equations (3.12) and (3.13)

we conclude that this would imply p ∼ N , and hence in the large N limit the number of

matrices should grow proportional to the size of the matrices. For models with a fixed

number of commuting matrices p, the kinetic energy is not sufficient to stabilise the system

for arbitrary large N and the large N limit of these models does not have a ground state

for ξ > 1.

Similar result can be obtained for the case ξ = 1, when the three body interaction

term vanishes. In this case the potential energy is dominated by the two body potential4

and to leading order in N one obtains:

Epot = −(p− 1)N2/∆R2 . (3.14)

Comparing this expression for the potential energy with the expression for the kinetic

energy (3.13), which is still valid, one again arrives at the result that stabilisation of the

model in the large N limit requires p ∼ N and the commuting matrix model with fixed

number of commuting matrices is unstable for ξ = 1.

Let us demonstrate how this instability occurs in the special case of an attractive

gaussian potential.

3.1 Gaussian potential

In this subsection we analyse the case of a gaussian potential V (λ) = 1
2λ

2, first studied in

ref. [10] for the case ξ = 0. For ξ = 0 one can show that the ground state wave function is

given by [10]:

Φ(~λ1, . . . , ~λN ) =
∏

i>j

|~λi − ~λj | e−
1
2

∑

i
~λ2
i , (3.15)

which is the naive generalisation to higher dimensions of the wave function (2.30). Note

that this is an exact result at any N . For general ξ it seems that we don’t have analytic

access to the exact result, however we can still extract the ground state wave function and

the corresponding eigenvalue distribution in the large N limit. To see this let us rescale

the eigenvalues by: ~λi → N1/2~λi . After dividing equation (3.11) by N we obtain:

1

N

∑

i











− 1

2N2

∂2Φ̃

∂~λ2i
+
(3−4ξ)(p−1)

6N2

∑

j
j 6=i

Φ̃

(~λi−~λj)2
+
1−ξ
2N2

∑

j 6=k

(~λi−~λj)
(~λi−~λj)2

.
(~λi−~λk)
(~λi−~λk)2

Φ̃+
1

2
~λ2i Φ̃











=EΦ̃ .

(3.16)

Note that the two body interaction (the second) term in equation (3.16) is of order 1/N

relative to the other potential terms. Therefore, at least naively it should not contribute to

the leading order behaviour of the wave function in the large N limit. With this in mind

one can show that the following ansatz for the wave function:

Φ̃(~λ1, . . . , ~λN ) =
∏

i>j

|~λi − ~λj |
√
1−ξ e−

N
2

∑

i
~λ2
i , (3.17)

4For a discussion of the instability of the attractive − α
x2 potential in quantum mechanics with α >

1
4
see

section 35 of [14]. Our argument with the minimum uncertainty ∆p = 1
2∆x

reproduces the critical value of
1
4
for this instability.
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satisfies equation (3.16) to leading order in the large N expansion and for the “stabilised”

energy E we obtain:

E =
1

2

√

1− ξ +O(1/N) . (3.18)

To verify the consistency of this approximation we treat the two body interaction term

as a perturbation δV to the potential of relative order 1/N , therefore the corresponding

correction to the energy δE would also be of order 1/N and we conclude that as long as

E ∼ 1 we can trust the wave function (3.17). Note that this suggests that the parameter

ξ is restricted to ξ < 1, which is consistent with the general arguments (presented in the

previous section) that the model is unstable for ξ ≥ 1. Let us comment on the properties

of the eigenvalue distribution for ξ < 1.

The probability density corresponding to the wave function (3.17) can be written as:

|Φ̃|2 = exp



−N
∑

i

~λ2i +

√
1− ξ

2

∑

i 6=j

log(~λi − ~λj)
2



 . (3.19)

The corresponding eigenvalue distribution:

ρ(~λ) =

∫ N
∏

i=2

dpλi |Φ̃(~λ,~λ2, . . . , ~λN )|2 (3.20)

is then equivalent to the eigenvalue distribution of the commuting matrix model described

by the action:

S = N
∑

i

~λ2i −
√
1− ξ

2

∑

i 6=j

log(~λi − ~λj)
2 , (3.21)

which modulo normalisation constants was analysed in refs. [15]–[18]. The corresponding

saddle point equation is given by:

1√
1− ξ

~λi =
1

N

∑

j
j 6=i

~λi − ~λj

(~λi − ~λj)2
, (3.22)

comparing this to equation (2.6) in ref. [18] we conclude that all of the results of [18] for

gaussian potential are valid here provided we multiply the radius of the distribution by a

factor of
(

1−ξ
4

)1/4
. Therefore, we obtain that for 2 ≤ p ≤ 4 the radius of the distribution

is given by [18]:

R2
p =

2

p

√

1− ξ , (3.23)

being a disk for p = 2, of the form ∼ (R2
3 − λ2)−1/2 for p = 3, and for p ≥ 4 a spherical

shell of radius Rp =
(

1−ξ
4

)1/4
.

Note that at ξ = 1 the radius of the distribution collapses to zero. This suggests that

the model is unstable in this regime, which is consistent with the analysis of the previous

section.
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There is another interesting set of values of the parameter ξ for which the ground

state wave function (3.17) is exact for any N [19, 20]. Indeed, the order 1/N term that we

ignored when substituting equation (3.17) into equation (3.16) is given by:

(6− 3p)(
√
1− ξ − 1) + (7− 4p)ξ

6N

1

N2

∑

i 6=j

1

(~λi − ~λj)2
. (3.24)

Imposing that the coefficient in front of the double sum vanishes we obtain the following

set of values of the parameter ξ:

ξ = 0 , or ξ =
3(5p− 8)(p− 2)

(4p− 7)2
, (3.25)

for which the ground wave function is exact for any N . The case ξ = 0 was analysed in

ref. [10], while for the other case we have to check that it is consistent with the stability

condition ξ < 1, obtained above. Indeed one can check that for p ≥ 2 the second solution

is in the range 0 ≤ ξ < 15
16 , which is consistent.

4 Conclusions

We have studied a quantum mechanical system comprised of a set of p commuting matrices

whose Hamiltonian has SO(p) symmetry. Our starting point was the curved configuration

space for commuting matrices. We found that this space is flat only for the one matrix

case, and in general has a scalar curvature (A.10) which is singular and negative for all

p > 1 when pairs of eigenvalues approach one another.

As a byproduct we caculated the scalar curvature, of a generic flag manifold, where

the different radii squashing the standard flag, ∆ij , are given by the rotationally invariant

differences of eigenvalues ∆2
ij = (~λi − ~λj)

2 . The flag curvature is given by the relatively

simple expression

Rx = N
∑

i 6=j

1

∆2
ij

− 1

2

∑

i 6=j 6=k

∆2
jk

∆2
ij ∆

2
ik

,

see (A.12).

The negative curvature comes from the extrinsic curvature contribution, Kλ, to the

total curvature and is given in (A.12).

We, unfortunately, were unable to solve for the ground state wavefunction for a generic

potential. However, we established that with the curvature coefficient ξ ≥ 1 the system has

no finite energy ground state and so, irrespective of the potential the eigenvalues collapse.

When the coupling ξ is less than one we treated the case of a quadratic potential and found

the ground state energy E = 1
2

√
1− ξ +O(1/N) and the wavefunction was Gaussian with

an eigenvalue repulsion coefficient given by ∆
√
1−ξ

ij .

One advantage of considering generic ξ is that it allows us to make contact with the

literature for higher dimensional Calogero-Sutherland-Marchioro type models, since the

Hamiltonian for our system (3.16) with quadratic potential is of this type (see equations (7)

of [19] and (3) of [20]).
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In a fashion analogous to p = 1, where both Fermionic and Bosonic quantisations were

possible, for p = 2 an alternative quantisation is also possible. Though we have not pursued

this line of investigation, in the case of p = 2 it is interesting to note that one could have

taken the analytic square root of the eigenvalue difference by going to complex coordinates

and make contact with anyonic systems [21]. The Hamiltonian in this case can be mapped

into a multi-anyon system as in eq. (3) of [22].

The novel rôle played by p = 4 is that once the number of commuting matrices is

four or more the eigenvalues form infinitesimally thin shells. We establish this when the

potential is Gaussian but we suspect that it may be a more general result. The study of

this question warrants another study and we hope to return to this question in the future.

A Scalar curvature of the space of commuting hermitian matrices

In this appendix we derive the expression for the scalar curvature of the space of commut-

ing hermitian matrices (3.9). Let us consider the induced metric on this space given in

equation (3.4), which we duplicate bellow:

ds2 =
∑

i

d~λ2i + 2
∑

i>j

(~λi − ~λj)
2θij θ̄ij . (A.1)

A key observation is that the dependence of the metric on the directions of the flag manifold

is entirely in terms of the left invariant Maurer-Cartan forms θij (more precisely the off

diagonal ones for i 6= j). This implies that the homogeneous structure of the flag is

preserved and at fixed eigenvalues (fixed ~λi) all points on the flag are equivalent in the

sense that the vicinity of all points looks the same. This implies that the scalar curvature

should not depend on the flag directions and can be calculated locally at any point of the

flag. The most convenient choice is to calculate the scalar curvature at the origin of the flag

manifold. Since the curvature involves up to second derivatives of the metric we conclude

that it is sufficient to know the explicit parametrisation of the metric up to second order

near the origin of the flag.

Let us describe our choice of parametrisation. The parametrisation of a general element

of U(N) near unity is given by U = eix, where x is an N × N hermitian matrix with N2

independent degrees of freedom. The flag manifold is obtained by factoring with respect to

all diagonal unitary matrices and hence is described by N(N − 1) independent parameters

ωa. The flag can then be embedded in the U(N) manifold by the parametrisation x(ω).

In general the closed form of such a parametrisation is rather complex, however it can be

constructed easily locally — in the vicinity of the unity element of U(N). Indeed, to third

order in x we have:

U = 1̂ + i x− 1

2
x.x− i

6
x.x.x+O(x4) (A.2)

and using the definition θ = U †dU for the off diagonal Maurer-Cartan forms we obtain:

θij = i dxij −
1

2
{x, dx}ij −

i

6
{x2, dx}ij −

i

6
(x.dx.x)ij +O(x3) . (A.3)

One can see that at the origin (x = 0) the off diagonal Muarer-Cartan forms are given

by i dxij and are hence parametrised by the off diagonal elements of x, exactly N(N −

– 14 –



J
H
E
P
0
3
(
2
0
1
5
)
0
2
4

1) real degrees of freedom. Therefore there is always a sufficiently small vicinity of the

unit element, where the off diagonal Muarer-Cartan forms can be parametrised by the

off diagonal elements of the hermitian matrix x and the embedding of the flag in these

coordinates is simply given by xii = 0 and x(ω)ij = ωij for i 6= j. Our strategy in

calculating the scalar curvature will be to treat the off diagonal elements xij as complex

coordinates. For the components of the metric to second order in xij we obtain:

Gλµ
i , λ

ν
j
= δij δµν , (A.4)

Gxij , xml
= ∆2

ij δil δjm +
i

2
(xli δjm − xjm δil)(∆

2
ij −∆2

ml) +

+
1

12

[

(3∆2
is − 2∆2

ij − 2∆2
im)xjs xsm δil + (3∆2

ms − 2∆2
ml − 2∆2

im)xls xsi δmj

]

+

+
1

12
(4∆2

ij − 3∆2
jl − 3∆2

im + 4∆2
ml)xli xjm , (A.5)

Gλµ
i , xlm

= Gxlm, λµ
i
= 0 , (A.6)

where ∆2
ij ≡ (~λi − ~λj)2. The calculation of the components of the associated Levi-Chevita

connection is straightforward, the non-zero components (up to first order in x) are:

Γ
λµ
i

xks, xqp = −(δik − δis) δkp δqs∆
µ
ks +

i

2
(xsq δkp − xpk δqs)((δik − δis)∆

µ
ks + (δiq − δip)∆

µ
pq) ,

Γxks

λµ
i , xqp

= (δiq − δip) δkq δps
∆µ

ks

∆2
ks

+
i

2∆2
ks

(

δip δps xkq ∆
µ
kq + δik δkq xps∆

µ
ps

)

−

− i

2∆2
ks

(δip − δis) δkq xps∆
µ
ik −

i

2∆2
ks

(δik − δiq) δps xkq ∆
µ
ip , (A.7)

Γxlm
xks ,xpq

=
i

2∆2
lm

(δkq δpl δsm − δlk δmq δsp)
(

∆2
ks −∆2

pq

)

+
1

12
δkq (xsm δlp + xlp δms) +

+
1

4
δps (xqm δkl + xlk δmq)

(

1

3
+

∆2
kp

∆2
km

−
∆2

lp

∆2
lq

−
∆2

mp

∆2
km

+
∆2

pq

∆2
lq

)

+

+
1

4
δkq (xsm δlp − xlp δms)

(

∆2
kl

∆2
lm

− ∆2
km

∆2
lm

+
∆2

ks

∆2
sp

−
∆2

pq

∆2
sp

)

+

+
1

4
(xsp δkl δmq + xqp δlp δms)

(

−2

3
+

∆2
kp

∆2
lm

− ∆2
ks

∆2
lm

−
∆2

pq

∆2
lm

+
∆2

sq

∆2
lm

)

, (A.8)

where ∆µ
ij ≡ λµi − λµj and again ∆2

ij = (~λi − ~λj)
2.

The next step is to use the standard formula for the Riemman curvatute tensor:

Rρ
σ µν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (A.9)

and the definition for the scalar curvature R = gσν Rλ
σ λν , to arrive at the expression (3.9):

R = −(4p+ 3N − 10)
∑

i 6=j

1

(~λi − ~λj)2
+

3

2

∑

i 6=j 6=k

(~λj − ~λk)
2

(~λi − ~λj)2(~λi − ~λk)2

= −4(p− 1)
∑

i 6=j

1

(~λi − ~λj)2
− 3

∑

i 6=j 6=k

(~λi − ~λj)

(~λi − ~λj)2
.
(~λi − ~λk)

(~λi − ~λk)2
, (A.10)
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where we have used the relation:

∑

i 6=j 6=k

(~λj − ~λk)
2

(~λi − ~λj)2(~λi − ~λk)2
= 2(N − 2)

∑

i 6=j

1

(~λi − ~λj)2
− 2

∑

i 6=j 6=k

(~λi − ~λj)

(~λi − ~λj)2
.
(~λi − ~λk)

(~λi − ~λk)2
.

(A.11)

We can present another useful result. Note that if we keep the eigenvalues fixed, the

expression for the connection involving only components along the flag directions, equa-

tion (A.8), represents the connection of a flag manifold with constant radii |~∆ij | =
√

∆2
ij .

The result in equation (A.10) can be split into contributions from the flag directions Rx

and contribution from the mixed terms Kλ, the two terms read:

Rx = N
∑

i 6=j

1

∆2
ij

− 1

2

∑

i 6=j 6=k

∆2
jk

∆2
ij ∆

2
ik

, (A.12)

Kλ = −(4p− 2)
∑

i 6=j

1

∆2
ij

− 4
∑

i 6=j 6=k

~∆ij .~∆ik

∆2
ij ∆

2
ik

. (A.13)

Equation (A.12) is our expression for the curvature of a flag manifold with radii

|~∆ij | =
√

∆2
ij .
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