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Abstract

Background: Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right
now, there is no available data about the genetic etiology of patients with development delay/intellectual disability
and congenital malformation in East Africa.

Methods: Array comparative genomic hybridization was performed in 50 Rwandan patients with development
delay/intellectual disability and multiple congenital abnormalities, using the Agilent’s 180 K microarray platform.

Results: Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual
disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were
found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with
known syndromes, whereas 7 patients presented rare genomic imbalances.

Conclusion: This study showed that CNVs are present in African population and show the importance to
implement genetic testing in East-African countries.

Keywords: Developmental delay, Intellectual disability, Multiple congenital abnormalities, Array-CGH, Copy number
variation, Rwandan patients
Background
Intellectual disability (ID) is described by significant limi-
tations in both intellectual functioning and adaptive be-
haviour that begin before the age of 18 years. A diagnosis
of intellectual disability is usually made when IQ testing
reveals an IQ of less than 70, which means that often the
diagnosis is not made until late childhood or early adult-
hood. However, most persons with intellectual disability
are identified early in childhood on the basis of concern
about developmental delays, which may include motor,
cognitive, and speech delays [1,2]. Developmental delay
(DD) is a subset of developmental disabilities defined as
significant delay in two or more of the following develop-
mental domains: gross/fine motor, speech/language, cog-
nition, social/personal, and activities of daily living [3].
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Intellectual disability can range from mild to profound
and can be associated with other clinical findings as part
of a syndrome or can occur as an isolated phenotype [4].
When ID and DD are associated with multiple congenital
anomalies (MCA), chromosomal abnormalities are sug-
gested as the most frequent cause [5].
The prevalence of intellectual disability occurs in 2–3%

of the general population worldwide [6,7], however little is
known at this time about genetic causes of DD/ID in low-
income countries [8]. Right now, there is no available data
on genetics of DD/ID and MCA in East Africa. In low-
income countries, environmental factor such as malnutri-
tion, infections, birth asphyxia, cultural deprivation, poor
health and parental consanguinity play a key-leading role
in the occurrence of ID and DD [7,9]; but the involvement
of genetics diseases in the occurrence of these impair-
ments cannot be ignored.
During the last five years, array comparative genomic

hybridization (array-CGH) has revolutionized the diagnostic
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approach to children with unexplained DD/ID and con-
genital malformations and has become the first-tier in-
vestigation in such patients [10].
Here, we present the first Rwandan study of array-

CGH application in a selected cohort of 50 children with
DD/ID/MCA.

Methods
Patients
Fifty Rwandan patients who consulted the department
of medical genetics of the University Teaching Hospitals
of Rwanda (Kigali and Butare) form January 2010 to
December 2012 were included in this study. The male/
female ratio was 1.94. The mean age was 6.41 ± 5.8. In-
clusion criteria were the presence of DD/ID associated
with MCA.
After clinical evaluation by a clinical geneticist, pa-

tients received genetic routine evaluation including the
FMR1 gene study (Fragile-X) and standard karyotype.
Patients with trisomy (21, 13 and 18) were not included
in the cohort. The karyotypes of 47 patients were normal
but 3 patients had abnormal karyotypes. These abnor-
malities consisted of a supernumerary maker, a duplica-
tion 1p and a terminal deletion 10p.
The study was approved by the Rwandan National

Ethics Committee (N°394/RNEC/2013). Signed informed
consent forms and permission for publication of this re-
port and any accompanying images were obtained from
the parents or legal guardians of all patients.

DNA extraction
DNA was extracted from peripheral blood leukocytes
using the phenol/chloroform method and following
manufacturer’s instructions. DNA extraction was per-
formed at the Laboratory of Medical Genetics of the
University of Rwanda, and then transferred to the
Center for Human Genetics at Liege-Belgium in appropri-
ate conditions.

Array CGH analysis
Oligonucleotide array-CGH was performed in fifty pa-
tients using SurePrint G3 Human CGH Microarray ISCA
4x180K v2 (AMADID 031748; Agilent Technologies,
Santa Clara, CA, USA). The 180 K kit (180,000 probes)
has an overall median probe spacing of 13 kb. Analysis
was performed according to the protocol provided by
the supplier (Agilent Oligonucleotide Array-Based CGH
for Genomic DNA Analysis, version 6.3). Arrays were
scanned using a SureScan High Resolution Microarray
Scanner (Agilent). Data were imported using the Feature
Extraction V.9.5.3.1 software and results were analyzed
using CytoGenomics Analysis software v2.5 (Agilent). The
Aberration Detection Methods 2 algorithm (ADM2) was
used to analyze data with a threshold of 6.0 and a moving
average window of 0.2 Mb. Log 2 ratios under _0.4 and
variations with less than four consecutive probes were
excluded. Genomic positions were based on the UCSC
February 2009 human reference sequence (hg19) (NCBI
build 37 reference sequence assembly). Filtering of
CNVs was carried out using the BENCHlab CNV soft-
ware (Cartagenia, Leuven, Belgium). Gene informations
were collected from available literature and different
database as described before [11].

Confirmatory analysis
Multiplex ligation-dependent probe amplification (MLPA)
and Fluorescence in situ hybridization (FISH) were per-
formed to confirm the results of array-CGH and the mode
of inheritance. An additional file shows some MLPA re-
sults (see Additional file 1).

Multiplex ligation-dependent probe amplification analysis
MLPA analysis was carried out according to the manufactur-
er's instructions (MRC Holland, Amsterdam, Netherlands),
using the SALSA probe mix P036 and P070 Human
Telomere and SALSA probe mix P245 microdeletion
syndrome. Amplification products were analyzed using
capillary electrophoresis on ABI PRISM 3100 Genetic
Analyzer. The data obtained were analyzed using the Se-
quence Pilot software (JSI medical systems, Kippenheim,
Germany).

Fluorescence in situ hybridization analysis
FISH was performed using standard protocols with com-
mercially available probes as previously described [11].
Chromosomal abnormalities detected by array-CGH
were confirmed and visualized by metaphase FISH using
corresponding BAC clones. When available, parental
chromosomes were also analyzed by metaphase FISH to
exclude inherited rearrangements.

Results
Array-CGH revealed copy number variations (CNV) of
clinical significance in 13 patients giving a diagnosis rate
of about 26%. Twelve patients presented one chromo-
somal aberration, while two concomitants abnormalities
(i.e. 1 duplication and 1 deletion) were detected in 1 pa-
tient (patient 36). The size of the CNVs ranged from
0,9 Mb to 34 Mb. Six patients had CNVs related to
known syndromes including William-Beuren syndrome
(microdeletion 7q23.11,OMIM 194050, patient 6), dele-
tion 22q11.21 (OMIM 192430, patient 14 and 37), dupli-
cation 7q23.11 (OMIM 609757, patient 34), deletion
8p23.1 (patient 17) and deletion 17q21.31 (OMIM 610443:
patient 45). Seven patients presented rare genomic im-
balances: trisomy 18p (patient 1), deletion 6q16.1-q21
(patient 13), duplication 1p35.3-p31.3 (patient 16), dele-
tion 8p23.1 (patient 17), deletion 7q34-q36.2 (patient 18),
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deletion 2q33.1-q33.3 (patient 20), deletion 10p15.3-p14
(patient 39) and microduplication 8q24.3 concomitant
with microdeletion 16p13.3 (patient 36). Eight patients
presented a de novo aberration (16%), one abnormality
was maternally inherited. In four patients the mode of in-
heritance was not investigated since the parents’ DNA
was not available (Table 1).

Clinical description of our cohort
Among fifty patients, 14 (28%) had a global development
delay whereas 36 (72%) patients presented intellectual
(ID) disability. Patients with ID were of different degrees:
mild (6 patients), moderate (11 patients), severe (16 pa-
tients) and 3 with profound ID. All patients presented
MCA. The most common clinical features were cranio-
facial dysmorphism found in 41 patients, limbs abnor-
malities in 14 patients, congenital heart defect in 15
patients, microcephaly in 9 patients and external geni-
talia abnormalities in 4 patients (Table 2).
In this report, we described case by case each patient with

clinical relevant copy number polymorphism (Figure 1).
Table 1 Array-CGH results and clinical features of the 13 Rwa

Patient Age Gender Array result Size

1 6 y F arr [hg19] 18p11.32p11.21 (108,
760-14,241,744)x3; 18p11.21q11.2
(15,345,079-18,270,513)x3

14 Mb

6 11 y M arr [hg19] 7q11.23 (72,700,414-
74,142,327)x1

1442 kb

13 6 y M arr [hg19] 6q16.1q21 (93,818,
221-108,052,559)x1

14 Mb

14 15 y M arr [hg19] 22q11.21 (18,706,
001-21,464,119)x1

2758 kb

16 6 y M arr [hg19] 1p35.3p31.3 (29,531,
861-63,886,221)x3

34 Mb

17 9 y M arr [hg19] 8p23.1 (7,145,710-12,
450,758)x1

5305 kb

18 4 y F arr [hg19] 7q34q36.2 (141,383,
311-154,467,488)x1

13 Mb

20 6 y M arr [hg19] 2q33.1q33.3 (198,383,
221-206,943,477)x1

8560 kb

34 25 months F arr [hg19] 7q11.23 (72,726,
572-74,133,332)x3

1406 kb

36 14 y F arr [hg19] 8q24.3 (143,631,
709-146,274,835)x3,16p13.3
(96,766-1,850,720)x1

2643 kb and
1754 kb

37 6 y M arr [hg19] 22q11.21 (18,706,
001-21,464,119)x1

2758 kb

39 4 y F arr [hg19] 10p15.3p14 (136,
361-11,073,839)x1

10 Mb

45 2 y M arr [hg19] 17q21.31q21.32
(44,156,499-45,152,416)x1

995 kb
Patient 1 was a 6-year-old girl patient who consulted
for moderate ID associated with an atriventricular septal
defect (AVSD) and atrio septal defect (ASD). Clinical
evaluation showed minor facial dysmorphic features
characterized by hypertelorism, low set ears, down-
slanted palpebral fissures, flat midface, a small mouth,
bilateral incomplete transverse simian crease and clino-
dactyly. Her karyotype revealed an extrachromosomal
marker. The karyotypes of her parents were normal. The
array-CGH showed a duplication of 14 Mb in the
18p11.32p11.21 region and a duplication of 2925 kb in
18p11.21-q11.2 regions. However, the 1,1 Mb pericen-
tromeric region of 18p (14,241,744–15,345,079) showed
normal values.
Patient 6 was an 11-year-old boy with moderate ID. He

had a large face, large lobule, periorbital fullness, wide
mouth with full lip and a small jaw. He presented a
friendly behavior with old-looking appearance according
to his age. Echocardiography showed a mitral valve pro-
lapse. The array-CGH revealed a deletion of 1442 kb local-
ized in the Williams-Beuren syndromic region (7q11.23).
ndan patients with pathogenic CNVs

Inheritance Clinical features

de novo DD, moderate ID, facial dysmorphism, hypertelorism,
AVSD with ASD, single transverse palmar crease.

de novo Moderate ID, facial dysmorphism, friendly behaviour,
Mitral valve prolapse.

Unknown Absence of speech with severe ID, facial
dysmorphism, ear abnormalities, microcephaly,
bilateral cryptorchidism and autistic-like behavior
and underweighted.

de novo Mild ID, hypotonia at birth, facial dysmorphism,
hypernasal speech, a short stature.

de novo Moderate ID, anxiety and hearing impairment.
Facial dysmorphism, clinodactyly.

Unknown ASD, VSD with PS. Discrete facial dysmorphism, a
shield shaped chest with supranumerary nipples.
Hyperactivity, impulsiveness with moderate ID.

de novo DD, speech impairment and Facial dysmorphism.

de novo Severe ID, facial dysmorphism with absence of
speech and autistic spectrum behavior.

Maternally
inherited

Cor pulmonare associated with a DD and speech
delay,facial dysmorphism, genu valgum.

Unknown Severe ID, facial dysmorphism clubfoot, short
stature and behavior problems characterized by
self-mutilation.

de novo Speech delay, severe ID, VSD, DD, Facial
dysmorphism, ear abnormalities.

de novo DD, neonatal hypotonia, and absence of speech
development. Facial dysmorphism and clinodactyly.

de novo DD, epilepsy, facial dysmorphism consisting of
hypertelorism, low set ears, hypotonia and
sparse hair.



Table 2 Clinical characteristics of the 50 Rwandans
patients with ID/DD and MC

Characteristics Number (percentage)

Gender

Male 33 (66%)

Female 17 (34%)

Age groups

< 5years 24 (48%)

5-15 years 19 (38%)

> 15 years 7 (14%)

Intellectual disability

Present 34 (68%)

Mild 4 (8%)

Moderate 13 (26%)

Severe 16 (32%)

Profound 1 (2%)

Not evaluated 16 (32%)

Development delay

Absent 6 (12%)

Present 44 (88%)

Facial dysmorphism

Absent 9 (18%)

Present 41 (82%)

Congenital heart defect

Absent 35 (70%)

Present 15 (30%)

Hand and limb abnormalities

Absent 36 (72%)

Present 14 (28%)

Uro-genital malformation

Absent 46 (92%)

Present 4 (8%)

Epilepsy

Absent 43 (86%)

Present 7 (14%)

Microcephaly

Absent 41 (82%)

Present 9 (18 %)
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Patient 13 presented a deletion 6q16.1q21 of 14 Mb size.
He was a boy aged 6 years who consulted for absence of
speech with severe ID. Clinical features included ear ab-
normalities, microcephaly (head circumference of 47 cm
equals to −4 SD), hypertelorism, short philtrum, cupped
ears, brachydactyly, wide spaced nipple, bilateral crypt-
orchidism and autistic-like behavior. He had a good appe-
tite but was underweighted (15 kg equal to – 2SD).
Array-CGH revealed a 22q11.22 deletion of 2758 kb in
patient 14 and patient 37. Patient 14 (15 years) presented
mild ID, hypotonia at birth, dysmorphic features charac-
terized by hypertelorism, narrow palpebral fissures, wide
nasal bridge, small ears with overfolded helix, short phil-
trum and a large upper lip. He had hypernasal speech, a
short stature without any congenital cardiac defect. The
second patient (patient 37) a 6-year-old boy consulted for
speech delay, severe ID and ventricular septal defect
(VSD). He had DD, dysmorphic features marked by hyper-
telorism, attached ear lobe, preauricular pits, cupped ears
and bulbous nasal tip.
Patient 16 had a large interstitial duplication 1p 35.3p31.3

of 34,354 Mb. The 10-year-old boy had moderate ID with a
history of DD, anxiety and hearing impairment. He pre-
sented facial dysmorphism characterized by hypertelorism,
strabismus, depressed nasal bridge, arched eyebrows, mid-
face hypoplasia, anteverted nostrils macroglossia, teeth
malposition and clinodactyly. We noticed unilateral ble-
pharospam on the right side.
Patient 17 was a 9-year-old boy in whom array-CGH

revealed a deletion in the 8p23.1 region. His clinical fea-
tures consisted of a congenital cardiac defects character-
ized by atrial septal defect (ASD), ventricular septal
defect (VSD) with a pulmonary stenosis (PS). He had
discrete dysmorphic features characterized by overfolded
ears, a shield shaped chest with supernumerary nipples.
His behavior disorders consisted of hyperactivity and im-
pulsiveness with moderate ID.
Patient 18, a 4-year-old girl consulted our department

for DD, speech impairment and facial dysmorphic features
characterized by coarse face, hypertelorism, epicanthic
folds, mild synophris, deep set eyes, narrow palpebral fis-
sures, bulbous nasal tip, low set and misshapen ears. The
a-CGH detected a 7q34q36.2 deletion with a large dele-
tion of 13 Mb.
Patient 20 presented a 2q33.1-q33.3 deletion. The pa-

tient was 6-year-old boy who had severe ID, facial dys-
morphism consisting of a large face, dental abnormalities
and high arched palate with absence of speech and autistic
spectrum behavior.
Patient 34, a 25-month-old girl had maternally inher-

ited 7q11.23 duplication She was referred for manage-
ment of a cor pulmonale associated with a DD and
speech delay, dysmorphic features dominated by hyper-
telorism, prominent forehead, low set and small ears.
She also had genu valgum. The mother had a past med-
ical history of delayed speech, moderate intellectual dis-
ability. Her phenotype consisted of low set and small
ears with prominent forehead.
Patient 36 showed unusual chromosomal abnormalities

with the co-occurrence of a 8q24.3 duplication and a
16p13.3 deletion. The patient a 14 year old girl, was referred
for severe ID, facial dysmorphism with hypertelorism, high



Figure 1 Pictures of the 13 patients with pathogenic CNVs. A. Patient 1 (trisomy 18p); B Patient 6 (william- Beuren syndrome); C Patient 13
(del 6q16.1q21); D Patient 14 (del 22q11.2); E patient 16 (dup 1p35.3 p31.3); F patient 17 (del 8p23.1); G patient 18 (del 7q34q36.2); H patient 20
(del 2q33.1q33.3); I patient 34 (dup 7q11.23); J patient 36 (dup 8q24.3/del 16p13.3); K patient 37 (del 22q11.21); L patient 39 (del 10p15.3p14);
M patient 45 (del 17q21.3q21).
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forehead, short philtrum, broad nasal bridge, low set ears,
clubfoot, short stature and behavior problems characterized
by self-mutilation.
A large 10p15.3p14 deletion was found in a 4-year-old

girl (patient 39). She presented DD, neonatal hypotonia,
and absence of speech development. Facial dysmorphism
consisted of hypertelorism, high arched eyebrows, short
philtrum, thin upper lips, low set ears, and clinodactyly.
Patient 45 had a microdeletion 17q21.31 of 995 kb. He

was a 2-year-old boy with DD, epilepsy, facial dysmorph-
ism consisting of hypertelorism, low set ears, hypotonia
and sparse hair.

Discussion
Our study is the first largest cohort of East–African pa-
tients with DD/ID characterized by array-CGH. In our
cohort of 50 Rwandan patients we detected 14 genomic
imbalances yielding a diagnosis rate of 26%, which is
higher than other reported array-CGH studies in pa-
tients with DD/ID [12-14]. However, the high detection
rate might be explained by the selection bias of our pa-
tients characterized by more discriminatory criteria than
in reported previous studies. However, our result are
comparable to those reported by Iourov and al [15],
where they concluded that an application of array-CGH
to highly selected patients is able to reveal an impressive
detection rate of structural genome variations.
We reported only clinical relevant CNVs (Figure 2) in

our patients in whom 6 had known syndromes, and 8
had rare but previously reported CNVs. Interestingly,
one patient was the second reported in the literature
presenting concomitant 8q24.3 duplication and 16p13.3
deletion [16], and the first patient with this abnormality
to be characterized by array-CGH.

Known syndromes
Five of our patients presented known syndromes associ-
ated with distinct phenotype. Among them, two pre-
sented rearrangement in the Williams-Beuren critical
region, patient 6 with a de novo 7q11.23 deletion of
1.442 MB and patient 30 with a maternally inherited du-
plication 7q11.23 of 1.4 MB. The deletion encompassed
30 genes while the duplication involved 28 genes. CNV
encompassed the candidate gene ELN, LIMK1, GTF2I,
and GTF2IRD1 mainly involved in clinical features
found in this syndrome. Deletion of ELN gene is clearly
involved in the vascular anomalies and other connective
tissue abnormalities in William-Beuren syndrome (WBS)
[17]. LIMK1, GTF2I and GTF2IRD1 genes have been re-
lated to aspects of cognitive delay [18,19]. Duplication of



Figure 2 Results of array-CGH analysis. A large duplication 1p35.3p31.3 found in patient 16; B chromosome 2q33.1q33.3 deletion found
in patient 20. C deletion 6q16.1q21 (patient 13). D deletion 7q34q36.2 found in patient 18. E result of patient 17 with a deletion 8p23.1.
F duplication 8q24.3 associated with a deletion 16p13.3 found in patient 36. G large deletion 10p15.3p14 found in patient 39.
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the 7q11.23 has been reported to be associated with
severe delay in expressive language suggesting that
specific genes within this region can influence lan-
guage [20]. This suggestion is consistent with clinical
features of our patient as at 2 years of age she had not
yet developed speech and even her mother had a his-
tory of speech delay.
In our study, we found two patients (patients 11 and

33) with deletions in the 22q11.22 region. Deletion
22q11.22 is characterized by its broad spectrum pheno-
type [21]. In our study one patient had a velopharyngeal
insufficiency with moderate intellectual disability while
the other patient presented a VSD and severe ID. Both
patients had ears abnormalities and this sign has been
suggested as the most prevalent in African-American pa-
tients with 22q11.22 deletion [22].
In addition, array-CGH revealed a deletion of 5 Mb

in the 8p23.1 region in patient 17. Clinical features
were consisting with the 8p23.1 deletion syndrome.
The deletion encompassed the GATA4 gene, which en-
codes for zinc finger transcription factor and is consid-
ered as a likely candidate for the cardiac malformation
[23,24]. However, this is consistent with our patient
since he is born with a complex congenital heart defect
including ASD.
Patient 45 presented a deletion in the 17q21.31q21.32

region of about 1 Mb, that encompassed about 30 genes
including KANSL1. The 17q21.31 deletion syndrome
has been suggested as a single gene disorder caused by
haploinsufficiency of KANSL1 gene [25]. Most case of
17q21.31 deletions reported map to large clusters of
flanking low copy repeats (LCRs), suggesting that the de-
letions are stimulated by non-allelic homologous recom-
bination (NAHR) [26].
The 17q21.31 genomic interval contains a common

900 kb inversion polymorphism, resulting in a haplotype



Uwineza et al. BMC Medical Genetics 2014, 15:79 Page 7 of 10
http://www.biomedcentral.com/1471-2350/15/79
block with two highly divergent haplotypes designated
H1 and H2. The H2 haplotype is enriched in Europeans,
and carriers are predisposed to the 17q21.31 microdele-
tion syndrome as a result of NAHR between directly ori-
ented segmental duplications mapping on the inverted
chromosome. An ancestral H2 haplotype (H2′) lacking
these duplications was identified and Steinberg and al
suggested that it arose in Eastern or Central Africa [27].
Our patient is the second known African American re-
ported with 17q21.31 microdeletion [28]. Morever, the
breakpoints of our patient’s deletion do not map inside
the recurrent minimal 424 kb critical region deleted
found in patients reported by Koolen and al [26].

Rare reported CNVs
In our cohort, nine patients presented previously re-
ported but rare CNVs. Patient 1 had a trisomy for the
short arm of chromosome 18 originating from a small
supernumerary marker chromosome (sSMC). Interest-
ingly, Trisomy 18p caused by sSMC has been previously
reported in six patients [29]. The phenotype of our pa-
tient is in agreement with previously described patients
with such similar chromosome abnormality [30].
An interstitial 6q 16.1q21 deletion of about 14 MB

encompassing nearly 98 genes was detected in patient 13.
Suggested candidate genes involved in the central nervous
system (CNS) development were EPHA7 and GRIK2.
EPHA7 encodes for a member of the ephrin family impli-
cated in mediating developmental events, particularly in
the nervous system [31]. GRIK2 encodes for a glutamate
receptor that has been associated with autistic-spectrum-
disorders and neuropsychiatric diseases [32]. The CNV
encompassed genes involved in regulation of feeding
behavior such as SIM1, MCHR2 and POU3F2. SIM1
haploinsufficiency has been proposed to cause Prader-
Willi-like phenotype in 6q deletions [33-35]. Moreover,
some features of the Prader-Willi syndrome such as obes-
ity, are missing in our patient.
Patient 13 had a large duplication in the region

1p35.3p31.3. Chromosome 1p duplication is a very rare
rearrangement with a variety of clinical features and is
associated with short-term survival. To date, only 20 pa-
tients have been described in the literature [36]. Due to
the high number of genes, approximately 600 genes are
included in the duplication region, it was difficult to cor-
relate the genotype to the phenotype. However, patients
with mutations in genes mapping in the 1p35.3p31.3 re-
gion presented similar clinical features with those of our
patient. Patients with homozygous mutations in SNIP1
or COL9A2 had some cranio-facial dysmorphic features
observed in our patient. Normally, patients with SNIP1
mutations present bulbous nose, wide mouth and
macroglossia. Moreover, in our patient, the psychomotor
delay is less severe than those patients [37]. Mutations
in COL9A2 gene cause the autosomal recessive Stickler
syndrome type 5. Patients affected by this syndrome
present some of our patient’s clinical features such as
midface hypoplasia, anteverted nostrils and hearing im-
pairment [38]. In addition, heterozygous mutations in
the GJB3 and KCNQ have been associated with auto-
somal dominant hearing loss [39,40]. Genes linked to ID
mapped in the duplicated region are GLUT1, ST3GAL3.
Heterozygous mutations in the GLUT1/SLC2A1 gene,
occurring de novo or inherited as an autosomal domin-
ant trait, result in cerebral energy failure and a clinical
condition termed GLUT1-deficiency syndrome (GLUT1-
DS). Clinical features usually comprise motor develop-
mental delay and intellectual disability, seizures with
infantile onset, deceleration of head growth often result-
ing in acquired microcephaly, and a movement disorder
with ataxia, dystonia, and spasticity [41]; whereas muta-
tions in the ST3GAL3 cause nonsyndromic autosomal
recessive ID [42]. Recently, Crane J. and collaborators
[43], using linkage analysis study, suggested DLGAP3 as
a candidate gene for Tourette syndrome. Except for the
presence of tics in our patient, other signs of this syn-
drome were missing.
Patient 18 showed a large interstitial deletion of 12.2 MB

in the 7q34q36.2 region. This patient showed similar
dysmorphic features as other patients carrying this dele-
tion such as facial coarse face and bulbous nose [44-46].
Candidate genes included in the deletion are CNTNAP2,
KCNH2 and NOBOX2. CNVs in the CNTNAP2 gene
have been correlated with moderate and profound ID,
speech impairment, seizures and dysmorphic features [47].
Even though our patient had a normal cardiac and brain
evaluation, the deletion encompass the KCNH2 gene en-
coding the α-subunit of the hERG-1 voltage-gated K +
channel expressed in heart and brain tissues [48] and this
gene was suggested as responsible of the Long QT syn-
drome in patients with 7q34 deletion [45]. The NOBOX2
associated with premature ovarian failure in three patients
with 7q334-36 deletion is also deleted [49] , but our patient
is too young to assess this sign.
Patient 20 had a de novo deletion 2q33.1-q33.3 of

8.5 Mb which encompassed about 118 genes. The deletion
included the SATB2 gene, coding for a DNA-binding pro-
tein that regulates gene expression by influencing chroma-
tin organization and structure and orchestrating the
transcription of several genes [50]. Haploinsufficiency of
SATB2 is responsible for several of the clinical features
such as craniofacial patterning, severe developmental
delay and tooth abnormalities associated with 2q32q33
microdeletion syndrome [51,52].
Patient 39 had a large deletion of 10 Mb in the

10p15.3p14 region. The deletion encompassed 86 genes.
Genes expressed in the brain are ZMYND11, DIPC2,
ADARB2, and GATA3. ZMYND11 and DIPC2 genes
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are the most commonly deleted in a cohort of 19 patients
with 10p15 deletion previously described by DeScipio
et al. [53]. They are expressed in various tissues including
the brain. However, little is known about their function,
making direct genotype/phenotype correlation currently
unclear. ADARB2 a member of the double-stranded RNA
adenosine desaminase family of RNA-editing enzymes is
expressed only in selected region of the brain such as
amygdala and thalamus and may probably play a regula-
tory role in tRNA editing in mammalian brains [54]. The
GATA3 gene haploinsufficiency is the cause of hypopara-
thyroidism with sensorineural deafness and renal dysplasia
also known as Barakat syndrome [55]. Our patient had no
sign of hypoparathyroidism or renal dysplasia but pre-
sented sensorineural deafness.
Combined abnormalities
Patient 36 showed unusual abnormalities with the co-
occurrence of 8q24.3 duplication and 16p13.3 deletion.
These associated abnormalities were first reported to re-
sult from an unbalanced translocation [16]. However,
our patient is the first to be characterized by a-CGH.
The 2 Mb duplication in the 8q24.3 region encompassed
around 156 genes. The partial trisomy 8q has been de-
scribed to be associated with autism disorders [56]. The
deletion of 1.754 Mb in the 16p13.3 deletion is located
in the ATR-16 syndromic region and includes 136 genes.
ATR-16 is defined as a contiguous gene syndrome result-
ing from hemizygous loss of the α-globin gene cluster and
genes involved in ID [57]. Haploinsufficiency of SOX8 a
transcriptional regulator strongly expressed in brain, is
thought to be responsible for the ID of ATR-16 syn-
drome [58]. The hematological evaluation of our pa-
tient was not possible but she presented severe ID and
a history of DD. She also presented clinical features
found in other patients affected by this syndrome such
as hypertelorism, high forehead, broad nasal bridge and
clubfoot [59].
Conclusion
This research highlights the contribution of genetic
factors in the etiology of DD/IDD and MCA, especially
the implication of chromosomal abnormalities with an
array-CGH detection high rate of 28%. This study showed
the importance to implement genetics services in low-
middle income countries; as array-CGH is becoming
cheaper, it can also be considered as the first-line analysis
in DD/ID and MCA in those countries, because it has the
advantages of higher diagnosis rate than the conventional
karyotype.
To the best of our knowledge, the present study is the

first one done in East-African patients with DD/IDD
and MCA.
Additional file

Additional file 1: Figure S1. MLPA and FISH results.
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