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1 Introduction

Oscillating spatial propagators have been the subject of several studies and carry impor-

tant information about the underlying physics. Patel [1, 2] has argued that many-body

correlations among the hadrons produced in heavy-ion collisions may be oscillatory and

has shown how those signals can be related to hadronization properties of the quark-gluon

plasma (QGP) [3]. The underlying idea is that the QGP can be described as a network

of quarks and of flux tubes into which the gluonic degrees of freedom are concentrated.

The flux tubes are assumed to interact mainly via three-point vertices, from here on called

junctions, where three flux tubes join together to form an SU(3) singlet. It has been sug-

gested that this system behaves like a liquid with spatially oscillating two-body correlation

between junctions and this structure might remain as the QGP hadronizes. This would be

the case if the string network breaks up via pair production rather than via coalescence

of junctions. If that happens, then the oscillatory signature should persist also in the

two-body correlations of transversely outgoing hadrons.

Another situation with oscillating spatial correlation functions is in a possible crys-

talline phase in the QCD phase diagram, which may occur at high density and low tem-

perature. The existence of such a phase is supported by the exact solution of the (1 + 1)-

dimensional Gross-Neveu model at high density [4, 5]. While the system described above

may show liquid-like correlations, i.e. exponential decay modulated by a cosine, the signa-

ture of a crystalline phase would be a purely trigonometric correlation function.

When we talk about liquid-like behavior above and below, we have in mind a system

where the spatial correlation functions are exponentially damped, but with an oscillating

modulation. The typical example of such behavior is the hard spheres model [6]: below

the jamming transition characteristic of the solid phase, one observes a liquid phase where

spheres like to form spherical shells, causing oscillations in the density-density correlation.

However, both liquids and gases are fluids and they are typically analytically connected

through a cross-over, like in the case of water. A rigorous distinction is therefore ambiguous,
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although in the presence of a first order transition, it is of course easy to identify the liquid

as the denser, less compressible state.

To understand better when to expect such non-monotonic behavior, Ogilvie et al. have

in a series of papers [7–9] studied models which break charge conjugation C, but remain

invariant under the combined action of C and complex conjugation K. QCD at nonzero

chemical potential µ has this property, but also simpler models like the Polyakov-Nambu-

Jona Lasinio (PNJL) model with nonzero µ, SU(3) (Polyakov loop) spin models with

nonzero µ, and even the three-state Potts model with nonzero µ have the same property.

So before tackling full QCD one can hope to learn the implications of this symmetry pattern

from simpler models, which may even in some cases be mapped to limiting cases of QCD

itself. It is well known that for QCD, the expectation value of the Polyakov loop differs from

the expectation value of its Hermitian conjugate, 〈TrF L〉 6=
〈
TrF L

†〉 when the chemical

potential µ is nonzero. However, the free energies are real because of the CK symmetry. As

a further consequence of the breaking of C, the transfer matrix T is not Hermitian, which

means that the eigenvalues are not all necessarily real. Because of the invariance under

CK, however, if λ is an eigenvalue of T , then so is λ∗, i.e. the eigenvalues are either real or

occur in complex conjugate pairs. This is interesting because it implies, in the case where

complex eigenvalues occur, that the Polyakov loop correlator is non-monotonic.

The dependence of a correlation function on the eigenvalues of the transfer matrix

is most easily demonstrated with a one-dimensional lattice model, but generalizes to any

correlator with fixed momenta in the orthogonal directions. Let φi, i = 1, . . . , N, be a field

living on a circle with N sites. If T is the transfer matrix connecting neighboring sites,

then the correlation function of φ is given by

〈φ(x)φ(0)〉 =
Tr
(
TN−xφT xφ

)
Tr (TN )

=
Tr
(

ΛN−x
φ̃︷ ︸︸ ︷

P−1φP Λx

φ̃︷ ︸︸ ︷
P−1φP

)
Tr (ΛN )

, (1.1)

where
(
P−1TP

)
ij

= Λij = λiδij is the diagonalized transfer matrix with the eigenvalues λ

of T sorted in magnitude such that Reλ0 ≥ Reλ1 ≥ · · · and φ̃ij is φ in the eigenbasis of T .

For simplicity we assume a discrete spectrum in the description below. We also consider

the N → ∞ limit. In general three scenarios are possible.1 Firstly, all eigenvalues can be

real and the correlator is a conventional, exponentially decaying function,

〈φ(x)φ(0)〉 =
∑
n

|φ̃0n|2
(
λn
λ0

)x
= |φ̃00|2 + |φ̃01|2e−m1x +O(e−m2x). (1.2)

Here we parametrize λn/λ0 = e−mn , with mn ≥ 0. Secondly, if the largest eigenvalue

is real and the next two are a complex-conjugate pair,2 then the correlator also decays

1The eigenvalues of the transfer matrix are either real or come in complex conjugate pairs, since the

model is invariant under the simultaneous action of charge and complex conjugation.
2Strictly speaking, there can be more real eigenvalues above the complex-conjugate pair, with a conse-

quently weaker oscillation in the correlator. We do not treat that case separately here.
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exponentially but is modulated by a cosine, and the system behaves as a liquid,

〈φ(x)φ(0)〉 ≈ |φ̃00|2 + |φ̃01|2
((

λ1
λ0

)x
+

(
λ∗1
λ0

)x)
= |φ̃00|2 + 2|φ̃01|2e−mRx cosmIx, (1.3)

where λ1/λ0 = e−mR+imI . Finally, if the eigenvalue with the largest real part is part of

a conjugate pair λ1/λ0 = eimI , then the correlator is a pure trigonometric function and a

crystalline behavior is observed,

〈φ(x)φ(0)〉 ≈ λN−x0

∑
n|φ̃0n|2λxn + (λ∗0)

N−x∑
n|φ̃1n|2λxn

λN0 + (λ∗0)
N

≈
e−imIN/2

(
|φ̃00|2 + |φ̃01|2eimIx

)
+ eimIN/2

(
|φ̃10|2e−imIx + |φ̃11|2

)
2 cos(mIN/2)

(1.4)

= |φ̃00|2 +
cos (mIx−mIN/2)

cos(mIN/2)
|φ̃01|2,

of the form |φ̃00|2 + A cos(mIx + θ), which reveals long-range order for arbitrarily large

system size N . If mI is small in units of the lattice spacing then one oscillation spans several

lattice spacings and has nothing to do with the underlying structure of the lattice. For a

continuous spectrum, the above categorization is still valid. In case one, the eigenvalues

are all distributed on the real line whereas in case two, the eigenvalues branch off into the

complex plane somewhere below the largest eigenvalue. The transition between cases one

and two occurs at a so called disorder line. Case three is obtained when the branching

point reaches the largest real eigenvalue.

All these three cases have been found by Ogilvie et al. [7] in 1-dimensional models,

where the complete phase diagram can be obtained using transfer-matrix methods. Such

a 1-dimensional model can for example serve as a dimensionally reduced effective models

of 1 + 1-dimensional QCD at finite temperature. Recently [9] it has been proposed that

also higher dimensional models show these characteristics, based on the fact that the 1-

dimensional solution can be seen as the first order in a character expansion. It has, however,

to our knowledge, not been demonstrated with first-principles lattice simulations that this

is actually the case.

As mentioned above, it has been suggested [3] that the conditions in the fireball after a

heavy-ion collision might be such that the baryon-number correlations have an oscillatory

character. This conjecture is based on an effective flux-tube model introduced in [1, 2]

which can be mapped into an XY -model with external magnetic fields which break charge

symmetry, such that it falls in the same category of models discussed above. Another

flux-tube model, which can be mapped into a three-state Potts model, is treated in [10].

In general, the Hamiltonian and partition function for such a flux-tube model are given by

H = σ
∑
x,ν

|lx,ν |+m
∑
x

|qx|+ v
∑
x

|jx|, Z =
∑

{lx,ν ,qx,jx}
e−β(H−µ

∑
x qx), (1.5)

where lx,ν denote flux tubes with string tension σ living on the links, qx denote quarks with

mass m and chemical potential µ living on the sites and jx denote junctions with vertex
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energy v living on the sites. All occupation numbers are integer valued and, depending

on their allowed range and on whether v is zero or nonzero, the model can be mapped to

either an XY model (for v 6= 0) or a ZN spin model (for v = 0). The junctions j call for

further explanation. In SU(N), they are related to the invariant ε-tensor, i.e. N flux lines

emanating from N (anti-)quarks join at a junction and form an SU(N) singlet, and thus

the (anti-)quarks together with the flux lines are identified with a (anti-)baryon.

In this report we study the Z3 spin model with nonzero chemical potential µ in 1 and

3 dimensions and show that a complex mass spectrum can occur in both cases. The rest

of the report is organized as follows. In section 2 we define the model and review the

solution in 1 dimension using the transfer matrix as well as the approximate solution in

any dimension using Extended Mean Field Theory (EMFT) [11]. In section 3 we present

our Monte Carlo results and then we draw our conclusions in section 4.

2 Model

The model we will be studying is the three-states Potts model with nonzero chemical poten-

tial or, more accurately, the Z3 spin model with complex external fields.3 In d dimensions,

it can be seen as the crudest approximation of (d+1)-dimensional QCD in the static-dense

limit. The action is given by

S = −β
∑
〈i,j〉

(
PiP

†
j + P †i Pj

)
− 2

∑
i

(hRRePi + ihIImPi) , (2.1)

and the Z3 spins P ∈ {1, ei 2π3 , e−i 2π3 } at each site represent the center of the Polyakov

loops TrF L. The usual interpretation of the external fields is hR = e−M/T cosh(µ/T ), hI =

e−M/T sinh(µ/T ), where M and µ are the mass and chemical potential of the quarks re-

spectively [12], but as mentioned in the introduction, it is also possible to map (β, hR, hI) of

eq. (2.1) into (σ,m, µ) of eq. (1.5), as described in [10] (see eqs. (14-18)). We will primarily

use the first mapping but will evaluate the results also in the light of the second one. Note,

however, that the mapping between eq. (1.5) and eq. (2.1) is not possible for all parameter

values (see figure 2).

In the formulation (2.1) the action is complex, and the model clearly suffers from a

sign problem, but as long as hR, hI ∈ R and hR > |hI |, which corresponds to the physical

case of M,µ ∈ R, there exists a sign-problem-free representation4 that can be sampled

by a worm algorithm. The model can however be interesting in its own right also in the

unphysical region hI > hR, but it is a shortcoming that it does not have a continuum limit

in three dimensions, which could make it harder to clearly separate the lattice spacing a

from the correlation length ξ and in extension, the wavelength λ of the oscillations we are

looking for. In one dimension the model can be solved for general external fields using a

transfer-matrix method and we can use EMFT to obtain an approximate solution in any

number of dimensions.

3It may be worth pointing out that this type of model is often called a 3-state Potts model. This is not

entirely accurate since the Z3 spin model (2.1) is only equivalent to a 3-state Potts model if hI = 0.
4This is essentially going back to the representation in terms of flux-tube variables.
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2.1 Transfer matrix

In 1d the partition function of a chain of N Z3 spins with periodic boundary conditions is

given by

Z = TrTN , T ∝


e2β+2hR e−β+

hR
2 ei

√
3hI
2 e−β+

hR
2 e−i

√
3hI
2

e−β+
hR
2 ei

√
3hI
2 e2β−hRei

√
3hI e−β−hR

e−β+
hR
2 e−i

√
3hI
2 e−β−hR e2β−hRe−i

√
3hI

 (2.2)

where T is the transfer matrix. It is easy to verify that the characteristic polynomial of T

is a cubic polynomial with real coefficients so there are either three real roots or one real

root and a pair of complex conjugate roots, as claimed above. For a given β, it is now

straightforward to determine the phase diagram which contains the three phases described

in the introduction. The phase diagram at fixed β = 0.08 can be seen in figure 1. The color

coding and labels are as follows: I (blue) marks the region where all eigenvalues of T are

real. In Ia they are all positive and the connected correlator is a pure sum of exponentials.

In Ib two eigenvalues are negative (the product of all three, i.e. the determinant of T , is

always positive) and the connected correlator is in general a sum of two oscillating functions

with wavelength 2, due to factors (−1)x. Depending on how the signs and magnitudes of

the eigenvalues are distributed, this may or may not be detectable on a discrete lattice.

II (green) denotes the region where the largest eigenvalue is real and the other two are

a complex conjugate pair. The connected correlator is a cosine-modulated exponential,

this is characteristic of a liquid. III (red) marks the region where the complex conjugate

pair is larger in magnitude than the real eigenvalue and the connected correlator at long

distance is a pure trigonometric function, this is the long-range order characteristic of

a crystal. The two black lines bound the wedge where hR > |hI | and mark the region

where the flux-variables representation is sign-problem free and the worm algorithm can

be used. It is evident that the crystalline phase is out of reach of the worm algorithm

but some parts of the liquid phase lie within the physical region hR > |hI |, so that the

non-monotonic behavior of the connected correlator there can be reproduced by lattice

simulations. Initially the transfer-matrix method is only defined for integer separations

but it is straight forward to extend it to any real separation via the matrix power-function.

In the liquid phase, the connected correlator is given by eq. (1.3), which is made periodic

(exp→ cosh) at finite N to obtain

〈f(P (x))f(P (0))†〉c = af

(
cosh

(
mR

(
x− N

2

))
cos

(
mI

(
x− N

2

))
cos (φf ) (2.3)

+ sinh

(
mR

(
x− N

2

))
sin

(
mI

(
x− N

2

))
sin (φf )

)
,

where f(P ) is either P,ReP or ImP . The parameters af and φf can be calculated from the

eigenvectors of T . These functions can be directly compared to the correlators obtained

by the worm algorithm and will serve as a consistency check for the algorithm before going

on to three dimensions where no exact results are available.
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Figure 1. Phase diagram of the 1d Z3 spin model in the (hR, hI)-plane for fixed β = 0.08. The

crystalline phase III is outside the region of parameter space where the worm algorithm can be

applied but the liquid phase II is susceptible to lattice simulations. For a more detailed description

of the phases see the text. The phase diagram is periodic in hI with period π/
√

3.

A comment about this “phase diagram” is in order. Actually, the different phases are

not separated by phase transitions in the strict sense; there is no singularity in the free

energy anywhere in the (hR, hI)-plane, since the zeros of the characteristic polynomial of T

are smooth functions over the whole plane. Instead, the boundary of the different phases

are disorder lines, which mark a smooth change in the characteristic of the correlator, for

example from a non-oscillatory exponential decay to an oscillatory exponential decay. In

general, however, it is not necessarily so that the change from non-oscillatory to oscillatory

behavior take place at a disorder line, it can also occur at a first order transition, as is

evident from for example the water-vapor transition.

2.2 EMFT

In more than one dimension, and especially in the physically interesting case of three

dimensions, the transfer-matrix method is not practical anymore. It is reasonable to assume

that the structure of the phase diagram will remain [9] but one is totally at a loss when

it comes to the exact location of the disorder lines. In the light of the one-dimensional

results, it is unlikely that the crystalline phase can be probed by lattice simulations, but

one may hope to find evidence of a liquid phase. In this case the three largest eigenvalues

of the transfer matrix will be given by (up to a trivial overall multiplicative, real constant)

λ0 = 1, λ1 = e−mR−imI , λ2 = e−mR+imI , where mR,mI > 0 are real numbers chosen to

paramterize the eigenvalues. The decay of the spin-spin correlator will thus be governed

by
〈
P (0)P †(r)

〉
∼ e−mRr cos(mIr). It becomes clear that our prospects for detecting

this characteristic behavior of the correlator depend rather sensitively on mR and mI ; we

require a point in phase space where mR is not too large at the same time as mI is not too

small, so that the first maximum in the correlator occurs before the signal is too damped.
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Much time and effort can be saved by quickly, albeit approximately, solving the model for

extended regions of parameter space. Mean field theory is one candidate which falls short

since it does not give access to the mass spectrum. EMFT [13] on the other hand does

exactly that and is thus an apt choice.

It will be useful to consider the real part ReP and the imaginary part ImP of the Potts

spin P as independent variables here. Since the imaginary part of the action (2.1) is odd

in ImP , the expectation value of iImP will be real and we have 〈P 〉 = 〈ReP 〉+ 〈iImP 〉 6=
〈ReP 〉 − 〈iImP 〉 =

〈
P †
〉
. The Z3 spin P is then decomposed into its mean value and

fluctuations around the mean,

P = 〈ReP 〉+ δReP + 〈iImP 〉+ iδImP, (2.4)

P † = 〈ReP 〉+ δReP − 〈iImP 〉+−iδImP.

We now formally integrate out all fields except the one at the origin and assume that this

amounts to the introduction of effective couplings for the bilinears δRePδReP, δImPδImP

and δRePδImP [11]. The effective EMFT action can then be written

SEMFT =− (ReP )2 ∆1 − (ImP )2 ∆2 − 2iReP ImP∆3

− 2ReP (hR + 〈ReP 〉 (2dβ −∆1) + 〈iImP 〉∆3) (2.5)

− 2iImP (hI + 〈iImP 〉 (2dβ −∆2)− 〈ReP 〉∆3) .

So far we have not assumed anything about the variables P , so the effective action above

is generally valid for any action of the form (2.1). For P ∈ Z3 the action can be simplified

slightly by using (ImP )2 = 1− (ReP )2 and ReP = −1
2 whenever ImP 6= 0. We then obtain

SEMFT = − (ReP )2 (∆1 −∆2)− 2RePh̃R −
2√
3
iImPh̃I , (2.6)

h̃R = hR + 〈ReP 〉 (2dβ −∆1) + 〈iImP 〉∆3, (2.7)

h̃I√
3

= hI + 〈iImP 〉 (2dβ −∆2)−
(
〈ReP 〉+

1

2

)
∆3. (2.8)

Defining log γ = −3
4 (∆1 −∆2) − 3h̃R, it is straightforward to calculate all expectation

values of the model

〈ReP 〉 =
1− γ cos h̃I

1 + 2γ cos h̃I
〈iImP 〉 =

√
3γ sin h̃I

1 + 2γ cos h̃I
(2.9)

〈
(ReP )2

〉
=

1 + 1
2γ cos h̃I

1 + 2γ cos h̃I

〈
(ImP )2

〉
= −

3
2γ cos h̃I

1 + 2γ cos h̃I
〈iImPReP 〉 =

−
√
3
2 γ sin h̃I

1 + 2γ cos h̃I
.

It is obvious how to self-consistently determine the linear expectation values, whereas the

bilinears may need some more explanation. The details of their determination will reveal

how a complex spectrum can arise. As usual in EMFT [11], we fix the effective quadratic

couplings ∆i by matching the bilinear expectation values to an approximation to the point-

to-point correlator of the full model,

GEMFT,c =

∫
ddk Gc(k) =

∫
ddk

[
G−10,c(k) + Σ(k)

]−1
≈
∫

ddk
[
G−10,c(k) + ΣEMFT

]−1
.

(2.10)
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This is a matrix equation where G0,c(k) is the connected Green’s function of the free

theory. It is not immediately clear what the free theory of a spin model is, but the

approximation above is in fact valid for any choice. A good choice will be close to the

model we want to study and at the same time allow for an efficient numerical treatment.

We have chosen the free model to have the same action as the original Z3 model, eq (2.1),

but with the variables P ranging freely over the complex plane. With this choice the free

connected Green’s function is given by G−10,c = −2βId2
∑

ν cos kν . The self-energy Σ(k) in

eq. (2.10) then arises due to the restriction of the field to take values in Z3. The EMFT

self-energy ΣEMFT is likewise identified as the difference between the variance of eq. (2.5)

with (ReP, ImP ) ∈ R2 and the variance when P ∈ Z3 and is given by G−1EMFT,c + ∆, with

GEMFT,c = 2

 〈
(ReP )2

〉
− 〈ReP 〉2 −i (〈iImPReP 〉 − 〈iImP 〉 〈ReP 〉)

−i (〈iImPReP 〉 − 〈iImP 〉 〈ReP 〉)
〈

(ImP )2
〉

+ 〈iImP 〉2

 ,

(2.11)

∆ =

(
∆1 i∆3

i∆3 ∆2

)
. (2.12)

Hence, the final self-consistency equation becomes

GEMFT,c =

∫
ddk

[
G−1EMFT,c + ∆− 2βId2

∑
ν

cos kν

]−1
. (2.13)

It is clear that G−1EMFT,c + ∆− 2βId2 ≡ βM plays the role of a mass matrix and we should

diagonalize it to obtain the mass spectrum. It will also be vastly more efficient to integrate

over the momenta when M is diagonal. The mass matrix can be parametrized as

M =

(
a+ b ic

ic a− b

)
, (2.14)

where a, b, c ∈ R. The eigenvalues are then given by m± = a ±
√
b2 − c2, such that if

|c| > |b| the spectrum will consist of a pair of complex conjugated masses mR ± imI with

mR = a and mI =
√
c2 − b2. This implies cosine-modulated exponential fall-off in the

correlators in the (ReP, ImP ) basis, as expected. By solving the model in the (hR, hI)-

plane, a phase diagram analogous to what was obtained in one dimension with the transfer

matrix, figure 1, can be constructed by studying the behavior of the masses. In figure 2 we

show the results for fixed β = 0.08, with the most interesting features being the disorder

lines (in red), where the masses are degenerate, and the blue dashed lines where the real

part of the complex masses vanishes. Beyond these lines the momentum integral in the

self-consistency equation no longer converges, since the integrand is no longer decaying

at large distances. One may guess that with purely imaginary masses, the system would

enter a crystalline phase with a purely trigonometric correlator but there is no way to

verify that using EMFT. This phase diagram can then be compared both to the mapping

(hR, hI)→ (e−M/T cosh(µ/T ), e−M/T sinh(µ/T )) and to the alternative mapping in [10]. It

– 8 –
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Figure 2. Phase diagram of the 3d three-states Potts model at fixed β = 0.08 obtained by EMFT.

The thick red lines are disorder lines where the mass spectrum turns complex and on the dashed

blue lines the real part of the mass vanishes. Those lines bound the region of convergence of EMFT.

Inside the wedge bounded by the thin black lines the model (2.1) is sign-problem free and the blue

region marks the image of the map from the standard Z3 model to the flux-tube model of [10],

eq. (1.5) with v = 0.

is found that the second case covers a subspace of M,µ ∈ R and there are indeed regions in

parameter space where the mapping is valid and where one expects a complex spectrum.

However, in that region hR is substantially larger than hI which means in the M,µ variables

that both M and µ are rather small, which is presumably far away from the region where

the model is expected to be a valid approximation of QCD.

Now that an approximate phase diagram has been obtained, we can select points in the

liquid phase which are favorable in terms of mR and mI where full Monte Carlo simulations

using the worm algorithm will be performed.

3 Results

For our lattice simulations we used the flux-variables representation described in [14],

with quark occupation number nx ∈ {−1, 0, 1} on each site and flux occupation number

lx,ν ∈ {−1, 0, 1} on each link. Gauss’ law requires that the flux at each site is a multiple

of three. Allowed configurations consist of flux-tube networks with or without attached

quarks. If there are no quarks attached the flux-network can be thought of as a glueball.

There are also neutral networks with any number of quarks and an equal number of anti-

quarks attached, for example networks connecting one quark with an anti-quark can be

thought of as mesons. The third possibility is to have a surplus of 3n (anti-)quarks. This is

equivalent to having the junctions of the network to sum up to n, we say that the network

has junction charge n. These charged networks are associated with baryons.

The worm algorithm generates a Markov chain of allowed configurations by temporar-

ily violating the constraint, something which can be exploited to obtain improved estima-

tors for spin-spin correlation functions. In addition to the usual
〈
P (0)P †(x)

〉
we use a

– 9 –



J
H
E
P
1
0
(
2
0
1
6
)
0
5
5

−0.005

0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30

〈Im
P
(x
)I
m
P
(0
)〉

x

m± = 1.306± 0.663i

−0.00137
−0.00136
−0.00135
−0.00134
−0.00133

5 10 15 20 25

Monte Carlo

Transfer matrix

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 5 10 15 20 25 30

〈R
e
P
(x
)R

e
P
(0
)〉

x

m± = 1.306± 0.663i

0.92706

0.927065

0.92707

0.927075

5 10 15 20 25

Monte Carlo

Transfer matrix

Figure 3. Two components of the spin-spin correlator in one dimension for β = 0.5, e−M/T = 0.02

and µ/T = 3.689. There is a clear oscillation in both correlators and the result agrees perfectly

with the exact result obtained using the transfer matrix. The complex mass is given by m± ≈
1.306± 0.663i.

modification introduced in [15, 16], which allows us access to improved estimators of also

〈ReP (0)ReP (x)〉 and 〈ImP (0)ImP (x)〉. This is crucial because the best signal-to-noise

ratio will be found in the correlator of the imaginary parts of the spins, since it has the

smallest constant background. We first reproduced the results obtained by the transfer

matrix method in one dimension in order to verify that the algorithm was properly imple-

mented. A typical correlator in the liquid phase is shown in figure 3 and there is perfect

agreement with the analytic result for all three propagators. It should be noted that the

real part of the mass mR is in general always large when the imaginary part mI is of

order one or larger, this makes it very difficult to resolve the first local maximum of the

correlator.

We also measured the junction-junction correlator on the configurations generated by

the worm algorithm. The junction jx takes the value n if 3n, n ∈ Z units of flux flow

into the site x. With the flux variables described above there are in general four types of

junctions, depicted in figure 4 but in one dimension only junction A with one quark and

two in-going fluxes (or its reverse) attached to the site is possible. In figure 5 we show

the correlation between positive j+ and negative j− junctions for two different parameter

values. Here the oscillation is even clearer due to a less noisy observable, although we do

not have an improved estimator for this correlator. The dashed line is obtained by fitting

the amplitude and phase in eq. (2.3) while keeping the masses fixed at the exact values

obtained by the transfer matrix. The mass is the same as for the spin-spin correlator since

the junction is a local object and there is only one (complex) mass in the one-dimensional

case. It should be noted that these parameter values have been selected to give a maximally

clear first maximum in the oscillation. For general parameter values in the liquid phase

it is only possible to see the first minimum, while the first maximum is drowned in noise.

This will be especially true in three dimensions where the real part of the mass is larger

than in the one-dimensional case.
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Figure 4. The different junctions allowed in the flux-variable representation of the Z3 model

described in the text. The red crosses represent quarks and the lines represent the directed flux-

tubes. The junction is located in the center of each network where the flux sums up to three. Note

that the quarks bounding the network may also be replaced by arbitrary larger networks of charge

one. In one dimension only junction A is possible. The three-dimensional junction D is only present

in dimension three or higher.
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Figure 5. The junction-junction correlator in one dimension for β = 0.5, e−M/T = 0.02 and

µ/T = 3.689 (left panel) and for β = 1.2, e−M/T = 0.0042 and µ/T = 4 (right panel). The signal

of oscillation is even clearer than in the spin-spin correlator since this observable is less noisy, cf.

figure 3. The fits are given by eq. (2.3) with the mass fixed at the value obtained with the transfer

matrix.

We then move to the physically interesting case of three dimensions, and guided by the

phase diagram calculated by EMFT we select a few points assumed to be in the liquid phase

and look for the corresponding signals in the correlators. Also here, however, the damping

of the correlator is always strong, as is illustrated in figure 6. In the left panel mR and mI ,

obtained by EMFT, are plotted as a function of tanh µ/T for fixed M/T and β and in the

right panel mI is plotted as a function of mR to emphasize the approximately linear growth

relation. Both masses increase with µ/T . As a consequence, it is typically only possible to

resolve the first minimum of the oscillating correlator. In figure 7 we show correlators of

ImP , as a function of the Euclidean distance r =
√
x2 + y2 + z2, obtained by our worm

simulations for three different values of the chemical potential µ/T ∈ {2.0, 2.5, 3.3} at fixed

β = 0.08 and e−M/T = 0.05. There is a clear staggered component in the correlators, which

makes it very hard to fit the data to a simple ansatz. This short-distance effect, whose

sign is µ-dependent (figure 7, blue vs red), stems from the size and shape of the junctions,

shown in figure 4: in d = 1, only A is possible. For all µ there is a clear minimum whose

position moves toward zero and whose width decreases as the chemical potential increases.
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same parameters as in the left panel. The feature that the real part rises approximatively linearly

with the imaginary part is generic, as is the fairly large value of the real part at µ = 0. In the

part of the curve to the left of the cusp, both masses are real and their half-difference is shown as

a function of their half-sum.
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Figure 7. The correlator of the imaginary part of the spins for three different chemical potentials

µ at fixed β = 0.08 and e−M/T = 0.05. The minimum of the correlator moves towards zero and its

width decreases as µ increases, suggesting that the imaginary part of the mass increases with µ, as

expected. The significant staggered contribution to the correlator makes a fit to the data difficult.

The data sets are shifted vertically for clarity and the data points at r ≤ 1 are far above the shown

data points, i.e. we have zoomed in on the minimum of the correlators.

This suggests that the imaginary part of the mass increases with µ, as it does in one

dimension and as EMFT predicts. Also, in neither of these correlators is it possible to see

a maximum. This is not very surprising, but a discernible maximum would be indisputable

evidence of a complex spectrum.
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Figure 8. The correlator of the absolute value of the junction number (left panel) and the correlator

of the junction number (right panel) for β = 0.08, e−M/T = 0.05 and µ/T = 3.3 on a 123 lattice.

The depletion in the left correlator and the enhancement in the right correlator around distance

2 support the proposition that the system behaves as a liquid. However, the strong staggered

character still leaves some doubt. In the right panel, the data point at
√

2 and 2 are far below 0.99

and are omitted such that it can be clearly seen that the points at
√

3 and
√

5 are above 1.

If the mass spectrum is complex and the system behaves like a liquid then the junction-

junction correlator should also show the characteristic, oscillatory behavior seen in the 1d

model. Since the junction-junction correlator is less noisy than the spin-spin one, one may

even hope that a maximum of the oscillating correlator can be resolved, thus establishing

the complex spectrum without doubt. In figure 8 we show two junction-junction correlators

for β = 0.08, e−M/T and µ/T = 3.3. In the left panel we show the correlator of the absolute

values of the junctions whereas in the right panel the sign of the junctions is also taken

into account. The difference of scales of the two correlators comes from the fact that they

are both normalized to one at large distances and that 〈|j|〉 ∼ 3 〈j〉. To emphasize the

staggered component of the correlators we plot the correlators on the two different sub-

lattices with different colors. Inspecting first the charge-insensitive correlator (left panel)

we see that there is indeed a depletion in the density of junctions of any type within

distance [1, 2.5] of a junction but it is not possible to tell if this minimum is followed by

a maximum. In the charge-sensitive correlator (right panel) there is a clear maximum

in the correlator in roughly the same interval, but only in one of the sub-lattices. This

strong staggered dependence is of course a lattice artifact. It should however be noted

that for smaller values of µ/T (and thus longer wavelength oscillations, cf. figure 7) there

is a clear, broader, minimum in both correlators and on both sub-lattices, which indicates

that the effect is not merely a staggered effect, although the maximum which is predicted

to follow is completely damped away. All in all, the behavior of the different correlators

strongly suggests that there is a complex mass spectrum at the investigated parameter

values, and that the prediction in [9] that the phase structure observed in one-dimension

has an analogue also in three dimensions is correct.

Finally, we measured some statistics of the flux-tube networks and the junctions. Using

the labeling of figure 4 we find that the ratio of C to D junctions is very close to 3/2 and
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Figure 9. Histograms of the distribution of flux-network size, the number of junctions in a network

and the network charge for β = 0.08, e−M/T = 0.05 and µ = 2.0 on a 123 lattice.

the ratio of B to A junctions is very close to 4, both in full agreement with entropic

arguments, i.e. their relative abundance is obtained by counting the number of possible

different orientations for each type of junction, assuming all orientations appear with equal

probability. The ratio of pure-flux junctions (C&D) to flux-quark junction (A&B) depends

on the parameters but for the parameter values we used the flux-quark junctions typically

outnumber the pure-flux junctions by a factor 10, reflecting the energy cost of the additional

flux tube. In figure 9 we show the histograms of the distribution of the flux-network size,

the number of junctions in a network and the network charge for β = 0.08, e−M/T = 0.05

and µ = 2.0 on a 123 lattice.

4 Conclusions

Using unbiased Monte Carlo simulations, we have shown that the Z3 spin model in three

dimensions with charge-symmetry breaking external fields has non-monotonic correlators,

both in the original spin variables and in the flux variables, for some regions in parameter

space. This strongly suggests that the spectrum in these regions is complex and this claim

is also backed up by EMFT calculations of the three-dimensional model. Of special interest

is the oscillatory nature of the junction-junction correlator, which is the analogue of the

baryon-baryon correlator in heavy-dense QCD, for some regions of parameter space. The

possibility that models with complex saddle points may have a complex mass spectrum

and thus non-monotonic correlators has previously been established analytically in the

one-dimensional case and has been argued to also hold true in higher dimensions. We

have shown that the worm algorithm is capable of reproducing these results, even though

the original spin model suffers from a strong sign problem. The phase diagram in one

dimension contains regions where the system behaves like a liquid, with exponentially

damped oscillations, and like a crystal with a purely oscillatory correlator. In general, it

– 14 –



J
H
E
P
1
0
(
2
0
1
6
)
0
5
5

is expected [9] that these features carry over also to higher dimensions. For those regions

of parameter space where the model has a sign-problem free representation we have only

found evidence of the liquid phase with exponentially damped but oscillating correlations

between spins, as well as junctions. We have found no evidence of a crystalline phase and

it is probable that it lies beyond the reach of the worm algorithm in three dimensions, as

it does in one dimension. It should also be noted that even the liquid phase may lie in an

unphysical region of parameter space. At least according to EMFT it lies outside of the

region of parameter space which can be mapped to the more physical flux-tube model of

Condella and Detar [10]. A complex mass spectrum can only be found in a parameter region

where the mass M of the underlying heavy quark satisfies M � T , whereas the validity of

the effective description of QCD by a Potts model requires M � T . This situation may

change if the junctions are given a nonzero weight as in [3], but this possibility has not

been investigated here. However, whatever the values of the other parameters, introducing

a junction weight will further damp the signal we want to measure, making the search yet

more difficult.

Our findings supports the claim that in general, it is plausible that models without

charge-conjugation symmetry, but invariance under the combined action of charge conju-

gation and complex conjugation, will have regions with a complex mass spectrum in their

phase diagram. However, more work is needed before precise statements can be made

about whether or not this is a phenomenon which occurs under physical conditions. This

first proof of principle should encourage the study of more realistic models, and the search

for experimental signals in heavy-ion collisions as advocated in [3].
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