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Abstract
Background: Regression to the mean (RTM) occurs in situations of repeated measurements
when extreme values are followed by measurements in the same subjects that are closer to the
mean of the basic population. In uncontrolled studies such changes are likely to be interpreted as
a real treatment effect.

Methods: Several statistical approaches have been developed to analyse such situations, including
the algorithm of Mee and Chua which assumes a known population mean μ. We extend this
approach to a situation where μ is unknown and suggest to vary it systematically over a range of
reasonable values. Using differential calculus we provide formulas to estimate the range of μ where
treatment effects are likely to occur when RTM is present.

Results: We successfully applied our method to three real world examples denoting situations
when (a) no treatment effect can be confirmed regardless which μ is true, (b) when a treatment
effect must be assumed independent from the true μ and (c) in the appraisal of results of
uncontrolled studies.

Conclusion: Our method can be used to separate the wheat from the chaff in situations, when
one has to interpret the results of uncontrolled studies. In meta-analysis, health-technology reports
or systematic reviews this approach may be helpful to clarify the evidence given from uncontrolled
observational studies.

Background
Regression to the mean (RTM) first described by Galton
[1] is a statistical phenomenon broadly discussed when it
comes to measure changes in the course of time. It occurs
in situations of repeated measurements when extremely
large or small values are followed by measurements in the
same subjects that on average are closer to the mean of the
basic population. Such changes are likely to be interpreted
as a real drift, although they just might be artificial coming

from the fact that the sampling of values was not random
but selected.

RTM affects all fields of life science, when effects of an
intervention have to be evaluated in an uncontrolled lon-
gitudinal setting. Medical rehabilitation programmes for
example, often are evaluated for their ability to restore the
patient's ability to work. Unaware of RTM effects a
patient's recovery typically is interpreted as a treatment
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effect [2]. Other examples include the evaluation of
asthma disease management programmes [3] or choles-
terol screening [4].

The discussion about the development of methods to
detect RTM in observational studies is still vital [5]. This is
especially true for the results of complementary therapies,
which are often claimed to be a mixture of RTM effects,
non-specific (placebo) effects, the effects of a previous or
concomitant conventional treatment and the actual effec-
tiveness of the complementary treatment [6,7].

In the last two decades several methods for detecting RTM
have been developed both for the case of normal distrib-
uted data [8,9] as well as for the non-parametric case
[10,11]. Most of these methods deal with common situa-
tions of truncated sampling, i.e. only those members
which have a first measurement beyond (or below) a pre-
defined cut-point are sampled. The approach we focus on
in this paper is a straightforward method developed by
Mee and Chua [12] based on classical t-test statistics and
a linear regression model. This method does not depend
on truncated sampling but requires the knowledge of the
true mean μ in the target population. If μ can be obtained,
this approach has already been proven to distinguish
between RTM-effects and treatment effects in clinical
study reality [13,14]. However, the basic necessity of a
population mean is quite obstructive and often such a
value can not be determined. In this paper, we therefore
revisit the approach of Mee and Chua and extend it to a
situation where no population mean is available but evi-
dence for or against a treatment effect is needed when
RTM is present.

Notations
In the following we consider two measurements of one
quality (e.g. physiological parameters like blood pressure,
or quality of life scores): The random variables Y1 (Y2)
denote these values/scores before (after) an intervention.
Realisations of Y1 and Y2 are denoted as y1 and y2. We
assume that both measurements follow a bivariate nor-
mal distribution with means μ1 and μ2, a common vari-
ance σ1

2 = σ2
2 = σ2 and a correlation ρ. In the case of no

change in distributions between the two repeated meas-
urements (i.e. there is a common mean μ = μ1 = μ2 for Y1
and Y2) the conditional expectation of Y2, given Y1 = y1,
can be easily calculated as

E(Y2|Y1 = Y1) = μ + ρ(Y1 - μ) (1)

Equation (1) describes the RTM effect mathematically: if
Y1 is large (Y1 > μ) then Y2 is expected to be smaller (if only
0 ≤ ρ < 1), and if Y1 is smaller than the mean then Y2 is
expected to be larger. In both cases Y2 is expected closer
than Y1 to the mean.

Mee and Chua exploited equation (1) to construct a test
which allows to differentiate between the RTM effect and
an intervention effect τ. In detail, they rewrote (1) as a
regression equation and introduced τ as acting additively
to the RTM effect:

Y2 = μ + τ + ρ(Y1 - μ) + ε (2)

where ε is a normally distributed random error.

Note that equation (2) extends the original model: ρ now
denotes not a correlation but is interpreted as a slope
where |ρ| > 1 is allowed.

Mee and Chua's test involves regressing the outcome val-
ues Y2 after therapy on X = Y1-μ, where μ is assumed to be
fixed and known. By applying simple linear regression
techniques the intercept β0 = μ+τ and the slope ρ are esti-
mated. Subsequently, using t-test statistics the hypothesis
is tested that the intervention has an additive benefit, i.e.
H0: β0 = μ is tested against H1: β0 = μ + τ with τ ≠ 0. Using
Mee and Chuas notations the single steps of their algo-
rithm are as follows:

1. Calculate X = Y1-μ

2. Estimate the parameters β0 and ρ from the linear regres-
sion model of Y2 on X

3. Estimate the treatment effect  by subtracting μ from

, the estimate of β0

4. Calculate the test-statistic

where s2 is the mean squared error in the simple regres-
sion analysis of variance, Xi denotes the value of X in the

i-th patient, i = 1,..., n, and  is the mean of all Xi.

5. Compare t with the appropriate t-distribution with (n-
2) degrees of freedom to obtain a p-value p = p(μ).

This procedure is equivalent to a linear regression analysis
of Y2-μ on Y1-μ. In this model equation (3) describes the
test whether the intercept differs from null (H0: τ = 0),
which can be carried out by most statistical standard soft-
ware.
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The calculations of the test statistic t(μ) may be even more
simple if one rewrites equation (3) in terms of simple sta-

tistics, such as the sample means  and , the sample

variances  and , the correlation  of Y1 and Y2,

or their respective covariance .

A simple extension of Mee and Chua's test
Mee and Chua's test can be extended to overcome the lim-

itation that the population mean μ must be assumed to be

known. In the case of unknown μ, we suggest to vary μ sys-
tematically over a range of reasonable values and to per-

form the above described procedure for each μ separately.

Afterwards, defined statistics, such as t(μ), p(μ) or the esti-

mated treatment effect (μ), can be plotted against μ
which should give an overall impression how RTM affects
the data.

The graph of t(μ) as defined in equation (4) can be ana-
lysed in some more detail. First, after standard calcula-
tions it can be seen that t(μ) converges to a fixed value
when μ approaches infinity:

Moreover, assuming that  ≠ , differentiation with

respect to μ shows that t(μ) has only one extremum text =

t(μext) which can be found at

If  = , t(μ) is strictly monotone and no extremum can

be found at all. If  <  substituting μext into equation

(4) yields equation (7) which can be shown to define a
maximum tmax:

If  > μext defines a minimum with tmin = -tmax in (7).

For large n equations (6) and (7) simplify into

In most situations it will turn out that p(μext) falls below

the predefined significance level α. Then immediately the

question arises for which μ's this is also true, i.e. for which

region of μ a significant treatment effect can be expected.

Setting t(μ*) = tn-2;1-α/2 (the 1-α/2-quantile of a t-distribu-

tion with n-2 degrees of freedom) this leads to a quadratic

equation in μ* which can be solved by conventional tech-

niques yielding solutions  and . As these formulas
are somewhat lengthy we refrain from reporting them
here.

For the following assume that there exist solutions 

and , i.e. there is at least one μ which yields to a signif-
icant treatment effect. In this case it can be seen from the

formulas mentioned above that each μ outside the inter-

val [ ; ] leads to a significant treatment effect, if and
only if

This is usually true for large n. If n is small equation (8)

holds if  is small, or  is considerably larger than

. Otherwise, all μ inside this interval lead to a signifi-
cant treatment effect if and only if equation (8) does not
hold.

All equations presented only depend on the number of
subjects n and simple sample statistics. It is therefore easy
to encode them in standard software programs which we
have done for MS-EXCEL ® and SAS ®. The implementation
in SAS is solved as a macro (see Additional file 1). It is
meant for situations when individualised data is availa-
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ble. The EXCEL solution should be considered when the
sample statistics can be drawn from the paper but individ-
ual data is not available. Both programs are appended to
this manuscript.

Examples
We apply the method developed above to three examples.
First, we look for the data given in the original work of
Mee and Chuas classical approach:

Example 1
Table 1 provides the individual data originally taken from
McClave and Dietrich [15]. It comprises the scores of n =
8 students who failed to pass a test to receive their high
school diploma. These students were encouraged to visit a
refresher course and to retake an equivalent test after-
wards. As the mean (± standard deviation) test score
increases from 57.4 ± 7.0 to 60.4 ± 8.1 points one might
conclude that the refresher course is effective, a point of
view which is supported by a paired t-test which results in
a one-sided p-value of 0.0428.

On the other side, the analysed data was not drawn from
the whole population but only from the lower extremes of
the distribution (the students who performed worst).
Thus RTM is likely to occur and should be addressed in a
formal analysis. In their paper, Mee and Chua assumed a
true mean of μ = 75 and calculated from equation (3) a
value of t = t(75) = 1.08, which gives a one-sided p-value
of p = p(75) = P(t6 > 1.08) = 0.16. They concluded that the
observed changes might be attributed to RTM and an
intervention effect could not be confirmed.

Following the approach we suggested here, one might
wonder whether this result is sensitive to the assumption
of μ = 75. In other words one should calculate if there
would have been a chance of an intervention effect if
another μ had been chosen. Fig. 1 shows the values for
p(μ) based on the data given in table 1 within a range
from 30 <μ < 80. From equation (4) and (5) the maxi-
mum value for t is given at μmax = 58.96, with a t-value of
tmax = 1.938. This finally leads to a corresponding one

sided p-value of pmin = p(μmax) = 0.0504. Hence, we can
surprisingly conclude, that independent of any given μ no
intervention-effect can be confirmed in this group of stu-
dents. Thus, the data does not support the hypothesis,
that the special course to refresh the language skills is not
suitable for the given student profile that failed in the first
exam.

Example 2
The next example deals with homeopathy, one of the
most frequently used and controversial systems of com-
plementary and alternative medicine. Homeopathy is
based on the 'principle of similars', whereby highly
diluted preparations of substances that cause symptoms
in healthy individuals are used to stimulate healing proc-
esses in patients who have similar symptoms when ill.

Recently, Witt et al. [16] presented an uncontrolled cohort
study which found marked beneficial health effects in
nearly 3.000 chronic diseased adults when homeopathi-
cally treated. Of those, 214 patients suffered from
migraine. Within two years their quality of life, as meas-
ured by the SF-36 physical summary score, increased from
44.3 ± 11.8 to 49.4 ± 12.3 score points. The question
arises whether this increase is due to RTM or can be attrib-
uted to a true intervention effect.

Fig. 2 shows that the p-values drawn from the Mee-Chua-
test are far below 0.025 when the true mean is below 55
score points. Thus, in these situations a significant inter-
vention effect can be confirmed. Having in mind that the
true (healthy) population in Germany has a mean SF-36
physical summary score of 50.24 [17] it seems very
unlikely that the true mean in our (diseased) target popu-
lation is bigger than 55 points. Consequently, our analy-

Table 1: Data of a repeated language-test after a special training 
(Example 1).

Student Before After

1 45 49
2 52 50
3 63 70
4 68 71
5 57 53
6 55 61
7 60 62
8 59 67

Graphs for p(μ) and (μ) based on example 1 given in table 1Figure 1
Graphs for p(μ) and (μ) based on example 1 given in table 
1.

τ̂
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ses show unambiguously, that the observed effect in this
study cannot only attributed to RTM.

Example 3

Our method can be extended for seperating the wheat
from the chaff in situations, when one has to interpret the
results of uncontrolled studies. For example, one might
think of a simple voting when classifying the possibility of
a treatment effect in "never" "unlikely", "probably" and
"most likely". Especially in meta-analysis, health-technol-
ogy reports or systematic reviews, this approach can be
quite helpful to clarify the evidence given from observa-
tional studies. This can be demonstrated in three uncon-
trolled studies on Bosentan treatment for patients with
pulmonary arterial hypertension (PAH). The main out-
come parameter in PAH-studies is usually given by the 6-

minute walk distance (6MWD) which in our chosen stud-
ies was measured at baseline and after a treatment period
of 16 weeks. As the correlation between the repeated
measurements was not given, we ran our algorithm with
three levels of correlations: high (r = 0.8), moderate (r =
0.5), and low (r = 0.2) correlation. Table 2 provides the
regions of significance which are based on the intervals

[ ; ].

In most cases the region of significance is split into two
parts: The upper part (μ is large) describes the region
where a huge RTM effect is expected, larger than the actual
difference of means, and a negative treatment effect (τ < 0)
can be confirmed. For example, assuming a correlation of
r = 0.5 in Provencher's trial the region of significance
includes all values above 481 meters, saying that Bosentan
has a significantly (p < 0.05) negative effect on the
patient's 6MWD if only the true mean 6MWD is above
this value in the population of interest. This part of the
region is of no further interest in our example, because
here we are only interested in the one-sided hypothesis
whether Bosentan can increase the patient's 6MWD. In
other situations however a two-sided hypothesis might be
more appropriate.

The lower part of the region of significance includes values
of μ where a positive treatment effect (τ > 0) can be con-
firmed. This is usually true when μ is considerably smaller
than the baseline mean and the RTM effect pulls the val-
ues into the wrong direction. Again this region is of no fur-
ther interest, because it describes a unrealistic situation.
For example, in Provencher's trial the region of signifi-
cance includes all values below 367 meters (assuming r =
0.5), saying that Bosentan does significantly (p < 0.05)
incrase the patient's 6MWD if only the true mean 6MWD
is below this value in the population of interest. But, val-

μ1
∗ μ2

∗

Graphs for p(μ) and (μ) based on example 2 (Becker-Witt [16])Figure 2
Graphs for p(μ) and (μ) based on example 2 (Becker-Witt 
[16]).

τ̂

Table 2: Regions of significance and voting for a positive treatment effect in three uncontrolled studies on Bosentan in PAH based on 
the approach presented in this paper

Study N 6MWD at Baseline 6MWD at week 16 correlation region of significance Vote of significance

Souza et al. 2005 [18] 15 396 ± 135 434 ± 137 r = 0.2 [0;337] & [672;∞] Unlikely
r = 0.5 [0;300] Unlikely
r = 0.8 - Never

Provencher et al. 2006 [19] 99 322 ± 105 364 ± 109 r = 0.2 [0;347] & [410;∞] Probably
r = 0.5 [0;367] & [481;∞] Probably
r = 0.8 [0;448] & [1292;∞] Most likely

Apostolopoulou et al. 2006 [20] 21 416 ± 105 459 ± 101 r = 0.2 [0;412] & [575;∞] Unlikely
r = 0.5 [0;420] & [820;∞] Unlikely
r = 0.8 [0;466] Probably

(N- number of patients, 6MWT-6-minute walk distance, data before and after intervention is mean ± standard deviation, region of significance: only 
6MWD values > 0 reported)
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ues of 100 or 200 meters are exeptionally small, it is there-
fore unrealistic to assume that the mean 6MWD lies in
this region.

What is left, is that part of the region of significance where
a positive treatment effect can be confirmed for values of
μ which are larger than the 6MWD mean at baseline. This
usually occurs when the correlation is high, RTM effects
are expected to be relatively small and the actual group
changes can be predominantly attributed to the treatment
effect. This is true in Provencher's trial (assuming r = 0.5),
where the lower part of the region of significance exceeds
322 metres, the mean baseline value in the study popula-
tion.

Having this in mind, we voted a treatment effect to be
"unlikely" in the study of Souza et al [18], because Mee
and Chua's modified t-test fails to reach a level of signifi-
cance in realistic situations. In contrast, in both other
studies a treatment effect of Bosentan is probable [19] or
even most likely [20], at least when correlation is high (i.e.
r = 0.8).

Interestingly, in all three studies the phenomenon
described in equation (8) can be studied: Whenever the
correlation approaches 1 the region of significance

changes from a bipartite region to an interval [ ; ]
where treatment effects can be confirmed for values
within this interval but not outside. An intuitive explana-
tion for this phenomenon may be the following:

a) If μ is very small and the correlation r increases then the
RTM effect decreases and finally is not far below the actual
group difference. The estimated treatment effect is still
positive but now cannot be confirmed statistically.

b) If μ is very large similar arguments hold. Again the RTM
effect decreases when the correlation r increases and
finally is roughly in the same range as the actual group dif-
ference. Consequently, a statistical confirmation of a treat-
ment effect (whose estimate is still negative) fails.

c) If μ lies within the range of the baseline and the follow
up mean, the RTM effect is small, but very similar to the
acutal group change. If r increases the RTM effect becomes
even smaller and neglectable, such that all actual group
change can be interpreted as a treatment effect.

Discussion
In this paper, we have developed a straight-forward
method based on Mee and Chuas modified t-test to
detect, whether a change in a uncontrolled repeated meas-
urement-situation after an intervention in a selected pop-
ulation is due to RTM or to a specific treatment effect.

RTM is a statistical phenomenom often ignored, misun-
derstood or insufficiently appreciated and thus one of the
the most fundamental sources of error in human reason-
ing in almost all scientific disciplines [21].

Since its first description from Galton in 1886 [1] RTM has
been discussed by a variety of authors (a historical outline
is given by Stigler [22]). Thorndike [23] to our knowledge
was the first who developed mathematical formulas this
problem based on a known population mean and nor-
mally distributed data. Almost at the same time Kelley
[24] gave a theoretical framework known in classical test
theory as Kelley's equation (see [21] for a deduction of
this equation). Cohen [25] was the first who described the
selection process in more detail. He distinguished
between four kinds of sample in connection with bivari-
ate nomal distributions: truncated, censored, selected,
and complete samples. Based on his work Senn and
Brown [26] derived maximum likelihood equations to
estimate the RTM and the treatment effect. Das and
Mulder [27] first left the assumption that the true under-
lying random variable Y1 is normally distributed and con-
sidered arbitrary (usually unimodal) continuous
distributions. Their work still relied on the assumption of
normally distributed measurement errors, which was
renounced by Müller et al [11].

Unlike all of the above mentioned approaches our
method does not need any information about the selec-
tion process. It therefore can also be used, if only the
results of an intervention process are given, which unfor-
tunately quite often occurs in papers presenting uncon-
trolled observational studies.

In contrast, when the selection process can be specified
Mee and Chuas modified t-test (and hence our extension)
generally has a low power, especially whenever all values
of Y1 in the sample are in one extreme [12]. Assuming
truncated sampling George et al. [28] contrasted the per-
formance of the modified t-test with likelihood based
alternatives. In their simulation studies the likelihood
ratio-test appeared to be more powerful than the score test
or the modified t-test.

The statistical model we propose here is based on the
assumption that the population is in a steady state where
the variance does not change in time and the correlation
ρ is constant over the whole range of values. These are
usual assumptions made in the literature on RTM which
seem to be realistic in medical applications when the time
between both observations is relatively small (see e.g.
[26,29]). This has been doubted by Ragosa [30] who
pointed out that the assumption of equal variances is
essential in the discussion of RTM. If it does not hold and
the variances increase over time then the conditional

μ1
∗ μ2

∗
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expectation of Y2, given Y1 = y1, is farther away from μ
than Y1, so that regression indeed is "from the mean" not
"to the mean" Ragosa thus called RTM a myth based on a
mathematical tautology without any meaning in practice.
In our examples, however, we found no hints, that the
assumption of constant variances might be violated, the
respective empirical estimates were quite similar in all
cases.

Although applicable to a wide range of observational
studies our approach has four major limitations. The first
is a very practical one: our calculations require an estimate

of the correlation  (or, alternatively, the covariance)
between the baseline and the follow-up values, a number
which is rarely given in papers. Imputing a plausible fixed

value for  does not seem to be an adequate solution
as the results extremely depend on its exact value as can be
seen in example 3. Consequently, for most studies the
original individual data for each person is needed.

Second, the interpretation of the graph p(μ) is limited as
the reported p-values are not adjusted for multiple testing.
Thus, the technique proposed is a exploratory data ana-
lytic strategy and should not be taken as proof of a treat-
ment effect.

Third, in practical situations it might happen that ,

the estimator of ρ, is larger than 1. Indeed, in example 1

we found  = 1.111 for all μ whch is an indicator that
the model was misspecified and that some subgroups of
the whole population gain more from the treatment than
others (those with average baseline values). Mee and
Chua [12] already pointed that this leads to an overesti-

mation of the treatment effect for each fixed μ. Conse-
quently, the respective test is anticonservative. As a result

p(μ) will fall too often below the predefined level of sig-

nificance and the region of μ's showing a significant treat-
ment effect will be too broad. For a more detailled
discussion on how misclassification affects the modified
t-test see [12].

Fourth, our approach is restricted to treatment effects
which work additive on the mean. In contrast to this
assumption, several complementary and alternative ther-
apies are based on the therapeutic principle of "functional
normalisation", i.e. they claim to actively exploit the self
regulative capacities of the organism. In this sense, these
approaches are assumed to have the potential not to shift
a mean but to decrease high values and to increase low
values to "normal" values, e.g. of blood pressure [31] or

cardio-respiratory coordination [32]. This corresponds to
a multiplicatively working treatment effect, a model first
proposed by James [33] and extensively discussed by Senn
and Brown [26,34], Chen and Cox [35], and Naranjo and
McKean [36]. Again, it is difficult to distinguish such a
treatment effect from RTM especially when data is col-
lected selectively, for examples from the tails of a given
distribution. This dilemma is quite illustrative in the
example of Gutenbruner and Ruppel [31], redrawn in Fig.
3.

Here, the authors attribute the observed changes to an
active process of the organism. However, building sub-
groups is a selection process by itself [37]. Thus RTM is
likely to be present in this example. Consequently, one
has to be aware, that also in situations where functional
normalisation is assumed, RTM cannot be ignored. Our
own simulation studies showed, that there is a high prob-
ability of erratiously deciding for normalisation when
extreme values are more likely to be sampled. For exam-
ple, if the correlation coefficient for repeated measure-
ments is taken as 0.7 this error probability increases from
more than 10% for a sample size of n = 20 to 55% for a
sample size of n = 100 [38].

A multiplicative model of treatment effects also might
help to solve Rogosa's problem when he considered pop-
ulations which are not in a steady-state (see above). As the
presence of a multiplicative factor alters the (uncondi-
tional) variance [26], unsteadiness can be interpreted as a
treatment effect which pushes the second measurement
values proportionally closer (or farther) to the mean
according to the distance of first measurement values.

What we found to be evident from a broad variety of
research papers is that the discussion of RTM affects all

rY Y1 2

rY Y1 2

rY Y1 2

rY Y1 2

Redrawing of the blood pressure curves of Gutenbrunner and Ruppel [31]Figure 3
Redrawing of the blood pressure curves of Gutenbrunner 
and Ruppel [31].
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fields of life and behavioral sciences. Thus we were quite
surprised, that methods to adjust for RTM are not very
popular in medical data analysis. This is even more afflict-
ing, if it is taken into account that especially in comple-
mentary medicine the discussion on appropriateness of
study designs is quite vital. We would therefore like to
encourage researchers to use methods like the one pre-
sented here (additional file 2) for the evaluation of
uncontrolled studies to raise their methodological qual-
ity.
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Additional file 1
SAS-Macro for the extended Mee-Chua t-test. This macro is written in 
SAS code and calculates all statistics given in our paper based on individ-
ual raw data in a repeated measurement situation and also gives a graph-
ical display of the test statistics. It was developed and tested under SAS 
version 9.1, although we believe it should give valid results in earlier 
releases. To run this macro it is necessary to have subscribed to the SAS 
modules BASE, STAT and SQL. Details how to run the macro can be 
found when opening the program code in an appropriate text editor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2288-8-52-S1.sas]

Additional file 2
MS-EXCEL sheet for the extended Mee-Chua t-test. This is an EXCEL 
2000 sheet which calculates all statistics given in our paper based on 
means, standard deviations, and correlations in repeated measurement 
situations. Moreover, it provides a graphical display of the test statistics.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2288-8-52-S2.xls]
Page 8 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2288-8-52-S1.sas
http://www.biomedcentral.com/content/supplementary/1471-2288-8-52-S2.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16059843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15617370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15617370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14670217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14670217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14670217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10371273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10371273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10371273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1925160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1925160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9261912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9261912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9261913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12902544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12902544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9236414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9236414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9236414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15969891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15969891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15761050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15761050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16431875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16431875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16431875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9147603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9147603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333621


BMC Medical Research Methodology 2008, 8:52 http://www.biomedcentral.com/1471-2288/8/52
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

30. Ragosa D: Myths about longitudinal research.  In The analysis of
change Edited by: Gottman JM. Mahwa NJ , Lawrence Erlbaum Ass;
1995:3-66. 

31. Gutenbrunner C, Ruppel K: Zur Frage der adaptiven Blutdruc-
knormalisierung im Verlauf von komplexen Bäderkuren
unter besonderer Berücksichtigung von Homogenisierung-
seffekten und Lebensalter.  Phys Rehab Kur Med 1992, 2:58-64.

32. Cysarz D, Heckmann C, Bettermann H, Kümmell HC: Effects of an
anthroposophical remedy on cardiorespiratory regulation.
Altern Ther Health Med 2002 , 8(6):78-83.

33. James KE: Regression toward the mean in uncontrolled clini-
cal studies.  Biometrics 1973, 29:121-130.

34. Senn SJ, Brown RA: Estimating treatment effects in clinical tri-
als subject to regression to the mean.  Biometrics 1985,
41(2):555-560.

35. Chen S, Cox C: Use of baseline data for estimation of treat-
ment effects in the presence of regression to the mean.  Bio-
metrics 1992, 48(2):593-598.

36. Naranjo JD, McKean JW: Adjusting for Regression Effect in
Uncontrolled Studies.  Biometrics 2001, 57:178-181.

37. Senn S: Regression to the mean.  Stat Meth Med Res 1997,
6(2):99-183.

38. Lüdtke R, Ostermann T: Regression zur Mitte - ein Thema in
der Krebsforschung?  Deutsche Zeitschrift für Onkologie 2005,
37:169-175.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2288/8/52/prepub
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12440843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12440843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4570667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4570667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4027329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4027329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1637982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1637982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252595
http://www.biomedcentral.com/1471-2288/8/52/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Notations
	A simple extension of Mee and Chua's test
	Examples
	Example 1
	Example 2
	Example 3

	Discussion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

