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Abstract We study how massive ghost-free gravity f (R)-
modified theories, MGFTs, can be encoded into generic
off-diagonal Einstein spaces. Using “auxiliary” connections
completely defined by the metric fields and adapted to
nonholonomic frames with associated nonlinear connection
structure, we decouple and integrate in certain general forms
the field equations in MGFT. Imposing additional nonholo-
nomic constraints, we can generate Levi-Civita, LC, con-
figurations and mimic MGFT effects via off-diagonal inter-
actions of effective Einstein and/or Einstein–Cartan grav-
ity with nonholonomically induced torsion. We show that
imposing nonholonomic constraints it is possible reproduce
very specific models of massive f (R) gravity studied in Cai
et al. (arXiv:1307.7150, 2013), Klusoňet al. (Phys Lett B
726:918, 2013), Nojiri and Odintov (Phys Lett B 716:377,
2012) and Nojiri et al. (JCAP 1305:020, 2013). The cosmo-
logical evolution of ghost-free off-diagonal Einstein spaces
is investigated. Certain compatibility of MGFT cosmology to
small off-diagonal deformations of �CDM models is estab-
lished.

1 Introduction

In [1–4], two models of nonlinear massive gravitational the-
ories including f (R) modifications were elaborated. Such
theories contain the benefits of the dRGT model [5,6] and
are free of ghost modes [7–10]. Advantages are that by
tuning the f (R) functional (on such modifications, see the
reviews of [11–13]), we can stabilize cosmological back-
grounds, and we can elaborate various types cosmological
evolution scenarios, unified description of inflation and late-
time acceleration, etc. The main goal of [1] is to perform
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a general analysis for arbitrary f (R) theory but Refs. [2–
4] provide solutions for explicit cosmological problems of
such theories. From general theoretical considerations, the
f (R) paradigm attempts to explain the universe’s accelera-
tion and dark energy/matter problems through infra-red (IR)
modifications of general relativity (GR) theory and under-
standing possible physical implications of the massive spin-
2 theory. In this paper, we generate a very specific model
of massive f (R) gravity constraining nonholonomically the
corresponding system of modified gravitational equations.
We shall analyze possible cosmological implications for such
special cases containing small off-diagonal corrections. On
the other hand, ultra-violet (UV) corrections are expected to
be of quantum origin (see Refs. [14,15] for possible effec-
tive actions). Cosmological implications of massive gravity
were also analyzed in the framework of modified gravity the-
ories, MGT, [16–23], and also cosmological models related
to bi-metric gravity [24–27].

It is the point of this paper to apply in MGFT the so-called
anholonomic frame deformation method, AFDM, [28–34]
for constructing generic off-diagonal exact solutions. Such a
method provides geometric techniques, which allows us to
integrate systems of partial differential equations, PDEs, with
functional and parametric dependencies for the Levi-Civita
(zero torsion) and nontrivial torsion configurations.

2 The geometric setup

We shall work on a pseudo-Riemannian manifold V, dim
V = 4, where a Whitney sum N is defined for its tangent
space T V, N : T V = hT V ⊕ vT V . Such a decomposi-
tion defines a nonholonomic (equivalently, non-integrable,
or anholonomic) horizontal (h) and vertical (v) splitting,
i.e. a nonlinear connection (N-connection) structure; see
details in [28–34]. The local coefficients {N a

i (u)}, where
N = N a

i (x, y)dxi ⊗ ∂/∂ya for certain local coordinates
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u = (x, y), or uα = (xi , ya), with h-indices i, j,= 1, 2
and v-indices a, b, . . . = 3, 4,1 define naturally N-adapted
frame and, respectively, dual frame structures, eν = (ei , ea)

and eμ = (ei , ea), where

ei = ∂/∂xi − N a
i (u)∂/∂ya, ea = ∂a = ∂/∂ya,

and ei = dxi , ea = dya + N a
i (u)dxi . (1)

In general, such local (co) bases are nonholonomic, i.e.
[eα, eβ ] = eαeβ − eβeα = W γ

αβeγ with the anholonomy

coefficients W b
ia = ∂a N b

i ,W a
ji = �a

i j = e j (N a
i ) − ei (N a

j ),

where �a
i j is the N-connection curvature. With respect to

(1), any metric tensor g can be expressed as a distinguished
metric, a d-metric,

g = gα(u)eα ⊗ eβ

= gi (x
k)dxi ⊗ dxi + ga(x

k, yb)ea ⊗ ea . (2)

For any prescribed N-connection and d-metric structures,
we can work equivalently with two linear connections,

(g,N)→
{∇ : ∇g = 0; ∇T = 0;

D̂ : D̂g = 0; hT̂ = 0, vT̂ = 0, hvT̂ �= 0,

where ∇ is the torsionless Levi-Civita, LC, connection and
D̂ = hD̂+ vD̂ is the so-called canonical distinguished con-
nection, the d-connection. The value D̂ preserves the h–v
splitting under parallel transport, but ∇ does not have such a
property. Nevertheless, there is a canonical distortion distin-
guished tensor, d-tensor, Ẑ = {T̂αβγ }, which is an algebraic
combination of the coefficients of the corresponding torsion
d-tensor T̂ = {T̂αβγ }. This defines a canonical distortion

relation D̂ = ∇ + Ẑ which is adapted to the N-splitting. The
torsions, T̂ and ∇T = 0, and curvatures, R̂ = {R̂α

βγ δ}
and∇R = {Rαβγ δ}, respectively, of D̂ and ∇ can be defined
and computed in standard coordinate free and/or coefficient
forms.

The Ricci tensors of D̂ and∇ are defined R̂ic = {R̂ βγ :=
R̂γ
αβγ } and Ric = {R βγ := Rγαβγ }. For instance, the Ricci

d-tensor R̂ic is characterized by four subsets of h–v N-
adapted coefficients,

R̂αβ = {R̂i j := R̂k
i jk, R̂ia := −R̂k

ika,

R̂ai := R̂b
aib, R̂ab := R̂c

abc}. (3)

Alternatively to the LC-scalar curvature, R := gαβ Rαβ,
we can introduce the scalar of canonical d-curvature, R̂ :=
gαβR̂αβ = gi j R̂i j + gab R̂ab.

2

1 We shall use the Einstein rule on summation on “upper-lower” cross
indices. Boldface letters are written in order to emphasize that a N-
connection spitting is considered on a manifold V = (V,N).
2 Any (pseudo) Riemannian geometry can be equivalently described
by both geometric data (g,∇) and (g,N,D̂), where the canonical dis-
tortion relations R̂ = ∇R+∇Z and R̂ic = Ric+Ẑic,with respective

3 Field equations in MGFT and N-adapted variables

We follow the model elaborated in [2–4] and reformulate it
on a nonholonomic manifold V enabled with N-connection
structure N and two d-metrics where g = {gαβ} is the dynam-
ical d-metric and q = {qαβ} is the so-called non-dynamical
reference metric. In our approach, we work with D̂ instead
of ∇ and R̂ is computed for g, the nonzero graviton mass is
denoted by μ, MP is the Planck mass.3

Let us consider the d-tensor
(√

g−1q
)μ
ν

computed as the

square root of gμρqρν, where

(√
g−1q

)μ
ρ

(√
g−1q

)ρ
ν

= gμρqρν, and

4∑
k=0

kβek

(√
g−1q

)
= 3− tr

√
g−1q− det

√
g−1q,

for some coefficients kβ. The values ek(X) can be defined for
any d-tensor Xμρ and trace X = [X ] := tr(X) = Xμμ, where

e0(X) = 1, e1(X) = X, 2e2(X) = X2 − [X2],
6e3(X) = X3 − 3X [X2] + 2[X3],
24e4(X) = X4 − 6X2[X2] + 3[X2]2 + 8X [X3] − 6[X4];
ek(X) = 0 for k > 4.

We shall use also the mass-deformed scalar curvature R̃ :=
R̂ + 2 μ2(3− tr

√
g−1q− det

√
g−1q).

The action S for MGFT is postulated in the form

S = M2
P

∫
d4u

√|g|[f(R̃)+ mL], (4)

where mL(g,N) is the Lagrange density for the matter fields.4

The energy-momentum d-tensor can be computed via N-
adapted variational calculus,

Footnote 2 continued
distortion d-tensors ∇Z and Ẑic, are computed for D̂ = ∇ + Ẑ. To
prove the decoupling of fundamental gravitational equations in gen-
eral relativity, GR, and various MGFTs is possible for d-metrics and
the canonical d-connection working with respect to N-adapted frames.
LC-configurations can be extracted from certain classes of solutions
of (modified) gravitational field equations if additional conditions are
imposed, resulting in zero values for the canonical d-torsion, T̂ = 0.
3 Our system of “N-adapted notations” is similar to that considered in
[35,36].
4 For simplicity, we consider matter actions mS = ∫

d4u
√|g|mL which

only depend on the coefficients of a metric field and not on their deriva-
tives. Here we note that the geometric constructions in this paper can
also be performed in similar form for cosmological models [2–4] but
must be supplemented by a number of formulas that would contain
nonholonomic constraints for additional physical assumptions. To work
with the action (4) is a more convenient choice for emphasizing in an
“economic” way all priorities of our geometric approach.
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mTαβ := − 2√|gμν |
δ(

√|gμν | mL)
δgαβ

= mLgαβ + 2
δ( mL)
δgαβ

. (5)

Applying such a calculus to S (4), with 1f(R̃) := df(R̃)/dR̃,
see details in [28–34], we obtain the field equations

R̂μν = ϒμν, (6)

where ϒμν = mϒμν + f ϒμν + μϒμν, for

mϒμν = 1

2M2
P

mTαβ,

fϒμν =
(

f
2 1f
− D̂2 1f

1f

)
gμν + D̂μD̂ν 1f

1f
,

μϒμν = −2μ2
[(

3− tr
√

g−1q− det
√

g−1q
)

−1

2
det

(√
g−1q

)]
gμν

+μ
2

2

{
qμρ

[(√
g−1q

)−1
]ρ
ν

+qνρ

[(√
g−1q

)−1
]ρ
μ

⎫⎬
⎭ . (7)

We note that the Bianchi identities for the data (g,N,D̂)
are given by introducing nonholonomic deformations ∇ =
D̂ − Ẑ into the standard relations ∇α(Rαβ − 1

2 gαβR) = 0
and ∇αTαβ = 0. Even, in general, as D̂αTαβ = Qβ �= 0,
such a Qβ [g,N] is completely defined by the d-metric and
the chosen N-connection structure. This is a consequence of
the nonholonomic structure. A similar “problem” exists in
Lagrange mechanics with non-integrable constraints when
the standard conservation laws do not hold true. A new class
of effective variables can be introduced using Lagrange mul-
tiples. We omit cumbersome formulas for the Bianchi den-
sities and conservation laws with nonholonomic constraints
written in the variables (g,N,D̂).

4 Encoding and decoupling properties of field equations
in MGFT

The generalized gravitational field equations written with
respect to N-adapted frames (6) are similar to those studied
in our works [28–36]. The main difference of such MTGs
is determined by a corresponding source which in this work
is considered in the form (7). Applying the AFDM, we can
construct very general classes of generic off-diagonal solu-
tions which encode both f -modifications and massive grav-
ity effects with nonzero μ.

For simplicity, we shall consider nonholonomic dynami-
cal systems in MGTs which via frame transforms and connec-
tion deformations can be transformed into certain effective
off-diagonal Einstein manifolds described by d-metrics with
one Killing symmetry on ∂/∂y3, i.e. the gravitational and
matter fields do not depend on variable y4.5 This is described
by the ansatz (2) with

gi = eψ(x
i ), ga = ha(x

i , t),

N 3
i = ni (x

k), N 4
i = wi (x

k, t). (8)

The effective source is chosen for a timelike coordinate y4 =
t, where

ϒμν → ϒ̂μν = diag[ϒ1 = ϒ2, ϒ2 = mϒ̃(xi )

+ f ϒ̃(xi )+ μϒ̃(xi ),

ϒ3 = ϒ4, ϒ4 = mϒ(xi , t)+ fϒ(xi , t)+ μϒ(xi , t)]
→ ϒ̌μν = (m�̌+ f �̌+ μ�̌ )gαβ. (9)

The assumption for the first parametrization in (9) is that
the matter fields and effective sources, ϒμ′ν′ = eμ

μ′e
ν
ν′ϒ̂μν,

are generated in N-adapted frames by two types of func-
tions/distributions ϒ̃(xi ) and ϒ(xi , t). The left labels refer
to contributions in such sources by f -modifications and/or
by massμ-modifications. In general, we get four independent
N-adapted coefficients of ϒμν = diag{ϒμ(xi , t)} for varia-
tions in (5) using (8). For cosmological applications, we can
model sources of matter fields by an energy-momentum ten-
sor for ideal fluids as in GR but with generic off-diagonal
metrics6 (encoding contributions from MGT). In N-adapted
frames,

Tαβ = pgαβ + (ρ + p)vαvβ (10)

is defined for a certain (effective) energy, ρ, and for certain
pressure densities, p, respectively, v̂α being the four-velocity
of the fluid for which vαvα = −1 and vα = (0, 0, 0, 1) in
N-adapted comoving frames/coordinates.

A tedious calculation of the N-adapted coefficients of the
Ricci d-tensor for D̂ computed for ansatz (8) and source (9)
transform (6) into a system of nonlinear PDEs:

ψ•• + ψ ′′ = 2 (mϒ̃ + f ϒ̃ + μϒ̃) = 2 ϒ̃, (11)

φ	h	3 = 2h3h4 (
mϒ + fϒ + μϒ) = 2h3h4 ϒ, (12)

n		i + γ n	i = 0, βwi − αi = 0, (13)

5 It is possible to construct metrics with non-Killing symmetries
depending on all spacetime coordinates. This requires a more advanced
and cumbersome geometric techniques; see the examples in [28–34,36]
and references therein.
6 Such metrics cannot be diagonalized by coordinate transforms
because for general N-connections the anholonomy coefficients, W γ

αβ,

are not zero.
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for αi = h	3∂iφ, β = h	3 φ	, γ = (ln |h3|3/2/|h4|)	, where

φ = ln |h	3/
√|h3h4||, and/ or � := eφ, (14)

is considered as a generating function. In the above formu-
las, we use the following notations for the partial derivatives:
ψ• = ∂1ψ = ∂ψ/∂x1, ψ ′ = ∂2ψ, h	3 =∂4h3. For simplic-
ity, we do not study in this paper d-metrics for which h	a = 0
and/orϒμ = 0 (such solutions in vacuum MGFT can be con-
structed, for instance, for f - and/orμ-modifications of black
hole solutions; see the examples in [28–34]). Here we note
that the relevant equations (12), (13) and the respective coef-
ficients can be computed in a similar form if corresponding
coordinates and indices are changed as 3 → 5 and 4 → 6,
which allows one to extend the method for extra dimensions.
Such recurrent formulas can be proven for an arbitrary finite
number of extra (non-) holonomic coordinates. For simplic-
ity, we analyze in this work only examples of off-diagonal
metrics for 4-d spacetimes.

The torsionless (Levi-Civita, LC) conditions are satisfied
if there are additionally imposed the conditions

w	i = (∂i − wi∂4) ln
√|h4|, (∂i − wi∂4) ln

√|h3| = 0,

∂kwi = ∂iwk, n	i = 0, ∂i nk = ∂kni . (15)

5 Exact off-diagonal solutions in MGFT

The system (11)–(13) possess an important property when
(1) ψ is the solution of a two-dimensional (2-d) Poisson
equation with source 2(...)(xk); h3 and h4 are related to φ
and the sources via (14). The N-connection coefficients are
determined correspondingly by integrating two times on t
the equations for ni and based on a system of first order alge-
braic equations for wi . For MGTs, the procedure of finding
locally anisotropic and inhomogeneous cosmological solu-
tions is described in [36].

We fix the sum of nontrivial constants �̌ = m�̌ + f �̌+
μ�̌ and re-define the generating function, �←→ �̌, using
formulas

�̌�̌2 =
[
�2|ϒ | +

∫
dt �2|ϒ |	

]
,

�2 = |�̌||ϒ |2
∫

dt �̌2|ϒ |, (16)

where (�2)	/|ϒ | = (�̌2)	/�̌. In order to solve the second
equation in (15), (∂i − wi∂4) ln

√|h3| = 0, the generating
function�must be chosen to satisfy the conditions (∂i�)

	 =
∂i�
	.We can parameterize the solutions for the system (12)

and (14) in the form h3[�̌] = �̌2

4|�̌| and h4[�̌] = (�̌	)2
�̌�2 =

|�̌	 ϒ |2
�̌|�̌| ∫ dt �̌2 |ϒ | .

We find in explicit form solutions of algebraic equations
in (13) and the conditions ∂kwi = ∂iwk from the second line
in (15) if

wi = ∂i�/�
	 = ∂i Ã, (17)

with a nontrivial function Ã(xk, t) depending on generating
function � via a first order Pfaff system. Integrating two
times on t in (13), we express

nk = 1nk + 2nk

∫
dy4 h4/(

√|h3|)3, (18)

where 1nk(xi ) and 2nk(xi ) are integration functions. To
generate LC-configurations we take 2nk = 0 and 1nk =
∂kn(xi ).

Putting together the above formulas, we conclude that
generic off-diagonal quadratic elements

ds2 = eψ(x
k ,[ m ϒ̃+ f ϒ̃+ μϒ̃])[(dx1)2 + (dx2)2]

+ �̌
2[dy3 + ∂kn dxk]2

4| m�̌+ f �̌+ μ�̌|
± |[�̌	] [ mϒ + fϒ + μϒ]|2
| m�̌+ f �̌+ μ�̌| 32 ∫

dt �̌2 | mϒ + fϒ + μϒ |
×(dt + ∂i Ã[�̌] dxi )2 (19)

determine generic off-diagonal solutions of the field equa-
tions in MGFT. For well-defined assumptions on the Killing
symmetry on ∂3 and imposed at the end zero torsion condi-
tions such metrics belong to the integral variety of the sys-
tem (11)–(15). We can generate exact solutions in “pure”
f -modified gravity if put μϒ = μ� = 0. If� �= 0, we can
nonholonomically induce a nontrivial μϒ . Inverse nonlinear
transforms are possible if we change mutually the left labels
μ with f .

It should be noted that above classes of metrics can be
extended to describe exact solutions with nonholonomically
induced torsion T̂ = {T̂αβγ [�̌, ϒ̃, ϒ, �̌]} of D̂. We substi-

tute in (19) ∂kn→ nk(xi , t) ( 18) and take instead of (17) the
valuewi = ∂i�/�

	
. It is possible to re-write all coefficients

in terms of the generating function �, or in terms of �̌. The
LC conditions (15) are not satisfied for such configurations.7

6 On properties of off-diagonal solutions in MGFT
and GR

The metrics (19) describe locally anisotropic and inhomoge-
neous spacetimes determined by certain classes of generating
functions �̌(xi , t) and ψ(xk, [ mϒ̃ + f ϒ̃ + μϒ̃]); sources

7 Such torsion fields are different from those in Einstein–Cartan, gauge
and/or string gravity where additional field equations and sources are
considered to define the torsion dynamics.
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mϒ(xi , t), f ϒ(xi , t),μ ϒ(xi , t) and mϒ̃(xi ), f ϒ̃(xi ),μ ϒ̃

(xi ), and integration functions like ∂kn(xk); and effective
cosmological constants m�̌, f �̌,μ �̌, which can be consid-
ered as integration constants. These values and one of the ±
should be fixed such that they are compatible with the obser-
vational data. We can generate inhomogeneous cosmological
metrics taking certain limits �̌(xi , t)→ �̌(t) and for respec-
tive sourcesϒ(xi , t)→ ϒ(t). Such solutions generalize the
class of known anisotropic solutions of Bianchi cosmology
to configurations; the coefficients of metrics are not subject
to typical symmetric conditions for those spacetimes and, in
our approach, may encode geometric and physical data for
MGFT interactions.

Fixing, for instance, μ�̌ = μϒ̃ = μϒ = 0, i.e. for the
zero mass of the graviton, the metrics (19) reproduce certain
results of f ( R̂) gravity and cosmology theories; see [36] and
references therein. So, at least for μ = 0, by introducing a
conformal factor ω before h3, h4 in the above formulas, re-
defining the generating functions, and for small off-diagonal
coefficients, we reproduce nonholonomic deformations of
�CDM universes.

The metrics (19) do not have, in general, a simple physi-
cal interpretation. Choosing the integration constants, we can
extract (for instance) Kasner type solutions with dynamical
chaos etc.; see examples in [28–34] and references therein.
A rigorous study of nonperturbative and nonlinear effects
of such generic off-diagonal dynamical systems even for
small μ is necessary (this is a matter of further research).
Here we note that the nonholonomic nonlinear coupling
with re-definition of generating functions by formulas (16),
and by off-diagonal coefficients of (19), encodes geometric
and physical data for MGFT into effective Einstein spaces.
This follows from the fact that such solutions are equiv-
alent (up to frame/coordinate transforms) to the equations
Řμν = �̌ǧαβ. This motivates equivalent re-definitions of the
sources ϒμν → ϒ̂μν → (m�̌ + f �̌ + μ�̌ )ǧαβ as we
supposed in (10). Considering solitonic configurations, we
can polarize or “open” for a period of time some modes of
massive gravity and then “switch off” such interactions and
“pump” certain induced f -modified effects into off-diagonal
coefficients of Einstein metrics with redefined cosmological
constants and generating functions.

7 Scale factors and off-diagonal deformations of FLRW
metrics

Let us introduce a new time coordinate t̂ , where t = t (xi , t̂)
and
√|h4|∂t/∂ t̂ , and a scale factor â(xi , t̂)when the d-metric

(19) can be represented in the form

ds2 = â2(xi , t̂)[ηi (x
k, t̂)(dxi )2 + ĥ3(x

k, t̂)(e3)2 − (̂e4)2],
(20)

where ηi = â−2eψ, â2ĥ3 = h3, e3 = dy3 + ∂kn dxk, ê4 =
d̂t +√|h4|(∂i t + wi ). Small off-diagonal deformations can
be modeled with a small parameter ε,with 0 ≤ ε < 1,where

ηi � 1+ εχi (x
k, t̂), ∂kn � εn̂i (x

k),√|h4|(∂i t + wi ) � εŵi (x
k, t̂). (21)

We can choose a subclass of generating functions and
sources when â(xi , t̂)→ â(t), ĥ3(xi , t̂)→ ĥ3(̂t) etc. Such
conditions, or conditions of type (21), have to be imposed
after a locally anisotropic solution was constructed in explicit
form. This results in new classes of solutions even in diag-
onal limits because of the generic nonlinear and nonholo-
nomic character of off-diagonal systems in MGFT. For
ε → 0 and â(xi , t̂) → â(t), we obtain scaling factors
which are very different from those in Friedmann–Lemaître–
Robertson–Walker, FLRW, cosmology with GR solutions.
Nevertheless, they mimic such cosmological models with
re-defined interaction parameters and possible small off-
diagonal deformations of cosmological evolution for mod-
ified gravity theories as we analyzed in detail in [36]. In
this work, we consider effective sources encoding contri-

butions from massive gravity, with â2ĥ3 = �̌2

4|�̌| , where

�̌2

�2 = |
mϒ+ f ϒ+ μϒ |+∫

dt �2| mϒ+ f ϒ+ μϒ |	
m�̌+ f �̌+ μ�̌

.
The generating functions, sources, and parameters in these

formulas determine integral varieties (i.e. general solutions)
of certain systems of nonlinear PDE. Such values have to
be fixed, which results in certain physical values compatible
with experimental data. Following the procedure from sec-
tion 5 of [36], we can derive a corresponding effective field
theory; see also references therein.

8 Reconstructing off-diagonal cosmological models
in MGFT

Let us consider a model when the gravitational Lagrange
density (4) is chosen f(R̃) = R̂ + M(μT), where
μT := T+2 μ2(3 − tr

√
g−1q − det

√
g−1q). We denote

1M := dM/d μT and Ĥ := â	/̂a for a limit â(xi , t̂)→ â(t)
taken for a solution (20) and consider that an observer is in a
nonholonomic basis (1) with N a

i = {ni , wi (t)} for a nontriv-
ial off-diagonal vacuum with effective polarizations ηα(t). It
should be emphasized that â(t) is different from å(t) for a
standard FLRW cosmology.

The cosmological scenarios are tested in terms of the red-
shift 1 + z = â−1(t) for and μT = μT (z), with a new
“shift” derivative where (for instance, for a function s(t))
s	 = −(1 + z)H∂z . We can derive MGFT off-diagonal
deformed FLRW equations following the procedure consid-
ered for the formulas (63) and (64) in [36]. It is described by
a set of three equations
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3Ĥ2 + 1

2
[f(z)+M(z)] − κ2ρ(z) = 0,

−3Ĥ2 + (1+ z)Ĥ(∂z Ĥ)− 1

2
{f(z)+M(z)

+3(1+ z)Ĥ2} = 0,

ρ(z) ∂z f = 0. (22)

Re-defining the generating function, we fix the condition
∂z

1M(z) = 0 and satisfy the condition ∂z f = 0, which
allows nonzero densities in certain adapted frames of refer-
ences. The functional M(μT) encodes degrees of freedom of
mass gravity for the evolution of the energy density where
ρ = ρ0a−3(1+�) = ρ0(1+ z)a3(1+�). This is taken for the
dust matter approximation � and ρ ∼ (1+ z)3.

Using (22), it is possible to elaborate reconstruction pro-
cedures for nontrivial μ in a form similar to that in [36–39].
For instance, it is well known that any FLRW cosmology
can be realized in a specific f (R) gravity. Here we ana-
lyze how specific MGFTs and the FLRW cosmology can
be encoded into off-diagonal deformations. Let us introduce
the “e-folding” variable ζ := ln a/a0 = − ln(1+ z) consid-
ered instead of the cosmological time t. We take f(R̃) as in
(4), use ϒ̂(xi , ζ ) = mϒ(xi , ζ )+ fϒ(xi , ζ )+ μϒ(xi , ζ )

instead of (10) and parameterize the geometric objects with
dependencies on (xi , ζ ) (in particular, only on ζ ), for corre-
sponding generating functions (16), where ∂ζ = ∂/∂ζ with
s	 = Ĥ∂ζ s for any function s. The matter energy density ρ
is (22).

With respect to N-adapted frames(1), we can repeat all
computations leading to Eqs. (2)–(7) in [37] and prove that
MGFTs with f(R̃) realize a FLRW like cosmological model.
The nonholonomic field equation corresponding to the first
FLRW equation is

f(R̃) = (Ĥ2 + Ĥ ∂ζ Ĥ)∂ζ [f(R̃)]
−36Ĥ2[4Ĥ + (∂ζ Ĥ)2 + Ĥ∂2

ζ ζ Ĥ ]∂2
ζ ζ f(R̃)]+κ2ρ.

Introducing an effective quadratic Hubble rate, κ̃(ζ ) :=
Ĥ2(ζ ), where ζ = ζ(R̃) for certain parameterizations, this
equation transforms into

f = −18κ̃(ζ )[∂2
ζ ζ κ̃(ζ )+ 4∂ζ κ̃(ζ )] d2f

dR̃2

+6

[
κ̃(ζ )+ 1

2
∂ζ κ̃(ζ )

]
df

dR̃

+2ρ0a−3(1+�)
0 a−3(1+�)ζ(R̂). (23)

Off-diagonal cosmological models are determined by metrics
of type (20), t → ζ, and a functional f(R̃) used for comput-
ing ϒ̂ and �̌. Such nonlinear systems can be described effec-
tively by the field equations for an (nonholonomic) Einstein
space Řα

β = �̌δαβ. The value df/dR̃ and higher derivatives

vanish for any functional dependence f(�̌) with ∂ζ �̌ = 0.

As we work with off-diagonal configurations, the recovering
procedure simplifies substantially in such cases.

9 An example of reconstruction of MGFT and
nonholonomically deformed Einstein spaces
reproducing the � CDM era

We consider any â(ζ ) and Ĥ(ζ ) determined by an off-
diagonal solution (20), with respect to correspondingly N-
adapted frames. The analog of the FLRW equation for
�CDM cosmology is

3κ−2 Ĥ2 = 3κ−2 H2
0 + ρ0â−3

= 3κ−2 H2
0 + ρ0a−3

0 e−3ζ , (24)

where H0 and ρ0 are fixed to have certain constant values.
Such assumptions are considered after the coefficients of off-
diagonal solutions are found and where the dependencies on
(xi , ζ ) are changed into dependencies on ζ . The values with
“hat” are generated via a corresponding re-definition of the
generating functions and the effective sources. The first term
on the r.h.s. is related to an effective cosmological constant
�̌ (9) which appears in re-definition (16). For this model,
the second term in (24) describes, in general, an inhomoge-
neous distribution of cold dark mater (CDM). The similarity
with the diagonalizable cosmological models in GR is kept
if �̌ = 12H2

0 to survive in the limit wi , ni → 0, for certain
approximations of type (21).

The effective quadratic Hubble rate and the modified
scalar curvature, R̃, are computed using (24), respectively,

κ̃(ζ ) := H2
0 + κ2ρ0a−3

0 e−3ζ and

R̃ = 3∂ζ κ̃(ζ )+ 12κ̃(ζ ) = 12H2
0 + κ2ρ0a−3

0 e−3ζ .

Equation (23) transforms into

X (1− X)
d2f
dX2 + [χ3 − (χ1 + χ2 + 1)X ] df

dX
−χ1χ2f = 0, (25)

for certain constants, for which χ1 + χ2 = χ1χ2 = −1/6
and χ3 = −1/2 where 3ζ = − ln[κ−2ρ−1

0 a3
0(R̃ − 12H2

0 )]
and X := −3 + R̃/3H2

0 . The solutions of such equations
with constant coefficients and for different types of scalar
curvatures were found in [37] and [36] as Gauss hyper-
geometric functions. Similarly, we denote f = F(X) :=
F(χ1, χ2, χ3; X), where for some constants A and B,

F(X) = AF(χ1, χ2, χ3; X)+ B X1−χ3 F(χ1 − χ3 + 1,

χ2 − χ3 + 1, 2− χ3; X).

This provides a proof of the statement that MGFT can indeed
describe �CDM scenarios without the need of an effective
cosmological constant.
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10 Final remarks

One of the most interesting results of applications of the
AFDM [28–34] to nonlinear MGFTs systems is that via a re-
definition of generating functions and effective sources we
can mimic f modifications and massive gravity effects. This
is possible by modeling modified theories via off-diagonal
interactions in effective Einstein spaces. Such models are
generically nonlinear, parametric, and are considered with
respect to nonholonomic frames which allows one to decou-
ple and integrate the associated PDEs in general forms.

There is a proof of the absence of FLRW cosmology in
massive gravity (see section 2.1 in [40]). The proof follows
for homogeneous and isotropic ansatz for metrics in certain
models of massive theory. In this paper, we studied more gen-
eral constructions both for modified gravity functionals and
off-diagonal locally anisotropic and inhomogeneous met-
rics. Our solutions describe massive gravity effects encoded
both in effective matter sources and in off-diagonal defor-
mations. Even for very special cases when f (R̃) is linear
on R̃ such contributions are not trivial because such a scalar
curvature is computed not for the Levi-Civita connection but
for a nonholonomically deformed ansatz. Considering holo-
nomic configurations, we can reproduce the general results
[1] or model cosmological scenarios from [2–4]. For nonlin-
ear systems, it is very important when certain assumptions
and additional constraints are considered. If some “simplifi-
cations” or approximations are made at the very beginning,
we formulate certain conclusions about properties of a theory
and even follow a procedure of finding of solutions. But we
can also eliminate a number of other types of solutions and
various nonlinear characteristics. In our approach, we elab-
orated a more general and more realistic model with generic
off-diagonal effects with certain stability configurations and
off-diagonal modifications of FLRW cosmology generated
by effective sources in nonlinear massive gravity.
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