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Abstract

Background: PHIS transposon superfamily belongs to DNA transposons and includes PIF/Harbinger, ISL2EU, and Spy
transposon groups. These three groups have similar DDE domain-containing transposases; however, their coding
capacity, species distribution, and target site duplications (TSDs) are significantly different.

Results: In this study, we systematically identified and analyzed PHIS transposons in 836 sequenced eukaryotic
genomes using transposase homology search and structure approach. In total, 380 PHIS families were identified in
112 genomes and 168 of 380 families were firstly reported in this study. Besides previous identified PIF/Harbinger,
ISL2EU, and Spy groups, three new types (called Pangu, NuwaI, and NuwaII) of PHIS superfamily were identified;
each has its own distinctive characteristics, especially in TSDs. Pangu and NuwaII transposons are characterized by
5′-ANT-3′ and 5′-C|TNA|G-3′ TSDs, respectively. Both transposons are widely distributed in plants, fungi, and animals;
the NuwaI transposons are characterized by 5′-CWG-3′ TSDs and mainly distributed in animals.

Conclusions: Here, in total, 380 PHIS families were identified in eukaryotes. Among these 380 families, 168 were
firstly reported in this study. Furthermore, three new types of PHIS superfamily were identified. Our results not only
enrich the transposon diversity but also have extensive significance for improving genome sequence assembly and
annotation of higher organisms.
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Background
Transposable elements (TEs) are fragments of DNA that
can move from one site to another in a genome [1, 2].
TEs are classified into two classes (class 1 and class 2)
according to their mechanism of transposition. The
transposition mechanism of class 1 elements can be de-
scribed as copy-and-paste mode, whereas class 2 trans-
posons can be transposed by cut-and-paste mechanism.
Recently, more and more genome sequencing revealed
that TEs constitute the largest components of most
eukaryotic genomes [2–13]. TEs not only have signifi-
cant impact on the evolution of the host genomes and
biological complexity but also are challenges for host
genome sequencing, assembly, and annotation due to
their repeatability. Thus, the knowledge about TEs char-
acteristics and categories will promote the development
of genomics.
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In the past decade, many studies focused on identifica-
tion, annotation, and function of TEs. So far, huge
amounts of TEs have been identified and annotated. For
example, 42 class 1 superfamilies and 19 class 2 super-
families were annotated and cataloged in the RepBase
database. However, the number of reported TEs could
be just the tip of the iceberg. There are a larger number
of TEs to be annotated due to their great diversification.
For instance, 658 families were classified into unknown
TEs in the silkworm; 163 unknown TE families in the
maize and about 0.38 % of mouse genome sequences are
unknown TEs [12–14]. Thus, the work of identification
and annotation of TEs is far from finished.
Recently, we have identified a new group of cut-and-

paste transposons designated as Spy [15]. Spy transpo-
sons are distinct from all other groups of DNA transpo-
sons by their strong insertion preference within the
AAATTT motif and the lack of target site duplications
(TSDs) upon insertion. In addition, we showed that PIF/
Harbinger, ISL2EU, and Spy are evolutionarily related
and share a preference for insertion into AT-rich target
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sequences [15]. For instance, the ISL2EU transposons
are characterized by 5′-AT-3′ TSDs and the PIF/Harbinger
transposons by 5′-TWA-3′ [16, 17]. Thus, these three
groups PIF/Harbinger, ISL2EU, and Spy were classified into
the same superfamily that is designated as “PHIS”. The
PHIS transposon superfamily is high polymorphism in the
target sequences, coding capacity, and conserved motifs of
transposase [15]. It is common to find some distinct
groups within a given superfamily. Previously, variable nu-
cleotide composition and length of TSDs were found in
some superfamilies [16–18]. However, the detailed diversi-
fication of PHIS transposon superfamily still remains
unclear.
Here, we systematically identified and analyzed PHIS

transposons in 836 sequenced eukaryotic genomes using
transposase homology search combined with structure
approach. Totally, 380 PHIS families including 212 pre-
viously reported families and 168 unpublished families
were identified in this study. The 380 PHIS families are
classified into six groups including three previously re-
ported groups (PIF/Harbinger, ISL2EU, and Spy) and
three new groups, called Pangu, NuwaI, and NuwaII.
Each new group has its own particular characteristics,
especially in TSDs.

Results
The landscape of PHIS transposons in eukaryotic
genomes
To investigate the detailed diversification and evolution
of PHIS superfamily in eukaryotes, we systematically
identified and analyzed the characteristics and distribu-
tion of PHIS transposons in 836 eukaryotic genomes
using transposase homology search and structure ap-
proach. Finally, we identified 380 PHIS transposon fam-
ilies. Furthermore, each of the PHIS consensus sequence
defined in this study was subject to homology search
against RepBase (as of October 20, 2014) and National
Center for Biotechnology Information (NCBI) non-
redundant (nr) nucleotide database using Censor and
BlastN program. The results of these searches showed
that 168 of 380 PHIS families were not reported, and
other TEs (212) had been released and cataloged in
RepBase, NCBI, or published papers [15].
Based on the characteristics (TSDs, coding capacity,

and secondary structure of transposase, etc.) of these
380 families, we found that 214 families belong to the
PIF/Harbinger transposon group (Additional file 1: Table
S1). Among the 214 families, 80 families had been previ-
ously identified and cataloged in RepBase, and 134
families were firstly identified in this study. These 214
families shared the following characteristics. (1) The
TSD sequence is 5′-TWA-3′ tri-nucleotide (‘W’ repre-
sents A or T nucleotide) (Fig. 1). (2) Most candidate au-
tonomous elements contain two open reading frames
(ORFs), one ORF encoding the DDE and helix-turn-
helix (HTH) motif-containing transposase and the other
ORF encoding a DNA-binding protein with a Myb/
SANT domain. The potential active families of PIF/Har-
binger group were defined as those including both two
intact ORFs. Finally, we identified 88 potential active
families in the eukaryotic genomes (Additional file 1:
Table S1 and Fig. 2b). (3) The TIR (terminal inverted re-
peat) lengths of different PIF/Harbinger families are
highly variable (5–1042 bp), but the lengths of most
TIRs (~93 %) are less than 60 bp, and the first nucleo-
tide of TIRs is usually A or G (Fig. 1). (4) The average
length of consensus sequences of candidate autonomous
is ~4124 bp. (5) These families are distributed in 75 spe-
cies including plants, fungi, and animals. The above-
described characteristics of PIF/Harbinger transposons
are consistent with previous reports [15, 16, 19].
Meanwhile, 25 families belong to ISL2EU group.

Among these 25 families, 8 families were firstly identi-
fied in this study. The others had been cataloged in
RepBase (Additional file 1: Table S2). These families
shared the following characteristics. (1) The TSDs are
5′-AT-3′ di-nucleotide; however, there is a conserved
single A nucleotide in the flank of 5′ terminal of TSDs
and a conserved single T nucleotide in the flank of 3′
terminal of TSDs (Additional file 2: Figure S1). Thus, we
speculated that the target site sequence of ISL2EU trans-
posons is A|AT|T (where ‘|’ marks the cut site), the ana-
lysis of paralogous empty sites further confirmed the
target site sequence of ISL2EU. Additional file 2: Figure
S2 shows the possible generation mechanism of this
TSDs. (2) Most autonomous candidate transposons of
ISL2EU contain two ORFs, one ORF encoding the DDE,
HTH, and THAP domain-containing transposase, the
other ORF encoding a DNA-binding protein with a YqaJ
exonuclease domain. Similar to a standard mentioned
before, TEs with two intact ORFs are defined as the po-
tential active transposons. Thus, 12 potential active fam-
ilies of ISL2EU group were identified in the eukaryotic
genomes (Additional file 1: Table S2 and Fig. 2b) (3).
The TIR length ranges from 6 to 259 bp, and the first
two nucleotides of TIRs are usually “GG” di-nucleotide
(Fig. 1). (4) The average length of consensus sequences
of autonomous elements is ~4840 bp. (5) These families
are distributed in 14 species. All these species belong to
animals.
In this study, we found 54 families that belong to the

Spy transposons; however, we did not identify any new
Spy transposon family. All these families have been iden-
tified in previous study, and the characteristics of Spy
transposons were also shown previously [15]. Besides
the above three identified PHIS groups (PIF/Harbinger,
ISL2EU, and Spy), we also found three new types of
PHIS transposons distinct from the previous PHIS



Fig. 1 Sequence logos of TIRs (10 bp) and TSDs (10 bp) for each PHIS group. The TIRs and TSDs are underlined. These TIRs and TSDs sequences
are derived from all full-length copies of all species. The individual with both complete TIRs was regarded as a full-length copy
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transposons in TSDs, and these new types transposons
are called Pangu, NuwaI, and NuwaII, respectively.

Characterization and distribution of Pangu transposons
Thirty four Pangu families were identified in this study
(Additional file 1: Table S3). The length of TIRs in these
families varies from 11 to 40 bp, and the first two nucle-
otides of TIRs are usually “AG” and “GG” di-nucleotide
(Fig. 1). The average consensus sequence length of au-
tonomous candidates is ~3487 bp. Most autonomous
candidates of Pangu transposon contain two ORFs, one
ORF encoding the DDE motif-containing transposase
and without any other domains. Meanwhile, we did not
detect any known motifs in the other ORF. Given that
the potential active families should contain the two
intact ORFs, we identified two potential active families
of Pangu group in the eukaryotic genomes (Additional
file 1: Table S3 and Fig. 2b). Secondary structure predic-
tion of Pangu DDE-containing transposases suggests
that the first D is located between two beta-sheets, the
second D is located between a beta-sheet and an alpha-
helix, and the last E is present within an alpha-helix
(Fig. 3). This result is consistent with the eukaryotic PIF/
Harbinger and ISL2EU transposons [15]. The results of
paralogous empty site confirmed that the TSDs of these
families are 5′-ANT-3′ (‘N’ represents A, T, C, or G nu-
cleotide) (Fig. 3). This characteristic of TSDs is signifi-
cantly different from eukaryotic PIF/Harbinger, ISL2EU,
and Spy transposons but consistent with the bacterial
IS5 transposons. Thus, both Pangu and IS5 transposons
could belong to the same group or were derived from
the same ancient element.
These 34 Pangu transposons are distributed in 15

eukaryotic genomes. These species include two coleop-
terans, one dipteran, one arachnidan, one molluscan,
one hydrozoan, one anthozoan, two ascomycetes, three
basidiomycetes, one heterokontophyta, and two algae
(Fig. 2). And these species are widely distributed in
plants, fungi, and animals. Thus, the Pangu transposons
could be ancient elements in the eukaryotic genomes.
To estimate the abundance of Pangu transposons in the
eukaryotic genomes, the consensus sequence of each
family of Pangu was used as query in BlastN (e < 10−5)
search against the corresponding genome. A copy for
the same family was defined by e value less than e−5,
length larger than 50 bp, and nucleotide identity larger
than 80 %. Finally, we identified 3270 copies of Pangu
group in the eukaryotic genomes (Additional file 1: Table
S3, Additional file 3: Table S4, and Fig. 2c).

Characterization and distribution of NuwaI transposons
Twenty-three NuwaI families were identified in this
study (Additional file 1: Table S5). The results of paralo-
gous empty site confirmed that the TSDs of these fam-
ilies are 5′-CWG-3′ (‘W’ represents A or T nucleotide)
(Fig. 4). This characteristic is significantly different from
previously the identified PIF/Harbinger, ISL2EU, and Spy
transposons (AT-rich TSDs). Most autonomous candi-
dates of NuwaI transposons contain two ORFs, one ORF
encoding the DDE motif-containing transposase and
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Fig. 2 Distribution, abundance, and potential active families of PHIS transposons. a Taxonomic distribution of PHIS transposon groups across the
eukaryotic tree of life. Different colored boxes indicate presence of the corresponding group, and flanking numbers represent the number of
species. b The potential active families of each group in the eukaryotes. c The number of copies of each group in the eukaryotes
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without any other domain, the other ORF encoding a
DNA-binding protein with a Myb/SANT domain. We
identified 11 potential active families in the eukaryotic
genomes because these TEs contain the two intact ORFs
(Additional file 1: Table S5 and Fig. 2b). The secondary
structure of NuwaI transposase is very similar to the
PIF/Harbinger, ISL2EU, and Pangu transposases. For in-
stance, the first D is located between two beta-sheets,
the second D is typically between a beta-sheet and an
alpha-helix, and the last E occurs within an alpha-helix
(Fig. 4). The TIR lengths of NuwaI families range from
12 to 61 bp, and the first three nucleotides of TIRs are
usually ‘GGG’ tri-nucleotide (Fig. 1). The average
length of consensus sequences of autonomous candi-
dates is ~4462 bp. These NuwaI transposons are dis-
tributed in 16 animal genomes. These species include
12 bony fish, 1 coleopteran, 1 crustacean, 1 molluscan,
and 1 anthozoan (Fig. 2a). However, these species are
distributed only in the kingdom of animals. Thus, the
NuwaI transposons could be relatively younger ele-
ments in the eukaryotes. Finally, 3845 copies of NuwaI
group were identified in the eukaryotic genomes. The
genomic abundance and copy number of each NuwaI
family in each species were shown in Fig. 2c, Additional
file 1: Table S5, and Additional file 3: Table S6.

Characterization and distribution of NuwaII transposons
There are 30 out of 380 families which belong to the
NuwaII families (Additional file 1: Table S7). According
to the paralogous empty site, we cannot judge that the
TSDs of NuwaII group are 3 bp (TNA) or 5 bp
(CTNAG) (Fig. 5). However, most PHIS elements are
typically associated with 3-bp TSD. Thus, the TSDs of
NuwaII elements are most likely 3-bp TSDs. Meanwhile,



TCACGTAATTATTAGGTGCGTTCAGAGTTGTACCATTGG
AAAAAGACTTATTAGGTGCGTTCAGAGTTGTACCATTGG
CTTAAAAACCATTAGGTGCGTTCAAAGTTGTACCGTTGG
AAGTTCAGATACTAGGTGCGTTCAGAGTTGTACCGTTGG
AGGTGGATATAATAGGTGCGTTCAGAGTTGTACCGTTGG
AAAGTATAATAATAGGTGCGTTCGGAGTTGTACCGTTGG
TTTCACTGTTATTAGGTGCGTTCAGAGTTGTACCGTTAG
CCTCTATTACATTAGGTGCGTTCAGAGTTGTACCGTTGG
AAAATGACATAATAGGTGCGTTCAGAGTTGTACCGTTGG
TACTAAAAACAATAGGTGCGTTCAGAGTTGTACCGTTGG
CTCGTGTAACAATAGGTGCGTTCAGAGATGTACCGTTGG
ACCGAGTGTTAATAGGTGCGTTCAGAGTTGTACCGTTGG
ACCGAGTGTTAATAGGTGCGTTCAGAGTTGTACCGTTGG

AATCTGTTGAACCCTGAACGCACCTATTGTTTA
AATCTGTTGAACGCTGAACGCACCTATTGTCTG
AATCTGGTGAACTCTGAACGCACCTATTGTCAA
AATCTGGTGAACTCTGAACGCACCTACTATAGT
AATCTGGTGAACTCTGAACGCACCTATTATGAT
AATCTGGTGAATTCTGAACGCACCTAATGTAAT
AATCTGGTGAACTCTGAACGCACCTAATGATTC
AATCTGGTGAACTCTGAACACACCTATTAATGA
AATCTGGTGAACTCTGAACGCACCTAATATTAT
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there is a conserved single C nucleotide in the flank of
5′ terminal of TSDs and a conserved single G nucleotide
in the flank of 3′ terminal of TSDs. Thus, the target of
NuwaII is preferentially C|TNA|G (‘N’ represents A, T,
C, or G nucleotide, ‘|’ represents the cut site).
The transposase of NuwaII is very similar to that of

NuwaI in the coding capacity, conserved motifs, and
second enzyme structure. For instance, the most autono-
mous elements of NuwaII transposons contain two
ORFs, one ORF encoding the DDE motif-containing
transposase (Additional file 2: Figure S3), and the other
ORF encoding a Myb/SANT domain-containing protein.
Twenty-two potential active NuwaII families with the
two intact ORFs were identified in the eukaryotic
genomes (Additional file 1: Table S7 and Fig. 2b). In the
secondary structure of NuwaII transposase, the first D is
located between two beta-sheets, the second D is typic-
ally between a beta-sheet and an alpha-helix, and the last
E occurs within an alpha-helix (Fig. 5). The average
length of consensus sequences of autonomous candi-
dates is ~4685 bp; TIRs length of each family ranges
from 13 to 46 bp, and the first two nucleotides of most
TIRs are conserved GG. These NuwaII transposons are
distributed in 12 species, including 1 turtle, 1 amphibian,
3 bony fishes, 1 amphioxus, 1 tunicate, 1 anthozoan, 2
basidiomycetes, 1 monocot, and 1 eudicot (Fig. 2a).
Meanwhile, these species are also distributed in the
kingdoms of plants, fungi, and animals. Thus, the



AATAAATCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TAATGATCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AAACAATCAGGGCTGCGTTTCCCGATAACGATTGATCTT
AACTGGCCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TACTGCTCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TGACAACCTGGGCTGCGTTTCCCGATAACGATTGATCTT
ACTAGTTCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TACTGACCAGGGCTGCGTTTCCCGATAACGATTGATCTT
GCATGTTCAGGGCTGCGTTTCCCGATAACGATTGATCTT
CACCTGCCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TCACGGCCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TATTGACCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AAATGTGCTGGGCTGCGTTTCCCGATAACGATTGATCTT
TAATGACCAGGGCTGCGTTTCCCGATAACGATTGATCTT
GAACGTCCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AATCGCTCTGGGCTGCGTTTCCCGATAACGATTGATCTT
ATCTGTCCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TATCAACCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TTTAAATCAGGGCTGCGTTTCCCGATAACGATTGATCTT
TTTTTTTCTGGGCTGCGTTTCCCGATAACGATTGATCTT
GATAGTTCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AAACGTCCAGGGCTGCGTTTCCCGATAACGATTGATCTT
AATCATTCAGGGCTGCGTTTCCCGATAACGATTGATCTT
AATGGACCAGGGCTGCGTTTCCCGATAACGATTGATCTT
AAAAGATCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AACCATTCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AACGGTCCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AATTGAACTGGGCTGCGTTTCCCGATAACGATTGATCTT
AAACAGCCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AAAGGACCAGGGCTGCGTTTCCCGATAACGATTGATCTT
AGTCGACCAGGGCTGCGTTTCCCGATAACGATTGATCTT
AAATAAACAGGGCTGCGTTTCCCGATAACGATTGATCTT
AAATGATCTGGGCTGCGTTTCCCGATAACGATTGATCTT
AAATGATCAGGGCTGCGTTTCCCGATAACGATTGATCTT

A AGGCTTACGATGCTTTTGGGAAACGCAGCCCTGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCTGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGA
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGA
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGA
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGA
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCTGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCTGG
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGT
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCTGA
A AGGCTTACGATGCTTTTGGGAAACGCAGCCCAGA
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NuwaII transposons could be also relatively old ele-
ments. Finally, we found 7564 copies of NuwaII group.
The genomic abundance and copy number of each
NuwaII family in each species are shown in Fig. 2c and
Additional file 3: Table S8.
Evolutionary relationships of PHIS transposons
To investigate the evolutionary relationships of six PHIS
transposon groups (PIF/Harbinger, ISL2EU, Spy, Pangu,
NuwaI, and NuwaII), the core catalytic DDE domain of
16 representative transposases (include intact DDE
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domain) of Pangu, 12 NuwaI, 21 NuwaII, 33 PIF/
Harbinger, 18 ISL2EU, 11 Spy, and 11 bacterial IS5
were used to perform a Bayesian phylogenetic ana-
lysis. The resulting tree (Fig. 6) showed that the
eukaryotic PHIS transposases formed five distinct
highly supported monophyletic clades beside the in-
dividual clade of bacterial IS5 transposons. In the
phylogenetic tree, Pangu, PIF/Harbinger, ISL2EU, and
SPY transposons formed four separate clades. Mean-
while, NuwaI and NuwaII transposons formed a sin-
gle clade in the phylogenetic tree.
Discussion
Identification and characterization of PHIS transposons
Previous study suggested that the PHIS is a DNA trans-
poson superfamily with a great diversity in the eukaryotic
genomes [15]. However, the detailed diversification and
evolution of PHIS superfamily are still unknown. In this
study, we systematically identified PHIS transposons in
the eukaryotic genomes. A total of 380 families of PHIS
superfamily were identified in 112 sequenced eukaryotic
genomes. These families were classified into six groups
based on the characteristic of each family’s TSDs. Among
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Fig. 6 Phylogenetic tree based on DDE domain sequences of PHIS superfamily
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these groups, three (PIF/Harbinger, ISL2EU, and Spy) have
been reported in the previous studies [15, 20, 21]. Beside
the above three groups, we found three new transposon
groups, called Pangu, NuwaI, and NuwaII.
These types shared similar transposases with DDE

motif. However, each group has unique TSDs distin-
guished from others (Additional file 2: Figure S2). Accord-
ing to the criteria of previous TE classification [16], the
transposases can be aligned over their entire catalytic re-
gions (e value less than e−4), then they belong to the same
superfamily. The same group of a superfamily was defined
by the same TSD composition. In addition, previous stud-
ies showed that variable length or composition of TSDs
have been identified in some superfamilies, such as 8–
9 bp TSDs in Merlin superfamily, 5–8 bp in hAT, 2–4 bp
in CMC, and 4–5 bp in Ginger [16, 22, 23]. Thus, it may
be better to define Spy, PIF/Harbinger, and ISL2EU and
Pangu, NuwaI, and NuwaII as different groups (at the
same level) of the same superfamily (PHIS).
To estimate the abundance of each group in the
eukaryotic genomes, the consensus sequence of each fam-
ily of each group was used as a query in BlastN (e < 10−5)
search against corresponding genome. Finally, we found
that the abundances of these transposon groups varied in
the eukaryotic genomes. For instance, there were 41,385
copies of PIF/Harbinger group, 3647 copies of ISL2EU,
13,089 copies of SPY, 3270 copies of Pangu, 3845 copies of
NuwaI, and 7562 copies of NuwaII in the eukaryotic ge-
nomes (Additional files 1 and 3: Table S1–S8 and Fig. 2c).
However, it should be noted that PHIS transposons were
investigated using transposase homology search. Thus,
some nonautonomous PHIS transposons (such as MITEs)
might be missed in this study. In addition, we found that
the number of potential active families varied. For ex-
ample, there were 88 potential active families of PIF/
harbinger, 12 families of ISL2EU, 18 families of SPY, 2
families of Pangu, 11 families of NuwaI, and 22 families
of NuwaII in the eukaryotes (Fig. 2b). Furthermore, the
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abundance of each group was significantly positively
correlated with the number of potential active families
(Pearson’s product-moment correlation, r = 0.9816605,
P = 0.0005). This phenomenon is easy to understand,
and the more potential active families will have more
copies for a group of PHIS transposon superfamily.
Most groups of PHIS superfamily include two ORFs,

one coding for transposase containing DDE motif and
the other ORF encoding a DNA-binding protein. How-
ever, SPY transposons include only one transposase con-
taining DDE motif [15]. In addition, the additional ORFs
of the four groups (including Pangu, PIF/Harbinger,
NuwaI, and NuwaII) encode a protein with Myb/SANT
domain except that of the ISL2EU transposon that en-
codes a protein with the Yqaj domain. At present, the
functions of the additional ORFs are still unknown, and
whether these ORFs are related to the transposition
mechanisms also remains unclear [24]. This question
could be answered using biochemical studies in the
future.
The results of species distribution of PHIS transposons

showed that the PHIS elements are completely absent in
mammals, birds, sponges, sharks, and coelacanths. This
is consistent with a previous study [16]. In addition, it is
interesting to see that in some lineages, there is only one
of the six groups of PHIS superfamily or only one of the
six groups is absent. To our knowledge, the above
results could be caused by two reasons. First, some PHIS
transposons were lost or degenerated in some species by
drift or selection in their original lineages. Second, some
species gain different families from other species
through horizontal transfer (HT). In addition, almost all
of the DNA transposons have the ability of HT, and
more and more HT of DNA transposons have been re-
ported in the eukaryotic genomes [25–29]. Furthermore,
previous studies suggested that PIF/Harbinger experi-
enced HT events between Drosophila species [30]. How-
ever, HT of PHIS transposons remains to be studied in
the future.

Evolutionary relationships of PHIS transposons
The result of phylogenetic analysis showed that Pangu
elements formed a single clade and were adjacent to IS5
group in the phylogenetic tree. In addition, both Pangu
and IS5 transposons shared the same target site se-
quence (5′-ANT-3′). Furthermore, Pangu elements were
widely distributed in plants, fungi, and animals. Thus,
we proposed that Pangu is a relatively old PHIS group in
the eukaryotic genomes.
Meanwhile, NuwaI and NuwaII transposons formed a

single clade in the phylogenetic tree, and they shared the
same coding capacity (encoding two ORFs) and the con-
served domains (DDE motif and Myb/SANT domain).
However, the TSDs of NuwaI are significantly different
from the NuwaII transposons. NuwaI and NuwaII trans-
posons should belong to two different groups of PHIS
superfamily. Nevertheless, these two types might diverge
recently. Thus, the two types cannot be distinguished
from each other in the phylogenetic tree.
HarbingerS-9_PI and Harbinger-4_TV had been re-

leased as PIF/Harbinger families cataloged in RepBase.
However, our phylogenetic analysis indicated that
HarbingerS-9_PI was grouped into the clade of Pangu
group. Meanwhile, Harbinger-4_TV was grouped into
the IS5 clade (Fig. 6). However, we could not find dis-
tinct target site duplications (TSDs) in the flank of
HarbingerS-9_PI and Harbinger-4_TV families. Right
now, we cannot judge if both families should belong to
which group of PHIS superfamily.

Conclusions
In the present study, 380 PHIS transposon families were
identified in 112 of 836 sequenced eukaryotic genomes
using transposase homology search and structure ap-
proach. Among these families, 168 families are firstly
identified in this study. We systematically analyzed their
characteristics including TSDs, TIRs, coding capacity,
conserved transposase domain and species distribution,
etc. The phylogenetic analysis based on the core catalytic
DDE domain of these identified transposases showed
that these PHIS transposon families were divided into
five clusters including three previous reported clusters
(PIF/Harbinger, ISL2EU, and Spy) and two new clusters
(Pangu and Nuwa). Nuwa cluster includes two groups
called NuwaI and NuwaII. Furthermore, each new group
has its own distinctive characteristics, especially in target
site sequences. For instance, the Pangu transposons are
characterized by 5′-ANT-3′ TSDs, the NuwaI transpo-
sons by 5′-CWG-3′, and the NuwaII transposons by 5′-
C|TNA|G-3′. Our results reveal the diversification and
evolution of PHIS transposons in the eukaryotic ge-
nomes and imply that further study on the generation
mechanism of varied target sequences of PHIS super-
family will promote the development of new transgenic
vectors.

Methods
Identification of PHIS superfamily
Eukaryotic genomes including animals (295 species),
plants (105 species), fungi (315 species), and protists
(121 species) were downloaded from NCBI (http://
www.ncbi.nlm.nih.gov/) (as of January 16, 2014), and the
information of each species is listed in Additional file 3:
Table S9. All published autonomous PHIS elements were
downloaded from RepBase (v19.07) [31]. PHIS elements of
eukaryotic genomes were identified using the transposase
homology search that includes three steps (Additional file
2: Figure S4): (1) the transposase sequences of published

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


Han et al. Mobile DNA  (2015) 6:12 Page 10 of 11
PHIS elements were used as a query to do TblastN and
TESeeker searches against each genome [32], where a hit
with e value less than 10−4 was considered as candidate
PHIS sequence; (2) each candidate PHIS nucleotide se-
quence was used as a query to BlastN search (e value < e−5,
sequence length >50 bp, and nucleotide identity >80 %)
against the corresponding genome; (3) the sequences of
each cluster were extended in both directions using a Perl
script and aligned using MUltiple Sequence Comparison by
Log-Expectation (MUSCLE) [33], then the boundaries of
each cluster were manually defined.

Characterization and phylogenetic analysis of PHIS
superfamily
To estimate the abundance of each PHIS family in the
corresponding genome, the consensus sequence of each
family was used as a query in BlastN search against the
corresponding genome. Finally, the sequences with the e
value less than e−5, length larger than 50 bp, and a
minimum nucleotide identity of 80 % were classified as
members of the same family. Transposase coding se-
quences, transposase domains, secondary structures of
representative transposases, and the paralogous empty
sites were analyzed as described previously [15].
Sequence logos of TIRs and TSDs were created by
WebLogo (http://weblogo.berkeley.edu/logo.cgi) [34].
Multiple sequences alignments were performed using
MUSCLE software with default parameters. The phylo-
genetic tree was constructed based on the DDE
domains of transposases using MrBayes software (v3.1.2)
[35] with the Blosum model and other parameters with
default. The Blosum model was estimated by protest-3.2
software [36]. Meanwhile 3,000,000 generations of Bayes-
ian inference were performed.

Additional files

Additional file 1: Table S1. Distribution and characteristics of all
identified PIF/Harbinger transposons. Table S2. Distribution and
characteristics of all identified ISL2EU transposons. Table S3. Distribution
and characteristics of all identified Pangu transposons. Table S5.
Distribution and characteristics of all identified NuwaI transposons.
Table S7. Distribution and characteristics of all identified NuwaII
transposons. Table S9. The eukaryotes used in this study.

Additional file 2: Figure S1. (A) Sequence alignments for ISL2EU-2_Pxyl
family. The terminal inverted repeats (TIRs) and flanking sequences
(10 bp) are shown. (B) An example of alignments of the flanking
sequences of ISL2EU-2_Pxyl insertion with a paralogous sequences found
within the same genome but devoid of the transposon. The TIRs of the
element are underlined. Figure S2. Speculated transposition mechanism
of each PHIS groups. Figure S3. The alignment of DDE domain of Pangu
and Nuwa groups after redundancy elimination. Distances between the
conserved blocks are indicated in the number of amino acid residues.
Conserved residues within each superfamily are highlighted in the same
color. The DDE triad identified here is marked with asterisks below
alignments. Figure S4. Pipeline for PHIS transposons identification.
Where a hit with e value less than 10−4 was considered as a homology
sequence. The ones with an e value less than e−5, sequence length larger
than 50 bp, and nucleotide sequence identity larger than 80 % were
classified as member of the same family. Target site duplications (TSDs)
were identified using the paralogous empty sites.

Additional file 3: Table S4. Positions of Pangu transposons in the
corresponding genome. Table S6. Positions of NuwaI transposons in the
corresponding genome. Table S8. Positions of NuwaII transposons in the
corresponding genome.
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