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ary theory. We observe a nonlinear evolution from a supercooled anisotropic black hole

without scalar hair to a anisotropic hairy black hole. Via AdS/CFT correspondence, we

extract time evolution of the condensate operator, which shows an exponential growth and

subsequent saturation, similar to the isotropic case. Furthermore, we obtain a nontrivial

time evolution of the boundary pressure, while in isotropic case it remains a constant.

We also generalize quasinormal modes calculation to anisotropic black holes and shows
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1 Introduction

The AdS/CFT correspondence [1–3] has enlarged our horizon of understanding for strongly

coupled quantum system over the past decade. It enables us to gain insights of an otherwise

intractable quantum theory by studying its classical gravitational dual in asymptotic AdS

spacetime. Many gravity models have been proposed to capture various aspects of strongly

coupled many body systems. In particular, the dual model of s-wave superconductor was

proposed in [4, 5] and dubbed as holographic superconductor. There have been many works

investigating equilibrium or near-equilibrium physics related to this topic, such as theories

with higher spin condensate [6–8], various correction terms [9–11], quasinormal modes [12],

viscosity, transport properties [13–15], theories with dynamical gauge fields [16] and etc.

Less work is done on studying the far-from-equilibrium physics, which on gravity side

requires constructing time-dependent black hole solutions. References [17] and [18] stud-

ied two basic scenarios of far-from-equilibrium evolution of homogeneous and isotropic

holographic superconductors, shown in figure 1. The blue route (a) describes dynamical

evolution from an unstable Reissner-Nordström-AdS black hole to a stable hairy black

hole, which is interpreted as a non-equilibrium condensation process in a holographic su-

perconductor. The red routes (b, c and d) describe the relaxation of a superconducting

state after an abrupt energy injection, a.k.a. quantum quench. As the quench strength

is increased, the condensate undergoes a dynamical phase transition from under-damped

(b) to over-damped oscillation (c). At large quench strength, the system retreats to nor-

mal phase (d). Similar result is also shown in the condensed matter study [19]. Other

works pertaining to far-from-equilibrium dynamics of holographic superconductor include
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Figure 1. Cartoon picture of far-from-equilibrium dynamics of holographic superconductors. Blue

route: Non-equilibium condensation from supercooled normal phase to superconducting phase. Red

routes: Quantum quench of a superconducting state.

periodic driven system [20], thermalization with spatial inhomogeneity [21] and quantum

quench of a superconducting AdS soliton [22].

Recently, the s-wave holographic superconductor model is extended to incorporate spa-

tially anisotropic effect from bulk geometry [23]. The anisotropy is achieved by introducing

a dilaton field on top of the original Einstein-Maxwell-charged scalar theory. This dilaton

field does not couple with other matter fields and has a simple profile

ϕ = λx , (1.1)

where λ is a dimensionless constant and characterizes the bulk anisotropy. From a phe-

nomenological point of view, dilaton field mimic the effect of anisotropy induced by crystal

structure or doping. This is because once the dilaton field is turn on, the anisotropy

will sustain in both normal and superconducting phase, unlike the p-wave superconduc-

tor where the anisotropy only appears in the superconducting phase [6]. The asymptotic

AdS geometry can still be preserved. In this work, we study non-equilibrium condensa-

tion process for this anisotropic holographic superconductor model. In analogy of isotropic

case, there exist two static black hole solutions below certain critical temperature Tc, the

anisotropic charged black hole with and without scalar field, corresponding respectively to

the supercooled normal phase and superconducting phase of the anisotropic superconduc-

tor. The supercooled anisotropic black hole is not a stable configuration. A small scalar

field perturbation will trigger a nonlinear evolution of the spacetime toward a more stable

configuration, which is the anisotropic black hole with non-trivial scalar hair. The local

U(1) symmetry is spontaneously broken during this process. From the nonlinear dynamics

of the bulk fields, we study the time evolution of the condensate operator and anisotropic

pressure of the boundary system. In particular, note that the pressure response remains

trivially a constant in isotropic case of non-equilibrium condensation. The introduction

of dilaton is crucial to obtain a nontrivial time evolution of boundary pressure. We will

discuss this point with more detail in section 3.

– 2 –
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This paper is organized as follows. In section 2, we introduce the holographic super-

conductor model with anisotropy and outline the numerical scheme of solving the coupled

PDEs. In section 3, we perform the holographic renormalization in time-dependent setting

to obtain the renormalized stress-energy tensor and condensate operator. In section 4, we

first recapitulate basic equilibrium results including the condensate, anisotropic pressure.

Next, we present the numerical results of bulk field dynamics and the time evolution of

boundary operators. The exponential growing behaviour of condensate operator is shown

to match the time scale extracted from dominant quasinormal modes. In section 5, we give

the detail of computing quasinormal modes on anisotropic black branes with vanishing

scalar hair. The conclusion and comment on future direction constitute the final section.

2 The model with anisotropy

We consider the anisotropic holographic superconductor model in 4-dimension, described

by action

S =
1

2κ2

∫
d4x
√
−g
(
R+

6

L2
− 1

4
F 2 − (∇ϕ)2 − |∇ψ − iqAψ|2 −m2|ψ|2

)
, (2.1)

where L is the AdS radius and set to 1 hereafter. The diffeomorphism and local U(1)

symmetry are manifest in this action. Fµν = ∂µAν − ∂νAµ is the field strength of gauge

field. q and m are respectively the charge and mass of the complex scalar field. This ac-

tion generalizes the original s-wave holographic superconductor to anisotropic background

by introducing dilaton field ϕ. It provides a source to anisotropy in the bulk geometry

and affects other matter field and condensation only through gravity. Nevertheless, the

asymptotic AdS geometry of the solutions can still be preserved.

Assuming planar symmetry, we can use following ansatz in ingoing Eddington-

Finkelstein coordinates,

ds2 = − 1

z2
(
F (v, z)dv2 + 2dvdz

)
+ Φ(v, z)2

(
eB(v,z)dx2 + e−B(v,z)dy2

)
, (2.2)

A = α(v, z)dv, (2.3)

ψ = ψ(v, z), (2.4)

ϕ = λx . (2.5)

The AdS boundary is at z = 0, and B(v, z) is introduced in response to the anisotropy.

The dilaton field ϕ is taken to be static and λ is a dimensionless constant, which satisfies

the dilaton E.O.M. automatically. This ansatz is invariant under residual symmetry

1

z
→ 1

z
+ f(v), α→ α+ ∂vθ(v), ψ → eiqθ(v)ψ . (2.6)

– 3 –
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The equations of motion are

Dψ′ +
Φ′

Φ
Dψ +

m2ψ

2z2
+

1

2
iqψα′ +

DΦ

Φ
ψ′ = 0 , (2.7a)

Dα′ + α′
(

1

2
z2
(
F

z2

)′
+

2DΦ

Φ

)
+
iq

z2
(Dψψ∗ −Dψ∗ψ) = 0 , (2.7b)

α′′ + 2α′
(

1

z
+

Φ′

Φ

)
+
iq

z2
(
ψψ∗′ − ψ∗ψ′

)
= 0 , (2.7c)

(ΦDΦ)′ − Φ2

2z2

(
m2

2
|ψ|2 +

1

4
z4(α′)2 − 3

)
− e−Bλ2

4z2
= 0 , (2.7d)

Φ′′ +
2

z
Φ′ +

1

2
Φ(|ψ|′2 +

1

2
B′2) = 0 , (2.7e)

(ΦDB)′ + (DΦ)B′ − e−Bλ2

2z2Φ
= 0 , (2.7f)(

z2
(
F

z2

)′)′
− z2

(
α′
)2

+
4(DΦ)Φ′

Φ2
− (Dψ∗ψ′ +Dψψ∗′)

−(DB)B′ − e−Bλ2

z2Φ2
= 0 , (2.7g)

D2Φ +
1

2
z2
(
F

z2

)′
DΦ +

Φ

2

(
|Dψ|2 +

1

2
DB2

)
= 0 , (2.7h)

where ′ = ∂z and we defined

DΦ = ∂vΦ− F∂zΦ/2, D2Φ = ∂v(DΦ)− F∂z(DΦ)/2,

DB = ∂vB − F∂zB/2, Dα = ∂vα− F∂zα/2, (2.8)

Dψ = ∂vψ − F∂zψ/2− iqαψ, Dψ∗ = ∂vψ
∗ − F∂zψ∗/2 + iqαψ∗ .

The operator ∂v − F∂z/2 represents the derivative along the outgoing null vector. Note

that only λ2 appears in the E.O.M., so we choose it to be positive without loss of generality.

The equations in isotropic case of [17] can be recovered by setting λ = 0 and B = 0.

All the equations are now ordinary differential equations for either “D” variables or

original ones. The nested structure of the equations makes it possible to integrate them

one at a time. Provided the initial configurations of ψ and B are given, one can solve (2.7c)

and (2.7e) to get initial condition for α and Φ, then subsequently solve (2.7d), (2.7f), (2.7a)

and (2.7g) to obtain “D” variables and further extract time derivative of original fields

from (2.8), eventually, approximate the field value on next time slice by finite difference.

An alternative approach was suggested in [24]. One may simply solve (2.7e) and (2.7c) on

every time slice to obtain Φ and α, rather than evolving them dynamically through ∂vΦ

and ∂vα. Numerical stability can be gained from this approach. Boundary condtions are

only imposed at AdS boundary z = 0. We employ the Chebyshev Pseoduspectral method

to solve ODEs at every time slice. In addtion, it is not difficult to show that if (2.7h)

is satisfied on AdS boundary z = 0, it will hold for all z and thus will only contribute a

constraint equation at the boundary.

– 4 –
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3 Holographic renormalization

In order to interpret gravity computation in boundary field theory, we need to express

gauge invariant operators and their correlation functions in terms of asymptotic coefficients

of corresponding bulk fields. This procedure is achieved by holographic renormalization.

Examples of performing holographic renormalization in time-dependent setting are given

in [25, 26] which study quantum quench of holographic plasmas.

The first step is to obtain an asymptotic expansion solution of (2.7), which depends

on the mass of complex scalar field. In this work, we focus on the case of m2 = −2 and

the expansion is

F (v, z) =1 + 2zΦ0 + z2
(
−λ

2

2
− |ψ1|2

2
+ Φ2

0 − 2Φ̇0

)
+ z3F3 +O(z4) , (3.1a)

Φ(v, z) =
1

z
+ Φ0 −

1

4
z|ψ1|2 −

1

12
z2
(
2 (ψ2ψ

∗
1 + ψ1ψ

∗
2) + Φ0|ψ1|2

)
+O(z3) , (3.1b)

B(v, z) =
z2λ2

2
+ z3B3 +

1

4
z4
(
λ4 + λ2|ψ1|2 + 4Ḃ3

)
+

1

4
z4
(
−12B3Φ0 − 6λ2Φ2

0 + 4λ2Φ̇0

)
+O(z5) , (3.1c)

ψ(v, z) =zψ1 + z2ψ2 + z3
(
−1

2
iqα1ψ1 − iqα0ψ2 +

1

2
ψ2
1ψ
∗
1 + ψ̇2

)
+ z3

(
−Φ2

0ψ1 + ψ1Φ̇0 + Φ0

(
−iqα0ψ1 − 2ψ2 + ψ̇1

))
+O(z4) , (3.1d)

α(v, z) =α0 + zα1 +
1

2
z2 (iq (ψ2ψ

∗
1 − ψ1ψ

∗
2)− 2α1Φ0) +O(z3) , (3.1e)

where the asymptotic AdS condition has been imposed, F → 1, Φ → 1/z and B → 0 as

z → 0. In addition, we have two constraints at the boundary

Ḟ3(v) =
1

2
ψ∗1Dv (−ψ2 − Φ0ψ1 +Dvψ1) + c.c. , (3.2a)

α̇1(v) = iqψ∗1 (ψ2 −Dvψ1) + c.c. , (3.2b)

where Dv ≡ ∂v − iqα0 and c.c. is complex conjugate. We identify α0 and α1 as chemical

potential and charge density of the boundary theory. B3 and F3 are related to anisotropic

pressure and energy density. ψ1 is the sourse and ψ2 the vacuum expectation value.

The residual diffeomorphism

1

z
→ 1

z
+ f(v) (3.3)

transform boundary coefficients ψ2

Φ0

B3

→
 ψ2 − ψ1f

Φ0 + f

B3 + λ2f

 , (3.4)

and leave ψ1, α0, α1 and F4 unchanged. We use this symmetry to set Φ0 = 0 for later

numerical calculation. α0 can also be set to zero by the residual U(1) symmetry.

– 5 –
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We transform the solution to Fefferman-Graham(FG) coordinate (denoted by gµν)

where the holographic renormalization can be most conveniently implemented

ds24 =
dρ2

ρ2
+

1

ρ2
Gij(x, ρ)dxidxj , ψ = ψ(x, ρ), A = α(x, ρ)dt . (3.5)

The asymptotic form of coordinate transformation is

v = t− ρ− 1

24
ρ3
(
λ2 + |ψ1|2

)
+

1

96
ρ4
(

8F3 + ψ̇∗1ψ1 + ψ̇1ψ
∗
1

)
+O(ρ5) , (3.6)

z = ρ+ ρ2Φ0 −
1

8
ρ3
(
λ2 + |ψ1|2 − 8Φ2

0 + 8Φ̇0

)
+

1

12
ρ4
(

2F3 + ψ̇∗1ψ1 + ψ̇1ψ
∗
1

)
+

1

4
ρ4
(

4Φ3
0 − 8Φ0Φ̇0 + 2Φ̈0 − Φ0

(
λ2 + |ψ1|2

))
+O(ρ5) , (3.7)

and it is easy to see that v and t coincide as one approaching the AdS boundary ρ = 0.

Note this coordinate transformation necessarily introduces a Aρ component which should

be removed through U(1) transformation, in accordance with our radial gauge. Scalar field

ψ therefore will pick up a non-trivial phase factor.

The second step is to identify the divergent pieces and construct counterterms. The

Einstein equation implies

Exx =
1

2
gxx (L −R) + λ2 , Eyy =

1

2
gyy (L −R) , (3.8)

where Eab is the Einstein tensor, therefore

L = −Ett − Ezz − λ2gxx . (3.9)

Using this, the on-shell action can be written as

Son-shell =
1

2κ2

∫
d2x dt

∫ ε

ρ+

dρ

(
−∂ρ

(
ρ
√
−gtt∂ρ

(√
gxxgyy

))
− λ2

ρ

√
gttgyy
gxx

)
+

1

2κ2

∫
d2x dρ

∫ +∞

−∞
dt ∂t

(
1

ρ
√
−gtt

∂t
(√
gxxgyy

))
. (3.10)

The surface term in time direction is zero, since we assume dynamics only happens in finite

period of time and spacetime is static at infinity past and future. One can show that the

following counter terms will render finite results

Sc.t. =
1

2κ2

∫
ρ=ε

d3x
√
−γ
(
2K + 4 + ψ2 − ∂iϕ∂iϕ

)
, (3.11)

where γij = Gij/ρ
2 and K is the trace of extrinsic curvature. The divergence stemmed

from −λ2

ρ

√
gttgyy
gxx

is cancelled by ∂iϕ∂
iϕ.

– 6 –
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The last step is to invoke AdS/CFT correspondence

〈Tij〉 =
−2√
G(0)

δSren

δGij(0)

=
1

2κ2
lim
ρ→0

−2

ρ

(
Kij −Kγij − 2γij −

1

2
ψ2γij +

1

2
∂kϕ∂

kϕγij − ∂iϕ∂jϕ
)
, (3.12)

〈O2〉 =
1√
G(0)

δSren
δψ∗1

=
1

2κ2
lim
ρ→0

1

ρ2
(−nρ∂ρψ + ψ) , (3.13)

〈J t〉 =
1√
G(0)

δSren
δα0

=
1

2κ2
lim
ρ→0

1

ρ3
(
−nρF ρt

)
, (3.14)

and Sren = S + Sc.t. and Gij(0) = Gij(x, ε)|ε→0. The renormalized one-point functions

〈Tij〉 ≡ (E ,Px,Py) , (3.15)

〈O2〉 and 〈J t〉 are

2κ2E = 2F3 + (ψ∗1 (ψ2 + Φ0ψ1 −Dtψ1) + c.c.) , (3.16)

2κ2Px = F3 − 3B3 − 3λ2Φ0 , (3.17)

2κ2Py = F3 + 3B3 + 3λ2Φ0 , (3.18)

2κ2〈O2〉 = −ψ2 − Φ0ψ1 +Dtψ1 , (3.19)

2κ2〈J t〉 = α1 − α̇0 , (3.20)

where Dt ≡ ∂t − iqα0 and c.c. denotes complex conjugate. The nontrivial component of

diffeomorphism Ward identity is

∂t〈Ttt〉 = −∂tE = 〈O2〉 (Dtψ1)
∗ + c.c. , (3.21)

which is the boundary energy conservation. A time-dependent source term ψ1(t) will bring

energy variation in the system. The conformal Ward identity is given by

〈T ii〉 = 〈O2〉ψ∗1 + c.c. , (3.22)

which carries the overall factor (d−∆) = 1. d is boundary spacetime dimension and ∆ is

the conformal dimension. The anisotropic pressure is defined as

δP = 2κ2(Px − Py) . (3.23)

From (3.17) and (3.18), we can see that in the isotropic limit where λ and B3 are

zero, the boundary pressure is just F3. And from (3.2a), fixing boundary condition ψ1 = 0

implies F3 is a constant, therefore the pressure is also a constant. By introducing dilaton

field and generating bulk anisotropy, the pressure can have a nontrivial time evolution due

to B3.

– 7 –
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4 Condensation on anisotropic background

In this section, we begin with a recap of equilibrium results which provide the initial condi-

tion for later non-equilibrium evolution of the system. Next, we demonstrate the dynamics

of bulk fields after releasing two initial wave packets, and an interesting scattering is ob-

served in the early time evolution. Finally, we present dynamics of boundary operators

including condensate and anisotropic pressure. The relaxation time scale from nonlin-

ear evolution is shown to have a good match with dominant scalar quasinormal modes.

The evolution of event and apparent horizon will be presented elsewhere along with the

holographic entanglement entropy probe.

4.1 Recap of equilibrium results

The action (2.1) admits the static anisotropic black hole solution with complex scalar field

identically vanishing, corresponding to normal phase of holographic superconductor. This

solution exists for all temperature T .1 The numerical solution was constructed in [27], as

well as a perturbative solution in small λ. If the dilaton field is absent, it just reduces to

the Reissner-Nordström-AdS black hole. Below critical temperature Tc, there is another

black hole solution with non-trivial scalar field configuration, which corresponds to the

superconducting phase.

The equilibrium equations can be obtained by setting v-derivative to zero in (2.7).

For the convenience of numerical computation, we fix the horizon at z = 1 and make

transformation ψ → zψ(z) and Φ→ Φ(z)/z. Then, the expansion solution near horizon is

ψ(z) = ψ̃0 −
2ψ̃0

F1
(z − 1) + . . . (4.1)

α(z) = α̃1(z−1)+
α̃1

4F̃1

(
−4F̃1+α̃2

1+
2e−B̃0λ2

Φ̃2
0

−4
(

3−
(
−1+q2

)
ψ̃2
0

))
(z − 1)2 + . . . (4.2)

B(z) = B̃0 −
e−B̃0λ2

F̃1Φ̃2
0

(z − 1) + . . . (4.3)

Φ(z) = Φ̃0 +
e−B̃0

4F̃1Φ̃0

(
−2λ2 + eB̃0Φ̃2

0

(
12 + 4F̃1 − α̃2

1 + 4ψ̃2
0

))
(z − 1) + . . . (4.4)

F (z) = F̃1(z − 1) +
1

2

(
2F̃1 + α̃2

1 +
e−B̃0λ2

Φ̃2
0

)
(z − 1)2 + . . . (4.5)

where F (1) = 0 and α(1) = 0 have been imposed. The former one is a condition for event

horizon, the latter one is to render AµAµ finite. There are five free parameters at horizon,

ψ̃0, α̃1, B̃0, Φ̃0 and F̃1. It’s straightforward to vary one of them and shoot the rest four

to match conditions on AdS boundary,

B(0) = 0, Φ(0) = 1, F ′(0) = 0, ψ(0) = 0 . (4.6)

1Black hole temperature is defined as usual

T = − 1

4π

dF

dz

∣∣∣∣
z=z+

, F (z+) = 0 .

– 8 –
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Figure 2. Left: The value of the condensate as a function of temperature with q = 2 for different

anisotropic parameter λ. From bottom to top, various curves correspond to λ = 0, 0.4, 0.8, 1.2 and

1.6. Right: The critical temperature as a function of anisotropic parameter λ.

Working in the canonical ensemble, we introduce following normalizaiton for conden-

sate operator and temperature

〈O2〉 = 2κ2
√

2

α1
〈O2〉, T =

T
√
α1

, (4.7)

where α1 is boundary charge density.

Figure 2 shows effect of bulk anisotropy on the condensate, which is also obtained

in [23]. The numerical result suggests the increasing anisotropy λ in the bulk lifts up

the condensate in the boundary for a fixed temperature, whereas brings down critical

temperature T c. Whether this trend persists for large λ is yet to be clarified. In the later

non-equilibrium study, we only focus on the range 0 < λ < 3. Figure 3 shows the anisotropic

pressure as a function of temperature and λ. The left plot implies the superconducting

state bears bigger anisotropic pressure than the normal state and this difference vanishes

continuously as the critical temperature is reached. On the right, we plot the anisotropic

pressure of the critical point δPc as a function of λ. We found δPc ∝ λ2 for small λ, and

the dependence is enhanced to λ3 as bulk anisotropy gets larger.

4.2 Evolution of bulk fields

First, let us summarize the initial and boundary conditions needed for numerical calcula-

tion. The general procedure of solving (2.7) is outlined at the end of section 2. We use

residual symmetry to fix Φ1 = 0.2 Since we are only concerned with condensation process,

ψ1 = 0 is chosen at AdS boundary.3 It follows that F3 and α1 are constants throughout

computation, see (3.2). All the other boundary conditions can be derived from asymptotic

expansion (3.1). The initial condition is the anisotropic charged black brane without scalar

2α0 is kept constant throughout computation.
3The source ψ1 can choose to be a Gaussian-type function, if one studies quantum quench process.

Correspondingly, F3 and α1 should be updated by boundary constraints at every time slice, see [18].
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Figure 3. Left: The value of the anisotropic pressure as a function of temperature with q = 2 and

λ = 1. The blue data is from anisotropic black branes with vanishing scalar hair. The red data is

from anisotropic hairy solutions. Right: The anisotropic pressure of the critical point as a function

of λ. The solid line is λ2 fitting and the dashed λ3 fitting.

hair constructed numerically in previous subsection, along with a small scalar perturbation

of following type

ψperturb =
a√
2πδ

z2 exp

(
−(z − zmax)2

2δ2

)
(4.8)

A field redefinition prior to numerical calculation is introduced to isolate the terms that

only contain ψ1 and divergent pieces in bulk fields. References [17] and [24] explain this

procedure quite thoroughly, we do not repeat the details here.

The general feature of scalar field |ψ(v, z)| evolution is qualitatively the same as

isotropic case presented in [17]. The wave packet gets absorbed into black hole after

bouncing back from the AdS boundary. Surviving modes keep growing exponentially until

saturation is reached. We found the exact saturation time depends on specific parameters

(a, δ and zmax) of initial perturbation, while the relaxation time scale during exponential

growing period is only controlled by the dominant quasinormal modes. In response to con-

densation of scalar field, anisotropic function B(v, z) also undergoes a dynamical change.

Figure 4 and 5 show the dynamics of |ψ(v, z)| and B(v, z) for q = 2 and λ = 1

with initial temperature T i/T c = 0.3, beginning with two initial wave packet situated at

zmax = 0.3 and zmax = 0.6. Two packets propagate separately toward the AdS boundary

until around vT c ≈ 0.07. The reflection of first wave packet is scattered by the second one

into two components which are quickly absorbed by black hole. After the scattering, the

second wave packet keeps moving towards boundary and is reflected at vT c ≈ 1.6. The

early time response of B(v, z) to the scalar perturbation is quite small and hard to discern,

so we show the plot of ∂vB(v, z) instead of B(v, z).
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Figure 4. The evolution of scalar field |ψ(v, z)| for q = 2, λ = 1 and initial temperature T i/T c =

0.3. Left: The full evolution of |ψ(v, z)|. The scalar field undergoes an exponential growth (0 ≤
vT c ≤ 5) and subsequent saturation (vT c ≈ 5). Right: The early time behaviour of |ψ(v, z)|. The

first wave packet is bounced back from AdS boundary (vT c ≈ 0.07) and scattered by the second

packet.

Figure 5. The evolution of anisotropic function B(v, z) for q = 2, λ = 1 and initial temperature

T i/T c = 0.3. Left: The full evolution of B(v, z). Right: The early time behaviour of ∂vB(v, z).

4.3 Evolution of boundary operators

From the solution of bulk fields, we extract the information about boundary operators.4

In figure 6, we show the time evolution of condensate 〈O2〉 for q = 2 and λ = 1 with initial

temperature T i/T c from 0.1 to 0.8. Solid curves are results from nonlinear evolution, and

dashed curves are given by A exp (−t/trelax), where A is a fitting parameter and trelax is

the relaxation time scale and identified as the inverse of imaginary part of dominant scalar

quasinormal modes. They have very good quantitative match before saturation kicks in.

We will present more results on quasinormal modes in the next section. The evolution of

anisotropic pressure δP (normalized by initial pressure δPi) is shown in figure 7. δP also

have an exponential growing period but with a different relaxation time scale, which is

presumably controlled by quasinormal modes of metric fluctuation.

4The initial condition for all results in this subsection is a single wave packet with parameters a =

0.005, δ = 0.05 and zmax = 0.3.
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Figure 6. Left: The time evolution of condensate operator for q = 2 and λ = 1. The solid curves

from top to bottom correspond to T i/T c = 0.1 ∼ 0.8 with increment 0.1. The dashed curves

represent the relaxation time scale obtained from leading quasinormal modes at corresponding

temperature. Right: The logrithmic plot of the left.

0 2 4 6 8 10
1.00

1.02

1.04

1.06

1.08

t T c

∆
P
�∆P i

Λ=1, T i � T c = 0.1~0.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.99990

0.99995

1.00000

1.00005

1.00010

t T c

∆
P
�∆P i

Λ=1, T i � T c = 0.1~0.8

Figure 7. Left: The time evolution of anisotropic pressure δP for q = 2 and λ = 1, normalized

by initial pressure δPi . The solid curves from top to bottom correspond to T i/T c = 0.1 ∼ 0.8

with increment 0.1. Right: The early time response of the anisotropic pressure to the scalar field

perturbation. The according color indicates the same initial temperature.

It’s interesting to see the mapping between initial and final states of the non-

equilibrium evolution. In figure 8, for fixed anisotropic parameter λ, the pressure ratio

δPf/δPi decreases with initial temperature T i monotonically, while final temperature T f
has different behaviour for λ = 1 and λ = 2. Although the initial temperature may be as

low as 0.05 T c, the relaxation always bring temperature rather close to critical temperature.

This feature is also true for the isotropic case (red dotted curve). The superconducting

state with low temperature (T f/T c < 0.5) seems to be not available in this setup. Figure 9

shows δPf/δPi and T f as functions of λ with initial temperature fixed. Interestingly, the

pressure ratios approach constant values as the bulk anisotropy diminishes to zero. Fig-

ure 10 shows the exponential decaying of initial perturbation for anisotropic black branes

with temperature higher than T c. The dashed lines are from leading quasinormal modes,

which also have a good match with nonlinear evolution. The pressure variation dies out

pretty quickly after initial disturbance.

– 12 –



J
H
E
P
0
9
(
2
0
1
4
)
0
5
4

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.02

1.04

1.06

1.08

1.10

T i�T c

∆
P

f�∆P
i

0.0 0.2 0.4 0.6 0.8 1.0
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T i�T c

T
f�T c

Figure 8. The final anisotropic pressure δPf (left) and final temperature T f (right) as a function

of initial temperature T i with q = 2 for λ = 0 (red dotted), λ = 1 (solid) and λ = 2 (dashed).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Λ

∆
P

f�∆P
i

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.80

0.85

0.90

0.95

1.00

Λ

T
f�T i
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of anisotropic parameter λ with q = 2 for initial temperature T i/T c = 0.3, 0.5, 0.7 and 0.9 from

top to bottom (left) and bottom to top (right). The according color indicates the same initial

temperature.
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are relaxation time scale obtained from leading quasinormal modes at corresponding temperature.

Right: The response of anisotropic pressure δP.
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5 Quasinormal modes

In the last section, we saw that relaxation time scales extracted from dominant quasinormal

modes (QNMs) have very good quantitative agreement with nonlinear evolution in the

exponential growing period. We report more QNMs result in this section. QNMs are

obtained by solving linearized fluctuation equations subject to infalling boundary condition

at horizon and Dirichlet condition at the boundary. For RN-AdS black hole, the scalar

field, gauge field and metric perturbation can be separately studied [28, 29], while for hairy

black hole one needs to solve coupled fluctuation equations [12, 18]. For our purposes, it is

sufficient to solve decoupled equations and obtain zero momentum sector of scalar QNMs

on anisotropic charged black branes.

The linearized fluctuation equation is

δψ′′(z) + δψ′(z)

(
F ′(z)

F (z)
+

2iqα(z)

F (z)
+

2iω

F (z)
+

2Φ′(z)

Φ(z)

)
+ δψ(z)

(
iq (Φ(z)α′(z) + 2α(z)Φ′(z))

F (z)Φ(z)
+

2

z2F (z)
+

2iωΦ′(z)

F (z)Φ(z)

)
= 0 . (5.1)

At horizon (F (1) = 0), the equation becomes singular. The indicial exponents are 0 and

−2iω
F1

, corresponding to ingoing and outgoing modes respectively. Althrough λ and B(z)

do not enter this equation, they affect quasinormal spectrum through coupling with other

bulk fields. We employ Chebyshev pseudospectral method and write (5.1) into matrix form

Mδψ = ωNδψ. The matrix M and N depend on background fields. This is a generalized

eigenvalue problem for ω and can be solved straightforwardly. Only the modes that are

insensitive to the number of Chebyshev grids are reliable.

The spectrum for q = 2 and λ = 1 is shown in figure 11. The blue, red and purple curves

correspond to the first, second and third order of QNMs. As temperature is increased,
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QNMs ascend in the complex plane. The dots are the critical points, where the dominant

mode start to have positive imaginary part indicating the instability of the background.

The critical points of subleading QNMs migrate along dashed curves as λ is increased from

0 to 3.

6 Conclusions

The holographic superconductor model with bulk anisotropy is first introduced in [23]. In

this work, we study non-equilibrium physics of this model, in particular the dynamical

condensation process. In analogy of isotropic case [17], below critical temperature T c we

observe a nonlinear evolution from a unstable anisotropic black hole without scalar hair

to a stable hairy black hole. This process is identified as a non-equilibrium condensation

process in the boundary theory via AdS/CFT correspondence. The condensate operator

grows exponentially before saturation. Scalar QNMs are calculated and shown to con-

trol the exponential growing behaviour. For T i > T c, we observe an exponentially decay

in condensate, which matches with QNMs results as well. The holographic renormaliza-

tion in time-dependent setting is carried out to obtain holographic stress-energy tensor,

from which the anisotropic pressure is extracted. It also experiences a similar exponential

growth followed by saturation for T i < T c and exponential decay for T i > T c, but the

relaxation time scale is different from the condensate operator. In addition, we work out

the ratio between initial and final anisotropic pressure as a function of anisotropy λ for

fixed initial temperature. Interestingly, the pressure ratio remains a constant value as λ

approaches zero.

We close this section with some future directions. For starter, in the equilibrium case of

figure 2, we see that the critical temperature T c decreases with increasing anisotropy during

0 < λ < 3. Will this trend persist for larger λ? To our surprise, the preliminary result,

figure 12, shows that it’s not the case. The critical temperature T c starts to increase around

λ = 3.5 and quickly diverges before reaching 3.7. The condensate also shows very different

behaviour during this range. It gets suppressed at lower temperatures and the suppression

becomes stronger as λ is increased, in the sharp contrast with the cases of 0 < λ < 3.

The blowing up of the critical temperature is certainly a very interesting phenomenon

and implies that, for large anisotropy, hairy solutions exist at arbitrary temperatures and

solutions without scalar hair are presumably always unstable. Furthermore, the implication

on non-equilibrium physics is not clear at this point. We plan to report more on this

subject in the future. In addition, we only focus on studying time evolution of local one-

point functions during condensation process in this work. We will turn our attention to

non-local holographic entanglement entropy probe in later investigation. It would also be

very interesting to study the quantum quench of the anisotropic system. The last but not

least, the dilaton field is taken to be static and decoupled from other matter fields. It’s

intriguing to introduce a coupling with other fields and achieve the anisotropy in a more

dynamical way.
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Figure 12. Left: The value of the condensate as a function of temperature with q = 2 for

λ = 3.5, 3.55, 3.60 and 3.65, corresponding respectively to the blue, red, yellow and green curves.

The condensate gets increasingly stronger suppression at low temperature as λ become larger.

Right: The critical temperature as a function of anisotropic parameter λ. Red dots are new data

not shown in figure 2.
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