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DERANDOMIZED PARALLEL

REPETITION VIA

STRUCTURED PCPS

Irit Dinur and Or Meir

Abstract. A PCP is a proof system for NP in which the proof can be
checked by a probabilistic verifier. The verifier is only allowed to read a
very small portion of the proof and in return is allowed to err with some
bounded probability. The probability that the verifier accepts a proof of
a false claim is called the soundness error and is an important parameter
of a PCP system that one seeks to minimize. Constructing PCPs with
subconstant soundness error and, at the same time, a minimal number
of queries into the proof (namely two) is especially important due to
applications for inapproximability.
In this work, we construct such PCP verifiers, i.e., PCPs that make only
two queries and have subconstant soundness error. Our construction can
be viewed as a combinatorial alternative to the “manifold vs. point”
construction, which is the basis for all constructions in the literature
for this parameter range. The “manifold vs. point” PCP is based on
a low-degree test, while our construction is based on a direct product
test. We also extend our construction to yield a decodable PCP (dPCP)
with the same parameters. By plugging in this dPCP into the scheme of
Dinur and Harsha (FOCS 2009), one gets an alternative construction of
the result of Moshkovitz and Raz (FOCS 2008), namely a construction
of two-query PCPs with small soundness error and small alphabet size.
Our construction of a PCP is based on extending the derandomized
direct product test of Impagliazzo, Kabanets, and Wigderson (STOC
09) to a derandomized parallel repetition theorem. More accurately, our
PCP construction is obtained in two steps. We first prove a derandom-
ized parallel repetition theorem for specially structured PCPs. Then, we
show that any PCP can be transformed into one that has the required
structure, by embedding it on a de-Bruijn graph.
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1. Introduction

The PCP theorem (Arora et al. 1998; Arora & Safra 1998) says
that every language in NP can be verified by a polynomial time
verifier that queries proof of polynomial length in a constant num-
ber of locations. The verifier is guaranteed to always accept a
correct proof and to accept a proof of a false claim with bounded
probability (called the soundness error). Following the proof of
the PCP theorem, research has been directed toward strengthen-
ing the PCP theorem in terms of the important parameters, such
as the proof length, the number of queries, the soundness error,
and the randomness complexity of the verifier.

In parallel, there is a line of work attempting to expand the
variety of techniques at our disposal for constructing PCPs. Here,
the aim is to gain a deeper and more intuitive understanding of
why PCP theorems hold. One of the threads in this direction is
replacing algebraic constructions by combinatorial ones. This is
motivated by the intuition that algebra is not an essential compo-
nent of PCPs; indeed, the definition of PCPs involves no algebra
at all. Of course, one may also hope that the discovery of new
techniques may lead to new results.

For the “basic” PCP theorem (Arora et al. 1998; Arora & Safra
1998), there have been alternative combinatorial proofs (Dinur
2007; Dinur & Reingold 2006). It is still a challenge to match
stronger PCP theorems with combinatorial constructions. Such is
the work of the second author (Meir 2009) on PCPs with efficient
verifiers. In this paper, we seek to do so for PCPs in the small
soundness error regime.

In this work, we give a new construction of a PCP with subcon-
stant soundness error and two queries. This setting is particularly
important for inapproximability, as will be discussed shortly below.
In addition, our PCP maintains the polynomial proof length and
logarithmic randomness complexity of the original PCP theorem
of Arora et al. (1998), Arora & Safra (1998). Formally, we prove
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Theorem 1.1 (Two-query PCP with small soundness). There
exists a constant κ > 0 such that for every function ε : N → (0, 1)
satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n the following holds: Every
language L ∈ NP has a two-query PCP system with perfect com-
pleteness, soundness error ε, alphabet size 21/poly(ε), proof length
poly (n), and randomness complexity O(log n). Furthermore, the
verifier in this PCP system makes only ‘projection’ queries.

This theorem matches the parameters of the folklore “mani-
fold vs. point” construction, which has been the only construction
in the literature for this parameter range. The technical heart of
that construction is a subconstant error low-degree test (Arora &
Sudan 2003; Raz & Safra 1997), see full details in Moshkovitz &
Raz (2008).

Our proof of Theorem 1.1 is based on the elegant derandom-
ized direct product test of Impagliazzo et al. (2009). In a nutshell,
our construction is based on applying this test to obtain a “der-
andomized parallel repetition theorem”. While it is not clear how
to do this for an arbitrary PCP, it turns out to be possible for
PCPs with certain structure. We show how to convert any PCP
to a PCP with the required structure and then prove a “deran-
domized parallel repetition theorem” for such PCPs, thereby get-
ting Theorem 1.1. The derandomized parallel repetition theorem
relies on a reduction from the derandomized direct product test of
Impagliazzo et al. (2009).

The Moshkovitz–Raz construction. Recently, Moshkovitz &
Raz (2008) constructed even stronger PCPs. Specifically, they
managed to remove the limitation ε(n) ≤ 1/poly log n from
Theorem 1.1, thus allowing any function ε(n) ≥ 1/nκ. This allows
constructing PCPs with subconstant error and any alphabet size
smaller than 2poly logn, at the expense of a suitable increase in
the soundness error. Being able to reduce the alphabet size has
strong consequences for inapproximability, see Moshkovitz & Raz
(2008) for details. The technique of Moshkovitz & Raz (2008) (as
explained in the later simplification of Dinur & Harsha (2009)) is
essentially based on the composition of certain PCP constructions.
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In fact, their main building block is the “manifold vs. point”
construction mentioned above.

Our construction can be extended to yield a so-called decodable
PCP (Dinur & Harsha 2009), which is an object slightly stronger
than a PCP. This can be plugged into the scheme of Dinur &
Harsha (2009) to give a nearly1 combinatorial proof of the follow-
ing result of Moshkovitz & Raz (2008). Namely,

Theorem 1.2 (Moshkovitz & Raz 2008). There exists a constant
κ > 0 such that for every function ε(n) ≥ 1/nκ, the following holds:
Every language L ∈ NP has a two-query PCP system with perfect
completeness, soundness error ε, alphabet size at most 21/poly(ε),
proof length poly (n), and randomness complexity O(log n). Fur-
thermore, the verifier in this PCP system makes only ‘projection’
queries.

We note that the result of Moshkovitz & Raz (2008) is in fact even
stronger than claimed above since their verifier has almost-linear
proof length (specifically n1+o(1)) and has randomness complexity
of only (1 + o(1)) log n random bits, see also Remark 6.27.

Organization of the introduction. In the following four sec-
tions, we outline the background and main ideas of this work. We
start by describing the parallel repetition technique in general and
its relation with direct product tests. We proceed to describe our
technique of derandomized parallel repetition. We then describe
our notion of “PCPs with linear structure”, to which the deran-
domized parallel repetition is applied.

After the foregoing outline, we discuss relevant works and pos-
sible future directions and describe the organization of this work.

Parallel repetition and direct products. A natural
approach to reducing the soundness error of a PCP verifier is by
running it several times independently and accepting only if all
runs accept. This is called sequential repetition. Obviously, if the
verifier is invoked k times, the soundness error drops exponentially

1It is debatable whether our use of “linear structure” disqualifies the result
from being considered purely combinatorial.
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in k. However, the total number of queries made into the proof
grows k-fold, and in particular, it is greater than 2. Since our
focus is on constructing PCPs that make only two queries, we can-
not afford sequential repetition.

In order to decrease the soundness error while maintaining the
query complexity, one may use parallel repetition. For the rest of
this discussion, we consider only PCPs that use only two queries.
Let us briefly recall what parallel repetition means in this con-
text. As in the case of sequential repetition, one starts out with a
PCP with constant soundness error and then amplifies the rejection
probability by repetition of the verifier. However, in order to save
on queries, the prover is expected to give the k-wise direct product
encoding of the original proof. Formally, if π : [n] → Σ describes
the original proof, then its direct product encoding, denoted by
π⊗k, is the function π⊗k : [n]k → Σk defined by

π⊗k(x1, . . . , xk) = (π(x1), . . . , π(xk)).

The new verifier will simulate the original verifier on k independent
runs but will read only two symbols from the new proof, which
together contain answers to k independent runs of the original
verifier.

Of course, there is no a priori guarantee that the given proof
is a direct product encoding π⊗k of any underlying proof π, as
intended in the construction. This is the main difficulty proving
the celebrated parallel repetition due to Raz (1998) that shows that
the soundness error does go down exponentially with k.

One may try to circumvent the difficulty analyzing the parallel
repetition theorem by augmenting it with a direct product test.
That is, making the verifier test that the given proof Π is a direct
product encoding of some string π and only then running the origi-
nal parallel repetition verifier. This can sometimes be done without
even incurring extra queries. Motivated by this approach, Goldre-
ich & Safra (2000) suggested and studied the following question:

DP testing: Given a function F : [n]k → Σk test that it is close
to f⊗k for some f : [n] → Σ.

Let us now describe a two-query direct product test. From now
on, let us make the simplifying assumption that the function
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F : [n]k → Σk to be tested is given as a function of k-sized subsets
rather than tuples, meaning that F (x1, . . . , xk) is the same for any
permutation of x1, . . . , xk. The test chooses two random k-subsets
B1, B2 ∈

(
[n]
k

)
that intersect on a subset A = B1 ∩ B2 of a certain

prescribed size and accept if and only if F (B1)|A = F (B2)|A. This
test was analyzed further in several works, see Dinur & Golden-
berg (2008), Dinur & Reingold (2006), Goldreich & Safra (2000),
Impagliazzo et al. (2009).

Remark 1.3. An expert reader may note that the above direct
product test is not a projection test, while we need a projection
test for Theorem 1.1. Indeed, in our actual proof, we use a vari-
ant of the above direct product test which is a projection test (see
Section 2.1 for details).

Derandomized direct product testing. Recall that our goal
is to construct PCPs with subconstant soundness error. Note,
however, that since the parallel repetition increases the proof
length exponentially in k (and the randomness of the verifier grows
k-fold), one can only afford to make a constant number of repeti-
tions if one wishes to maintain polynomial proof length and log-
arithmic randomness complexity. On the other hand, obtaining
subconstant soundness error requires a super-constant number of
repetitions.

This leads to the derandomization question, addressed already
15 years ago (Feige & Kilian 1995). Can one recycle randomness
of the verifier in the parallel repetition scheme without losing too
much in soundness error?

Motivated by this question, Impagliazzo et al. (2009) intro-
duced a method for analyzing the direct product test that allowed
them to derandomize it. Namely, they exhibited a relatively small
collection of subsets K ⊂

(
[n]
k

)
and considered the restriction of the

direct product encoding f⊗k to this collection. They then showed
that this form of derandomized direct product can be tested using
the above test. The collection K is as follows: identify [n] with a
vector space F

m, let k = |F|d for constant d, and let K be the set
of all d-dimensional linear subspaces.
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A natural next step is to use the derandomized direct prod-
uct of Impagliazzo et al. (2009) to obtain a derandomized parallel
repetition theorem. Recall that the parallel repetition verifier
works by simulating k independent invocations of the original ver-
ifier on π and querying the (supposed) direct product Π on the
resulting k-tuples of queries. However, in the derandomized set-
ting, the k-tuples of queries generated by the verifier may fall out-
side K. This is the main difficulty that we address in this work.

This is where the structure of the PCP comes to our aid. We
show that for PCPs with a certain linear structure, the k-tuples of
queries can be made in a way that is compatible with the deran-
domized direct product test of Impagliazzo et al. (2009). More spe-
cifically, the k-tuples of queries always belong to the collection K
and are distributed like queries of the derandomized direct prod-
uct test. This allows us to prove a derandomized parallel repetition
theorem for the particular case of PCPs with linear structure. Our
main theorem is proved by constructing PCPs with linear structure
(discussed next) and applying the derandomized parallel repetition
theorem.

PCPs with linear structure. We turn to discuss PCPs with
linear structure. The underlying graph structure of a two-query
PCP is a graph defined as follows. The vertices are the proof coor-
dinates, and the edges correspond to all possible query pairs of the
verifier. (See also Section 2.3). We say that a graph has linear
structure if the vertices can be identified with a vector space F

m

and the edges, which clearly can be viewed as a subset of F
2m,

form a linear subspace of F
2m (see also Definition 3.1). A two-

query PCP has linear structure if its underlying graph has linear
structure.

As mentioned above, an additional contribution of this work is
the construction of PCPs with linear structure. That is, we prove
the following result.

Theorem 1.4 (PCPs with linear structure). Every language L ∈
NP has a two-query PCP system with a linear structure which has
perfect completeness, soundness error 1 − 1/poly log n, constant
alphabet size, proof length poly (n), and randomness complexity
O(log n).
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We believe that Theorem 1.4 is interesting in its own right: For
known PCPs, the underlying graph structure is quite difficult to
describe, mostly due to the fact that PCP constructions are invari-
ably based on composition. In principle, however, the fact that
a PCP is a “complex” object need not prevent the underlying
graph from being simple. In analogy, certain Ramanujan expand-
ers (Lubotzky et al. 1988) are Cayley graphs that are very easy to
describe, even if the proof of their expansion is not quite so easy.
It is therefore interesting to study whether there exist PCPs with
simple underlying graphs.

Philosophically, the more structured the PCP, the stronger is
the implied statement about the class NP, and the easier it is to
exploit for applications. Indeed, the structure of a PCP system
has been used in several previous works. For example, Khot (2006)
constructs a PCP with quasi-random structure in order to estab-
lish the hardness of minimum bisection. Dinur (2007) imposes an
expansion structure on a PCP to obtain amplification.

We prove Theorem 1.4 by embedding a given PCP into the
de Bruijn graph and relying on the algebraic structure of this graph.
We remark that the de Bruijn graph has been used in the construc-
tions of PCPs before, e.g., Polishchuk & Spielman (1994), Babai
et al. (1991), in similar contexts. We believe that structured PCPs
are an object worthy of further study. One may view their appli-
cability toward proving Theorem 1.1 as supporting evidence. An
interesting question which we leave open is whether Theorem 1.4
can be strengthened so as to get constant soundness error. By sim-
ply plugging such a PCP into our derandomized parallel repetition
theorem, one would get a direct proof of the aforementioned result
of Moshkovitz & Raz (2008), without using two-query composition.

Remark 1.5. Our notion of PCPs with linear structure should
not be confused with the notion of “linear PCPPs” that appeared
in the literature before (see Ben-Sasson et al. (2009) and the related
“linear inner verifier” of Goldreich & Safra (2000)). A linear PCPP
is, roughly, a PCP system for checking the membership of a vector
in a given linear subspace, in which the proof is required to be a
linear function of the aforementioned vector. This requirement is
unrelated to our definition, which does not restrict the claim to be
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verified or the proof and, on the other hand, restricts the query
structure of the PCP verifier.

Decodable PCPs. We extend our results to also yield a new
construction of decodable PCPs (dPCPs). A dPCP gives a way
to encode NP witnesses, so that a verifier (called a decoder in this
context) is able to both locally test their validity and locally decode
bits from the encoded NP witness. Decodable PCPs2 were intro-
duced in Dinur & Harsha (2009) toward simplifying and modular-
izing the work of Moshkovitz & Raz (2008) on two-query PCPs
with small soundness. In Dinur & Harsha (2009), the result of
Moshkovitz & Raz (2008) was reproved assuming the existence of
two building blocks, a PCP and a dPCP, which were used as a black
box. Until this work, there has been only one known construction
of a dPCP, based on the manifold vs. point construction. In this
work, we give a new construction of a dPCP which is obtained by
applying derandomized parallel repetition in an analogous way to
Theorem 1.1. We prove

Theorem 1.6 (dPCP, informal version). There exists a two-
query PCP decoder with perfect completeness, soundness error
1/poly log n, list size poly log n, proof alphabet 2poly logn, proof
length poly (n), and randomness complexity O(log n).

The notion of dPCPs is described in detail in Section 6 and,
in particular, in Section 6.2. Theorem 1.6 is stated and proved
in Section 6.4 based on two main lemmas, which are proved in
Section 7 and Section 8.

In order to prove this theorem, we generalize each of the steps of
the proof of Theorem 1.1. First, we construct a dPCP with linear
structure but with relatively high soundness error in an analogous
way to our proof of Theorem 1.4 (PCPs with linear structure).
Next, we apply derandomized parallel repetition to get the
desired dPCP. The two steps are described in Section 7 and
Section 8 respectively.

2Decodable PCPs generalize the notion of “locally decode/reject codes”
of Moshkovitz & Raz (2008) and the even earlier notion of “LDF readers”
of Dinur et al. (1999).
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An additional contribution of this work is an extension of the
definitions of Dinur & Harsha (2009), of dPCPs that work with
low soundness error, to one that works with high soundness error.
This is necessary because plugging in a higher value for the sound-
ness error parameter into the existing definition of Dinur & Harsha
(2009) turns out to be useless. Instead, we give a variant which we
call uniquely decodable PCPs (udPCPs). We show that udPCPs
are in fact equivalent to PCPs of proximity (PCPPs). This allows
us to rely on known constructions of PCPPs (Ben-Sasson et al.
2006; Dinur & Reingold 2006) as our starting point. For more
details, see Section 6.2.

Together, Theorem 1.1 and Theorem 1.6 imply Theorem 1.2
(the Moshkovitz & Raz 2008 result). This is sketched in
Section 6.5.

Remark 1.7. In fact, Theorem 1.6 can be proved for any sound-
ness error ε(n) satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n (for some
constant κ > 0. As in Theorem 1.1, the alphabet size in such
case is 21/poly(ε), and furthermore, the list size becomes 1/poly (ε).
However, in this paper, we only prove Theorem 1.6 for ε(n) =
1/poly log n, since this is all we need to prove Theorem 1.2 (the
Moshkovitz & Raz 2008 result).

Related work and future directions. Our final construction
of a two-query PCP has exponential relation between the alphabet
size and the error probability (that is, |Σ| = 21/poly(ε)). In general,
one can hope for a polynomial relation, and this is the so-called
sliding scale conjecture of Bellare et al. (1993). Our approach is
inherently limited to an exponential relation both because of a
lower bound on direct product testing from Dinur & Goldenberg
(2008) and, more generally, because of the following lower bound
of Feige & Kilian (1995) on parallel repetition of games. Feige and
Kilian prove that for every PCP system and k = O(log n) invoca-
tions of the original verifier, if one insists on the parallel repetition
using only O(log n) random bits, then the soundness error must
be at least 1/poly log n (and not 1/poly(n) as one might hope).
For the choice of k = O(log n), our work matches the Feige &
Kilian (1995) lower bound by exhibiting a derandomized parallel
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repetition theorem, albeit only for PCPs with linear structure, that
achieves a matching upper bound of 1/poly log n on the soundness
error.

Nevertheless, for three queries, we are in a completely different
ball-game, and no lower bound is known. It would be interesting
to find a derandomized direct product test with three queries with
lower soundness error and to try and adapt it to a PCP. We note
that there are “algebraic” constructions (Raz & Safra 1997; Dinur
et al. 1999) that make only three queries and have much better
relationship between the error and the alphabet size.

It has already been mentioned that while our result matches the
soundness error and alphabet size of the Moshkovitz & Raz (2008)
result, it does not attain nearly-linear proof length. Improving our
result in this respect is another interesting direction.

Structure of the paper. The paper has two main parts: the
first part is concerned with proving the main result for PCPs and
the second part generalizes this result to dPCPs.

◦ Part 1. The structure of the proof is “top to bottom”. Our
main theorem for PCPs is based on two main steps: (i) embed-
ding a PCP into a PCP with linear structure and (ii) a deran-
domized parallel repetition theorem for such PCPs. We begin, in
Section 3, by stating the two main lemmas corresponding to the
two steps above and then proving the main theorem, assuming
correctness of the lemmas. We then proceed to prove each main
lemma. In Section 4, we show how to embed a PCP into one
with linear structure (by routing it on a de Bruijn like graph). In
Section 5, we prove the “derandomized parallel repetition” the-
orem for PCPs with linear structure. This is done by reduction
to the derandomized direct product test of Impagliazzo et al.
(2009). More accurately, our analysis relies on a specialized var-
iant of this test which we call an S-test, which is analyzed in
Section 9.

◦ Part 2. The second part of the paper adapts our PCP
construction to a dPCP. In Section 6, we discuss and define
dPCPs and prove Theorem 1.6. We also show how to use this



218 Dinur and Meir cc 20 (2011)

theorem to derive the Moshkovitz & Raz (2008) result (The-
orem 1.2) as a corollary. The two main steps in the proof of
Theorem 1.6 are described in Section 7 and Section 8 and are
analogous to the two main steps of proving Theorem 1.1.

◦ Finally, we analyze the specialized direct product test (called
the S-test) in Section 9, based on the work of Impagliazzo et al.
(2009).

2. Preliminaries

Let g : U → Σ be an arbitrary function, and let A ⊂ U be a subset.
We denote by g|A the restriction of g (as a function) to A. We also
use the following convention.

Notation 2.1. Given two functions f, g : U → Σ, we denote

f
α≈ g (f

α


≈ g) to mean that they differ on at most (more than)
α fraction of the elements of U .

We refer to a d-dimensional linear subspace of an underlying vector
space simply as a d-subspace. For two linear subspaces A1 and A2,
the standard notation A1+A2 denotes the smallest linear subspace
containing both of them. We say that A1, A2 are independent if
and only if A1 ∩A2 = {0}. If A1 and A2 are disjoint, the standard
notation A1 ⊕ A2 is used to denotes A1 + A2.

Let G = (V,E) be a directed graph. For each edge e ∈ E, we
denote by left (e) and right (e) the left and right endpoints of e,
respectively. That is, if we view the edge e ∈ E as a pair in V ×V ,
then left (e) and right (e) are the first and second elements of the
pair e, respectively. Given a set of edges E0 ⊆ E, we denote by
left (E0) and right(E0) the set of left endpoints and right endpoints
of the edges in E0, respectively.

2.1. Direct Product Testing Impagliazzo et al. (2009).
Let us briefly describe the setting in which we use the derandom-
ized direct product test of Impagliazzo et al. (2009). In Impagli-
azzo et al. (2009) the main derandomized direct product test is a
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Figure 2.1: The P-test.

so-called V-test. We consider a variation of this test that appears
in Impagliazzo et al. (2009), Section 6.3, to which we refer as the
“P-test” (P for projection).

Given a string π ∈ Σ�, we define its (derandomized) P-direct
product Π as follows: We identify [�] with F

m, where F is a finite
field and m ∈ N, and think of π as an assignment that maps the
points in F

m to Σ. We also fix d0 < d1 ∈ N. Now, we define Π to
be the assignment that assigns each d0- and d1-subspace W of F

m

to the function π|W : W → Σ (recall that π|W is the restriction of
π to W ).

We now consider the task of testing whether a given assign-
ment Π is the P-direct product of some string π : F

m → Σ. In
those settings, we are given an assignment to subspaces, i.e., a
function Π that on input a d0-subspace A ⊂ F

m (respectively,
d1-subspace B ⊂ F

m), answers with a function a : A → Σ (respec-
tively, b : F

m → Σ). We wish to test whether Π is a P-direct
product of some π : F

m → Σ, and to this end, we invoke the
P-test, described in Figure 2.1.

It is easy to see that if Π is a P-direct product, then the P-test
always accepts. Furthermore, it can be shown that if Π is “far”
from being a P-direct product, then the P-test rejects with high
probability. Formally, we have the following result.

Theorem 2.2 (Soundness of the P-test of Impagliazzo et al.
2009). There exists a universal constant h ∈ N such that the

following holds: Let ε ≥ h · d0 · |F|−d0/h , α def
= h · d0 · |F|−d0/h.

Assume that d1 ≥ h · d0,m ≥ h · d1. Suppose that an assignment
Π passes the P-test with probability at least ε. Then, there exists
an assignment π such that
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Pr
[
Π (B)|A=Π (A) and Π (B)

α≈ π|B and Π (A)
α≈ π|A

]
=Ω(ε4),

(2.3)

where the probability is over A,B chosen as in the P-test.

Theorem 2.2 can be proved by adapting the analysis of Impagli-
azzo et al. (2009) (in particular, Sections 3.4 and 4) to the setting
of the P -test while relying on a lemma of Impagliazzo et al. (2009).
For completeness, the proof is given in Section 9.3.

Working with randomized assignments. As observed by
Impagliazzo et al. (2009), Theorem 2.2 works in even stronger
settings. Suppose that Π is a randomized function, i.e., a func-
tion of both its input and some additional randomness. Then,
Theorem 2.2 still holds for Π, where the probability in (2.3) is
both over the choice of A and B and over the internal randomness
of Π. We will rely on this fact in a crucial way in this work.

2.2. Sampling Tools. The following is the standard definition
of a sampler, stated in the terminology of graphs, see e.g., Impagli-
azzo et al. (2008).

Definition 2.4 (Sampler Graph). A bipartite graph G = (L,
R,E) is said to be an (ε, δ)-sampler if, for every function f : L →
[0, 1], there are at most δ |R| vertices u ∈ R for which

∣
∣Ev∈N(u)[f(v)] − Ev∈L[f(v)]

∣
∣ > ε.

Observe that if G is an (ε, δ)-sampler, and if F ⊂ L, then by con-
sidering the function f ≡ 1F , we get that there are at most δ |R|
vertices u ∈ R for which

∣
∣
∣
∣ Pr
v∈N(u)

[v ∈ F ] − Pr
v∈L

[v ∈ F ]

∣
∣
∣
∣ > ε.

The following lemma is stated in Impagliazzo et al. (2009),
Lemma 2.2, and is proved implicitly in Impagliazzo et al. (2008),
Lemma 2.9. For completeness, we include its proof.
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Lemma 2.5 (Subspace-point sampler of Impagliazzo et al. 2008).
Let d′ < d be natural numbers, let V be a linear space over a
finite field F, and let W be a fixed d′-subspace of V . Let G be the
bipartite graph whose left vertices are all points of V and whose
right vertices are all d-subspaces of V that contain W . We place
an edge between a d-subspace X and x ∈ V if and only if x ∈ X.
Then, G is an (τ + 1

|F|d−d′ , 1

|F|d−d′−2·τ2
)-sampler for every τ > 0.

Proof. Fix a function f : V → [0, 1]. We show that for a uni-
formly distributed d-subspace X ⊆ V that contains W , it holds
with probability at least 1 − 1

|F|d−d′−2·τ2
that

|Ex∈X [f(x)] − Ev∈V [f(v)]| ≤ τ +
1

|F|d−d′ .

Let W be a fixed subspace of V for which V = W ⊕ W . Let
fW : W → [0, 1] be the function that maps each vector w of W
to Ev∈w+W [f(v)], and observe that Ev∈V [f(v)] = Ew∈W [fW (w)].
Furthermore, observe that every d-subspace X that contains W
can be written as X = W ⊕U where U is a (d− d′)-subspace of W
and, moreover, that Ex∈X [f(x)] = Eu∈U [fW (u)]. Thus, it suffices
to prove that for a uniformly distributed (d− d′)-subspace U of
W , it holds with probability at least 1 − 1

|F|d−d′−2·τ2
that

|Eu∈U [fW (u)] − Ew∈W [fW (w)]| ≤ τ +
1

|F|d−d′ .(2.6)

To that end, let U be a uniformly distributed (d− d′)-subspace of

W . Let S1 be a uniformly distributed set of Q
def
= |F|d−d′−1

|F|−1
vectors

of U such that every two vectors in S1 are linearly independent.3

For every α ∈ F
∗, let Sα be the set obtained by multiplying every

vector in S1 by α. Observe that all the sets Sα have the property
that every two vectors in Sα are linearly independent and that the

3Such a set can be sampled, for example, by iteratively choosing a uni-
formly distributed vector of U that is linearly independent from each of the
previously chosen vectors individually. It is not hard to see that such a process

will halt after choosing Q
def= |F|d−d′ −1

|F|−1 vectors.
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sets Sα form a partition of U\{0}. We will show that for every
α ∈ F

∗, it holds with probability at least 1 − 1

|F|d−d′−1·τ2
that

|Eu∈Sα [fW (u)] − Ew∈W [fW (w)]| ≤ τ,

and the required result will follow by taking the union bound over
all α ∈ F

∗ and by noting that the vector 0 contributes at most
1

|F|d−d′ to the difference in Inequality (2.6).

Fix α ∈ F
∗, and let s1, . . . , sQ be the vectors in Sα. It is

a known fact that s1, . . . , sQ are pairwise independent and uni-
formly distributed vectors of W (over the random choice of U).
This implies that fW (s1), . . . , fW (sQ) are pairwise independent ran-
dom variables with expectation Ew∈W [fW (w)] and therefore by the
Chebyshev inequality it follows that

Pr

[∣
∣
∣
∣
∣
1

Q

Q∑

i=1

fW (si)−Ew∈W [fW (w)]

∣
∣
∣
∣
∣
>τ

]

≤ 1

Q · τ 2
≤ 1

|F|d−d′−1 · τ 2
,

as required. �

2.3. Constraint Graphs and PCPs. As discussed in the
introduction, the focus of this work is on claims that can be verified
by reading a small number of symbols of the proof. A PCP system
for a language L is an oracle machine M , called a verifier, that
has oracle access to a proof π over an alphabet Σ. The verifier M
reads the input x, tosses r coins, makes at most q “oracle” queries
into π, and then accepts or rejects. If x is in the language, then
it is required that M accepts with probability 1 for some π, and
otherwise, it is required that M accepts with probability at most
ε for every π. More formally:

Definition 2.7. Let r, q : N → N, and let Σ be a function that
maps the natural numbers to finite alphabets. A (r, q)Σ-PCP veri-
fier M is a probabilistic polynomial time oracle machine that when
given input x ∈ {0, 1}∗, tosses at most r(|x|) coins, makes at most
q (|x|) non-adaptive queries to an oracle that is a string over Σ(|x|),
and outputs either “accept” or “reject”. We refer to r, q, and Σ as
the randomness complexity, query complexity, and proof alphabet
of the verifier, respectively.
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Remark 2.8. Note that for an (r, q)Σ-PCP verifier M and an
input x, we can assume without loss of generality that the ora-
cle is a string of length at most 2r(|x|) · q(|x|), since this is the
maximal number of different queries that M can make. Hence, it
is unnecessary to keep track of the proof length of the verifier.

Definition 2.9. Let r, q, and Σ be as in Definition 2.7, let L ⊆
{0, 1}∗ and let ε : N → [0, 1). We say that L ∈ PCPε,Σ [r, q] if
there exists an (r, q)Σ-PCP verifier M that satisfies the following
requirements:

◦ Completeness: For every x ∈ L, there exists π ∈ Σ (|x|)∗ such
that Pr [Mπ(x) accepts] = 1.

◦ Soundness: For every x /∈ L and for every π ∈ Σ (|x|)∗, it holds
that Pr [Mπ(x) accepts] ≤ ε (|x|).

One possible formulation of the PCP theorem is as follows.

Theorem 2.10 (PCP Theorem Arora & Safra 1998; Arora et al.
1998). There exist universal constant ε ∈ (0, 1) and a finite alpha-
bet Σ such that NP ⊆ PCPε,Σ [O(log n), 2].

PCPs that have query complexity 2 correspond to graphs in a
natural way: Consider the action of an (r, 2)Σ-verifier M on some

fixed string x, and let r
def
= r(|x|),Σ def

= Σ(|x|). The verifier M is
given access to some proof string π of length � and may make 2r

possible tests on this string, where each such test consists of mak-
ing two queries to π and deciding according to the answers. We
now view the action of M as a graph in the following way. We con-
sider the graph G whose vertices are the coordinates in [�] and that
has an edge for each possible test of the verifier M . The endpoints
of an edge e of G are the coordinates that are queried by M in
the test that corresponds to e. We also associate an edge e with a
constraint ce ∈ Σ × Σ, which contains all the pairs of answers that
make M accept when performing the test that corresponds to e.
We think of π as an assignment that assigns the vertices of G values
in Σ, and say that π satisfies an edge (u, v) if (π(u), π(v)) ∈ c(u,v).
If x ∈ L, then it is required that there exists some assignment π
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that satisfies all the edges of G, and otherwise, it is required that
every assignment satisfies at most ε fraction of the edges. This
correspondence is called the FGLSS correspondence (Feige et al.
1996). We turn to state it formally:

Definition 2.11 (Constraint graph). A (directed) constraint
graph is a directed graph G = (V,E) together with an alphabet Σ,
and, for each edge (u, v) ∈ E, a binary constraint cu,v ⊆ Σ × Σ.
The size of G is the number of edges of G. The graph is said
to have projection constraints if it is bipartite with all the edges
directed from the left to the right, and every constraint cu,v has an
associated function fu,v : Σ → Σ such that cu,v is satisfied by (a, b)
if and only if fu,v(a) = b.

Given an assignment π : V → Σ, we define

SAT(G, π) = Pr
(u,v)∈E

[(π(u), π(v)) ∈ cu,v] and

SAT(G) = max
π

(SAT(G, π)).

We also denote UNSAT(G, π) = 1 − SAT(G, π) and similarly
UNSAT(G) = 1 − SAT(G).

Remark 2.12. Note that Definition 2.11 uses directed graphs,
while the common definition of constraint graphs refers to undi-
rected graphs.

Remark 2.13. Note that if the graph G has projection con-
straints, then this is simply a label cover instance with projection
constraints (Arora & Lund 1996).

Proposition 2.14 (FGLSS correspondence, Feige et al. 1996).
The following two statements are equivalent:

◦ L ∈ PCPε,Σ [r, 2].

◦ There exists a polynomial time algorithm that transforms strings
x ∈ {0, 1}∗ to constraint graphs Gx of size 2r(|x|) with alphabet
Σ (|x|) such that: (1) if x ∈ L, then SAT(Gx) = 1 and (2) if
x 
∈ L, then SAT(Gx) ≤ ε.
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Given a PCP system for L, we refer to the corresponding family of
graphs {Gx} where x ranges over all possible instances as its under-
lying graph family. If the graphs {Gx} have projection constraints
then we say that the PCP system has the projection property.

Using the FGLSS correspondence, we can rephrase the PCP
theorem in the terminology of constraint graphs:

Theorem 2.15 (PCP Theorem for constraint graphs). There
exist universal constant ε ∈ (0, 1) and a finite alphabet Σ such
that for every language L ∈ NP the following holds: There exists
a polynomial time reduction that on input x ∈ {0, 1}∗, outputs a
constraint graph Gx such that if x ∈ L then SAT(Gx) = 1 and
otherwise SAT(Gx) ≤ ε.

Remark 2.16. The connection between PCPs and approximation
problems (such as Proposition 2.14) was discovered by Feige et al.
(1996). However, the precise correspondence between PCPs and
constraint graphs that is given in Proposition 2.14 was only stated
for the first time by Arora et al. (1998). Still, in the rest of this
paper, we refer to Proposition 2.14 as the FGLSS correspondence.

Remark 2.17. Note the tight relationship between the random-
ness complexity of the PCP and the size of the corresponding
constraint graphs. In particular, observe that PCP verifiers with
randomness complexity O(log n) correspond to constraint graphs
of polynomial size. This relationship is one of the main reasons for
the study of the randomness complexity of PCP verifiers.

Moreover, recall that the work of Moshkovitz & Raz (2008)
constructs PCPs that are very randomness efficient, i.e., have
randomness complexity (1 + o(1)) log n (see also Remark 6.27).
This randomness efficiency is translated into constraints graphs
of almost-linear size, namely n1+o(1).

2.4. Basic Facts About Random Subspaces. In this section,
we present two useful propositions about random subspaces. The
following proposition says that a uniformly distributed subspace is
independent from every fixed subspace with high probability.
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Proposition 2.18. Let d, d′ ∈ N such that d > 2d′, and let V be
a d-dimensional space. Let W1 be a uniformly distributed d′-sub-
space of V , and let W2 be a fixed d′-subspace of V . Then,

Pr[W1 ∩W2 = {0}] ≥ 1 − 2 · d′/ |F|d−2·d′
.

Proof. Suppose that W1 is chosen by choosing random basis
vectors v1, . . . , vd′ one after the other. It is easy to see that
W1 ∩ W2 
= {0} only if vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for some
i ∈ [d′]. For each fixed i, the vector vi is uniformly distrib-
uted in V \span {v1, . . . , vi−1}, and therefore, the probability that
vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for a fixed i is at most

|span (W2 ∪ {v1, . . . , vi−1})|
|V \span {v1, . . . , vi−1}| =

|F|d′+i−1

|F|d − |F|i−1

≤ 2 · |F|d′+i−1

|F|d

≤ 2 · |F|2·d′−1

|F|d

≤ 2

|F|d−2·d′ ,(2.19)

where Inequality (2.19) can be observed by noting that |F|i−1 ≤
|F|d−1 ≤ 1

2
· |F|d. By the union bound, the probability that this

event occurs for some i ∈ [d′] is at most 2·d′

|F|d−2·d′ . It follows that the

probability that W1 ∩W2 
= {0} is at most 2·d′

|F|d−2·d′ as required. �

The following proposition says that the span of d′ uniformly dis-
tributed vectors is with high probability a uniformly distributed
d′-subspace.

Proposition 2.20. Let V be a d-dimensional space over a finite
field F, let w1, . . . , wd′ be independent and uniformly distributed
vectors of V , and let W = span {w1, . . . , wd′}. Then, with proba-

bility at least 1 − d′/ |F|d−d′
, it holds that dimW = d′. Further-

more, conditioned on the latter event, W is a uniformly distributed
d′-subspace of V .
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Proof. The fact that dimW = d′ with probability at least
1 − d′/ |F|d−d′

can be proved in essentially the same way as
Proposition 2.18. To see that conditioned on the latter event it
holds that the subspace W is uniformly distributed, observe that
since w1, . . . , wd′ were originally chosen to be uniformly distrib-
uted, all the possible d′-sets of linearly independent vectors have
the same probability to occur. �

Finally, the following proposition shows the equivalence of two dif-
ferent ways of choosing subspaces A1, A2 ⊆ B where A1 and A2

are independent.

Proposition. Let V be a linear space over a finite field F, and
let d0, d1 ∈ N be such that d0 < d1 < dimV . The following two
distributions over d0-subspaces A1, A2 and a d1-subspace B are the
same:

(i) Choose B to be a uniformly distributed d1-subspace of V , and
then choose A1 and A2 to be two uniformly distributed and
independent d0-subspaces of B.

(ii) Choose A1 and A2 to be two uniformly distributed and inde-
pendent d0-subspaces of V , and then choose B to be a uni-
formly distributed d1-subspace of V that contains A1 and A2.

Proof. Observe that choosing A1, A2, B under the first distri-
bution amounts to choosing d1 uniformly distributed and linearly
independent vectors in V (those vectors will serve as the basis of B)
and then choosing two disjoint subsets of those vectors to serve as
the basis of A1 and as the basis of A2. On the other hand, choosing
A1, A2, and B under the second distribution amounts to choosing
d0 uniformly distributed and linearly independent vectors in V to
serve as the basis of A1, then choosing another d0 uniformly dis-
tributed and linearly independent vectors in V to serve as the basis
of A2 while making sure that this basis is also linearly independent
from the basis of A1, and then completing the basis of A1 and the
basis of A2 to a basis of B. It is easy to see that those two dis-
tributions over a set of d1 vectors and its two disjoint subsets are
identical. �
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2.5. Similarity of Distributions. In this section, we introduce
a notion of “similarity of distributions”, which we will use in the
second part of the paper. Let X1 and X2 be two random variables
that take values from a set X , and let γ ∈ (0, 1]. We say that X1

and X2 are γ-similar if for every x ∈ X it holds that

γ · Pr [X1 = x] ≤ Pr [X2 = x] ≤ 1

γ
· Pr [X1 = x] .

Note that if X1 and X2 are γ-similar, then actually it holds for
every S ⊆ X that

γ · Pr [X1 ∈ S] ≤ Pr [X2 ∈ S] ≤ 1

γ
· Pr [X1 ∈ S] ,

The following claim says roughly that if f is a randomized function,
then the random variable f(X1) is γ-similar to f(X2).

Claim 2.21. Let X1 and X2 be two random variables that take
values from a set X that are γ-similar. Let Y1 and Y2 be two
random variables that take values from a set Y such that for every
x ∈ X , y ∈ Y , it holds that

Pr [Y1 = y|X1 = x] = Pr [Y2 = y|X2 = x] .

Then, the variables Y1, Y2 are γ-similar.

Proof. It holds that

Pr [Y1 = y] =
∑

x∈X
Pr [Y1 = y|X1 = x] · Pr [X1 = x]

=
∑

x∈X
Pr [Y2 = y|X2 = x] · Pr [X1 = x]

≥
∑

x∈X
Pr [Y2 = y|X2 = x] · γ · Pr [X2 = x]

= γ · Pr [Y2 = y] .

Similarly, it can be proved that Pr [Y1 = y] ≤ 1
γ

· Pr [Y2 = y]. �
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2.6. Expanders. Expanders are graphs with certain properties
that make them extremely useful for many applications in theo-
retical computer science. Below, we give a definition of expanders
that suits our needs.

Definition 2.22. Let G = (V,E) be a d-regular graph. Let
E

(
S, S

)
be the set of edges from a subset S ⊆ V to its com-

plement. We say that G has edge expansion h if for every S ⊆ V
such that |S| ≤ |V | /2, it holds that

∣
∣E(S, S)

∣
∣ ≥ h · d0 · |S| .

A useful fact is that there exist constant degree expanders over any
number of vertices:

Fact 2.23. There exist d0 ∈ N and h0 > 0 such that there exists a
polynomial time constructable family {Gn}n∈N

of d0-regular graphs
Gn on n vertices that have edge expansion h0 (such graphs are
called expanders).

3. Main Theorem

In this section, we prove our main PCP theorem (Theorem 1.1),
which asserts the existence of two-query PCPs with soundness
error ε(n) for any function 1/nκ ≤ ε(n) ≤ 1/poly log n. To that
end, we use the PCP theorem for graphs (Theorem 2.15) to reduce
the problem of deciding membership of a string x in the language
L to the problem of checking the satisfiability of a constraint graph
with constant soundness error. We then show that every constraint
graph can be transformed into one that has “linear structure”,
defined shortly below. This is done in Lemma 3.3, which directly
proves Theorem 1.4 (the existence of PCPs with linear structure).
Finally, in Lemma 3.4, we prove a derandomized parallel repetition
theorem for constraint graphs with linear structure. Theorem 1.1
follows by combining the two lemmas. We begin by defining the
notion of a graph with linear structure.

Definition 3.1 (Linear Structure). We say that a directed graph
G has a linear structure if it satisfies the following conditions:
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(i) The vertices of G can be identified with the linear space F
m,

where F is a finite field and m ∈ N.

(ii) We identify the set of pairs of vertices (Fm)2 with the linear
space F

2m. Using this identification, the edges E of G are
required to form a linear subspace of F

2m.

(iii) We require that left (E) = right (E) = F
m. In other words,

this means that every vertex of G is both the left endpoint of
some edge and the right point of some edge.

Remark 3.2. We mention that although it is not required by
Definition 3.1, a graph with linear structure must be regular, i.e.,
all the vertices in the graph have the same in-degree and out-
degree. This is a straightforward corollary of Items (ii) and (iii) of
the definition.

The following lemmas are proved in Section 4 and Section 5, respec-
tively.

Lemma 3.3 (Linear Structure Embedding). There exists a poly-
nomial time procedure that satisfies the following requirements:

◦ Input:

– A constraint graph G of size n over alphabet Σ.

– A finite field F of size q.

◦ Output: A constraint graph G′ = (Fm, E ′) such that the fol-
lowing holds:

– G′ has a linear structure.

– The size of G′ is at most O (q2 · n).

– G′ has alphabet ΣO(logq(n)).

– If G is satisfiable then G′ is satisfiable.

– If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

1
q·logq(n)

· ρ
)
.
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Lemma 3.4 (Derandomized Parallel Repetition). There exist a
universal constant h and a polynomial time procedure that
satisfy the following requirements:

◦ Input:

– A finite field F of size q

– A constraint graph G = (Fm, E) over alphabet Σ that has a
linear structure.

– A parameter d0 ∈ N such that d0 < m/h2. This parame-
ter will determine the dimension of linear subspaces used in
the derandomized parallel repetition and thus together with
q will determine the number of repetitions used in the deran-
domized parallel repetition.

– A parameter ρ ∈ (0, 1) such that ρ ≥ h·d0 ·q−d0/h. Intuitively,
the parameter ρ should be chosen such that 1−ρ is an upper
bound on the soundness error of G.

◦ Output: A constraint graph G′ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– If G is satisfiable then G′ is satisfiable.

– If SAT (G) < 1 − ρ then SAT (G′) < h · d0 · q−d0/h.

– G′ has the projection property.

We turn to prove the main theorem from the above lemmas.

Theorem (1.1, restated). There exists a constant κ > 0 such
that for every function ε : N → (0, 1) satisfying 1/nκ ≤ ε(n) ≤
1/poly log n the following holds: Every language L ∈ NP has a
two-query PCP system with perfect completeness, soundness error
ε, alphabet size 21/poly(ε), proof length poly (n), and randomness
complexity O(log n). Furthermore, the verifier in this PCP system
makes only ‘projection’ queries.
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Proof. Let κ > 0 be a constant to be chosen later, and let
ε : N → (0, 1) be a function satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n.
Fix a language L ∈ NP. We show that L has a two-query PCP sys-
tem with perfect completeness, soundness error ε(n), and alphabet
size 21/poly(ε), which has the projection property. By the FGLSS
correspondence (Proposition 2.14), it suffices to show a polyno-
mial time procedure that on input x ∈ {0, 1}∗, outputs a con-
straint graph G′ of size poly (n) such that the following holds: If
x ∈ L, then G′ is satisfiable (i.e., SAT(G′) = 1), and if x 
∈ L,
then SAT(G′) ≤ ε(n). The procedure begins by transforming x,
using the PCP theorem for constraint graphs (Theorem 2.15), to
a constraint graph G of size n = poly |x| such that if x ∈ L, then
SAT (G) = 1 and if x 
∈ L, then SAT (G) ≤ ε0, where ε0 ∈ (0, 1) is
a universal constant that does not depend on x. Let n = poly (|x|)
be the size of G, and let ρ0 = 1 − ε0.

Next, the procedure sets F to be the smallest field of size at least
1/ (ε(n))c for some constant c > 1 to be determined later, and sets
q = |F|. Note that q ≥ poly log n. The procedure now invokes
Lemma 3.3 (linear structure embedding) on input G and F, thus
obtaining a new constraint graph G1. Note that by Lemma 3.3, if

UNSAT (G) ≥ ρ0, then ρ1
def
= UNSAT (G1) ≥ Ω

(
1

q·logq(n)
· ρ0

)
.

Finally, the procedure sets d0 to be an arbitrary constant such
that ρ1 ≥ h · d0 · q−d0/h . Note that this is indeed possible, since
logq (1/ρ1) is a constant that depends only on ρ (here, we use the
fact that q ≥ poly log n). Finally, the procedure invokes Lemma 3.4
(derandomized parallel repetition) on input G1,F, ρ1, and d0, and
outputs the resulting constraint graph G′. We note that we use
here the assumption that ε(n) ≥ nκ and choose κ to be sufficiently
small, in order to guarantee that q,m, and d0 satisfy the require-
ments of Lemma 3.4.

It remains to analyze the parameters of G′. It is not hard to
see that G′ has size nO(d0) and alphabet ΣqO(d0)

= Σ1/poly(ε). Fur-
thermore, if UNSAT (G) ≥ ρ, then UNSAT (G1) ≥ ρ1. Therefore,
by Lemma 3.4 and by the choice of d0, it holds that SAT(G′) ≤
O(1/qΩ(1)). Since q = 1/ (ε(n))c, it holds for sufficiently large
c that SAT(G′) ≤ ε(n), as required. �



cc 20 (2011) Derandomized parallel repetition 233

Remark 3.5. Recall that Moshkovitz & Raz (2008) prove a stron-
ger version of the main theorem, saying that for every soundness
error ε(n) > nκ, not necessarily upper bounded by 1/poly log n, it
holds that NP has a PCP system with soundness ε and alphabet
size exp (1/poly(ε)) (Theorem 1.2). If one could prove a stronger
version of Lemma 3.3 (Linear Structure Embedding) in which the

soundness of G′ is ρ/poly (q) and the alphabet size is |Σ|poly(q),
then the stronger Theorem 1.2 would follow using the same proof
as above, without using a composition technique as in Dinur &
Harsha (2009); Moshkovitz & Raz (2008), by choosing q to be suf-
ficiently small.

Remark 3.6. The reduction described in Theorem 1.1 yields
graphs of polynomial size, but not of nearly-linear size as in
Moshkovitz & Raz (2008) (see Remark 2.8). In fact, the construc-
tion of graphs with linear structure (Lemma 3.3) is nearly-linear
size (taking an instance of size n to an instance of size q2 · n).
The part that incurs a polynomial and not nearly-linear blow-up
is the derandomized parallel repetition (Lemma 3.4) that relies on
the derandomized direct product. It is possible that a more effi-
cient derandomized direct product may lead to a nearly-linear size
construction in total.

4. PCPs with Linear Structure

In this section, we prove Lemma 3.3 (linear structure embedding),
which implies Theorem 1.4 (the existence of PCPs with linear
structure) by combining it with the PCP theorem (Theorem 2.15).
The lemma which says that every constraint graph can be trans-
formed into one that has linear structure. To this end, we use
a family of structured graphs called de-Bruijn graphs. We show
that de-Bruijn graphs have linear structure and that every con-
straint graph can be embedded in some sense on a de-Bruijn graph.
This embedding technique is a variant of a technique introduced by
Babai et al. (1991) and Polishchuk & Spielman (1994) for embed-
ding circuits on de-Bruijn graphs. We begin by defining de-Bruijn
graphs.
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Definition 4.1. Let Λ be a finite alphabet and let m ∈ N. The
de Bruijn graph DBΛ,m is the directed graph whose vertices set is
Λm such that each vertex (α1, . . . , αm) ∈ Λm has outgoing edges to
all the vertices of the form (α2, . . . , αm, β) for β ∈ Λ.

Remark 4.2. We note that previous works used a slightly dif-
ferent notion, the “wrapped de Bruijn graph”, which is a layered
graph in which the edges between layers are connected as in the
de Bruijn graph. Also, we note that previous works fixed Λ to be
the binary alphabet, while we use a general alphabet.

Lemma 3.3 follows easily from the following two propositions.
Proposition 4.3 says that de Bruijn graphs have linear structure.
Proposition 4.4 says that any constraint graph can be embedded
on a de Bruijn graph.

Proposition 4.3. Let F be a finite field and let m ∈ N. Then,
the de Bruijn graph DBF,m has linear structure.

Proof. Items i and iii of the definition of linear structure
(Definition 3.1) follow immediately from the definition of de Bruijn
graphs. To see that Item ii holds, observe that in order for a tuple
in F

2m to be an edge of DBF,m, it only needs to satisfy equality
constraints, which are in turn linear constraints. Thus, the set of
edges of DBF,m form a linear subspace of F

2m. �

Proposition 4.4 (Embedding on de-Bruijn graphs). There
exists a polynomial time procedure that satisfies the following
requirements:

◦ Input:

– A constraint graph G of size n over alphabet Σ.

– A finite alphabet Λ.

– A natural number m such that |Λ|m ≥ 2 · n

◦ Output: A constraint graph G′ such that the following holds:

– The underlying graph of G′ is the de Bruijn graph DBΛ,m.
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– The size of G′ is |Λ|m+1.

– G′ has alphabet ΣO(m).

– If G is satisfiable, then G′ is satisfiable.

– If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

n
|Λ|m+1·m · ρ

)
.

Lemma 3.3 (linear structure embedding) is obtained by invok-
ing Proposition 4.4 with Λ = F,m =

⌈
logq (2 · n)

⌉
and combining

it with Proposition 4.3. The rest of this section is devoted to prov-
ing Proposition 4.4 and is organized as follows: In Section 4.1, we
give the required background on the routing properties of de Bru-
ijn graphs. Then, in Section 4.2, we give an outline of the proof of
Proposition 4.4. Finally, we give the full proof of the proposition
in Section 4.3.

4.1. de Bruijn Graphs as Routing Networks. The crucial
property of the de Bruijn graphs that we use is that the de Bruijn
graph is a permutation routing network. To explain the intuition
that underlies this notion, let us think of the vertices of the de
Bruijn graph as computers in a network, such that two computers
can communicate if and only if they are connected by an edge.
Furthermore, sending a message from a computer to its neighbor
takes one unit of time. Suppose that each computer in the network
wishes to send a message to some other computer in the network,
and furthermore, each computer needs to receive a message from
exactly one computer (that is, the mapping from source computers
to target computers is a permutation). Then, the routing property
of the de Bruijn network says that we can find paths in the network
that have the following properties:

1. Each path corresponds to a message that needs to be sent and
goes from the message’s source computer to its target computer.

2. If all the messages are sent simultaneously along their corre-
sponding paths, then at each unit of time, each computer pro-
cesses exactly one message. By “processing”, we mean that the
computer receives the message from one of its neighbors and
sends it to one of its neighbors.
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3. The paths are of length exactly 2 · m. This means that if all
the messages are sent simultaneously along their corresponding
paths, then after 2 ·m units of time all the messages will reach
their destination.

Formally, this property can be stated as follows.

Fact 4.5. Let DBΛ,m be a de-Brujin graph. Then, given a permu-
tation μ on the vertices of DBΛ,m, one can find a set of undirected
paths of length l = 2m which connect each vertex v to μ(v) and
which have the following property: For every j ∈ [l], each vertex v
is the j-th vertex of exactly one path. Furthermore, finding the
paths can be done in time that is polynomial in the size of DBΛ,m.

Fact 4.5 is proved in Leighton (1992) for the special case of Λ =
{0, 1}. The proof of the general case essentially follows the original
proof, except that the looping algorithm of Beneš is replaced with
the decomposition of d-regular graphs to d perfect matchings. For
completeness, we give the proof of the general case in Section 4.4.

Remark 4.6. Note that the paths mentioned in Fact 4.5 are undi-
rected. That is, if a vertex u appears immediately after a vertex v
in path, then either (u, v) or (v, u) are edges of DBΛ,m.

4.2. Proof Overview. Suppose we are given as input a con-
straint graph G which we want to embed on DB = DBΛ,m. Recall
that the size of G is at most |Λ|m, so we may identify the vertices
of G with some of the vertices of DB.

Handling degree 1 As a warm-up, assume that G has degree 1,
i.e., G is a perfect matching. In this case, we construct G′ as fol-

lows. We choose the alphabet of G′ to be Σl for l
def
= 2m. Fix any

assignment π to G. We describe how to construct a corresponding
assignment π′ to G′. We think of the vertices of G as computers,
such that each vertex v wants to send the value π(v) as a message
to its unique neighbor in G. Using the routing property of the
de Bruijn graph, we find paths for routing those messages along
the edges of G′. Recall that if all the messages are sent simulta-
neously along those paths, then every computer has to deal with
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one packet at each unit of time, for l units of time. We now define
the assignment π′ to assign each vertex v of G′ a tuple in Σl whose
j-th element is the message with which v deals at the j-th unit of
time.

We define the constraints of G′ such that they verify that the
routing is done correctly. That is, if the computer u is supposed to
send a message to a vertex v between the j-th unit of time and the
(j + 1)-th unit of time, then the constraint of the edge between u
and v checks that π′ (u)j = π′(v)j+1. Furthermore, for each edge
(u, v) of G, the constraints of G′ check that the values π′ (v)l and
π′ (v)1 satisfy the edge (u, v). This condition should hold because
if π′ was constructed correctly according to π, then π′ (v)l = π(u)
and π′ (v)1 = π(v). It should be clear that the constraints of G′

“simulate” the constraints of G. We discuss the exact behavior of
the soundness error in the detailed proof.

Handling arbitrary degree graphs Using the expander
replacement technique of Papadimitriou & Yannakakis (1991), we
may assume that G is d-regular for some universal constant d. The
d-regularity of G implies that the edges of G can be partitioned
to d disjoint perfect matchings μ1, . . . , μd in polynomial time (see,
e.g., Cameron 1998, Proposition 18.1.2). Now, we set the alphabet

of G′ to be
(
Σl

)d
and handle each of the matchings μi as before,

each time using a “different part” of the alphabet symbols. In
other words, the alphabet of G′ consists of d-tuples of Σl, and so
the constraints used to handle each matching μi will refer to the
i-th coordinates in those tuples. Finally, for vertex v, its con-
straints will also check that the message it sends in each of the d

paths is the same. In other words, if π′ (v) = (σ1, . . . , σd) ∈
(
Σl

)d
,

then the constraints will check that (σ1)1 = · · · = (σd)1. As before,
the constraints of resulting graph G′ “simulate” the constraints of
the original graph G.

Remark 4.7. Observe that the foregoing proof used only the
routing property of de Bruijn graphs and will work for any graph
that satisfies this property. In other words, Proposition 4.4
(embedding on de-Bruijn graphs) holds for any graph for which
Fact 4.5 holds.



238 Dinur and Meir cc 20 (2011)

4.3. Detailed Proof. We use the following version of the
expander-replacement technique of Papadimitriou & Yannakakis
(1991).

Lemma 4.8 (Dinur 2007, Lemma 3.2). There exist universal con-
stants c, d ∈ N and a polynomial time procedure that when given
as input a constraint graph G of size n outputs a constraint graph
G′ of size 2 · d · n over alphabet Σ such that the following holds:

◦ G′ has 2 · n vertices and is d-regular.

◦ If G is satisfiable, then so is G′.

◦ If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ ρ/c.

We turn to proving Proposition 4.4 (embedding on de-Bruijn
graphs). When given as input a constraint graph G, a finite alpha-
bet Λ, and a natural numberm such that |Λm| ≥ 2·n, the procedure
of Proposition 4.4 acts as follows. The procedure begins by invok-
ing Lemma 4.8 on G, resulting in a d-regular constraint graph G1

over 2 · n vertices. Then, the vertices of G1 are identified with a
subset of the vertices of DB = DBΛ,m (note that this is possible
since |Λm| ≥ 2 · n).

Next, the procedure partitions the edges of G1 to d disjoint
perfect matchings and views those matchings as permutations
μ1, . . . , μd on the vertices of DB in the following way: Given a
vertex v of DB, if v is identified with a vertex of G1, then μi maps
v to its unique neighbor in G via the i-th matching, and otherwise
μi maps v to itself. The procedure then applies Fact 4.5 to each

permutation μi resulting in a set of paths Pi of length l
def
= 2m. Let

P =
⋃

Pi.
Finally, the procedure constructs G′ in the following way. We

set the alphabet of G′ to be Σl·d, viewed as
(
Σl

)d
. If σ ∈

(
Σl

)d
,

and we denote σ = (σ1, . . . , σd), then we denote by σi,j the element
(σi)j ∈ Σ. To define the constraints of G′, let us consider their

action on an assignment π′ of G′. An edge (u, v) of DB′ is associ-
ated with the constraint that accepts if and only if all the following
conditions hold:
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1. For every i ∈ [d], the values
(
π′ (u)i,l , π

′ (u)i,1
)

satisfy the edge
(
μ−1
i (u), u

)
of G.

2. It holds that π′ (u)1,1 = · · · = π′ (u)d,1 and that π′ (v)1,1 = · · · =
π′ (v)d,1.

3. For every i ∈ [d] and j ∈ [l − 1] such that u and v are the j-th
and (j + 1)-th vertices of a path in p ∈ Pi respectively, it holds
that π′ (u)i,j 
= π′ (v)i,j+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u
is its (j + 1)-th vertex.

The size of G′ is indeed |Λ|m+1, since the graph is |Λ|-regular and
contains |Λ|m vertices. Furthermore, if G is satisfiable, then so
is G′: The satisfiability of G implies the satisfiability of G1, so
there exists a satisfying assignment π1 for G1. We construct a sat-
isfying assignment π′ from π1 by assigning each vertex v of G′ a
value π′ (v), such that for each i ∈ [d], if v is the j-th vertex of a
path p ∈ Pi that connects the vertices u and μi(u), then we set
π′ (v)i,j = π1(u). Note that this is well defined, since every vertex
is the j-th vertex of exactly one path in Pi.

It remains to analyze the soundness of G′. Suppose that
UNSAT (G) ≥ ρ. Then, by Lemma 4.8, it holds that UNSAT (G1)
≥ ρ/c. Let π′ be an assignment to G′ that minimizes the frac-
tion of violated edges of G′. Without loss of generality, we
may assume that for every vertex v of the DB, it holds that
π′ (v)1,1 = · · · = π′ (v)d,1: If there is a vertex v that does not
match this condition, all of the edges attached to v are violated,
and therefore, we can modify the π′(v) to match this condition
without increasing the fraction of violated edges of π′. Define an
assignment π1 to G1 by setting π1(v) = π′ (v)1,1 (when v is viewed
as a vertex of DB).

Since UNSAT (G1) ≥ ρ/c, it holds that π1 violates at least
ρ/c fraction of the edges of G1 or, in other words, π1 violates at
least ρ · 2 · n · d/c edges of G1. Thus, there must exist a permu-
tation μi such that π1 violates at least ρ · 2 · n/c edges of G1 of
the form (u, μi(u)). Fix such an edge (u, μi(u)) and consider the
corresponding path p ∈ Pi. Observe that π′ must violate at least
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one of the edges of p: To see it, note that if π′ would satisfy all
the edges on p, then it would imply that π′ (μi(u))i,l = π1(u) and
that π′ (μi(u))i,1 = π1(μi(u)), but the last two values violate the
edge (u, μi(u)) of G1, and therefore, π′ must violate the last edge
of p—contradiction. It follows that for each of the ρ · 2 · n/c edges
of the matching μi that are violated by π1, it holds that π′ vio-
lates at least one edge of their corresponding path. By averaging,
there must exist j ∈ [l] such that for at least ρ · 2 · n/c · l edges
of the matching μi, it holds that π′ violates the j-th edge of their
corresponding path.

Now, by the definition of the paths in Pi, no edge of G′ can
be the j-th edge of two distinct paths in Pi, and therefore, it fol-
lows that there at least ρ · 2 · n/c · l edges of G′ are violated by
π′. Finally, there are |Λ|m+1 edges in G′, and this implies that π′

violates a fraction of the edges of G′ that is at least

ρ · 2 · n/c · l
|Λ|m+1 = Ω

(
n

|Λ|m+1 · l
· ρ

)
,

as required. �

4.4. Routing on de Bruijn Graphs. In this section, we prove
the routing property of de Bruijn graph given in Fact 4.5. Recall
the following.

Definition (4.1, restated). Let Λ be a finite alphabet and let m∈
N. The de Bruijn graph DBΛ,m is the directed graph whose verti-
ces set is Λm such that each vertex (α1, . . . , αt) ∈ Λm has outgoing
edges to all the vertices of the form (α2, . . . , αt, β) for β ∈ Λ.

Fact (4.5, restated). Let DBΛ,m be a de-Bruijn graph. Then,
given a permutation μ on the vertices of DBΛ,m one can find a set
of undirected paths of length l = 2m which connect each vertex v
to μ(v) and which have the following property: For every j ∈ [l],
each vertex v is the j-th vertex of exactly one path. Furthermore,
finding the paths can be done in time that is polynomial in the size
of DBΛ,m.
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We actually prove the following slightly stronger result, which says
that if the permutation μ acts only on the i last coordinates of its
input, then the routing can be done in only 2i steps.

Claim 4.9. Let DBΛ,m be a de-Bruijn graph and let i ∈ [m].
Then, given a permutation μ on Λi, one can find a set of undi-
rected paths of length 2 · i that connect each vertex (α1, . . . , αm)
of DBΛ,m to the vertex

(α1, . . . , αm−i, μ (αm−i+1, . . . , αm)) ,

and that have the following two property: For every j ∈ [l], each
vertex v is the j-th vertex of exactly one path. Furthermore, find-
ing the paths can be done in time that is polynomial in the size of
DBΛ,m.

The proof works by induction on i. For i = 0, the claim is obvi-
ous. Assume that the claim holds for some 0 ≤ i < m. We
prove that the claim holds for i + 1. Let DB = DBΛ,m, and
let μ be a permutation on Λi+1. For convenience, let us define
the action of μ on each (α1, . . . , αm) ∈ F

m as μ (α1, . . . , αm) =
(α1, . . . , αm−i−1, μ (αm−i, . . . , αm)).

Let G be the directed graph whose vertices are the set Λm and
whose edges are all the pairs of the form (v, μ(v)). Let G′ be the
graph that is obtained from G by contracting each |Λ| vertices of
G that agree on their last coordinate to one vertex. Clearly, every
vertex in G′ has in-degree and out-degree exactly |Λ|, and each
edge of G′ corresponds to an edge of G. Furthermore, observe that
the vertices of G′ can be identified with the vertices of Λm−1.

The |Λ|-regularity of G implies that the edges of G′ can be par-
titioned to |Λ| perfect matchings {G′

σ}σ∈Λ in polynomial time (see,
e.g., Cameron 1998, Proposition 18.1.2). Fix a matching G′

σ, and
consider an edge e′ in G′

σ. Observe that if e is coming out of a
vertex (α1, . . . , αm−1) of G′, then it must enter a vertex of the form(
α1, . . . , αm−i, α′

m−i+1, . . . , α
′
m−1

)
. Thus, we can define a permu-

tation νσ on Λi that maps (αm−i, . . . , αm−1) to
(
α′
m−i, . . . , α

′
m−1

)

for each such edge e′(since G′
σ is a perfect matching, this is well

defined). We now invoke the induction hypothesis on the graph
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DB = DBΛ,m to find a set of paths Pσ of length 2i for each per-
mutation νσ.

We construct the required paths for μ as follows. Let
v = (α1, . . . , αm) ∈ Λm, and suppose that μ (αm−i, . . . , αm) =(
α′
m−i, . . . , α

′
m

)
. We wish to construct a path p in DB that connects

v to μ (v). The edge (v, μ (v)) corresponds to some edge e′ in G′, so
let G′

β be the matching to which e′ belongs. We turn to construct
the path p: The first edge in the path p connects v = (α1, . . . , αm)
to the vertex (β, α1, . . . , αm−1). The next 2i edges of p will be
the edges of the path in Pβ that connects (β, α1, . . . , αm−1) to(
β, α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m−1

)
. Finally, the last edge of p

will go from the vertex
(
β, α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m−1

)
to the

vertex
(
α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m

)
= μ (v) .

Observe that p indeed connects v to μ (v) and is of length 2·(i+ 1).
It remains to show that for each j ∈ [2i+ 2], it holds that every

vertex v is the j-th vertex of exactly one path. The cases of j = 1
and j = 2 · i + 2 are trivial. We analyze the case of j = 2, and
the rest of the cases will follow from the induction hypothesis. Let
u = (β, α1, . . . , αm−1) ∈ Λm. We show that u is the second vertex
of a unique path p by constructing p. Let e′ be the unique edge of
G′ that comes out of the vertex (α1, . . . , αm−1) and that belongs
to the matching G′

β. The edge e′ of G′ corresponds to some unique
edge (v, μ (v)) of G. Now, by construction, the only path p such
that u is the second vertex of p is the path that connects v to μ (v).
The required result follows. �

5. Derandomized Parallel Repetition
of Constraint Graphs with Linear Structure

In this section, we prove Lemma 3.4, restated below, by imple-
menting a form of derandomized parallel repetition on graphs that
have linear structure.

Lemma 5.1 (3.4, restated). There exist a universal constant h
and a polynomial time procedure that satisfy the following require-
ments:
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◦ Input:

– A finite field F of size q

– A constraint graph G = (Fm, E) over alphabet Σ that has a
linear structure.

– A parameter d0 ∈ N such that d0 < m/h2. This parame-
ter will determine the dimension of linear subspaces used in
the derandomized parallel repetition and thus together with
q will determine the number of repetitions used in the der-
andomized parallel repetition.

– A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h. Intui-
tively, the parameter ρ should be chosen such that 1 − ρ is
an upper bound on the soundness error of G.

◦ Output: A constraint graph G′ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– If G is satisfiable then G′ is satisfiable.

– If SAT (G) < 1 − ρ then SAT (G′) < h · d0 · q−d0/h.

– G′ has the projection property.

The basic idea of the proof is as follows. G′ contains two kinds
of vertices: the first kind corresponds to small subspaces of the ver-
tices space F

m and of the other kind corresponds to small subspaces
of the edges space E, where in both cases “small subspaces” mean
O (d0)-dimensional subspaces. A satisfying assignment Π to G′ is
expected to be constructed in the following way: Take a satisfying
assignment π to G. For each vertex of G′ which is a subspace A of
vertices, the assignment Π should assign A to π|A. For each vertex
of G′ which is a subspace F of edges, the assignment Π should
assign F to π|left(F )∪right(F ).

The edges of G′ are constructed so as to simulate a test on Π
to which we refer as the “E-test” and act roughly as follows (see
Figure 5.1 for the actual test): Choose a random subspace F of
edges and a random subspace A of endpoints of F , and accept if
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and only if the labeling of the endpoints of the edges in F by Π (F )
satisfies the edges and is consistent with the labeling of the vertices
of A by Π (A).

The intuition that underlies the soundness analysis of G′ is
the following: The E-test performs some form of a “derandom-
ized direct product test” on Π—if we compare it to the P -test
(Figure 2.1), then the pair (A,F ) here is analogous to the pair
(A,B) there. Therefore, if Π (F ) is consistent with Π (A), the
labeling Π (F ) should be roughly consistent with some assignment
π to G. Therefore, by checking that the labeling Π (F ) satisfies
the edges in F , the E-test checks that π satisfies many edges of π
in parallel. In this sense, the E-test can be thought as a form of
“derandomized parallel repetition”.

The rest of this section is organized as follows. In Section 5.1,
we provide a formal description of the construction of G′ and ana-
lyze all its parameters except for the soundness. In order to analyze
the soundness of G′, we introduce in Section 5.2 a specialized direct
product test. Finally, in Section 5.3, we analyze the soundness ofG′

by reducing it to the analysis of the specialized direct product test.

Notation 5.2. Given a function f : U → Σ and two subsets
S, T ⊆ U , we denote by f|(S,T ) the pair of functions

(
f|S, f|T

)
.

Notation 5.3. Recall that in Notation 2.1 we denoted the nota-

tion f
α≈ g (f

α


≈ g) to mean that f and g differ on at most (more
than) α fraction of the elements of U . We now extend this notation
to pairs of functions. Given two pairs of functions f1, f2 : U → Σ

and g1, g2 : V → Σ, we denote by (f1, g1)
α≈ (f2, g2) the fact that

both f1
α≈ f2 and g1

α≈ g2, and otherwise we denote (f1, g1)
α


≈
(f2, g2).

5.1. The Construction of G′. We begin by describing the con-
struction of G′. Let G = (Fm, E) be the given constraint graph,
let d0 be the parameter from Lemma 3.4, and let d1 = h · d0 where
h is the universal constant from Lemma 3.4 to be chosen later.
The graph G′ is bipartite. The right vertices of G′ are identified
with all the 2d0-subspaces of F

m (the vertex space of G). The left
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Figure 5.1: The E-test.

vertices of G′ are identified with all the 2d1-subspaces of the edge
space E of G. An assignment Π to G′ should label each 2d0-sub-
space A of F

m with a function from A to Σ, and each 2d1-subspace
F of E with a function that maps the endpoints of the edges in F
to Σ. The edges of G′ are constructed such that they simulate the
action of the “E-test” described in Figure 5.1.

The completeness of G′ is clear. It is also clear that G′ has pro-
jection constraints. Let us verify the size and alphabet size of G′.
The size of G′ is at most the number of 2d1-subspaces of E multi-
plied by the number of 2d0-subspaces of F

m, which is |E|2d1 ·|Fm|2d0 .
It holds that d0 < d1, and furthermore, the linear structure of G′

implies that dimE ≥ m (by Item iii of Definition 3.1), so it follows
that |Fm|2d0 ≤ |E|2d1 and thus |E|2d1 · |Fm|2d0 ≤ |E|4d1 . Finally,
observe that the size of G is n = |E|, so it follows that the size of
G′ is at most n4d1 = nO(d0), as required.

For the alphabet size, recall that an edges subspace F is labeled
by a function that maps the endpoints of the edges to Σ. Such a
function can be represented by a string in Σ2·q2·d1 , since each 2d1-
subspace F contains q2d1 edges and each has two endpoints. It can
be observed similarly that the labels assigned by Π to 2d0-subspac-
es A of F

m can be represented by strings in Σ2·q2·d1 . The alphabet
of G′ is therefore Σ2·q2·d1 = ΣqO(d0)

, as required.

5.2. The Specialized Direct Product Test. In order to ana-
lyze the soundness of the E-test, we introduce a variant of the direct
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Figure 5.2: The S-test.

product test of Impagliazzo et al. (2009) that is specialized to our
needs. We refer to this variant as the specialized direct product test,
abbreviated the “S-test”.

Given an string π : F
m → Σ, we define its S-direct product Π

(with respect to d0, d1 ∈ N) as follows: Π assigns each 2d0-subspace
A ⊆ F

m the function π|A, and assigns each pair of independent d1-
subspaces (B1, B2) the pair of functions π|(B1,B2).

We turn to consider the task of testing whether a given assign-
ment Π is the S-direct product of some string π : F

m → Σ. In
our settings, we are given an assignment Π that assigns each 2d0-
subspace A to a function a : A → Σ and each pair of independent
d1-subspaces (B1, B2) to a pair of functions b1 : B1 → Σ, b2 : B2 →
Σ. We wish to check whether Π is a S-direct product of some
π : F

m → Σ. To this end, we invoke the S-test, described in
Figure 5.2.

It is easy to see that if Π is a S-direct product, then the S-test
always accepts. Furthermore, it can be shown that if Π is “far”
from being a S-direct product, then the S-test rejects with high
probability. As in the P-test, this holds even if Π is a randomized
assignment. Formally, we have the following result.

Theorem 5.4 (the soundness of the S-test). There exist universal
constants h′, c ∈ N such that the following holds: Let d0 ∈ N, d1 ≥
h′ ·d0, and m ≥ h′ ·d1, and let ε ≥ h′ ·d0 ·q−d0/h′

, α
def
= h′ ·d0 ·q−d0/h′

.
Suppose that a (possibly randomized) assignment Π passes the
S-test with probability at least ε. Then there exists an assignment
π : F

m → Σ for which the following holds. Let B1, B2 be uniformly
distributed and independent d1-subspaces of F

m, let A1 and A2 be
uniformly distributed d0-subspaces of B1 and B2, respectively, and
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denote A = A1 + A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α≈ π|(B1,B2)

]

= Ω (εc) .

(5.5)

We defer the proof of Theorem 5.4 to Section 9.

Remark 5.6. Note that Equation (5.5) only says that Π is close
to the S-direct product of π on pairs (B1, B2), and not necessar-
ily on 2d0-subspaces A. In fact, it could be also proved that Π is
close to the S-direct product of π on the 2d0-subspaces, but this is
unnecessary for our purposes.

5.3. The Soundness of the Derandomized Parallel Repeti-
tion. In this section, we prove the soundness of G′: namely, that
if SAT (G) < 1 − ρ, then

SAT(G′) ≤ ε
def
= h · d0 · q−d0/h,

where h is the universal constant from Lemma 3.4 (derandomized
parallel repetition). We will choose h to be sufficiently large such
that the various inequalities in the following proof will hold. To
this end, we note that throughout all the following proof, increas-
ing the choice of h does not break any of our assumptions on h, so
we can always choose a larger h to satisfy the required inequalities.

Let h′ and c be the universal constants whose existence is guar-
anteed by Theorem 5.4 (the soundness of the S-test), and let α
denote the corresponding value from Theorem 5.4. We will choose
the constant h to be at least h′.

Let Π be an assignment to G′. Let us denote by T the event
in which the E-test accepts Π. With a slight abuse of notation, for
a subspace F ⊆ E and an assignment π : F

m → Σ, we denote by

Π (F )
α≈ π the claim that for at least 1−α fraction of the edges e of

F , it holds that Π (F ) is consistent with π on both the endpoints

of e, and otherwise, we denote Π (F )
α


≈ π. Our proof is based on
two steps:
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◦ We will show (in Proposition 5.7 below) that if the test accepts
with probability ε, then it is “because” Π is consistent with some
underlying assignment π : F

m → Σ. This is done essentially by
observing that the E-test “contains” an S-test and reducing to
the analysis of the S-test.

◦ On the other hand, we will show (in Proposition 5.8 below) that
for every assignment π : F

m → Σ the probability that the test
accepts while being consistent with π is negligible. This is done
roughly as follows: Any fixed assignment π is rejected by at least
ρ fraction of G′s edges. Furthermore, the subspace F queried by
the test is approximately a uniformly distributed subspace of
E and hence a good sampler of E. It follows F must contain
≈ ρ fraction of edges of G that reject π, and therefore, Π (F )
must be inconsistent with π.

The conclusions of each of the foregoing two steps clearly contra-
dict each other; we therefore conclude that the E-test accepts with
probability less than ε. We now state the two said propositions,
which formalize the foregoing two steps, and which are proved in
Section 5.3.1 and Section 5.3.2, respectively.

Proposition 5.7. There exists ε0 = Ω (εc) such that the fol-
lowing holds: If Pr [T ] ≥ ε, then there exists an assignment
π : F

m → Σ such that

Pr
[
T and Π (F )

4·α≈ π
]

≥ ε0.

Proposition 5.8. Let ε be as in Proposition 5.7. Then, for every

assignment π : F
m → Σ it holds that Pr

[
T and Π (F )

4·α≈ π
]
< ε0.

Clearly, the two propositions together imply that Pr[T ] ≤ ε, as
required.

Before turning to the proofs of Proposition 5.7 and
Proposition 5.8, let us state a useful claim that says that if we
take a random d-subspace of edges and project it to its left end-
points (respectively, right endpoints), we get a random d-subspace
of vertices with high probability.
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Claim 5.9. Let d ∈ N and let Ea be a uniformly distributed
d-subspace of E. Then, Pr [dim (left (Ea)) = d] ≥ 1 − d/qm−d, and
conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uni-
formly distributed d-subspace of F

m. The same holds for right (Ea).
More generally, let Eb be a fixed subspace of E such that

dim (Eb) > d and dim (left (Eb)) = D > d. Let Ea be a uniformly
distributed d-subspace of Eb. Then, Pr [dim (left (Ea)) = d] ≥
1 − d/qD−d, and conditioned on dim (left (Ea)) = d, it holds that
left (Ea) is a uniformly distributed d-subspace of left (Eb). Again,
the same holds for right (Ea).

We defer the proof of to Section 5.4.

5.3.1. Proof of Proposition 5.7. Suppose that Pr [T ] ≥ ε.
We prove Proposition 5.7 by arguing that the E-test contains an
“implicit S-test” and applying Theorem 5.4 (the soundness of the
S-test).

Observe that, without loss of generality, we may assume that
for every edge-subspace F such that Π (F ) violates one of the edges
in F , it holds that Π (F )(AL,AR) 
= Π (A)(AL,AR) for any choice of
AL and AR. The reason is that for every such F , we can modify
Π (F ) such that it assigns symbols outside of the alphabet Σ of G,
so Π (F ) will always disagree with Π (A). Note that this modi-
fication indeed does not change the acceptance probability of Π.
This assumption that we make on Π implies, in particular, that
the event T is equivalent to the event Π (F )(AL,AR) 
= Π (A)(AL,AR),
and this equivalence is used in the following analysis.

We turn back to the proof of Proposition 5.7. We begin the
proof by extending Π to pairs of independent d1-subspaces of F

m

in a randomized manner as follows: Given a pair of independent
d1-subspaces B1 and B2, we choose F1 and F2 to be uniformly dis-
tributed and independent d1-subspaces of E such that left (F1) =
B1 and right (F2) = B2, and set Π (B1, B2) = Π (F1 + F2)|(B1,B2).

Now, observe that the probability that the E-test accepts equals
to the probability that the S-test accepts the extended Π. The
reason is that the subspaces BL, BR, AL, AR of the E-test are dis-
tributed like the subspaces B1, B2, A1, A2 of the S-test. It thus
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follows the E-test performs in a way an S-test on the extended
assignment Π.

Next, we note that by choosing h to be sufficiently large,
the foregoing “implicit S-test” matches the requirements of Theo-
rem 5.4 (the soundness of the S-test), and we can thus apply this
theorem. It follows that there exists an assignment π : F

m → Σ
such that

Pr
[
Π (BL, BR)(AL,AR) = Π (A)|(AL,AR) and Π (BL, BR)

α≈ π(BL,BR)

]

≥ Ω (εc) .

(5.10)

By using the equivalence between the event T and the event
Π (F )(AL,AR) 
= Π (A)(AL,AR), it follows that Inequality (5.10) is
equivalent to the inequality

Pr
[
T and Π (F )|(BL,BR)

α≈ π|(BL,BR)

]
≥ Ω (εc) .(5.11)

We turn to show that

Pr
[
T and Π (F )

4α≈ π
]

≥ Ω (εc) .

We will prove that if F is such that Π (F )
4α


≈ π, then for a ran-
dom choice of BL, BR conditioned on F , it is highly unlikely that
Inequality (5.11) still holds. Formally, we will prove the following.

Claim 5.12. For every fixed 2d0-subspace F0 of E such that

Π (F0)
4α


≈ π, it holds that

Pr
[
Π (F )|(BL,BR)

α≈ π|(BL,BR)

∣
∣
∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
.

We defer the proof of Claim 5.12 to the end of this section.
Claim 5.12 immediately implies the following.

Corollary 5.13. It holds that

Pr

[
Π (F )|(BL,BR)

α≈ π|(BL,BR)

∣
∣
∣ Π (F )

4α


≈ π

]
≤ 1/

(
qd1−2 · (α/2)2) .
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By combining Corollary 5.13 with Inequality (5.11) and by choos-
ing h to be sufficiently large, it follows that

Pr
[
T and Π (F )|(BL,BR)

α≈ π|(BL,BR) and Π (F )
4α≈ π

]
≥ Ω (εc) .

This implies that

Pr
[
T and Π (F )

4α≈ π
]

≥ Ω (εc) .

Setting ε0 to be the latter lower bound finishes the proof. �

Proof (Proof of Claim 5.12.). Observe that the assumption Π

(F0)
4α


≈ π implies that one of the following holds

Π (F0)|left(F0)

2α


≈ π|left(F0),

Π (F0)|right(F0)

2α


≈ π|right(F0).

Without loss of generality, assume that the first holds. Now,
when conditioning on F = F0, it holds that FL is a uniformly
distributed d1-subspace of F0 satisfying dim (left (FL)) = d1. By
Claim 5.9 (with Eb = F0 and Ea = FL), under the conditioning on

dim (left (FL)) = d1, it holds that BL
def
= left (FL) is a uniformly

distributed d1-subspace of left (F0). Therefore, by Lemma 2.5

(subspace-point sampler), the event Π (F )|BL

α


≈ π|BL
occurs with

probability at least

1 − 1/
(
qd1−2 ·

(
α− q−d1)2

)
≥ 1 − 1/

(
qd1−2 · (α/2)2) ,

as required. �

5.3.2. Proof of Proposition 5.8. Fix an assignment π :Fm→
Σ. By assumption, it holds that SAT (G) < 1−ρ, and therefore, π
must violate a set E∗ of edges of G of density at least ρ. Below, we
will show that at least ρ/2 fraction of the edges in F are in E∗ with
probability greater than 1 − ε0. Now, observe that Π (F ) cannot
satisfy the edges of F and at the same time be consistent with π
on the edges in E∗, and hence whenever the latter event occurs,
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it either holds that the E-test fails or that Π (F )
ρ/2


≈ π. However,
for sufficiently large choice of h, it holds that ρ/2 > 4 · α, and
therefore, the probability that the E-test passes and at the same

time it holds that Π (F )
4·α≈ π is less than ε0, as required.

It remains to show that

Pr

[
|F ∩ E∗|

|F | ≥ ρ/2

]
> 1 − ε0.

We prove the above inequality by showing that F is close to
being a uniformly distributed 2d1-subspace of E, and then applying
Lemma 2.5 (subspace-point sampler). To this end, let F ′

L and F ′
R

be uniformly distributed d1-subspaces of F , and let F ′ = F ′
L +F ′

R.
Let us denote by E1 the event in which dim (F ′) = 2d1 and by E2

the event in which left (F ′
L) and right (F ′

R) are independent and
are of dimension d1. Observe that conditioned on E1 and E2, the
subspace F ′ is distributed exactly like the subspace F . It therefore
holds that

Pr

[
|F ∩ E∗|

|F | ≥ ρ/2

]
= Pr

[
|F ′ ∩ E∗|

|F ′| ≥ ρ/2

∣
∣
∣
∣ E1 and E2

]

≥ Pr

[
|F ′ ∩ E∗|

|F ′| ≥ ρ/2 and E2

∣
∣
∣
∣ E1

]

≥ Pr

[
|F ′ ∩ E∗|

|F ′| ≥ ρ/2

∣
∣
∣
∣ E1

]
− Pr [¬E2|E1]

≥ Pr

[
|F ′ ∩ E∗|

|F ′| ≥ ρ/2

∣
∣
∣
∣ E1

]
− Pr [¬E2]

Pr [E1]
.

Now, observe that conditioned on E1, the subspace F ′ is a uni-
formly distributed 2d1-subspace of E. Thus, by Lemma 2.5
(subspace-point sampler), it holds that

Pr

[
|F ′ ∩ E∗|

|F ′| ≥ ρ/2

∣
∣
∣
∣ E1

]
≥ 1 − 1/q2d1−2 ·

(
ρ/2 − q−2d1

)2

≥ 1 − 1/q2d1−2 · (ρ/3)2 .
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Moreover, by Proposition 2.18, it holds that

Pr [E1] ≥ 1 − 2d1/q
dimE−2d1

≥ 1 − 2d1/q
m−2d1

≥ 1

2
.

Finally, we upper bound Pr [¬E2] by showing that Pr [E2] ≥
1 − 4d1/q

m−2·d1 . By Claim 5.9 (with Eb = E and Ea = F ′
L, F

′
R),

it holds that dim (left (F ′
L)) = dim (right (F ′

R)) = d1 with proba-
bility at least 1 − 2 · d1/q

m−d1 . Furthermore, conditioned on the
latter event, it holds that left (F ′

L) and right (F ′
R) are uniformly

distributed d1-subspaces of F
m, and it is also easy to see that those

subspaces are independent. By Proposition 2.18, this implies that
conditioned on dim (left (F ′

L)) = dim (right (F ′
R)) = d1 the sub-

spaces left (F ′
L) and right (F ′

R) are independent with probability
at least 1 − 2d1/q

m−2·d1 , and hence Pr [E2] ≥ 1 − 4d1/q
m−2·d1 as

required.
We conclude that

Pr

[
|F ∩ E∗|

|F | ≥ ρ/2

]
≥ Pr

[
|F ′ ∩ E∗|

|F ′| ≥ ρ/2

∣
∣
∣
∣ E1

]
− Pr [¬E2]

Pr [E1]

≥ 1 − 1/q2·d1−2 · (ρ/3)2 − 4 · d1/q
m−2·d1

1/2

= 1 − 1/q2·d1−2 · (ρ/3)2 − 8 · d1/q
m−2·d1

> 1 − ε0,

where the last inequality holds for sufficiently large choice of h.
This concludes the proof. �

5.4. Proof of Claim 5.9. In this section, we prove Claim 5.9,
restated below. Recall that G = (Fm, E) is a graph with linear
structure and, in particular, E is a linear subspace of edges.

Claim (5.9, restated). Let d ∈ N and let Ea be a uniformly
distributed d-subspace of E. Then, Pr [dim (left (Ea)) = d] ≥
1 − d/qm−d, and conditioned on dim (left (Ea)) = d, it holds that
left (Ea) is a uniformly distributed d-subspace of F

m. The same
holds for right (Ea).
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More generally, let Eb be a fixed subspace of E such that
dim (Eb)> d and dim (left (Eb)) > d. Let Ea be a uniformly dis-
tributed d-subspace of Eb. Then, Pr [dim (left (Ea))=d] ≥ 1 − d/
qdim(left(Eb))−d, and conditioned on dim (left (Ea)) = d, it holds that
left (Ea) is a uniformly distributed d-subspace of left (Eb). Again,
the same holds for right (Ea).

Proof. We prove the proposition only for special case in which
Eb = E and only for left (Ea). The proof of the general case
and of the case of right (Ea) is analogous. Let e1, . . . , ed be inde-
pendent and uniformly distributed vectors of E, and let E ′

a =
span {e1, . . . , ed}. We prove Proposition 5.9 by showing that Ea is
distributed similarly to E ′

a and analyzing the distribution of E ′
a.

Observe that by Proposition 2.20, it holds that conditioned
on dim (E ′

a) = d, the subspace E ′
a is a uniformly distributed

d-subspace of E. It therefore holds that

Pr [dim (left (Ea)) = d] = Pr [dim (left (E ′
a)) = d| dim (E ′

a) = d]

≥ Pr [dim (left (E ′
a))=d and dim (E ′

a)=d]

= Pr [dim (left (E ′
a)) = d] ,

where the last equality holds since clearly dim (left (E ′
a)) = d

implies dim (E ′
a) = d. Now, since left (·) is a linear func-

tion, it holds that left (e1) , . . . left (ed) are independent and uni-
formly distributed vectors of left (E) = F

m, and therefore by
Proposition 2.20, it holds that Pr [dim (left (E ′

a)) = d] ≥ 1 −
d/qm−d. It thus follows that Pr [dim (left (Ea)) = d] ≥ 1 − d/qm−d,
as required.

It remains to show that conditioned on Pr [dim (left (Ea)) = d],
it holds that left (Ea) is a uniformly distributed d-subspace of F

m.
To see it, observe that for every fixed d-subspace D of F

m, it holds
that

Pr [left (Ea) = D| dim (left (Ea)) = d]

= Pr [left (E ′
a) = D| dim (E ′

a) = d and dim (left (E ′
a)) = d]

= Pr [left (E ′
a) = D| dim (left (E ′

a)) = d] ,

where the first equality again holds since conditioned on dim (E ′
a)=

d it holds that E ′
a is a uniformly distributed d-subspace, and
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the second equality again holds since dim (left (E ′
a)) = d implies

dim (E ′
a) = d. Now, it holds that left (E ′

a) is the span of d uniformly
distributed vectors of F

m, and therefore by Proposition 2.20, it
holds that conditioned on dim (left (E ′

a)) = d the subspace left (E ′
a)

is a uniformly distributed d-subspace of left (Eb). This implies that
the probability

Pr [left (E ′
a) = D| dim (left (E ′

a)) = d]

is the same for all possible choices of D, and therefore the proba-
bility

Pr [left (Ea) = D| dim (left (Ea)) = d]

is the same for all possible choices of D, as required. �

6. Decodable PCPs

The PCP theorem says that CircuitSat has a proof system in
which the (randomized) verifier reads onlyO(1) bits from the proof.
In known constructions, this proof is invariably an encoding of a
satisfying assignment to the input circuit. Although this is not
stipulated by the classical definition of a PCP, the fact that a PCP
is really an encoding of a ‘standard’ NP witness is sometimes use-
ful. Various attempts to capture this behavior gave rise to such
objects as PCPs of proximity (PCPPs, Ben-Sasson et al. 2006) or
assignment testers (Dinur & Reingold 2006) and more recently to
decodable PCPs (dPCPs, Dinur & Harsha 2009).

Application: alphabet reduction through composition.
The notion of dPCPs is useful for reducing the alphabet size of
PCPs with small soundness error via composition. They were
introduced in Dinur & Harsha (2009) in an attempt to simplify
and modularize the construction of Moshkovitz & Raz (2008).
Indeed, this notion is a refinement of Moshkovitz & Raz (2008)’s
so-called locally decode or reject codes (LDRCs) that allowed Dinur
& Harsha (2009) to prove a generic two-query composition theo-
rem. This theorem allows one to improve parameters of a PCP
using any dPCP. The only known construction of a dPCP (until
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this work) is the so-called manifold vs. point construction. In the
next sections, we give a new construction of a dPCP by adapting
the work of the previous sections to a dPCP. Our dPCP can then
be plugged into the composition scheme of Dinur & Harsha (2009)
to reprove the result of Moshkovitz & Raz (2008). We sketch this
in Section 6.5.

Decodable PCPs and PCPs of proximity (PCPPs). We
can define dPCPs for any NP language but we focus on the lan-
guage CircuitSat since it suffices for our purposes. A dPCP
system for CircuitSat is a proof system in which the satisfying
assignments of the input circuit are encoded into a special “dPCP”
format. These encodings can then be both locally verified and
locally decoded in a probabilistic manner. In other words, the ver-
ifier is given an input circuit as well as oracle access to a proof
string and is able to simultaneously check that the given string is
a valid encoding of a satisfying assignment, as well as to decode a
random symbol in that assignment. The formal definition is given
in Section 6.2.

dPCPs are closely related to PCPs of proximity (Ben-Sasson
et al. 2006) or assignment testers (Dinur & Reingold 2006) (to be
defined shortly below). In fact, dPCPs were first defined in the
context of low soundness error to overcome inherent limitations
of PCPPs in this parameter range. In this work, we extend the
definition of a dPCP also to the high soundness error range (i.e.,
matching the parameter range of PCPPs). We call these uniquely
decodable PCPs (udPCPs) as opposed to list decodable dPCPs.
It is natural to consider such an object in our context since our
approach is to reduce the error by parallel repetition. Thus, we
start with a dPCP with relatively high error and then reduce the
error. Uniquely decodable PCPs turn out to be roughly equivalent
to PCPPs in the sense that any PCPP can be used to construct
a udPCP and vice versa. In retrospect, we find the notion of
udPCPs (and dPCPs) just as natural as that of PCPPs. In fact,
many known constructions of PCPPs work by implicitly construct-
ing a udPCP and then adding comparison checks.

As mentioned above, our main goal in Section 6, Section 7,
and Section 8 is to give a new construction of dPCPs with low
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soundness error (Theorem 1.6). Our construction of dPCPs with
low soundness error follows the same steps as our construction of
PCPs with low soundness error: In the first step, we construct a
dPCP with high soundness error (that is, a udPCP). In the second
step, we apply derandomized parallel repetition to the foregoing
udPCP to reduce its soundness error to a subconstant function.

In the following subsections, we recall the definitions of PCPPs
(Section 6.1) and define udPCPs (Section 6.2). We then prove the
equivalence of PCPPs and udPCPs. Next, we state two lemmas
that capture the two main steps in constructing dPCPs. This is fol-
lowed by a proof of Theorem 1.6 (construction of dPCPs). Finally,
we sketch a proof of Theorem 1.2 (the Moshkovitz & Raz (2008)
result) based on Theorem 1.6.

6.1. Recalling the Definition of PCPPs. PCPs of proximity
(PCPPs) were defined simultaneously in Ben-Sasson et al. (2006)
and in Dinur & Reingold (2006) under the name assignment testers.
PCPPs allow the verifier to check not only that a given circuit
is satisfiable but also that a given assignment is (close to being)
satisfying. They were introduced for various motivations, and in
particular, they facilitate composition of PCPs that is important
for constructing PCPs with reasonable parameters.

Intuitively, a PCP verifier for CircuitSat is an oracle machine
V that is given as input a circuit ϕ : {0, 1}t → {0, 1} and is also
given oracle access to an assignment x to ϕ and a proof π. The
verifier V is required to verify that x is close to a satisfying assign-
ment of ϕ, and to do so by making only few queries to x and π.
For technical reasons, it is often preferable to define V in a differ-
ent way. In this definition, instead of requiring that V makes few
queries to a oracle and decides according to the answers it gets,
we require that V outputs explicitly the queries it intends to make
and the predicate ψ it intends to apply to the answers it gets.
The advantage of this definition is that it allows us to measure the
complexity of the predicate ψ. The formal definitions of PCPP are
given below.

Definition 6.1 (PCPP verifier). A PCPP verifier for
CircuitSat is a probabilistic polynomial time algorithm V that



258 Dinur and Meir cc 20 (2011)

on input circuit ϕ : {0, 1}t → {0, 1} of size n tosses r(n) coins and
generates

(i) q = q(n) queries I = (i1, . . . , iq) in [t+ �] (where � = � (n) and

the queries are viewed as coordinates of a string in {0, 1}t+�).

(ii) A circuit ψ : {0, 1}q → {0, 1} of size at most s(n).

We shall refer to r(n), q(n), �(n), and s(n) as the randomness com-
plexity, query complexity, proof length, and decision complexity
respectively.

Definition 6.2 (PCPPs). Let V, r(n), q(n), �(n), and s(n), be as
in Definition 6.1, and let ρ : N → (0, 1]. We say that V is a PCPP
system for CircuitSat{0,1} with rejection ratio ρ if the following

holds for every circuit ϕ : {0, 1}t → {0, 1} of size n:

◦ Completeness: For every satisfying assignment x for ϕ, there
exists a proof string πx ∈ {0, 1}� such that

Pr
I,ψ

[
ψ

(
(x ◦ πx)|I

)
= 1

]
= 1,

where I and ψ are the (random) output of V (ϕ).

◦ Soundness: For every x ∈ {0, 1}t that is ε-far from a satisfying
assignment to ϕ and every proof string π ∈ {0, 1}�, the following
holds:

Pr
I,ψ

[
ψ

(
(x ◦ π)|I

)
= 0

]
≥ ρ · ε.

The starting point for our construction of a dPCP is the fact
that NP has PCPPs with reasonable parameters:

Theorem 6.3 (Ben-Sasson et al. 2006; Dinur & Reingold 2006).
CircuitSat{0,1} has a PCPP system with randomness complex-
ity O(log n), query complexity O(1), proof length poly(n), decision
complexity O(1), and rejection ratio Ω(1).
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Remark 6.4. The PCPPs described in Definition 6.2 are known
in the literature as “strong PCPPs”. Here, the term “strong”
means that the rejection probability is linearly related to the dis-
tance ε of x from a satisfying assignment. In particular, this implies
that even if ε is small (but non-zero), then the PCPP rejects with
non-zero probability.

An alternative definition of PCPPs, known as “weak PCPPs”,
requires only that every assignment x ∈ {0, 1}t that is very far
from a satisfying assignment will be rejected with high probability,
while x′s that are close to a satisfying assignment may be accepted
with probability 1.

6.2. The Definition of Decodable PCPs. Decodable PCPs
(dPCPs) were defined in the work of Dinur & Harsha (2009) in
order to overcome certain limitations of PCPPs.4 As mentioned
above, the definition of Dinur & Harsha (2009) is only useful if the
soundness error is indeed very low. Below, we recall the definition
of Dinur & Harsha (2009) and suggest an alternative definition for
the case where the soundness error is high. This alternative def-
inition will be useful later in the construction of decodable PCPs
with low soundness error.

6.2.1. Recalling the Definition of Dinur & Harsha (2009).
Intuitively, a PCP decoder for CircuitSat is an oracle machine D
that is given as input a circuit ϕ and is also given oracle access to
a “proof” π that is supposed to be the encoding of some satisfying
assignment x to ϕ. The PCP decoder D is required to decode a
uniformly distributed coordinate k of the assignment x by making
only few queries to π. It could also be the case that the proof
π is too corrupted for the decoding to be possible, in which case
D is allowed to output a special failure symbol ⊥. Thus, we say
that D has made an error only if it outputs a symbol other than
xk and ⊥. We refer to the probability of the latter event as the
“decoding error of D” and would like it to be minimal. We do

4In particular, using arguments in the spirit of Ben-Sasson et al. (2009), it
is easy to prove that a PCPP that has low soundness error must make at least
three queries. Hence, PCPPs can not be used to construct two-query PCPs
with low soundness error.
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note, however, that if π is not corrupted, then D is not allowed to
output ⊥.

It turns out that if we wish the decoding error of D to be
very small, we need to relax the foregoing definition and allow
the PCP decoder D to perform “list-decoding”. That is, instead of
requiring that there would be a single assignment x that is decoded
by D, we only require that there exists a short list of assignments
x1, . . . , xL such that the decoder outputs either ⊥ or one of the
symbols x1

k, . . . , x
L
k with very high probability. Of course, this is

meaningless if the assignments are binary strings, and therefore,
we extend the definition of CircuitSat to circuits whose inputs
are symbols from some large alphabet Γ.

We turn to give the formal definitions of (list-)decodable PCPs.
As in the case of PCPPs, instead of letting the decoder make the
queries and process the answers directly, we require the decoder to
output the queries and a circuit ψ that given the answers to the
queries outputs the decoded value.

Notation 6.5. Let Σ and Γ be finite alphabets, and let f : Γk →
Σn be a function. We say that a circuit C computes f if it takes
as input a binary string of length k · �log |Γ|� and outputs a binary
string of length n · �log |Σ|� that represent the input in Γk and the
output in Γn in the natural way. We will usually omit the func-
tion f and simply refer to the circuit C : Γk → Σn. We will also
view the circuit C as taking as input k symbols in Γ and outputs
n symbols in Σ. Given a circuit ϕ : Γt → {0, 1}, an assignment
x ∈ Γt for ϕ is said to satisfy ϕ if ϕ(x), and otherwise, it is said to
be unsatisfying.

Definition 6.6 (PCP decoders, similar to Dinur & Harsha 2009,
Definition 3.1). Let r, q, s, � : N → N, and let Γ,Σ be functions
that map each n ∈ N to some finite alphabet. A PCP decoder
for CircuitSatΓ over proof alphabet Σ is a probabilistic polyno-
mial time algorithm D that for every n ∈ N acts as follows. Let
Γ = Γ(n),Σ = Σ(n), � = �(n). When given as input an input
circuit ϕ : Γt → {0, 1} of size n and an index k ∈ [t], the PCP
decoder D tosses r(n) coins and generates



cc 20 (2011) Derandomized parallel repetition 261

(i) A sequence of queries I =
(
i1, . . . , iq(n)

)
in [�] (where the que-

ries are viewed as coordinates of a proof string in Γ�).

(ii) A circuit ψ : Σq(n) → Γ ∪ {⊥} of size at most s(n).

We shall refer to the functions r(n), q(n), �(n), and s(n) as the ran-
domness complexity, query complexity, proof length, and decoding
complexity respectively. Without loss of generality, we have � (n) =
2r(n) · q(n) · t.

Definition 6.7 (List Decodable PCPs, similar to Dinur &
Harsha 2009). Let D,Γ,Σ, and � be as in Definition 6.6, and
L : N → N and ε : N → [0, 1]. We say that a PCP decoder D
with the foregoing parameters is a (list) decodable PCP system
for CircuitSatΓ (abbreviated ldPCP) with list size L = L(n),
soundness error ε = ε(n) if the following holds for every circuit
ϕ : Γt → {0, 1} of size n:

◦ Completeness: For every x ∈ Γt such that ϕ(x) = 1, there
exists a proof string πx ∈ Σ� such that

Pr
k;I,ψ

[
ψ

(
πx|I

)
= xk

]
= 1,

where k is uniformly distributed in [t] and I and ψ are the (ran-
dom) output of D (ϕ, k).

◦ Soundness: For every proof string π ∈ Σ�, there exist a (pos-
sibly empty) list of satisfying assignments x1, . . . , xL ∈ Γt for ϕ
such that

Pr
k;I,ψ

[
ψ

(
π|I

)
/∈

{
x1
k, . . . , x

L
k ,⊥

}]
≤ ε,

where k, I, ψ are as before.

6.2.2. Uniquely Decodable PCPs. We turn to discuss our
suggested definition for dPCPs for the case of high soundness
error. If the soundness error is high, then we can actually require
the PCP decoder to decode a unique assignment, instead of decod-
ing a list of assignments. Thus, we refer to dPCPs with high sound-
ness error as “uniquely decodable PCPs” (udPCPs).
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The straightforward definition for udPCPs would be to take the
foregoing definition of ldPCPs and set ε to be large and L to be 1.
However, this definition turns out to be useless for our purposes.
To see why, recall that our ultimate goal is to construct dPCPs
with low error by first constructing dPCPs with high error and
then decreasing their error using derandomized parallel repetition.
However, if we define udPCPs using the above straightforward def-
inition, then it is not even clear that sequential repetition decreases
their error.5

We therefore use the following alternative definition for udPCP.
We now require that if the proof π is such that the PCP decoder
D errs with high probability, then D detects that there is an error
with at least proportional probability. In other words, we require
that the probability that D outputs ⊥ is related to the probabil-
ity that D errs. Observe that such PCP decoders can indeed be
improved by sequential repetition: If the proof π is erroneous and
we invoke the PCP decoder D many times, then the probability
that D detects the error and outputs ⊥ improves. Below, we give
the formal definition.

Definition 6.8. Let D,Γ,Σ, and � be as in Definition 6.6. Let
ϕ : Γt → {0, 1} be a circuit of size n, let x be an assignment to ϕ,
and let π ∈ Σ�(n) be a proof for D. We define the decoding error
of D on π with respect to x as the probability

Pr
k;I,ψ

[
ψ

(
π|I

)
/∈ {xk,⊥}

]
,

where k, I, ψ are as in Definition 6.7. We define the decoding error
of D on π as the minimal decoding error of D on π with respect
to an assignment x′ for ϕ, over all possible assignments x′ to ϕ.

Definition 6.9 (Uniquely Decodable PCPs). Let D,Γ,Σ, and �
be as in Definition 6.6, and let ρ : N → [0, 1]. We say that the PCP

5The problem in performing sequential repetition for such definition of
udPCPs is that we must invoke the PCP decoder on a uniformly distributed
and independent index k in each invocation, and it is not clear how to use
invocations for different indices k in order to decrease the error.
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decoder D is a (uniquely) decodable PCP system for CircuitSatΓ

(abbreviated udPCP) with rejection ratio ρ if for every circuit ϕ :
Γt → {0, 1} of size n the PCP decoder D satisfies the complete-
ness requirement of Definition 6.7 and furthermore satisfies the
following requirement:

◦ Soundness: For every proof string π ∈ Σ�, if D has decoding
error ε on π, then

Pr
k;I,ψ

[
ψ

(
π|I

)
= ⊥

]
≥ ρ(n) · ε,

where k, I, ψ are as in Definition 6.7.

Remark 6.10. We could have also defined the decoding error of
D on π with respect to x as the probability Prk;I,ψ

[
ψ

(
π|I

)

= xk

]
.

This definition may be more natural, but it is more convenient to
work with the current definition.

Remark 6.11. Note that the soundness requirement in our defi-
nition of udPCPs is similar to the soundness requirement of PCPPs
and, in particular, to definition of soundness of strong PCPPs (see
Remark 6.4). We could also use a definition that is analogous to
the definition of a weak PCPP. Specifically, we could have required
only that when the decoding error is very large, the decoder rejects
with high probability. However, our definition is stronger, and
since we can satisfy it, we prefer to work with it. It is also more
convenient to work with this definition throughout this work.

We next argue that every PCPP implies a udPCP.

Proposition 6.12. Let V be a PCPP system for CircuitSat{0,1}
with randomness complexity r(n), query complexity q(n), proof
length �(n), decision complexity s(n), and rejection ratio
ρ(n). Then, for every u : N → N, there exists a udPCP for
CircuitSat{0,1}u(n) with proof alphabet {0, 1}, randomness com-

plexity r(n), query complexity q(n) + u(n), proof length n+ �(n),
decoding complexity s(n)+O (u(n)), and rejection ratio ρ(n)/u(n).
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Proof. Let u : N → N and denote u = u(n). For every circuit
ϕ : ({0, 1}u)t → {0, 1} of size n and satisfying assignment x for ϕ,
we define the corresponding proof string for D to be x ◦ πx, where
πx is the proof string of V for x when x is treated as a binary
string.

Fix a circuit ϕ : ({0, 1}u)t → {0, 1} and k ∈ [t], and let x′ ∈
{0, 1}u·t , π ∈ {0, 1}�. On input (ϕ, k) and oracle access to a proof
x′ ◦ π, the decoder D first emulates the verifier V on ϕ with oracle
access to x′ ◦ πx. If V rejects, then D outputs ⊥. Otherwise, D
queries the coordinates

u · (k − 1) + 1, . . . , u · k

of x and outputs the tuple of answers as the symbol in {0, 1}u that
it is ought to decode.

It should be clear that D satisfies the completeness require-
ments and has the correct randomness complexity, query complex-
ity, proof length, and decoding complexity.

It remains to analyze the rejection ratio of D. Let π′ be a proof
string for D and assume that π′ = x ◦ π where x ∈ {0, 1}u·t and
π ∈ {0, 1}�. Let x0 be the satisfying assignment of ϕ that is nearest
to x when viewed as a binary string. Let ε be the relative distance
between x and x0 when viewed as strings over the alphabet {0, 1}u.
Clearly, the decoding error of D on x ◦ π with respect to x0 is ε
and is an upper bound on the decoding error of D. Furthermore,
the relative distance between x and x0 as binary strings is at least
ε/u. Thus, the emulation of V rejects x ◦ π with probability at
least ρ(n) · ε/u, and this is also the rejection probability of D, as
required. �

Remark 6.13. One could also prove Proposition 6.12 without a
loss of a factor of u in the rejection ratio ρ using error correcting
codes.

Remark 6.14. It is not hard to see that the converse of
Proposition 6.12 also holds. Namely, given a udPCP, it is easy to
construct from it a PCPP. Roughly, given a udPCP D, construct
a PCPP verifier that when given oracle access to x ◦ π, invokes D
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with oracle access to π on a uniformly distributed k and verifies
that the output of D equals xk.

Remark 6.15. Our definition of udPCPs (Definition 6.9) bears
some similarities to the notion of relaxed locally decodable
codes (Ben-Sasson et al. 2006), which are also constructed using
PCPPs. However, the notions are fundamentally different.
The most important difference between the notions is that while
the decoder of a relaxed LDC should decode any possible mes-
sage, the decoder of a udPCP is required to decode only satisfying
assignments of a given circuit. This makes udPCPs significantly
more powerful and in fact makes them equivalent to PCPPs. A
secondary difference is that when a udPCP is given oracle access
to a corrupted oracle, it can output ⊥ with any probability, while
a relaxed LDC is required to output xk (instead of ⊥) with some
given probability.

6.3. Decoding Graphs.

6.3.1. The Definition of Decoding Graphs. Recall that in
the first part of the paper, we often found it more convenient to
work with constraint graphs instead of working with PCPs. We
now define the notion of “decoding graphs”, which will serve as
the graph analog of decoding PCPs just as constraint graphs serve
as the graph analog of PCPs.

Definition 6.16 (Decoding graphs). A (directed) decoding graph
is a directed graphG = (V,E) that is augmented with the following
objects:

(i) A circuit ϕ : Γt → {0, 1}, to which we refer as the input
circuit. Here Γ denotes some finite alphabet.

(ii) A finite alphabet Σ, to which we refer as the alphabet of G.

(iii) For each edge e ∈ E, an index ke ∈ [t], and a circuit ψe :
Σ × Σ → Γ ∪ {⊥}. We say that e is associated with ke and
ψe. For k ∈ [t], we denote by Ek the set of edges associated
with k.
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The size of G is the number of edges of G. We say that G has
decoding complexity s if all the circuits are of size at most s. It is
required that G satisfies the following property:

◦ Completeness: For every satisfying assignment x ∈ Γt to ϕ,
there exists an assignment πx : V → Σ to G such that the follow-
ing holds. For every edge (u, v) that is associated with an index
k = k(u,v) and a circuit ψ = ψ(u,v), it holds that ψ (π(u), π(v)) =
xk.

Notation 6.17. We will use the following terminology regarding
constraint graphs: Let G = (V,E) be a decoding graph with input
circuit ϕ : Γt → {0, 1} alphabet Σ.

(i) Let (u, v) ∈ E and ψ = ψ(u,v) be and edge its associated cir-
cuit, and let π : V → Σ be an assignment to G. If ψ outputs ⊥
on input (π(u), π(v)), then we say that (u, v) rejects π (or that
π violates (u, v)), and otherwise, we say that (u, v) accepts π
(or that π satisfies (u, v)).

(ii) Let (u, v) , ψ, and π be as before, let k = k(u,v) be the index
associated with (u, v), and let x be an assignment to ϕ. We say
that (u, v) fails to decode x if ψ (π(u), π(v)) /∈ {xk,⊥}. When
x is clear from the context, we will omit it and we will also
say that (u, v) errs or that (u, v) decodes correctly (if (u, v)
does not err). Note that outputting ⊥ is not considered to be
failure.

(iii) We say that G has the projection property if for every cir-
cuit ψ(u,v) has an associated function f(u,v) : Σ → Σ such that
ψ(u,v) (a, b) 
= ⊥ if and only if f(u,v)(a) = b.

(iv) We refer to the quantity log
(
maxk∈[t] |Ek|

)
as the random-

ness complexity of G, since it upper bounds the number of
bits required to choose a uniformly distributed edge that is
associated with a particular index.

We turn to define soundness properties of decoding graphs. As in
the case of decodable PCPs, we have two definitions, one for the
case of high soundness error (unique decoding) and another for the
case of low soundness error (list-decoding).
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Definition 6.18. Let G = (V,E) ,Σ,Γ, ϕ be as before, and let
π : V → Σ be an assignment to G.

◦ Unique decoding soundness: For every satisfying assign-
ment x ∈ Γt to ϕ, we define the decoding error of G on π with
respect to x as the probability

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) /∈ {xk,⊥}

]
,

where k is uniformly distributed in [t] and (u, v) is uniformly
distributed in Ek. Note that the edge (u, v) is chosen according
to the decoding distribution of G.
We define the decoding error of G on π as the minimal decoding
error of G on π with respect to any satisfying assignment of ϕ.
Now, we say that G has rejection ratio ρ if for every assignment
π to G, if G has decoding error ε on π, then it holds that

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) = ⊥

]
≥ ρ · ε,

where k and (u, v) are chosen as before.

◦ List decoding soundness: We say that G is list-decoding
with list size L and soundness error ε if for every assignment
π to G, there exists a (possibly empty) list of satisfying assign-
ments x1, . . . , xL ∈ Γk for ϕ such that

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) /∈

{
x1
k, . . . , x

L
k ,⊥

}]
≤ ε,

where k and (u, v) are chosen as before

The following proposition gives the correspondence between decod-
ing PCPs and decoding graphs, in analogy to the correspondence
between PCPs and constraint graphs.

Proposition 6.19. Let r, s, �, ρ,Γ,Σ be as in Definition 6.9. The
following two statements are equivalent:

◦ CircuitSatΓ has a udPCP with query complexity 2, random-
ness complexity r, decoding complexity s, proof length �, proof
alphabet Σ, and rejection ratio ρ.
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◦ There exists a polynomial time transformation that transforms a
circuit ϕ : Γt → {0, 1} of size n to a decoding graph G = (V,E)
with �(n) vertices, randomness complexity r(n), decoding com-
plexity s(n), proof alphabet Σ (n), and rejection ratio ρ(n).

A similar equivalence holds for ldPCPs and list-decoding graphs.

6.3.2. Additional Properties of Decoding Graphs. Recall
that when discussing constraint graphs, we were interested in
the probability that a uniformly distributed edge of the graph is
satisfied by a given assignment. As can be seen in Definition 6.18,
when discussing decoding graphs, we are interested in a different
distribution over the edges, defined below.

Definition 6.20. The decoding distribution DG of a decoding
graph G = (V,E) is the distribution over the edges of G that cor-
responds to the following way for picking a random edge of G:
Choose k ∈ [t] uniformly at randoms and then choose an edge
uniformly at random from Ek.

It is usually inconvenient to analyze the decoding distribution of
the graphs we work with. However, we will work only with graphs
whose decoding distribution is similar to the uniform distribution
over the edges (where similarity is defined as in Section 2.5). The
following definition aims to capture this property, which allows us
to analyze the uniform distribution instead of the decoding distri-
bution.

Definition 6.21. We say that a decoding graph G = (V,E) has
smoothness γ if its decoding distribution is γ-similar to the uniform
distribution over E.

The following proposition gives a comfortable way for calculating
the smoothness of a decoding graph. Intuitively, observe that if
all the sets Ek are of the same size, then the decoding distribution
is identical to the uniform distribution. We now observe that if
the sizes of the sets Ek are close to each other, then the decoding
distribution is similar to the uniform distribution.
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Proposition 6.22 (Smoothness criterion). A decoding graph G
with edge-set E has smoothness γ if and only if for every k ∈ [t],

the number of edges that are associated with k is between γ · |E|
t

and 1
γ

· |E|
t

.

Proof. Observe that if there are mk edges associated with
k ∈ [t], then the probability for such an edge to be chosen under the
decoding distribution is 1

t
· 1
mk

while the corresponding probability

under the uniform distribution is 1
|E| . Now apply the definition of

similarity of distributions. �

We will often want our decoding graphs to be regular or at least
have bounded degree. The precise definition follows.

Definition 6.23. We say that a decoding graph G has degree
bound d ∈ N if all the in-degrees and all out-degrees of the vertices
in G are bounded by d. We say that it is d-regular if every vertex
has exactly d incoming edges and exactly d outgoing edges.

6.3.3. General udPCPs and Decoding Graphs. Proposi-
tion Proposition 6.19 gave us only a correspondence between decod-
ing graphs and udPCPs that makes exactly two queries. The next
proposition shows that in fact any udPCP, even if it uses more
than two queries, gives rise to a procedure that transforms circuits
to decoding graphs with related parameters and unique decoding
soundness. A nice property of this procedure is that it generates
decoding graphs that are regular and have smoothness 1, which
will be useful later in this work.

Proposition 6.24. Let Γ,Σ, r(n), q(n), �(n), s(n), and ρ(n) be as
in Definition 6.9, and let h0 and d0 be the constants from Fact 2.23.
If there exists a udPCP D for CircuitSatΓ with the foregoing
parameters, then there exists a polynomial time procedure that
acts as follows. When given a circuit ϕ : Γt → {0, 1} of size
n, the procedure outputs a corresponding vertex-decoding graph
G = (V,E) with randomness complexity r(n) + log (d0 · q(n)),
alphabet Σq(n), decoding complexity s(n) + poly log |Σ(n)|, and
rejection ratio Ω

(
ρ(n)/ (q(n))2). Furthermore, G is (q(n) · d0)-reg-

ular, and has t · 2r(n) vertices and smoothness 1.
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Proof (Proof sketch). The proof is a variant of a well-known
technique for reducing the query complexity of a PCP verifier to 2,
and its full details are provided in Section 6.6. The graph G is con-
structed roughly as follows: The graphG has a vertex for every pos-
sible invocation of the decoder D. Each such vertex v is expected
to be labeled with the answers that D receives to its queries on
the corresponding invocation, and the edges that are connected to
v check that those answers are not rejected by D. The edges of
G also verify that the labels of the different vertices are consistent
with each other, and in order to save in the number of edges, we
choose the consistency checks according to an expander.

Observe that since a vertex should be labeled with all the
answers that D gets to its queries on this particular invocation, we
can use those labels to perform decoding. In particular, given that
an edge (u, v) accepts, the value that it decodes can be decided
based only on the label of u. This property will be useful in
Section 7 (see Definition 7.1 for details). �

6.4. Our construction of dPCPs, Theorem 1.6. In this sec-
tion, we state and prove Theorem 1.6.

Theorem (1.6, dPCP, restated formally). For every function Γ
that maps natural numbers to finite alphabets such that |Γ(n)| ≤
2poly logn the following holds. There exists an ldPCP D for
CircuitSatΓwith query complexity 2, proof alphabet 2poly logn,
randomness complexity O(log n), soundness error 1/ logΩ(1) n, and
list size poly log n. Furthermore, D has the projection property
(see Notation 6.17, Item iii).

We prove this theorem analogously to the proof of Theorem 1.1,
which asserts the existence of two-query PCPs with soundness
error 1/poly log n. Our starting point is a known construction of
a PCPP, stated here as Theorem 6.3 which is then reduced to a
transformation mapping circuits to decoding graphs. We then have
two main steps. The first is to equip the decoding graphs with lin-
ear structure, as formulated in Lemma 6.25. The second step is to
reduce the error by derandomized parallel repetition, as stated in
Lemma 6.26. Theorem 1.6 follows by combining the two lemmas
which we state next,
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Lemma 6.25 (Linear Structure Embedding for udPCPs). There
exists a polynomial time procedure that satisfies the following
requirements:

◦ Input:

– A decoding graph G of size n for input circuit ϕ : Γt → {0, 1}
with alphabet Σ, rejection ratio ρ, decoding complexity s,
and smoothness γ.

– A finite field F of size q such that q ≥ 4 · d2
0, where d0 is the

constant from Fact 2.23.

◦ Output: A decoding graph G′ = (Fm, E ′) for ϕ such that the
following holds:

– G′ has a linear structure.

– The size of G′ is at most O (q · n/γ) .
– G′ has alphabet ΣO(logq(n/γ)).

– G′ has rejection ratio Ω
(
ρ/q2 · logq(n/γ)

)
.

– G′ has decision complexity s+ poly
(
logq (n/γ) , log |Γ|

)
.

– G′ has smoothness Ω (1/q).

Lemma 6.26 (Derandomized Parallel Repetition for dPCPs).
There exist a universal constant h and a polynomial time procedure
that satisfy the following requirements:

◦ Input:

– A finite field F of size q.

– A decoding graph G = (Fm, E) of size n for input circuit
ϕ : Γt → {0, 1} with linear structure, alphabet Σ, rejection
ratio ρ, decision complexity s, and smoothness γ.

– The rejection ratio ρ of G.

– A parameter d0 ∈ N such that d0 < m/h2 and ρ ≥ h · d0 ·
q−d0/h/γ.
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◦ Output: A decoding graph G′ for ϕ such that the following
holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– G′ is list-decoding with soundness error ε
def
= h · d0 · q−d0/h/γ

and list size L
def
= qO(d0).

– G′ has the projection property.

– G′ has decoding complexity qO(d0) · (s+ poly log |Σ|).

We now turn to prove Theorem 1.6.

Proof. Let V be a PCPP verifier for CircuitSat as in
Theorem 6.3. By Proposition 6.12, this implies a udPCP for
CircuitSat with similar parameters. Next, by Proposition 6.24,
we get a polynomial time transformation taking a circuit ϕ :
{0, 1}n → {0, 1} into a vertex-decoding graph. The graph G
has the following parameters. The randomness complexity is
r(n) = O(log n), the decoding complexity, rejection ratio, and con-
stant proof alphabet are constant, and the smoothness is 1.

We choose F to be the smallest finite field of size at least log n
and set F to be the finite field of size q. We now invoke Lemma 6.25
(linear structure embedding for udPCPs) on input G and F and
obtain a new vertex-decoding graph G1 with linear structure and
parameters:

◦ The size of G1 is at most O(q · n).

◦ G1 has alphabet size 2O(logq(n)).

◦ G1 has rejection ratio ρ1
def
= Ω

(
ρ/q2 · logq(n)

)
.

◦ G1 has decision complexity poly(logq n).

◦ G1 has smoothness γ1 = Ω
(

1
q

)
.

Finally, we set d0 to be an arbitrary constant such that ρ1 ≥ h ·d0 ·
q−d0/h/γ1. Note that this is indeed possible, since logq (1/ρ1) is a
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constant that depends only on ρ. Finally, we invoke Lemma 6.26
(derandomized parallel repetition for dPCPs) on input G1,F, ρ1,
and d0 and denote by G′ the output decoding graph. The trans-
formation taking the initial input ϕ into G′ (via intermediate steps
G and G1) is equivalent, by Proposition 6.19, to a dPCP with the
claimed parameters. �

6.5. Proof of the Result of Moshkovitz & Raz (2008),
Theorem 1.2. Our Theorem 1.1 asserts the existence of a
two-query PCP with soundness error 1/poly log n and alphabet
size |Σ| = 2poly log n. In this section, we will sketch a proof of
Theorem 1.2 in which the alphabet size |Σ| can be any value smaller
than 2poly logn while maintaining the relation of ε ≤ 1/poly(log |Σ|).

Theorem (1.2, restated, Moshkovitz & Raz 2008). For any func-
tion ε(n) ≥ 1/poly log n, the class NP has a two-query PCP verifier
with perfect completeness, soundness error at most ε over alphabet
Σ of size at most |Σ| ≤ 21/poly(ε).

Our proof of Theorem 1.2 relies on the scheme of Dinur & Harsha
(2009) who showed a generic way to compose a PCP with a dPCP
and then proved Theorem 1.2 by repeating the composition step,
assuming the existence of two building blocks: a PCP and a
dPCP. We plug in our constructions of a PCP (Theorem 1.1)
and of a dPCP (Theorem 1.6) into the composition scheme of
Dinur & Harsha (2009) and obtain a new construction of the veri-
fier of Theorem 1.2 that does not rely on low-degree polynomials.

Remark 6.27. An important feature of the theorem of
Moshkovitz & Raz (2008) asserts that the verifier is randomness
efficient, i.e., it uses only (1 + o(1)) log n random bits rather than
O(log n) random bits. This is equivalent to constructing con-
straint graphs of almost-linear size rather than polynomial size
(see Remark 2.17). Using the composition scheme of Dinur & Har-
sha (2009), the outcome will be randomness efficient as long as the
PCP verifier at the outermost level of composition is randomness
efficient. It does not, for example, depend on whether the dPCP
is randomness efficient.
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However, since our PCP verifier from Theorem 1.1 is not
randomness efficient, we can only get this additional feature by
relying at the outermost level on a PCP verifier as in Moshkovitz
& Raz (2008). The dPCP can still be based on our Theorem 1.6.
Alternatively, if we also base the outermost PCP on Theorem 1.1,
we get a polynomial size construction, but not a “randomness effi-
cient” one. It is also conceivable that the construction of Theo-
rem 1.1 can be improved to yield a randomness efficient PCP, and
we leave this for future work.

In order to state the generic composition theorem of
Dinur & Harsha (2009), let us first define the decision complexity
of a PCP verifier. Roughly speaking, a PCP verifier has decision
complexity s(n) if every constraint in the underlying constraint
graph can be computed by a circuit of size at most s(n).6 This
definition is analogous to the definition of the decoding complexity
of a PCP decoder. It is easy to see that the PCP verifier (from
Theorem 1.1) has decision complexity poly log n in the same way
that the dPCP decoder (from Theorem 1.6) was shown to have
decoding complexity poly log n.

We turn to state the composition theorem of Dinur & Harsha
(2009). As in all composition theorems in the literature, the goal of
this theorem is to take an “outer verifier” (in this case, a PCP ver-
ifier), which has a large alphabet, and reduce its alphabet size by
composing it with an “inner verifier” (in this case, a PCP decoder).
The gain is obtained from the fact that the inner verifier is invoked
on a claim of size s(n) � n and thus can have a much smaller
alphabet than the outer verifier. The result of the composition
is a verifier that has the alphabet size roughly as of the inner
verifier and can still be invoked on a claim of size n. However,
the composed verifier accumulates soundness error from the invo-
cations of both the outer verifier and the inner verifier, and thus,
the composition does not come “for free”.

Theorem 6.28 (Paraphrasing Dinur & Harsha 2009). Let V and
D be a PCP verifier and a PCP decoder as follows:

6More precisely, the verifier should be able to compute this circuit based
on its input and its randomness.
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(i) Let V be a two-query PCP verifier for NP with perfect com-
pleteness, soundness error Δ(n), alphabet size |Σ(n)|, and
decision complexity s(n). Assume further that the PCP veri-
fier makes projection queries.

(ii) Let D be a two-query PCP decoder for CircuitSatΓ for some
Γ(n). Assume D has perfect completeness, soundness error
δ(n), list size L(n), and alphabet size |σ(n)|.

If both V and D have the projection property, then there is a
PCP verifier V �D with the following properties. V �D invokes
D on inputs of length at most s(n). V � D has perfect com-
pleteness, soundness error O(δ(s(n))+L(s(n))Δ(n)), alphabet size

|σ(s(n))|poly(L(s(n))/δ(s(n))), and V �D has the projection property.

As discussed above, the main gain from this theorem is that the
alphabet size of V � D is much smaller than that of V . Let us
see how this is useful. Suppose we take V,D from Theorem 1.1
and Theorem 1.6. We have Σ(n) ≤ 2poly logn, s(n) = poly log n,
and σ(n) ≤ 2poly log n. Thus, σ(s(n)) = 2poly log log(n). Similarly
L(s(n)) ≤ poly log log n and δ(s(n)) = 1/poly log log n. This
results in alphabet size of 2poly log log(n) and soundness error of
1/poly log log n. By composing this verifier again with D (yield-
ing (V �D) �D), one can inductively obtain a PCP verifier with
soundness error 1/poly log(i) n for any i and corresponding alpha-
bet size |Σ| = 21/poly(ε). To get any alphabet size |Σ|, one must do
careful padding and we do not go into these details.

The composition theorem (Theorem 6.28) is stated here in the
two-query terminology (rather than in the terminology of “robust”
PCPs). Let us now give a brief outline of how to obtain this version
from the version of Dinur & Harsha (2009):

1. From two-query to robust: Use Lemma 2.5 of Dinur & Harsha
(2009) to deduce the existence of a robust PCP rV and a robust
dPCP rD with parameters related to V and D. In particular,
the number of accepting views for rD is bounded by |σ|.

2. Composition: Apply Theorem 4.2 of Dinur & Harsha (2009)

with parameter ε = δ/L ≥ |σ|Ω(1). Deduce a new robust PCP
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rV � rD with parameters as follows. The soundness error is
δ+LΔ + 4Lε = O(δ+LΔ). The number of accepting views is

at most |σ|4/ε4 (this follows from inspecting the proof, but not
directly from the theorem statement).

3. Back to two queries: Again use Lemma 2.5 to move back to a
two-query PCP. The new alphabet size is at most the number

of accepting views of rV � rD which is at most |σ(s(n))|4/ε4 =

|σ|(L/δ)O(1)

as claimed. �

6.6. Proof of Proposition 6.24. In this section, we prove
Proposition 6.24, restated below.

Proposition (6.24, restated). Let Γ,Σ, r(n), q(n), �(n), s(n), and
ρ(n) be as in Definition 6.9, and let h0 and d0 be the constants
from Fact 2.23. If there exists a udPCP D for CircuitSatΓ

with the foregoing parameters, then there exists a polynomial
time procedure that acts as follows. When given a circuit ϕ :
Γt → {0, 1} of size n, the procedure outputs a corresponding
decoding graph G = (V,E) q(n) · d0 · t · 2r(n) with randomness
complexity r(n) + log (d0 · q(n)), alphabet Σq(n), decoding com-
plexity s(n)+poly log |Σ(n)|, and rejection ratio Ω

(
ρ(n)/ (q(n))2).

Furthermore, G is (q(n) · d0)-regular and has t · 2r(n) vertices and
smoothness 1.

Fix n ∈ N and let r = r(n), q = q(n), � = � (n) ,Σ = Σ(n), and
s = s(n). We describe the output of the procedure on fixed circuit
ϕ : Γt → {0, 1} of size n. The procedure outputs a decoding graph
G defined as follows:

◦ The vertices set of G is the set [t] · {0, 1}r, whose elements are
identified with all the pairs (k, ω) where k ∈ [t] is an index to be
decoded and ω is a sequence of coin tosses of D on input (ϕ, k).
We denote by I(k,ω) and ψ(k,ω) are the queries tuple and circuit
that are output by D on input (ϕ, k) and coin tosses ω.

◦ The alphabet of G is Σq.

◦ The edges of G are constructed as follows. For every i ∈ [�], we
let Ci be the set of pairs (k, ω) such that on I(k,ω) contains i.
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For each i ∈ [�], we consider the expander G|Ci| over |Ci| vertices
from Fact 2.23 and identify its vertices with the elements of Ci.
Now, for each undirected edge of G|Ci|, we put two directed edges
between the corresponding vertices in Ci, one edge per direction.

◦ If an edge is coming out from a vertex (k, ω), then it is associated
with the index k.

◦ The circuits ψe associated with the edges are constructed as
follows. Let e be an edge going from (k1, ω1) to (k2, ω2), and
let ψe be the associated circuit. Suppose that (k1, ω1) and
(k2, ω2) belong to Ci, so there exist j1, j2 ∈ [q] such that
(I(k1,ω1))j1 = (I(k2,ω2))j2 = i. Now, the circuit ψe is given as
input two tuples a, b ∈ Σq, outputs ⊥ if aj1 
= bj2 , and otherwise
outputs ψ(k1,ω1)(a).

Let �′ and n′ denote the numbers of vertices and edges of G. It
is easy to see that the decoding graph G has the correct size,
randomness complexity, alphabet, decoding complexity, and num-
ber of vertices and also that it is q · d0-regular. To see that it
has smoothness 1, consider an edge (u, v) that is chosen under the
decoding distribution and observe that

◦ u is uniformly distributed among the vertices of G.

◦ Conditioned on the choice of u, the edge (u, v) is uniformly dis-
tributed among the edges of u.

Combining the two above observations with the regularity of G
implies that the decoding distribution of G is the uniform distri-
bution over the edges.

We turn to show the completeness of G. Let x be a satisfying
assignment for ϕ, and let π = πx be the corresponding proof string
for D. We define an assignment Π to the vertices of G by defining
Π(k,ω) to be π|I(k,ω)

. It should be clear that this choice of Π satisfies
the requirements.

It remains to analyze the rejection ratio of G. Let Π be an
assignment to G. For each vertex (k, ω), if for some j ∈ [q] it
holds that (I(j,ω))j = i, then we refer to

(
Π(k,ω)

)
j

as the opinion of

(k, ω) on i and also as the j-th opinion of (k, ω). Let π be the proof
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string for D defined by setting πi to be the most popular opinion of
a vertex of G on i. Suppose that D has decoding error ε on π and
let x be the satisfying assignment to ϕ that achieves this decoding
error. Let ε′ be the decoding error of G on Π with respect to x.
We show that at least ρ

q
· ε′ fraction of the edges of G reject Π, and

this will establish the rejection ratio of G.
Let η be the fraction of vertices of G that have an opinion that

is inconsistent with π. Clearly, ε′ ≤ ε+ η: To see it, note that for
at least 1 − ε − η of the vertices (k, ω) of G, it holds that all the
opinions of (k, ω) are consistent with π and that D does not err on

proof string π and on (k, ω) (i.e., ψ(k,ω)

(
π|I(j,ω)

)
∈ {⊥, xk}). Then,

observe that all the outgoing edges of such a vertex (k, ω) do not
err.

Let k be uniformly distributed over [t]. We consider two pos-
sible cases. First, consider the case in which η ≤ ρ · ε/2. By
the soundness of D, it holds that D rejects π with probability at
least ρ · ε. Thus, at least ρ · ε fraction of the vertices (k, ω) of
G, it holds that D rejects π on (k, ω). This implies that at least
(ρ · ε− η) fraction of the vertices (k, ω) of G, it holds that both
D rejects π on (k, ω) and all the opinions of (k, ω) are consistent
with π, in which case all the outgoing edges of (k, ω) reject Π. It
follows that the fraction of edges of G that reject Π is at least

ρ · ε− η ≥ ρ · ε/2 ≥ 1

2
· η +

ρ

4
· ε ≥ ρ

4
(η + ε) ≥ ρ

4
· ε′,

as required.
We turn to consider the case in which η ≥ ρ ·ε/2. By averaging,

there exists some j ∈ [q] such that for at least η/q fraction of the
vertices (k, ω) of G it holds that the j-th opinion of (k, ω) is incon-
sistent with π. For every i ∈ [�], denote by Si the set of vertices of
Ci whose j-th opinion is an opinion on i that is inconsistent with
πi, and observe that

1

�′
·

�∑

i=1

|Si| ≥ η

q
.

Fix i ∈ [�] and denote Si = Ci\Si, and note that since πi is the
plurality vote, it holds that |Si| ≤ |Ci| /2. Now, observe that every
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edge that goes from Si to Si or vice versa must reject Π. By
the edge expansion of G|Ci|, the number of such edges is at least
h0 · d0 · |S|. Since this holds for every i ∈ [�], it follows that the
fraction of edges of G that reject Π is at least

1

n′ ·
�∑

i=1

h0 · d0 · |Si| =
1

q · d0 · �′ ·
�∑

i=1

h0 · d0 · |Si|

=
h0

q · �′ ·
�∑

i=1

|Si|

≥ h0

q
· η
q

≥ h0

2 · q2
· ρ · ε,

where the first equality follows since G is (q · d0)-regular. The
required result follows. �

7. Decoding PCPs with Linear Structure

In this section, we prove Lemma 6.25, i.e., that every decoding
graphG can be embedded on a graph that has linear structure. The
heart of the proof is very similar to the proof of the corresponding
lemma for constraint graphs (Lemma 3.3) with few adaptations to
the setting of decoding graphs. Two important differences are the
following:

1. Recall that we prove Lemma 3.3 by embedding the constraint
graph G on a de Bruijn graph DB and that this is done by iden-
tifying the vertices of G with the vertices of DB. Furthermore,
recall that if DB has more vertices than G, then some of the
vertices of DB are not identified with vertices of G, and thus
we place only trivial constraints on those vertices.
This construction does not work for decoding graphs. The rea-
son is that in the setting of decoding graphs, every edge needs to
be able to decode some index k ∈ [t]. Furthermore, every edge
that fails to decode must contribute to the fraction of rejecting
edges. Thus, we cannot have many trivial edges.
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In order to resolve this issue, we prove a proposition that allows
us to ensure that G has exactly the same number of vertices as
in DB, see Proposition 7.4 below.
We note that Item 1 is not caused by the fact we chose a strong
definition of udPCP and not a weak one (see Remark 6.11).
Even if we used a weak definition of udPCP, requiring edges to
reject only if the decoding error is above some threshold, we still
could not use dummy vertices and edges in the embedding, as
this would cause the aforementioned threshold to be too large
for our purposes.

2. Recall that in the embedding of constraint graphs on
de Bruijn graphs we used the expander-replacement technique
(Lemma 4.8) to make sure that the graph G has small degree.
Since such a lemma was not proved for decoding graphs in pre-
vious works, we have to prove it on our own. This is done in
Proposition 7.3 below.

The rest of this section is organized as follows. In Section 7.1,
we prove the aforementioned Proposition 7.3 and Proposition 7.4.
Then, in Section 7.2, we prove Lemma 6.25.

7.1. Auxiliary Propositions. In this section, we prove
Proposition 7.3 and Proposition 7.4 mentioned above. In order
to state those two propositions, we need to define a special kind of
decoding graphs, called “vertex-decoding graphs”. The reason is
that we only know how to prove Proposition 7.4 for vertex-decod-
ing graphs. Fortunately, we can convert any decoding graph to a
vertex-decoding one using Proposition 7.3.

We move to define the notion of vertex-decoding graphs. Intu-
itively, a decoding graph is vertex-decoding if the value that an
edge (u, v) decodes depends only on the labeling of u, while the
labeling of v only affects on whether the edge accepts or rejects.
The formal definition follows.

Definition 7.1 (Vertex-decoding graphs). We say that a decod-
ing graph G is a vertex-decoding graph if it has the following prop-
erties:
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(i) For every edge (u, v) of G and its associated circuit ψ = ψ(u,v),
there exists a function f : Σ → Γ that satisfies the follow-
ing: For every assignment π to the vertices of G for which
ψ (π(u), π(v)) 
= ⊥, it holds that ψ (π(u), π(v)) = f (π(u)).

(ii) Every vertex has at least one outgoing edge. In other words,
every vertex is capable of decoding at least one index k ∈ [t].

Remark 7.2. While the property of a graph being vertex-decod-
ing is reminiscent of the projection property, there are two impor-
tant differences. First, note that Item i in Definition 7.1 is weaker
than the projection property, since it only requires that π(u) deter-
mines the decoded value and not necessarily π(v). Second, note
that Item ii is not required by the projection property and is actu-
ally violated by the known constructions of graphs that have the
projection property.

We turn to prove Proposition 7.3 and Proposition 7.4. We begin
with Proposition 7.3, which says that we can always reduce the
degree of decoding graphs while paying only a moderate cost in
the parameters. As mentioned above, the proposition also trans-
forms the decoding graph into a vertex-decoding graph.

Proposition 7.3. Let d0 be the constant from Fact 2.23, and let
d = 2d0. There exists a polynomial time procedure that acts as
follows:

◦ Input: A decoding graph G of size n for input circuit ϕ : Γt →
{0, 1} with alphabet Σ, rejection ratio ρ, decoding complexity s,
and smoothness γ.

◦ Output: A d-regular vertex-decoding graph G′ of size at most
d · n/γ for input circuit ϕ, alphabet Σ2, rejection ratio Ω (ρ),
decoding complexity s + poly log |Σ|, and smoothness 1. Fur-
thermore, G′ has at most n/γ vertices.

Proof (Proof sketch). We apply the same construction as in the
proof of Proposition 6.24. Let ϕ : Γt → {0, 1} be the input circuit
of G. The key observation is that G corresponds to a decoder D
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that acts on ϕ such that D has query complexity 2, randomness
complexity log (n/t · γ), proof alphabet Σ, rejection ratio ρ, and
decoding complexity s. The reason for the foregoing randomness
complexity is that by the smoothness of G and by the smooth-
ness criterion of Proposition 6.22, it holds that for every k ∈ [t],
there are at most n/t · γ edges that are associated with k, and
therefore, choosing a uniformly distributed edge that is associated
with G requires log (n/ (t · γ)) uniformly distributed bits. Now, by
applying the construction of the proof of Proposition 6.24 to the
decoder D, we obtain a graph G′ that satisfies the requirements.
The fact that G′ is vertex-decoding can be observed by examining
the construction of Proposition 6.24 (see also the second paragraph
in the above proof sketch of Proposition 6.24). �
We next prove Proposition 7.4, which says that we can increases the
number of vertices of a vertex-decoding graph to any size we wish,
while paying only a small cost in the parameters. This proposition
will be used to ensure that the number of vertices of a decoding
graph G is equal to the number of vertices of the de Bruijn graph
on which we want to embed G.

Proposition 7.4. There exists a polynomial time procedure that
acts as follows:

◦ Input:

– A vertex-decoding graph G of size n for input circuit ϕ : Γt →
{0, 1} with � vertices, alphabet Σ, rejection ratio ρ, decoding
complexity s, degree bound d, and smoothness γ.

– A number �′ ∈ N such that �′ ≥ � (given in unary).

◦ Output: Let c
def
=

⌊
�′
�

⌋
and let d0 and h0 be the constants from

Fact 2.23. The procedure outputs a vertex-decoding graph G′ of
size at most 2 · (c+ 1) · d0 ·n for input circuit ϕ that has exactly
�′ vertices and also has alphabet Σ, output size s+ poly log |Σ|,
rejection ratio Ω (γ2 · ρ/d2), degree bound 2 · d0 · d, and smooth-
ness 1

2
· γ.

Furthermore, if G is d-regular, then G′ is (2 · d0 · d)-regular and
has rejection ratio Ω (γ2 · ρ).
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Proof. [Proof sketch]The basic idea of the proof is as follows.
Given the graph G, we construct the graph G′ by replacing each
vertex v of G with multiple copies of v, such that the total number
of vertices becomes �′ as required. Each copy of v will be connected
to the same edges as the original v. An assignment to G′ will be
required to assign the same value to all the copies of v: Clearly, if
an assignment π′ to G′ assigns the same value to the copies of each
vertex v of G, then in a way π′ “behaves” like an assignment to G,
and we can use the soundness of G to establish the soundness of G′

with respect to π′. In order to verify that the copies of a vertex v are
assigned the same value, we will put equality constraints between
the copies of v. In order to save edges, the equality constraints
are placed according to the edges of an expander, and the analysis
goes exactly as in the proof of Proposition 6.24. We use the fact
that G is vertex decoding in order to allow the equality constraints
to decode values even though they can use only the labeling of a
single vertex of G. The rest of this proof consists of the technical
details of this construction and is provided in Section 7.3.

�

7.2. Embedding Decoding Graphs on de Bruijn Graphs.
In this section, we prove the following proposition, which implies
Lemma 6.25 (linear structure embedding for udPCPs) and is
analogous to Proposition 4.4 (embedding of constraint graphs on
de-Bruijn graphs). The proof follows the steps of Proposition 4.4
with the few adaptations to the setting of decoding graphs. For
intuition and a high-level explanation of the proof, we refer the
reader to Section 4 and, in particular, to Section 4.2.

Proposition 7.5 (Embedding Decoding Graphs on de-Bruijn
Graphs). Let d0 be the constant of Fact 2.23. There exists a poly-
nomial time procedure that satisfies the following requirements:

◦ Input:

– A decoding graph G of size n for an input circuit ϕ : Γt →
{0, 1} with alphabet Σ, rejection ratio ρ, decoding complexity
s, and smoothness γ.
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– A finite alphabet Λ such that |Λ| ≥ 4 · d2
0.

– A natural number m such that |Λ|m ≥ 2 · d0 · n/γ.

◦ Output: A decoding graph G′ for ϕ such that the following
holds:

– The underlying graph of G′ is the de Bruijn graph DBΛ,m.

– The size of G′ is |Λ|m+1.

– G′ has alphabet ΣO(m).

– G′ has rejection ratio Ω
(
ρ/ |Λ|2 ·m

)
.

– G′ has smoothness at least γ′ def
= Ω

(
1

|Λ|

)
.

– G′ has decision complexity s+ poly (m, log |Σ|).

Let G,Λ, and m be as in Proposition 7.5, and let ϕ :
Γt → {0, 1} be the input circuit of G. On input G,Λ, and
m, the procedure acts as follows. The procedure first con-
structs a vertex-decoding graph G1 by applying to G the pro-
cedure of Proposition 7.3 and then applying to the resulting
graph the procedure of Proposition 7.4 with �′ = |Λ|m. It can
be verified that G1 is a vertex-decoding graph for input cir-

cuit ϕ with exactly |Λ|m vertices, alphabet Σ1
def
= Σ2, rejec-

tion ratio ρ1 = Ω (ρ), decoding complexity s + poly log |Σ|,
and smoothness at least 1

2
. Furthermore, G1 is d-regular for

d = 4 · d2
0 ≤ |Λ| and is of size d · |Λ|m.

Then, the procedure identifies the vertices of G1 with the ver-
tices of DB = DBΛ,m, partitions the edges of G1 to d matchings
μ1, . . . , μd, and views those matchings as permutations on the ver-
tices of DB. We apply Fact 4.5 to each permutation μi resulting

in a set of paths Pi of length l
def
= 2m. Let P =

⋃
Pi.

Next, the procedure constructs G′ in the following way. The

alphabet of G′ is set to be Σl·d
1 , viewed as

(
Σl

1

)d
. If σ ∈

(
Σl

1

)d
,

and σ = (σ1, . . . , σd), we denote by σi,j the element (σi)j ∈ Σ1.
It remains to describe how to associate each edge e of G′ with
an index ke ∈ [k] and with a circuit ψe. To this end, we first
describe in which cases a circuit ψe accepts and then describe
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how the index ke is chosen and what is the output of ψe when
it accepts.

The conditions in which ψe accepts. Fix an edge e′ = (u, v)
of G′, and let ψe be the circuit associated with e. The circuit
ψe accepts in exactly the same cases in which the constraint that
corresponds to e in the proof of Proposition 4.4 (for constraint
graphs) accepts. That is, the circuit ψe accepts if and only if all of
the following conditions hold:

1. For every i ∈ [d], the values
(
π′ (u)i,l , π

′ (u)i,1
)

satisfy the edge
(
μ−1
i (u), u

)
of G.

2. It holds that π′ (u)1,1 = · · · = π′ (u)d,1 and that π′ (v)1,1 =
· · · = π′ (v)d,1.

3. For every i ∈ [d] and j ∈ [l − 1] such that u and v are the j-th
and (j + 1)-th vertices of a path in p ∈ Pi respectively, it holds
that π′ (u)i,j 
= π′ (v)i,j+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u
is its (j + 1)-th vertex.

The choice of ke and the output of ψe. Fix a vertex u of G′.
We describe the way we assign indices ke to the outgoing edges of u
and the output of the circuits ψe. We begin by associating each of
the |Λ| outgoing edges of u in G′ with one of the d outgoing edges
of u in G1. This association is done in a “balanced” way—that is,
each outgoing edge of u in G1 is associated with either �|Λ| /d� or
�|Λ| /d� edges of u in G′.

Now, let e′ be an outgoing edge of u in G′, and suppose that
it is associated with an outgoing edge e1 of u in G1 and that e1

belongs to the matching μi. Let ke1 and ψe1 be the index and circuit
associated with e1. Recall that since G1 is vertex-decoding, there
exists a function fe1 : Σ1 → Γ such that whenever ψe1 (a, b) 
= ⊥,
it holds that ψe1 (a, b) = fe1(a). We associate e′ with the index ke1
and with the circuit ψe′ that is defined for every a′, b′ ∈

(
Σl

1

)d
for
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which ψe′ (a, b) 
= ⊥ by

ψe′ (a′, b′) = fe1

(
(a′)1,1

)
.

Note that ψe′ is indeed well defined, since the cases in which ψe′

outputs ⊥ were defined above.

The parameters of G′. The size and alphabet of G′ are imme-
diate, and the completeness of G′ can be established in the same
way as in Proposition 4.4 (embedding of constraint graphs on de-
Bruijn graphs). It can also be verified that G′ has smoothness at
least γ′ = 1

2·|Λ| using the smoothness criterion (Proposition 6.22)
and a straightforward calculation.

It remains to analyze the rejection ratio of G′. Let π′ be an
assignment to G′ that minimizes the ratio between the probability
that a random edge of G′ rejects π′ (under the decoding distri-
bution) to the decoding error of G′ on π′. As in the proof of
Proposition 4.4, we may assume that for every vertex u of DB,
it holds that π′ (u)1,1 = · · · = π′ (u)d,1, since otherwise we may
modify π′ to such an assignment that satisfies this property with-
out increasing the rejection probability or decreasing the decoding
error. Let π1 be the assignment to G1 defined by π1(u) = π′ (u)1,1.
Let ε be the decoding error of G1 on π1, and let x be the assignment
to ϕ that achieves this decoding error. Let ε′ be the decoding error
of G′ on π′ with respect to x. We show that the rejection probabil-
ity of G′ on π′ is at least Ω (γ′ · ρ1 · ε′/ |Λ| ·m), and this will yield
the required rejection ratio.

Observe that by the smoothness of G1 (resp. G′), the fraction
of edges of G1 (resp. G′) that fail to decode x on π1 (resp. π′) is

at least ε0
def
= 1

2
· ε (resp. ε′

0 = γ′ · ε′). Furthermore, the fraction of
edges of G1 that reject π1 is at least ρ1 · ε0. This implies, using the
same argument as in the proof of Proposition 4.4, that the fraction
of edges of G′ that reject π′ is at least Ω (ρ1 · ε0/ |Λ| ·m).

We finish the proof by relating ε′
0 with ε0. To this end, observe

that for every edge e′ = (u, v) of G′ and its associated edge e1 of
G1, the edge e′ fails to decode x on π′ (i.e., ψe′ (π′ (u)) /∈

{
xke′ ,⊥

}
)

only if e1 fails to decode x on π1 (i.e., ψe1 (π1 (u)) /∈
{
xke1

,⊥
}
).
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Furthermore, each edge e1 of G1 corresponds to either �|Λ| /d�
or �|Λ| /d� edges in G′. It can be verified by a straightforward cal-
culation that this implies that ε′

0 ≤ 2 · ε0. It now follows that the
fraction of edges of G′ that reject π′ is at least

Ω

(
ρ1 · ε0

|Λ| ·m

)
≥ Ω

(
ρ1 · ε′

0

|Λ| ·m

)

≥ Ω

(
ρ1 · γ′

|Λ| ·m · ε′
)

= Ω

(
ρ

|Λ|2 ·m
· ε′

)
.

The required rejection ratio follows. �

7.3. Proof of Proposition 7.4. In this section, we prove
Proposition 7.4, restated below.

Proposition (7.4, restated). There exists a polynomial time
procedure that acts as follows:

◦ Input:

– A vertex-decoding graph G of size n for input circuit ϕ : Γt →
{0, 1} with � vertices, alphabet Σ, rejection ratio ρ, decoding
complexity s, degree bound d, and smoothness γ.

– A number �′ ∈ N such that �′ ≥ � (given in unary).

◦ Output: Let c
def
=

⌊
�′
�

⌋
and let d0 and h0 be the constants from

Fact 2.23. The procedure outputs a vertex-decoding graph G′ of
size at most 2 · (c+ 1) · d0 ·n for input circuit ϕ that has exactly
�′ vertices and also has alphabet Σ, output size s+ poly log |Σ|,
rejection ratio Ω (γ2 · ρ/d2), degree bound 2 · d0 · d, and smooth-
ness 1

2
· γ.

Furthermore, if G is d-regular, then G′ is (2 · d0 · d)-regular and
has rejection ratio Ω (γ2 · ρ).

Let G = (V,E) , ϕ, �, and �′ be as in the proposition and let z =
�′ mod �. We construct G′ as follows. Choose an arbitrary set
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T ⊆ V of size z. The vertices of G′ consist of a set Cv of ver-
tices for each v ∈ V , where |Cv| = c + 1 if v ∈ T and |Cv| = c
otherwise. Observe that G′ indeed has �′ vertices. For each v ∈ V ,
let us denote Cv =

{
v1, . . . , v|Cv |

}
. The edges of G′ are defined as

follows:

1. For each edge (u, v) of G and for each l ∈ [c], the graph G′ has
d0 edges (ul, vl) that are associated with the same index k(u,v)

and circuit ψ(u,v) as the edge (u, v) of G. We call such edges
“G-edges”.

2. For each edge (u, v) for which u ∈ T , the graph G′ contains
the following “trivial” edges: Let jk = k(u,v) and ψ = ψ(u,v) be
the index and circuit associated with (u, v). Recall that since
G is vertex-decoding, there exists a function f : Σ → Γ such
that for every a, b ∈ Σ on which ψ (a, b) 
= ⊥, it holds that
ψ (a, b) = f(a). Let ψ′ : Σ2 → Γ ∪ {⊥} be the circuit that for
every input (a, b) ∈ Σ2 outputs f(a). The graph G′ contains
d0 edges (uc+1, uc+1) that are associated with the index k and
with the circuit ψ′.

3. For each edge (u, v) of G, the graph G′ contains the follow-
ing edges, which correspond to “equality constraints”: Let k =
k(u,v) and ψ = ψ(u,v) be the index and circuit associated with
(u, v), and let f : Σ → Γ as in Item 2. Let ψ′ be the cir-
cuit that on input (a, b) ∈ Σ2 outputs ⊥ if a 
= b and outputs
f(a) otherwise. We now identify the vertices of Cu with the
vertices of the expander G|Cu| from Fact 2.23, and for every
(undirected) edge of G|Cu|, we put two directed edges between
the corresponding vertices of Cu, where the directed edges are
associated with the index k and with the circuit ψ′. We call
such edges “consistency edges” of u.

Let n′ be the size of G′. It is easy to see that G′ has the correct size,
alphabet, decoding complexity, and degree bound and also that G′

satisfies the completeness requirement. It can also be verified that
G′ has smoothness

(
1 − 1

c+1

)
· γ ≥ 1

2
· γ using the smoothness cri-

terion (Proposition 6.22) and a straightforward calculation.
It remains to analyze the rejection ratio of G′. Let π′ be an

assignment to the vertices of G′, and let π be the corresponding
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plurality assignment to G. That is, π is the assignment that assigns
each vertex v of G,the most popular value among the values that
π′ assigns to vertices in Cv. Suppose that G has decoding error ε
on π and let x ∈ Γt be an assignment that attains this decoding
error. Let ε′ be the decoding error of G′ on π′ with respect to x.
We will show that G′ rejects π′ with probability at least h0·γ2

64
·ρ · ε′

under the decoding distribution, and this clearly suffices since ε′ is
an upper bound on the decoding error of G′. To this end, we will
analyze the decoding error and rejection probability of G′ under
the uniform distribution on the edges and then use the smoothness
of G′ to derive conclusions on the decoding distribution.

By the smoothness of G′, the probability that a uniformly dis-

tributed edge of G′ fails to decode x on π′ is at least ε′
1

def
= 1

2
· γ · ε′.

Furthermore, a uniformly distributed edge of G fails to decode x

on π with probability at least ε1
def
= γ · ε and rejects with proba-

bility at least ρ · ε1 = γ · ρ · ε. Let η be the fraction of vertices of
G′ on which π′ is inconsistent with π. We begin the analysis by
expressing ε′

1 in terms of ε1 and η.
Let F be the set of edges of G that fail to decode x on π, let F ′

be the set of edges of G′ that fail to decode x on π′, and let S ′ be
the set of vertices of G′ on which π′ is inconsistent with plurality

assignment π, so η
def
= |S ′| /�′. An edge e′ = (u, v) of G′ is in F ′ if

and only if e′ corresponds to some e ∈ F or if u is in S ′ (note that
since G′ is vertex-decoding, we need not consider the case where v
is in S ′). Now, every edge in F has d0 · c corresponding G-edges
in G′, and every vertex in S ′ has at most 2 · d0 · d outgoing edges.
Thus, it holds that

|F ′| ≤ d0 · c · |F | + 2 · d0 · d · |S ′| .

Observe that since every vertex of G has at least one outgoing edge
(since G is vertex-decoding), it holds that every vertex in G′ has at
least 2 · d0 outgoing edges, and therefore n′ ≥ 2 · d0 · �′ . It follows
that

ε′
1 =

|F ′|
n′

≤ d0 · c · |F | + 2 · d0 · d · |S ′|
n′
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≤ d0 · c · |F |
2 · d0 · c · n +

2 · d0 · d · |S ′|
2 · d0 · �′

≤ ε1 + d · η.(7.6)

Observe that the last inequality implies that if η is small compared
to ε′

1, then ε1 must be large and vice versa. We turn to consider
each of the cases separately.

The case where η is small. First, consider the case where η ≤
ρ ·ε′

1/16 ·d. In this case, we argue that π′ is roughly consistent with
π, and therefore, the action of G′ on π′ is similar to the action of G
on π. In particular, we argue that the fraction of edges of G′ that
reject π′ must be related to the fraction of edges of G that reject
π, which is at least ρ · ε1. However, since by Inequality ??, it holds
that ε1 is large compared to ε′

1, it will follow that the fraction of
edges of G′ that reject π′ is roughly ρ · ε′

1, as required.
More formally, it holds that the fraction of edges touching S ′

(both incoming and outgoing) is at most

2 · d0 · d · |S ′|
n′ =

2 · d0 · d · η · �′
n′

(Since n′ ≥ 2 · d0 · �′) ≤ 2 · d0 · d · η
2 · d0

(By assumption on η) ≤ d0 · d · ρ · ε′
1

d0 · 16d

=
ρ · ε′

1

16
.

On the other hand, it holds that the size of F (the set of edges of
G that reject π) is at least ρ · ε1 · n. Each such edge has at least
d0 · c corresponding G-edges in G′, and since n′ ≤ 2 · d0 · (c+ 1) ·n,
it follows that the fraction of edges of G′ that correspond to edges

in F is at least
(

d0·c·|F |
2·d0·(c+1)·n

)
≥ ρ · ε1/4. Furthermore, it holds that

ε1 ≥ ε′
1 − d · η ≥ ε′

1 − ρ · ε′
1/16 ≥ ε′

1/2.

So in fact, the fraction of edges in G′ that correspond to edges in F
is at least ρ ·ε1/4 ≥ ρ ·ε′

1/8. This implies that the fraction of edges
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of G′ that both correspond to edges in F and whose endpoints are
consistent with π is at least ρ · ε′

1/8 − ρ · ε′
1/16 ≥ ρ · ε′

1/16. Since
all of these edges reject π′, it follows that the fraction of edges of
G′ that reject π′ is at least ρ · ε′

1/16 ≥ ρ · 1
2
· γ · ε′/16 ≥ γ · ρ · ε′/32.

This implies that the rejection probability of π′ under the decoding
distribution of G′ is at least Ω (γ2 · ρ · ε′). as required.

The case where η is large. We turn to consider the case where
η ≥ ρ ·ε′

1/16 ·d. In this case, the assignment π′ is quite inconsistent
with π, and we argue that a significant fraction of the consistency
edges reject π′. More formally, using similar considerations as in
the proof of Proposition 6.24, every set Cv contributes at least
h0 · d0 · |S ′ ∩ Cv| rejecting consistency edges. Thus, there are at
least h0 · d0 · |S ′| rejecting edges. This implies that the fraction of
rejecting edges is at least

h0 · d0 · |S ′|
n′ ≥ h0 · d0 · |S ′|

2 · d0 · d · �′

=
h0

2 · d · η

≥ h0

32 · d2
· ρ · ε′

1

≥ h0

32 · d2
· ρ · 1

2
· γ · ε′

≥ h0 · γ
64 · d2

· ρ · ε′,

which implies that the rejection probability under the decoding
distribution is at least Ω (γ2 · ρ · ε′/d2), as required.

The “furthermore” part. For the “furthermore” part of the
lemma, first observe that it is easy to see from the definition of G′

that if G is d-regular, then G′ is (2 · d0 · d)-regular. For the rejec-
tion ratio part, note that in the foregoing analysis, we lose a 1/d
factor in two places:

1. We lose a factor of 1/d in the proof of Inequality (7.6), where
our upper bound on the number of edges that go out of S is
2 · d0 · d · |S|, while our lower bound on n′ is only 2 · d0 · �′.
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However, if G is d-regular, then G′ is (2 · d0 · d)-regular, and
thus, the lower bound on n′ can be improved to 2 · d0 · d · �′.
This implies that Inequality (7.6) becomes ε′

1 ≤ ε1 + η.
As a result, the case of “small η” can be extended to all the
cases where η ≤ ρ · ε′

1/16, and in the case of “large η”, we can
assume that η ≥ ρ ·ε′

1/16. This saves a factor of 1/d in the case
of “large η”.

2. We lose a factor of 1/d in the case of “large η”, since the lower
bound on the number of rejecting consistency edges for a set Cv
is only h0 · d0 · |S ∩ Cv|, while the upper bound on the number
of consistency edges in the graph is d0 · d · n. However, if G is
d-regular, then the foregoing lower bound can be improved to
h0 · d0 · d · |S ∩ Cv|, regaining the factor of 1/d. �

8. Derandomized Parallel Repetition
of Decoding Graphs with Linear Structure

In this section, we prove Lemma 6.26 (derandomized parallel rep-
etition for dPCPs), restated below.

Lemma (6.26, restated). There exist a universal constant h and a
polynomial time procedure that satisfy the following requirements:

◦ Input:

– A finite field F of size q.

– A decoding graph G = (Fm, E) of size n for input circuit
ϕ : Γt → {0, 1} with linear structure, alphabet Σ, rejection
ratio ρ, decision complexity s, and smoothness γ.

– The rejection ratio ρ of G.

– A parameter d0 ∈ N such that d0 < m/h2 and ρ ≥ h · d0 ·
q−d0/h/γ.

◦ Output: A decoding graph G′ for ϕ such that the following
holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.
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– G′ is list-decoding with soundness error ε
def
= h · d0 · q−d0/h/γ

and list size L
def
= qO(d0).

– G′ has the projection property.

– G′ has decoding complexity qO(d0) · (s+ poly log |Σ|).

The proof follows the proof of the corresponding lemma for
constraint graphs (Lemma 3.4), with the following modification:
Recall that the proof of Lemma 3.4 described the graph G′ by
describing a verification procedure (the E-test, Figure 5.1). More-
over, recall that the E-test works by choosing a random subspace
F of edges and verifying that the edges in F are satisfied by the
assignment Π (F ).

In order to describe the graph G′ of Lemma 6.26, we describe
a decoding procedure (the E-decoder, see Figure 8.1 below). The
E-decoder is constructed by changing the E-test as follows. When-
ever the E-decoder is required to decode an index k ∈ [t], the
E-decoder chooses a random edge e that is associated with k and
then chooses the subspace F to be a random subspace that con-
tains e. The E-decoder then checks, as before, that the edges in
F are satisfied by the assignment Π (F ). If one of the edges in F
is unsatisfied, then the E-decoder rejects. If all the edges in F are
satisfied, then the E-decoder decodes the index k by invoking the
circuit ψe associated with e on input Π (F )|e.

The intuition that underlies the construction of the E-decoder
is as follows. Just as in the proof of Lemma 3.4, we argue that the
E-decoder contains an implicit S-test, and therefore, the assign-
ment Π needs to be roughly consistent with some assignment π to
G in order to be accepted. We now consider two cases:

1. If G has high decoding error on π, then by the soundness of G,
it holds that many of the edges of G reject π. By the sampling
property of F , there are many edges in F that reject π, and
therefore, the E-decoder must reject with high probability.

2. If G has low decoding error on π, then due to the sampling
property of F , only few of the edges in F err. In particular,
since e is distributed like a random edge of F , it only errs with
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Figure 8.1: The E-decoder.

low probability. Thus, in this case, the E-decoder decodes cor-
rectly with high probability.

Thus, in both cases, the soundness error of the E-decoder is small.

8.1. The Construction of G′ and its Parameters. The
decoding graph G′ is constructed as follows. Let G = (Fm, E)
and d0 be as in Lemma 6.26 (derandomized parallel repeti-
tion for dPCPs), and let d1 = h · d0 where h is the uni-
versal constant from Lemma 6.26 to be chosen later. As in
the proof of the corresponding lemma for constraint graphs
(Lemma 3.4), the graph G′ is bipartite, the right vertices of G′

are the 2d0-subspaces of F
m (the vertex-space of G), and the

left vertices of G′ are the 2d1-subspaces of the edge space E
of G. An assignment Π to G′ should label each 2d0-subspace
A of F

m with a function from A to Σ and each
2d1-subspace F of E with a function that maps the endpoints of
the edges in F to Σ. The edges of G′ are constructed such that they
simulate the action of the “E-decoder” described in Figure 8.1.
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The completeness, size, and alphabet size of G′ can be verified
in the same way as it was done in the proof of Lemma 3.4, and so is
the fact that G′ has the projection property. It remains to analyze
the soundness of G′, which is done in the following section.

We turn to prove thatG′ is list-decoding with ε = h·d0·q−d0/h/γ
and list size L = qO(d0). Let Π be an assignment to G′. That is, we
prove that there exists a (possible empty) list of satisfying assign-
ments x1, . . . , xL ∈ Γt to the input circuit ϕ such that when given
as input a uniformly distributed index k ∈ [t], the probability
that the output of the E-decoder is not in

{
x1
k, . . . , x

L
k ,⊥

}
is at

most ε.
Consider the distribution on the edges of G′ that results from

letting the edge e of the E-decoder be chosen according to the
uniform distribution on the edges of G instead of the decoding
distribution of G. We will refer to the above distribution as the
G-uniform distribution of G′. It is straightforward to show that
the G-uniform distribution and decoding distribution of G′ are γ-
similar, by applying Claim 2.21 with X1 and X2 being the choices
of e according to the G-uniform distribution and the decoding dis-
tribution, and Y1 and Y2 being the G-uniform distribution and
decoding distribution of G′, respectively. In the following proof,
all the probability expressions are not over the decoding distri-
bution of G′, but rather over the G-uniform distribution of G′.
We will later use the similarity between the distributions to argue
that G′ has small soundness error with respect to its decoding
distribution.

Notation 8.1. We denote by D the random variable that equals
to the output of the E-decoder. As in the proof of Lemma 3.4
(derandomized parallel repetition for constraint graphs), we denote
by T the event in which the E-decoder accepts Π, so T is the event
D 
= ⊥. Moreover, as in the proof of Lemma 3.4, for an assignment

π : F
m → Σ, we denote by Π (F )

α≈ π the claim that for at least
1 − α fraction of the edges e of F it holds that Π (F ) is consis-
tent with π on both the endpoints of e, and otherwise, we denote

Π (F )
α


≈ π.
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Our proof proceeds in two steps. We first show that there exists
a (possible empty) assignments π1, . . . , πL : F

m → Σ such that
whenever the E-decoder accepts Π, it almost always does so while
being roughly consistent with one of the assignments π1, . . . , πL.
We can then choose the assignments x1, . . . , xL to be the assign-
ments that minimize the decoding error of π1, . . . , πL, respectively.
Next, we show that whenever Π is roughly consistent with πi, the
E-decoder either rejects Π with high probability (if πi has high
decoding error) or decodes xi successfully with high probability (if
πi has low decoding error). Thus, the overall probability that the
E-decoder fails is small.

The above strategy is made formal in the following three prop-
ositions. Let h′ and c be the universal constants defined in The-
orem 8.7 below, and let α

def
= h′ · d0 · q−d0/h′

. Let ε0
def
= ε · γ/3 =

h · d0 · q−d0/h/3 and let L = O (1/εc0).

Proposition 8.2. There exists a (possibly empty) list of assign-
ments π1, . . . , πL : F

m → Σ such that

Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )

4·α≈ πi
]
< 2 · ε0.

Proposition 8.3. For every assignment π : F
m → Σ on which G

has decoding error at least ε0/2L, it holds that Pr
[
T and Π

(
F

)

4·α≈ π
]
< ε0/L.

Proposition 8.4. For every assignment π : F
m → Σ on which

G has decoding error less than ε0/2L with respect to a satisfying
assignment x to the input circuit ϕ, it holds that

Pr
[
D 
= xk and Π (F )

4·α≈ π
]
< ε0/L,

where k is the index on which the E-decoder is invoked.

Proposition 8.2 and Proposition 8.4 are proved in Section 8.2.1 and
Section 8.2.2, respectively. Proposition 8.3 can be proved in the
same way as Proposition 5.8, by noting that due to the soundness
of G, at least ρ · ε0/2L of the edges of G reject π.
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We now prove that G′ is (L, ε)-list decoding using
Proposition 8.2, Proposition 8.3, and Proposition 8.4. Let
π1, . . . , πL be the assignments from Proposition 8.2. For each
i ∈ [L], let xi be the assignment to ϕ that attains the decoding
error of πi. The decoding error of G′ on Π under the G-uniform
distribution of G′ is as follows.

Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}]

≤
L∑

i=1

Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}
and Π (F )

4·α≈ πi
]

+ Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}
and 
 ∃i ∈ [L] s.t. Π (F )

4·α≈ πi
]

≤
L∑

i=1

Pr
[
D /∈

{
xik,⊥

}
and Π (F )

4·α≈ πi
]

+ Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )

4·α≈ πi
]

(8.5)

≤
L∑

i=1

ε0/L+ 2 · ε0

= 3 · ε0,

(8.6)

where Inequality (8.6) follows from Proposition 8.2 and
Proposition 8.4. Finally, since the G-uniform distribution of G′

and the decoding distribution of G′ are γ-similar, it follows that
the decoding error of G′ on Π under the decoding distribution of
G′ is at most 3 · ε0/γ = ε, as required. �

8.2.1. Proof of Proposition 8.2. Recall that in order to ana-
lyze the soundness of the E-test in Proposition 5.7, we argued that
the E-test contains an “implicit S-test” and then relied on a the-
orem regarding the soundness of the S-test (Theorem 5.4). The
aforementioned theorem said that if the S-test accepts an assign-
ment Π with some probability, then there exists an assignment π
such that with some (smaller) probability, the S-test accepts Π
while being consistent with the S-direct product of π. This can be
thought as a “unique decoding” theorem that decodes π from Π.
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In order to prove Proposition 8.2 for the E-decoder, we use a
similar argument, but this time we use a “list-decoding” theorem
for the S-test. The following theorem says that there exists a short
list of assignments π1, . . . , πL, such that it is almost always the case
that if the S-test accepts Π, it does so while being consistent with
the S-direct product of one of the assignments π1, . . . , πL.

Theorem 8.7 (List-decoding soundness of the S-test). There
exist universal constants h′, c ∈ N such that for every d0 ∈
N, d1 ≥ h′ · d0, and m ≥ h′ · d1, the following holds: Let

ε ≥ h′ · d0 · q−d0/h′
, α

def
= h′ · d0 · q−d0/h′

. Let Π be a (possibly
randomized) assignment to 2d0-subspaces of F

m and to pairs of
d1-subspaces of F

m. Then, there exists a (possibly empty) list of
L = O (1/εc) assignments π1, . . . , πL : F

m → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

and 
 ∃i ∈ [L] s.t. Π (B1, B2)
α≈ πi|(B1,B2)

]
< ε.

Theorem 8.7 is proved in Section 9.
We turn to prove Proposition 8.2 based on Theorem 8.7. As

in the proof of Proposition 5.7, we begin by extending Π to pairs
of independent d1-subspaces of F

m in a randomized manner as fol-
lows: Given a pair of independent d1-subspaces B1 and B2, we
choose F1 and F2 to be uniformly distributed and independent
d1-subspaces of E such that left (F1) = B1 and right (F2) = B2,
and set Π (B1, B2) = Π (F1 + F2)|(B1,B2).

Again as in the proof of Proposition 5.7, we observe that the
probability that the E-decoder accepts equals to the probability
that the S-test accepts the extended Π. The reason is that the
subspaces BL, BR, AL and AR of the E-decoder are distributed like
the subspaces B1, B2, A1 and A2 of the S-test. By choosing h to be
at least the constant h′, we can invoke Theorem 8.7 (list-decoding
soundness of the S-test) and conclude that there exists a list of
L = O (1/εc) assignments π1, . . . , πL : F

m → Σ such that for sub-
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spaces B1, B2, A1, A2 as in the S-test it holds that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

and 
 ∃i ∈ [L] s.t. Π (B1, B2)
α≈ πi|(B1,B2)

]
< ε0.

The latter inequality is equivalent to the following inequality:

Pr
[
Π (F )|(BL,BR) = Π (A)|(A1,A2)

and 
 ∃i ∈ [L] s.t. Π (F )|(BL,BR)

α≈ πi|(BL,BR)

]
< ε0,

which in turn implies the inequality

Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )|(BL,BR)

α≈ πi|(BL,BR)

]
< ε0.

(8.8)

In the rest of this section, we show that this implies that

Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )

4·α≈ πi
]
< 2 · ε0.(8.9)

To this end, we use Claim 5.12, which was proved in Section 5.3.1
and is restated below.

Claim (5.12, restated). For every fixed 2d0-subspace F0 of E such

that Π (F0)
4α


≈ π, it holds that

Pr
[
Π (F )|(BL,BR)

α≈ π|(BL,BR)

∣
∣
∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
.

Claim 5.12 implies immediately the following corollary.

Corollary 8.10. For every i ∈ [L], it holds that

Pr

[
Π

(
F

)
|
(
BL,BR

) α≈ π
i|
(
BL,BR

)
∣
∣
∣ 
 ∃j ∈ [L] s.t.

Π (F )
4·α≈ πj

]
< 1/

(
qd1−2 · α2

)
.
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In order to prove Inequality (8.9), we first show that

Pr
[
T and 
 ∃i ∈ [L] s.t.Π (F )|(BL,BR)

α≈ πi|(BL,BR)

∣
∣
∣


 ∃i ∈ [L] s.t. Π (F )
4·α≈ πi

]
≥ 1

2
.(8.11)

To show it, we prove an upper bound on the complement event,
that is, we prove that

Pr
[
T and ∃i ∈ [L] s.t. Π (F )|(BL,BR)

α≈ πi|(BL,BR)

∣
∣
∣


 ∃i ∈ [L] s.t. Π (F )
4·α≈ πi

]
≤ 1

2
.

To see the latter inequality, observe that the right end side is upper
bounded by

∑

i∈[L]

Pr
[
Π (F )|(BL,BR)

α≈ πi|(BL,BR)

∣
∣
∣ 
 ∃j ∈ [L] s.t. Π (F )

4·α≈ πj
]

≤
∑

i∈[L]

1/
(
qd1−2 · α2

)

= L · /
(
qd1−2 · α2

)

= O
(
1/εc0 ·

(
qd1−2 · α2

))

≤ 1

2
.

where the first inequality follows from Corollary 8.10, and the sec-
ond inequality follows for sufficiently large choice of h. Now, it
holds that

Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )|(BL,BR)

α≈ πi|(BL,BR)

and 
 ∃i ∈ [L] s.t. Π (F )
4·α≈ πi

]

is upper bounded by

Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )|(BL,BR)

α≈ πi|(BL,BR)

]
< ε0.
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On the other hand, by writing the probability in (8.12) in con-
ditional form and applying Inequality (8.11), we obtain that the
probability in (8.12) is at least

1

2
· Pr

[
T and 
 ∃i ∈ [L] s.t. Π (F )

4·α≈ πi
]
.

By combining the two last bounds, we obtain that

Pr
[
T and 
 ∃i ∈ [L] s.t. Π (F )

4·α≈ πi
]
< 2 · ε0,

as required. �

8.2.2. Proof of Proposition 8.4. Fix an assignment π : F
m →

Σ on which G has decoding error less than ε0/2L with respect to
a satisfying assignment x of the input circuit ϕ. We prove that

Pr
[
D 
= xk and Π (F )

4·α≈ π
]
< ε0/L Let us denote by E1 the event

in which Π (F )
4·α≈ π and by E2 the event in which F contains less

than ε0/3L fraction of edges on which G fails to decode x on π.
We will prove that

Pr [D 
= xk and E1] = Pr
[
D 
= xk and Π (F )

4·α≈ π
]
< ε0/L.

It holds that

Pr [D 
= xk and E1] = Pr [D 
= xk and E1 and E2]

+ Pr [ψ(a, b) 
= xk and E1 and ¬E2] .

We upper bound both terms on the right-hand side. The second
term is clearly upper bounded by Pr [¬E2]. The latter probabil-
ity can be shown to be at most O

(
L2/q2·d1−2 · ε2

0 + ·d1/q
m−2·d1),

using the fact that F samples well the edges of G and more spe-
cifically using an argument similar to the one used in the proof
of Proposition 5.8. For sufficiently large choice of h, the latter
expression is upper bounded by ε/3L.

We turn to upper bound the probability Pr
[
D 
= xj and

E1 and E2

]
. This probability is upper bounded by the probabil-

ity Pr [D 
= xj|E1 and E2]. Now, let F0 be any 2d1-subspace of E
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such that Π (F0)
4·α≈ πi and such that the fraction of edges of F0

that fail to decode x on π is at most 2ε0/3L. Let us consider the
probability Pr [D 
= xj|F = F0]. Observe that conditioned on the
choice F = F0, the edge e chosen by the E-test is uniformly dis-
tributed among the edges of F . Observe that e fails to decode x
only if one of the endpoints of e is inconsistent with π or if e is one
of the edges in F that fail to decode x on π. The probability of
the first case is at most 4 · α ≤ ε0/3L (where the latter inequality
holds for sufficiently large choice of h), and the probability of the
second case is at most ε0/3L. It therefore holds that

Pr [D 
= xk and E1 and E2] ≤ Pr [D 
= xj|F = F0]

≤ ε0/3L+ ε0/3L ≤ 2ε0/3L.

All in all, it holds that Pr [D 
= xk and E1] is at most 2ε0/3L+ 3 ·
ε0/3L = ε0/L, as required.

9. The Analysis of the Specialized Direct
Product Test

In this section, we provide the analysis of the S-test and prove
Theorem 5.4 and Theorem 8.7, which are the theorems on the
soundness of the S-test that are used in Section 5.3.1 and Sec-
tion 8.2.1, respectively. The proof proceeds in two steps. First, in
Section 9.1, we define and analyze an intermediate direct product
test, which we call the P 2-test. Then, in Section Section 9.2, we
reduce the analysis of the S-test to that of the P 2-test. We provide
the analysis of the P -test (Theorem 2.2) in Section 9.3.

For the rest of this section, we let F be a finite field of size q
and let d0, d1 ∈ N.

9.1. The P 2-test. In this section, we define and analyze the
P 2-test. Informally, the P 2-test consists of two P-tests that are
performed simultaneously. Details follow.

Given two strings π1, π2 : F
m → Σ, we define their P 2-direct

product Π (with respect to d0, d1 ∈ N) as follows: Π assigns each
pair of d0-subspaces (A1, A2) to the pair of functions (π1|A1 , π2|A2)
and assigns each pair of d1-subspaces (B1, B2) to the pair of func-
tions (π1|B1 , π2|B2). We consider the task of testing whether a
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Figure 9.1: The P 2-test.

given assignment Π is the P 2-direct product of some pair of strings
π1, π2 : F

m → Σ. That is, we are given an assignment Π , and
in order to check whether Π is a P 2-direct product, we invoke the
P 2-test, described in Figure 9.1.

It is easy to see that if Π is a P 2-direct product, then the
P 2-test always accepts. Again, it can be shown that if Π is “far”
from being a P 2-direct product, then the P 2-test rejects with high
probability and that this holds even if Π is a randomized assign-
ment. Formally, we have the following result.

Theorem 9.1 (Soundness of the P 2-test). There exist universal
constants h, c ∈ N such that the following holds: Let ε ≥
h ·d0 ·q−d0/h, α def

= h ·d0 ·q−d0/h. Assume that d1 ≥ h ·d0,m ≥ h ·d1.
Suppose that an assignment Π passes the P 2-test with probability
at least ε. Then, there exist two assignments π1 and π2 to F

m such
that for B1, B2, A1, and A2, distributed as in the P 2-test, it holds
that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A1, A2) and Π (A1, A2)

α≈
(
π1|A1 , π2|A2

)

and Π (B1, B2)
α≈

(
π1|B1 , π2|B2

)]
≥ Ω (εc) .

In the rest of this section, we prove Theorem 9.1. We denote
by P the event in which the P 2-test accepts, that is, that
Π (B1, B2)|(A1,A2) = Π (A1, A2). The core of the proof is the
following lemma:

Lemma 9.2. There exist universal constants h′, c′ ∈ N such that

the following holds: Let ε ≥ h′ · d0 · q−d0/h′
, α′ def

= h′ · d0 · q−d0/h′
.

Assume that d1 ≥ h′ · d0,m ≥ h′ · d1. If Π passes the P 2-test with
probability at least ε, then there exists an assignment π2 : F

m → Σ
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such that

Pr

[
P and Π (A1, A2)|A2

α′
≈ π2|A2 and (B1, B2)|B2

α′
≈ π2|B2

]

≥ Ω(εc
′
),

and symmetrically, there exists a function π1 : F
m → Σ such that

Pr

[
P and Π (A1, A2)|A1

α′
≈ π1|A1 and (B1, B2)|B1

α′
≈ π1|B1

]

≥ Ω(εc
′
).

We prove Lemma 9.2 in Section 9.1.1. We turn to derive Theo-
rem 9.1 from Lemma 9.2.

Proof (Proof of Theorem 9.1.). The following proof is for the
case where Π is not randomized, but it can be easily extended to
the case where Π is randomized (see Remark 9.4 for details). We
will choose h to be larger than the constant h′ of Lemma 9.2, so
we can apply this lemma. Let π2 : F

m → Σ be the assignment
guaranteed by Lemma 9.2, and let Π′ be an assignment that is
obtained from Π as follows:

1. For every pair (A1, A2) for which Π (A1, A2)|A2

α′
≈ π2|A2 , set

Π′ (A1, A2) = Π (A1, A2).

2. For every other pair (A1, A2), set Π′ (A1, A2) = ⊥, where ⊥ is
some special value on which the test never accepts.

3. Set the pairs (B1, B2) similarly.

The probability ε′ that the assignment Π′ passes the P 2-test is
at least Ω(εc

′
) by the definition of π2. By choosing h to be suf-

ficiently larger than the corresponding constants of Lemma 9.2,
we can make sure that ε′ satisfies the requirements of Lemma 9.2.
Therefore, we can deduce by Lemma 9.2 that there exists an assign-
ment π1 : F

m → Σ such that

Pr

[
P and Π′ (A1, A2)|A1

α′
≈ π1|A1 and Π′ (B1, B2)|B1

α′
≈ π1|B1

]

≥ Ω((ε′)c
′
) = Ω(ε(c′)2).



cc 20 (2011) Derandomized parallel repetition 305

We now choose c = (c′)2. Since the test never accepts when Π′

answers ⊥, we deduce that

Pr

[
P and Π(A1, A2)

α′
≈

(
π1|A1 , π2|A2

)
and

Π (B1, B2)
α′
≈

(
π1|B1 , π2|B2

)
]

≥ Ω(εc).

Choosing h such that α ≥ α′ completes the proof. �

Remark 9.3. Technically speaking, our use of the special value ⊥
requires formal justification, since when defining the P 2-test and
stating Lemma 9.2, we did not allow the use of such a special
symbol. To this end, we observe that the use of ⊥ can be imple-
mented as follows: Let Σ′ = Σ ∪ {⊥A,⊥B}, where ⊥A,⊥B are
symbols outside Σ. We first observe that Lemma 9.2 works just
as well if we replace the alphabet Σ with the modified alphabet
Σ′, since Lemma 9.2 is oblivious to the choice of the alphabet.
Now, whenever we wish to set Π′ (A1, A2) = ⊥ in the proof of
Theorem 9.1, we actually set Π′ (A1, A2) to be the pair of functions
that map all the vectors of A1 and A2, respectively, to the symbol
⊥A. We deal with the case of Π′ (B1, B2) = ⊥ similarly, this time
using the symbol ⊥B. It remains to observe that when assigning
Π′ (A1, A2) this way, the P 2-test will always reject Π′ (A1, A2), since
the assignment Π′ never assigns pairs (B1, B2) with the symbol ⊥A.
The same holds for the case of Π′ (B1, B2) = ⊥.

Remark 9.4. If Π is randomized, then the definition of Π′ in the
foregoing proof should be slightly changed to consider the inter-
nal randomness of Π. That is, we define Π′ to be a randomized
assignment and obtain it from Π as follows. For every pair (A1, A2)
and every internal randomness ω of Π, let us denote by (a1, a2) the
output of Π on (A1, A2) and randomness ω. We define the output

of Π′ on (A1, A2) and randomness ω to be (a1, a2) if a2
α′
≈ π2|A2

and define it to be ⊥ otherwise. The definition for pairs (B1, B2)
is again similar.
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9.1.1. The Proof of Lemma 9.2. We prove Lemma 9.2 only
for the assignment π2, and the conclusion π1 can be proved anal-
ogously. The proof proceeds in three steps. First, we rely on
Theorem 2.2 (soundness of the P-test) to find for each pair of A1, B1

a direct product function that agrees (on average) with a good
fraction of Π(A1, ·) and Π(B1, ·). Then, we show that for each A1

separately, the number of distinct such functions is bounded. Next,
we show that there is a single function π such that the probabil-
ity that the test accepts and Π (A1, A2)|A2

≈ π|A2 is non-negligible
(A priori there could have been a different π for each A1). Finally,
we extend the latter result for d1-subspaces B1, B2. Let h1 be the
universal constant whose existence is guaranteed in Theorem 2.2,
and let α1 be the corresponding value from Theorem 2.2.

Step 1. Consider the bipartite graph corresponding to the
P -test, that is, the graph whose left vertices are d0-subspaces and
whose right vertices are d1-subspaces, and such that a d0-subspace
A1 is connected to a d1-subspace B1 by an edge if and only if
A1 ⊆ B1. We label an edge (A1, B1) by π : F

m → Σ if

Pr
A2,B2

[
P and Π (B1, B2)|B2

α1≈ π|B2 and Π (A1, A2)|A2

α1≈ π|A2

]

≥ Ω
(
ε4

)
.

If no such π exists, then do not label the edge.
Fix A1, B1. We will choose the universal constant h′ to be at

least 2 · h1. If the probability of passing the P 2-test conditioned
on A1, B1 is at least ε/2, then we claim that the edge is labeled.
Indeed, define an assignment Π(A1,B1) by

Π(A1,B1)(A2) = Π (A1, A2)|A2
and Π(A1,B1)(B2) = Π (B1, B2)|B2

.

If Π(A1,B1) passes the P -test with probability at least ε/2, then by
Theorem 2.2 (soundness of the P-test), there is an assignment π
as needed (since h′ ≥ 2 · h1).

Furthermore, observe that by averaging at least ε/2 of the edges
(A1, B1) have conditional success at least ε/2, so (A1, B1) is labeled.
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Step 2. Fix B1 and let L(B1) be the labels on edges touching
B1. Consider the following “pruning” process: arbitrarily choose a
label π ∈ L(B1) and remove all elements in L(B1) that are within
relative Hamming distance 3α1 of π. Repeat until no more labels
can be removed. Let L′(B1) denote the remaining set of labels.
The set L′(B1) has the following properties

◦ Every pair of labels in L′(B1) are at least 3α1 apart and

◦ Every f ∈ L(B1) is 3α1-close to some label in L′(B1).

We prove that |L′(B1)| ≤ O(1/ε4), using an argument in the spirit
of the Johnson bound: Suppose L′(B1) = {π1, π2, . . .} is non-
empty. For every πi 
= πj ∈ L′(B), let us denote

pi
def
= Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2

]

pi,j = Pr
B2

[
Π (B1, B2)|B2

α1≈ πi|B2 and Π (B1, B2)|B2

α1≈ πj|B2

]
.

By the definition of the labels πi, we know that for some universal
constant η, it holds that pi ≥ η · ε4 for every πi. We upper bound
the fractions pi,j: We know that for every πi 
= πj, it holds that

πi
3·α1


≈ πj. It follows that

pi,j ≤ Pr
B2

[
πi|B2

2·α1≈ πj|B2

]

≤ 1/
(
qd1−2 ·

(
α1 − q−d1)2

)

≤ 1

2
· η2 · ε8,

where the second inequality follows by Lemma 2.5 (subspace-point
sampler) and the third inequality holds for sufficiently large choice
of h′. Now, by the inclusion–exclusion principle that

∑

i

pi −
∑

i�=j
pi,j ≤ 1

|L′(B1)| ·
(
η · ε4

)
− 1

2
|L′(B1)|2 ·

(
1

2
· η2 · ε8

)
≤ 1.
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The last inequality immediately implies that |L′(B1)| ≤2/ (η · ε4) =
O(1/ε4).

We define L(A1) similarly and prune it to L′(A1). Imagine
now choosing a random πA1 ∈ L′(A) for each A1 and a random
πB1 ∈ L′(B1) for each B1. An edge (A1, B1) is called alive if it is
labeled by a function π that is 3α′-close to both πA1 and πB1 . We
expect at least 1/ |L′(A)| |L′(B)| = Ω(ε8) fraction of edges to be
alive. Fix a choice of πA1 and πB1 for each A1 and B1 in a way
that attains this expectation.

Step 3. Let D1 be the distribution of choosing a random d1-sub-
space B1 and two neighbors A1, A

′
1 of it in the graph. Let D2 be the

distribution of choosing two d0-spaces A1, A
′
1 independently and a

random B1 that is a common neighbor of them in the graph. The
statistical distance between D1 and D2 is small:

Claim 9.5. For every κ ∈ N, if the constant h′ is sufficiently large,
then the distributions D1 and D2 are δ-close for δ < ε24/κ.

We defer the proof of this claim to Section 9.1.2. Now choose a
random triplet A1, A

′
1, B1 according to D1. We lower bound the

probability that both edges (A1, B1) and (A′
1, B1) are alive. This

certainly holds if (i) Ω(ε8) fraction of the edges adjacent to B are
alive and (ii) both edges (A1, B1) and (A′

1, B1) are alive. Part (i)
holds with probability Ω(ε8) and conditioned on this, and Part (ii)
holds with probability at least Ω(ε16). Altogether

Pr
(B1,A1,A′

1)∼D1

[(A1, B1), (A
′
1, B1) are both alive] = Ω(ε24).

Finally, if we let δ be the statistical distance of D1 and D2 and
apply Claim 9.5 with sufficiently large choices of κ and h′, then we
have that

Pr
(B1,A1,A′

1)∼D2

[(A1, B1), (A
′
1, B1) are both alive]

≥ Ω(ε24)−δ=Ω(ε24).

Now fix A1 such that the above holds when conditioning on A1.
This means that for at least Ω(ε24) fraction of the d0-subspaces A′

1,
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there exists a d1-subspace B1 such that both the edges (A1, B1)
and (A′

1, B1) are alive. For each such A′
1, it holds that the label of

(A′
1, B1) is 3α1-close to πB1 , which in turn is 3α1-close to the label

of the edge (A1, B1), which is 3α1-close to πA1 . Thus, the label of
(A′

1, B1) is 9α1-close to πA1 . Let us denote by π(A′
1,B1) the label

of the edge (A′
1, B1). Recall that by the definition of π(A′

1,B1), it

holds that

Pr
A2,B2

[
P and Π (A′

1, A2)|A2

α1≈ π(A′
1,B1)|A2

]
≥ Ω

(
ε4

)
.(9.6)

Since π(A′
1,B1)

9·α1≈ πA, it holds by Lemma 2.5 (subspace-point sam-

pler) that for a uniformly distributed d0-subspace A2:

Pr
A2

[
π(A′

1,B1)|A2

10·α1


≈ πA1|A2

]
≤ 1

qd0−2 · (α1 − q−d0)2 .

The latter expression can be made smaller than any constant times
ε4 by choosing h′ to be sufficiently large. By subtracting that
expression from Inequality (9.6), we obtain that

Pr
A2,B2

[
P and Π (A′

1, A2)|A2

α1≈ π(A′
1,B1)|A2

and

π(A′
1,B1)|A2

10·α1≈ πA1|A2

]
≥ Ω

(
ε4

)
.

By letting π2 = πA1 and choosing c′ = 28, we have by the triangle
inequality

Pr
A′

1,A2

[
P and Π (A′

1, A2)|A2

11·α1≈ π2|A2

]
≥ Ω(ε24) · Ω

(
ε4

)
= Ω(εc

′
).

(9.7)

Step 4. It remains to show that the assignment Π agrees with
π2 on a non-negligible fraction of the B′s. To this end, we observe
that

Pr

[
P and Π (A1, A2)|A2

11·α1≈ π2|A2

∣
∣
∣ Π (B1, B2)|B2

12·α1


≈ π2|B2

]

≤ 1

qd0−2 · (α1/2)2 .(9.8)
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To see it, note that it suffices to prove that

Pr

[
Π (B1, B2)|A2

11·α1≈ π2|A2

∣
∣
∣ Π (B1, B2)|B2

12·α1


≈ π2|B2

]

≤ 1

qd0−2 · (α1 − q−d0)2 ≤ 1

qd0−2 · (α1/2)2 .

The latter inequality is an immediate corollary of Lemma 2.5 (sub-
space-point sampler).

Now, by choosing h′ to be sufficiently large, so that the upper
bound in Inequality (9.8) is sufficiently smaller than εc

′
, and by

combining Inequality (9.7) with Inequality (9.8), we obtain that

Pr
[
P and Π (A1, A2)|A2

11·α1≈ π2|A2 and Π (B1, B2)|B2

12·α1≈ π2|B2

]

≥ Ω(εc
′
).

By setting h′ such that α′ ≥ 12 · α1, this concludes the proof of
Lemma 9.2. �

9.1.2. Proofs of Auxiliary Claim.

Proof (Proof of Claim 9.5.). Fix κ ∈ N. In order to prove the
claim, consider the event J which holds if and only if A and A′ are
independent. We argue that

D1

δ/2
≈ D1|J = D2|J

δ/2
≈ D2.

The fact that D1|J = D2|J is exactly Proposition 1. We show that

D1

δ/2
≈ D1|J and D2

δ/2
≈ D2|J . The statistical distance between D1

and D1|J (respectively, D2 and D2|J) is exactly the probability that
the event J does not occur under D1 (respectively D2). It follows
immediately from Proposition 2.18 that PrD1 [¬J ] ≤ 2 · d0/q

d1−2·d0

and PrD2 [¬J ] ≤ 2 · d0/q
m−2·d0 . Both the latter expressions can

indeed be made smaller than ε24/κ by choosing sufficiently large h′,
as required. �

9.2. The Proof of Theorem 5.4 and Theorem 8.7. In the
rest of this section, we prove Theorem 5.4 and Theorem 8.7.
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Theorem (5.4, the soundness of the S-test, restated). There exi-
sts a universal constants h, c ∈ N such that the following holds: Let

ε ≥ h · d0 · q−d0/h, α def
= h · d0 · q−d0/h. Assume that d1 ≥ h · d0,m ≥

h · d1. Suppose that a (possible randomized) assignment Π passes
the S-test with probability at least ε. There exists an assignment
π : F

m → Σ for which the following holds. Let B1, B2 be uniformly
distributed and independent d1-subspaces of F

m, and let A1 and A2

be uniformly distributed d0-subspaces of B1 and B2 respectively,
and denote A = A1 + A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α≈ π|(B1,B2)

]

= Ω (εc) .

Remark 9.9. Note that in the foregoing restatement of Theo-
rem 5.4, we denote the first universal constant by h, while in its
original statement it was denoted by h′.

The intuition that underlies the proof is the following. Consider
an adversary the chooses the proof Π. Since the S-test essentially
contains a P 2-test, the adversary must choose the assignment Π
such that for random d0-subspaces A1 and A2, the assignment
Π (A1 + A2)|(A1,A2) is consistent with two assignments π1 and π2

on A1 and A2, respectively. On the other hand, given the sum
A1 + A2, the adversary cannot deduce the choices of A1 and A2,
and therefore, he must label both A1 and A2 with the same assign-
ment in order to make the S-test accept. We conclude that π1 and
π2 must be essentially the same. Details follow.

Let h′ be the universal constant whose existence guaranteed
in Theorem 9.1 (soundness of the P 2-test), and let α′ be the cor-
responding value from Theorem 9.1. We choose c to be the same
constant as in Theorem 9.1 and will choose the universal constant h
to be at least h′.

Fix an assignment Π that passes the S-test with probability at
least ε. We define a new assignment Π′ that assigns values to pairs
of d0-subspaces and to pairs of d1-subspaces of F

m (not necessarily
independent) by choosing Π′ (B1, B2) (respectively, Π′ (A1, A2)) to
be equal to Π (B1, B2) (respectively, Π (A1 + A2)) if B1 and B2



312 Dinur and Meir cc 20 (2011)

(respectively, A1 and A2) are independent and choosing Π′ to be
arbitrary otherwise. Observe that the assignment Π′ passes the
P 2-test whenever B1 and B2 are independent and Π passes the
S-test. Furthermore, the probability that two uniformly distrib-
uted d1-subspaces B1 and B2 of F

m are not independent is at
most d1/q

m−2·d1 by Proposition 2.18, and therefore, Π′ passes the
P 2-test with probability at least ε − d1/q

m−2·d1 . For a sufficiently
large choice of h, the latter probability is at least Ω (ε), and also
matches the requirements of Theorem 9.1 (soundness of the P 2-
test), so we can apply this theorem. It follows that there exist
assignments π1, π2 : F

m → Σ such that for uniformly distributed
(not necessarily independent) B1, B2, A1 ⊆ B1, A2 ⊆ B2 it holds
that

Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2)

and Π′ (A1, A2)
α′
≈

(
π1|A1 , π2|A2

)

and Π′ (B1, B2)
α′
≈

(
π1|B1 , π2|B2

)
]

= Ω (εc) .(9.10)

The probability that B1 and B2 are not independent is at most
d1/q

m−2·d1 , and the latter expression can be made smaller than
any constant factor times εc by choosing h to be sufficiently large.
Thus, Inequality (9.10) also holds for uniformly distributed inde-
pendent B1 and B2. We now argue that

Claim 9.11. For sufficiently large choice of h, it holds that

π1
5·α′
≈ π2.

We defer the proof of Claim 9.11 to the end of this section. We
turn to prove the theorem. By Inequality (9.10), it holds for uni-
formly distributed and independent d1-subspaces B1 and B2 of F

m

that

Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and

Π (B1, B2)
α′
≈

(
π1|B1 , π2|B2

)
]

≥ Ω (εc) .
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By Claim 9.11, it holds that π1
5·α′
≈ π2. Since B2 is a uniformly

distributed d1-subspace of F
m, this implies by Lemma 2.5 (sub-

space-point sampler) that

Pr

[
π1|B2

6·α′
≈ π2|B2

]
≥ 1 − 1

qd1−2 · (α′ − q−d1)2 ≥ 1 − 1

qd1−2 · (α′/2)2 .

We conclude that

Pr
[
Π′ (B1, B2)|(A1,A2)

= Π′ (A1, A2) and Π (B1, B2)
7·α′
≈

(
π1|B1 , π1|B2

)
]

≥ Pr
[
Π′ (B1, B2)|(A1,A2)

= Π′ (A1, A2) and Π (B1, B2)
α′
≈

(
π1|B1 , π2|B2

)

and π1|B2

6·α′
≈ π2|B2

]

= Ω(εc) − 1
qd1−2 · (α′/2)2

= Ω(εc) ,

where the last equality holds for sufficiently large choice of h. The
theorem now follows by defining π = π1 and setting h to be suffi-
ciently large such that α = 7 · α′. �

Proof (Proof of Claim 9.11.). For the sake of contradiction,

assume that π1

5·α′


≈ π2. Let A be a uniformly distributed 2 · d0-
subspace A of F

m and let A1 and A2 be uniformly distributed and
independent d0-subspaces of A. By Lemma 2.5, it holds that

Pr

[
π1|A

4·α′


≈ π2|A

]
≥ 1 − 1

q2·d0−2 · (α′ − q−2d0)2

≥ 1 − 1

q2·d0−2 · (α′/2)2 .

If π1|A
4·α′


≈ π2|A then by the triangle inequality, it either holds that

Π (A)
2·α′


≈ π1|A or that Π (A)
2·α′


≈ π2|A. Since A1 is a uniformly dis-
tributed d0-subspace of A, it holds by Lemma 2.5 (subspace-point
sampler) that

Pr

[
Π (A)|A1

α′


≈ π1|A1

∣
∣
∣
∣ Π (A)

2·α′


≈ π1|A

]
≥ 1 − 1

q2·d0−2 · (α′/2)2 .
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A similar claim can be made for π2 and A2. Now, if either

Π (A)|A1

α′


≈ π1|A1 or Π (A)|A2

α′


≈ π2|A2 , then by definition it holds

that Π (A)|(A1,A2)

α′


≈
(
π1|A1 , π2|A2

)
. We conclude that

Pr

[
Π (A)|(A1,A2)

α′


≈
(
π1|A1 , π2|A2

)
∣
∣
∣
∣ π1|A

4·α′


≈ π2|A

]

≥ 1 − 1

q2·d0−2 · (α′/2)2 ,

and therefore by lifting the conditioning and substituting A =
A1 + A2, we obtain that for a uniformly distributed and indepen-
dent d0-subspaces A1 and A2 of F

m, it holds that

Pr

[
Π (A1 + A2)|(A1,A2)

α′
≈

(
π1|A1 , π2|A2

)
]

≤ 2

q2·d0−2 · (α′/2)2 .

On the other hand, by the definition of Π′, Inequality (9.10)
implies that for uniformly distributed and independent d0-subspac-
es A1 and A2 of F

m, it holds that

Pr

[
Π (A1 + A2)|(A1,A2)

α′
≈

(
π1|A1 , π2|A2

)
]

≥ Ω (εc) .

By choosing h to be sufficiently large, the latter lower bound can
be made larger than 2/

(
q2·d0−2 · (α′)2), and this is a contradiction.

�

Theorem 9.12 (8.7, list-decoding soundness of the S-test,
restated). There exist universal constants h, c ∈ N such that for
every d0 ∈ N, d1 ≥ h · d0, and m ≥ h · d1, the following holds:

Let ε ≥ h · d0 · q−d0/h, α def
= h · d0 · q−d0/h. Let Π be a (possibly

randomized) assignment to 2d0-subspaces of F
m and to pairs of

d1-subspaces of F
m. Then, there exists a (possibly empty) list of

L = O (1/εc) assignments π1, . . . , πL : F
m → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

and 
 ∃i ∈ [L] s.t. Π (B1, B2)
α≈ πi|(B1,B2)

]
< ε.
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Remark 9.13. Note that in the foregoing restatement of Theo-
rem 8.7, we denote the first universal constant by h, while in its
original statement it was denoted by h′.

The basic idea of the proof is as follows. We apply Theorem 5.4
to Π, thus “decoding” from it an assignment π1. We then remove
from Π the places at which it roughly agrees with π1, resulting in
an assignment Π2. If the assignment Π2 is accepted by the S-test
with probability less than ε, then we are finished—the required
list of assignments in this case consists only of π1. Otherwise, the
assignment Π2 is accepted by the S-test with probability at least ε,
and we can therefore “decode” a second assignment π2 from Π2.
Next, we remove from Π2 the places at which it roughly agrees with
π2, resulting in an assignment Π3. We proceed in this manner, each
time obtaining new assignments Πi and πi, until the conclusion of
Theorem 8.7 holds.

We prove Theorem 8.7 only for non-randomized assignments Π,
but the proof can easily be extended to randomized assignments,
see Remark 9.18 for details. We choose the constants h and c to be
the same as in Theorem 5.4. If the S-test accepts Π with probabil-
ity less than ε, then the theorem holds vacuously. We thus assume
that the S-test accepts Π with probability at least ε. We show that
for L = O (1/εc), there exist assignments π1, . . . , πL : F

m → Σ such
that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

]

− Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

and ∃i ∈ [L] : Π (B1, B2)
α≈ πi|(B1,B2)

]

≤ ε.(9.14)

We construct the assignments π1, . . . , πL as follows. We begin by
applying Theorem 5.4 to Π, obtaining the assignment π1, and set

Π1 def
= Π. Then, for each i ≥ 1, we define an assignment Πi+1 as

follows.

1. For every pair of d1-subspaces B1, B2 such that Πi (B1, B2)
α≈

πi|(B1,B2), we set Πi+1 (B1, B2) = ⊥, where ⊥ is a special symbol



316 Dinur and Meir cc 20 (2011)

that the test always rejects. This is our formal way of “remov-
ing” Πi (B1, B2).

2. For every pair of d1-subspaces B1, B2 such that Πi (B1, B2)
α


≈
πi|(B1,B2), we set Πi+1 (B1, B2) = Πi (B1, B2).

3. For every 2d0-subspace A, we set Πi+1 (A) = Πi (A).

Now, observe that

Pr
[
Πi+1 (B1, B2)|(A1,A2)

= Πi+1 (A)|(A1,A2)

]

= Pr
[
Πi (B1, B2)|(A1,A2)

= Πi (A)|(A1,A2)

]

−Pr
[
Πi (B1, B2)|(A1,A2)

= Πi (A)|(A1,A2)
∧ Πi (B1, B2)

α≈ πi
|(B1,B2)

]
,(9.15)

since we must have Πi+1 (B1, B2)|(A1,A2) 
= Πi+1 (A)|(A1,A2) when-

ever Πi+1 (B1, B2)|(A1,A2) = ⊥, and the latter occurs whenever

Πi (B1, B2)
α≈ πi|(B1,B2). If

Pr
[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
< kε

then we set L = i and finish the construction. Otherwise, we con-
struct πi+1 by applying Theorem 5.4 to the assignment Πi+1 and
setting πi+1 to be the resulting assignment.

It is easy to prove by induction that for every i ∈ [L], it holds
that

Pr
[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]

= Pr
A⊆B

[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

]

− Pr
A⊆B

[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

and ∃i ∈ [L] : Πi (B1, B2)
α≈ πi|(B1,B2)

]
.(9.16)

The proof of the Equality (9.16) goes essentially by summing over
the probabilities of events of the form

Πi (B1, B2)|(A1,A2)
= Πi (A)|(A1,A2)

and Πi (B1, B2)
α≈ πj

|(B1,B2)
and 
 ∃j < i s.t. Πj (B1, B2)

α≈ πj
|(B1,B2)

,

for different values of i.
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Finally, by combining Equality (9.16) with the fact that

Pr
[
ΠL+1 (B1, B2)|(A1,A2) = ΠL+1 (A)|(A1,A2)

]
< ε,

it follows that the assignments π1, . . . , πL satisfy Inequality (9.14).
To see that L = O (1/εc), observe that for each i we have that

Pr
[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) and Πi (B1, B2)

α≈ πi|(B1,B2)

]

= Ω (εc) .

By Equality (9.15), this implies that the acceptance probability
of Πi+1 is smaller than the acceptance probability of Πi by at least
εc, and therefore, that the number of iterations can be at most
O (1/εc), as required.

Remark 9.17. As in the proof of Theorem 9.1 (soundness of the
P 2-test), the use of the special symbol ⊥ requires formal justifica-
tion. This can be done as explained in Remark 9.3.

Remark 9.18. As in the proof of Theorem 9.1 (soundness of the
P 2-test), if Π is randomized, then for each i the definition of Πi+1

should be slightly changed to consider the internal randomness
of Πi. That is, we define Πi+1 to be a randomized assignment and
obtain it from Π as follows. For every pair (B1, B2) and every
internal randomness ω of Πi, let us denote by (b1, b2) the output of
Πi on (B1, B2) and randomness ω. We define the output of Πi+1 on

(B1, B2) and randomness ω to be ⊥ if (b1, b2)
α′
≈ πi|(B1,B2) and define

it to be (b1, b2) otherwise. The definition for 2d0-spaces A can be
changed similarly to include the internal randomness of Πi. �

9.3. Proof of Theorem 2.2, Soundness of the P-test. In
this section, we prove Theorem 2.2, restated below, by adapting
the analysis of Impagliazzo et al. (2009) (in particular, Sections 3.4
and 4) to the setting of the P -test, while relying on a lemma of
Impagliazzo et al. (2009). Let F be a finite field of size q, let
m, d0, d1 ∈ N, and consider a (possible randomized) assignment Π
that assigns values to d0- and d1-subspaces of F

m.
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Theorem 9.19 (2.2, soundness of the P-test, restated). There
exists a universal constant h ∈ N such that the following holds:

Let ε ≥ h · d0 · q−d0/h, α def
= h · d0 · q−d0/h. Assume that d1 ≥

h · d0,m ≥ h · d1. Suppose that an assignment Π passes the P-test
with probability at least ε. Then, there exists an assignment π
such that

Pr
[
Π (B)|A = Π (A) and Π (B)

α≈ π|B and Π (A)
α≈ π|A

]
= Ω(ε4),

where the probability is over A,B chosen as in the P -test.

We begin by recalling the required preliminaries from Impagli-
azzo et al. (2009) and then turn to prove Theorem 2.2.

Definition 9.20 (Good). Let A be a d0-subspace of F
m and let

ε ∈ (0, 1). We say that A is ε-good (with respect to an assign-
ment Π) if for a uniformly distributed d1-dimensional subspace B
that contains A, it holds that

Pr
[
Π (B)|A = Π (A)

]
≥ ε,

where the randomness is over the choice of B and over the ran-
domness of Π.

Definition 9.21 (Plurality function). Let A be a d0-subspace
of F

m. We denote by πA : F
m → Σ the plurality function of A

(with respect to Π). In other words, for every x ∈ F
m, we define

πA(x) to be the value v ∈ Σ that maximizes

Pr
B⊇A

[
Π (B)|x = v

∣
∣
∣Π (B)|A = Π (A)

]
,

where B is a uniformly distributed d1-dimensional subspace that
contains A.

Definition 9.22 (DP-consistent). Let A be a d0-subspace of F
m

and let α, γ ∈ (0, 1). We say that A is (ε, α, γ)-direct product con-
sistent (abbreviated (ε, α, γ) -DP-consistent) if A is ε-good and it
holds that

Pr
B⊇A

[
Π (B)

α≈ πA|B
∣
∣
∣Π (B)|A = Π (A)

]
≥ 1 − γ.
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The following lemma is a direct corollary of the proof of Impagli-
azzo et al. (2009), Lemmas 4.2 and 4.4.

Lemma 9.23. There exists a universal constant h0 ∈ N such that
the following holds: Let ε ≥ h0 · q−(d1/h0−d0) and α, γ ∈ (0, 1).
The probability that a uniformly distributed A is ε-good but not
(ε, α, γ)-DP-consistent is at most O

(
1/

(
α · γ · ε2 · qd0−2

))
.

Proof of Theorem 2.2. We will choose the universal constant
h to be larger than h0 (where h0 is the constant from Lemma 9.23).
Assume that the P-test accepts with probability at least ε as in the
statement of the theorem. Let ε1 = 1

3
· ε and γ1 = ε3

1/h. Choose
α1 = O

(
1/ε3

1 · γ1 · qd0−2
)

such that the probability in Lemma 9.23
that A is ε1-good but not (ε1, α1, γ1)-DP-consistent is at most ε1,
which is indeed possible for sufficiently large choice of h. We will
later choose α = O (α1), by choosing again h to be sufficiently
large.

We consider the following sequence of events. Let A1, A2 denote
random d0-subspaces, and let B denote a random d1-subspace and
define events S1,S2,S3 as follows:

1. S1(A1, A2, B) : A1 and A2 are (ε1, α1, γ1)-DP-consistent and
Π (B)|A1

= Π (A1) ,Π (B)|A2
= Π (A2).

2. S2(A1, A2, B) : The event S1 (A1, A2, B) occurs and πA1|B
2α1≈

πA2|B (recall that πA1 and πA2 are the plurality assignments of
A1 and A2 respectively).

3. S3(A1, A2): A1 andA2 are (ε1, α1, γ1)-DP-consistent and πA1

3α1≈
πA2 .

In the next three claims, we choose A1, A2, and B according to
the following distribution: choose A1 and A2 to be uniformly dis-
tributed and independent d0-spaces A1, A2 and a choose B to be
a uniformly distributed d1-subspace that contains them. We show
that the probability of events S1,S2,S3 under this distribution is
non-negligible.
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Claim 9.24. Pr[S1] ≥ Ω (ε3
1).

Proof. Let B′ be a uniformly distributed d1-subspace of F
m

and let A′ be a d0-uniformly distributed subspace of B′. We begin
by lower bounding the probability

Pr
[
Π (B′)|A′ = Π (A′) and A′ is (ε1, α1, γ1) -DP-consistent

]
.

(9.25)

To this end, let us denote by P the event that Π (B′)|A′ = Π (A′),
by D the event that A′ is (ε1, α1, γ1)-DP-consistent, and by G
the event that A′ is ε1-good. Observe that Pr [P and ¬G] ≤
Pr [P|¬G] ≤ ε1. Furthermore, A′ is a uniformly distributed d0-
subspace of F

m, and thus by Lemma 9.23 and our choice of α1, it
holds that Pr [G and ¬D] ≤ ε1. Finally, it holds that the probabil-
ity in (9.25) is

Pr [P and D] ≥ Pr [P and G and D]

= Pr [P and G] − Pr [P and G and ¬D]

= Pr [P] − Pr [P and ¬G] − Pr [P and G and ¬D]

≥ Pr [P] − Pr [P and ¬G] − Pr [G and ¬D]

≥ ε− ε1 − ε1

≥ ε1.

So the probability in (9.25) is at least ε1. By averaging, this implies
that for Ω (ε1) fraction of the d1-subspaces B′, it holds that at
least Ω (ε1) fraction of the d0-subspaces A′ of B′ are (ε1, α1, γ1)-
DP-consistent and satisfy Π (B′)|A′ = Π (A′).

Now, observe that by Proposition 1, the distribution over
A1, A2, B is equivalent to choosing B to be a uniformly distributed
d1-subspace of F

m and then choosing A1 and A2 to be independent
uniformly distributed d0-subspaces of B. With probability at least
Ω (ε1) it holds for B that at least Ω (ε1) fraction of the d0-subspaces
A of B are (ε1, α1, γ1)-DP-consistent and satisfy Π (B)|A = Π (A).
We condition on the latter event, and claim that under this con-
ditioning the event S1(A1, A2, B) occurs with probability at least
Ω (ε2

1). To see it, consider two uniformly distributed (not neces-
sarily independent) d0-subspaces A′

1 and A′
2 of B. Then, by our
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conditioning, it holds that S1(A
′
1, A

′
2, B) occurs with probability at

least Ω (ε2
1). Furthermore, by Proposition 2.18 it holds with prob-

ability at least 1 − 2 · d0/q
d1−2·d0 that A′

1 and A′
2 are independent.

It therefore follows under the foregoing conditioning on B that

Pr [S1(A1, A2, B)] = Pr [S1(A
′
1, A

′
2, B)|A′

1, A
′
2 are disjoint]

≥ Pr [S1(A
′
1, A

′
2, B) and A′

1, A
′
2 are disjoint]

≥ Pr [S1(A
′
1, A

′
2, B)] − Pr [A′

1, A
′
2 are disjoint]

≥ Ω
(
ε2
1

)
− 2 · d0/q

d1−2·d0

≥ Ω
(
ε2
1

)
,

where the last inequality holds for sufficiently large h. Lifting
the conditioning on B, we get that for a uniformly distributed
d1-subspace B of F

m and two independent uniformly distributed
d0-subspaces A1 and A2 of B, it holds with probability at least
Ω (ε3

1) that both A1 and A2 are (ε1, α1, γ1)-DP-consistent and that
Π (B)|A1

= Π (A1) ,Π (B)|A2
= Π (A2), as required. �

Claim 9.26. Pr[S2] ≥ Ω (ε3
1).

Proof. Let E1 be the event in which A1 is (ε1, α1, γ1)-DP-

consistent, Π (B)|A1
= Π (A1) and Π (B)

α1


≈ πA1|B, and let E2 be the
corresponding event for A2. We begin by noting that the probabil-
ities of both E1 and E2 are upper bounded by γ1. To see it for E1,
note that conditioned on A1 being (ε1, α1, γ1)-DP-consistent and
on Π (B)|A1

= Π (A1) it holds that B is a uniformly distributed
d1-subspace satisfying Π (B)|A1

= Π (A1), and therefore, it holds

that Π (B)
α1


≈ πA1|B with probability at most γ1 (by the DP-consis-
tency of A1). The probability of E2 can be upper bounded similarly.

It now follows by Claim 9.24 that

Pr [S2] = Pr
[
S1 and πA1|B

2α1≈ πA2|B
]

≥ Pr [S1 and ¬E1 and ¬E2]

≥ Pr [S1] − Pr [E1] − Pr [E2]

≥ Ω
(
ε3
1

)
− 2 · γ1

≥ Ω
(
ε3
1

)
,
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where the last inequality holds for sufficiently large choice of h.
The required result follows. �

Claim 9.27. Pr[S3] ≥ Ω (ε3
1).

Proof. Let us say that A1 and A2 are “agree on a ran-
dom B” if both A1 and A2 are (ε1, α1, γ1)-DP-consistent and

PrB⊃A1,A2

[
πA1|B

2·α1≈ πA2|B
]

≥ Ω (ε3
1). By Claim 9.26 and by aver-

aging, we know that with probability at least Ω (ε3
1) it holds that

A1 and A2 agree on a random B. We show that for every A1

and A2 that are (ε1, α1, γ1)-DP-consistent such that πA1

3·α1


≈ πA2

it holds that A1 and A2 do not agree on a random B. This will
imply that if A1 and A2 agree on a random B then it must hold

that πA1

3·α1≈ πA2 . Since we know that the probability of A1 and A2

to agree on a random B is at least Ω (ε3
1) the required result will

follow.
Fix A1 and A2 to be any (ε1, α1, γ1)-DP-consistent indepen-

dent d0-subspaces such that πA1

3·α1


≈ πA2 . Now, by Lemma 2.5
(subspace-point sampler) and by sufficiently large choice of h, the
probability that a uniformly distributed d1-subspace B that con-
tains A1 and A2 contains at most 2 · α1 ≤ 3 · α1 − 1/qd0−2 −
1/qd1−2·d0 fraction of coordinates on which πA1 and πA2 disagree
is at most 1/

(
qd1−4·d0−6

)
, and the latter expression can be made

smaller than any constant factor times ε3
1. Thus, it holds that

PrB⊃A1,A2

[
πA1|B

2·α1≈ πA2|B
]

can be made sufficiently small such

that A1 and A2 do not agree on a random B, as required. �

We now find a global assignment π and show that it agrees with Π
on many B′s, and then on many A′s.

Claim 9.28. There exists an assignment π : F
m → Σ such that

PrB[Π(B)
5·α1≈ π|B and Π (B)|A = Π (A)] ≥ Ω (ε4

1).

Proof. By Claim 9.27 and by averaging, we get that for at
least Ω (ε3

1) fraction of the d0-subspaces A1, it holds that A1 is
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(ε1, α1, γ1)-DP-consistent and

Pr
A2:A2∩A1={0}

[
A2 is (ε1, α1, γ1) -DP-consistent and πA1

3·α1≈ πA2

]

≥ Ω
(
ε3
1

)
.

Fix such d0-subspace A1, and set π = πA1 . Consider choosing
a uniformly distributed d0-space A2 and a uniformly distributed

d1-space B ⊃ A2. We show that Π(B)
5·α1≈ π|B with probability at

least Ω (ε4
1).

Let us denote by D the event in which A2 is independent
from A1, by P the event in which Π (B)|A2

= Π (A2), and by C the

event in which A2 is (ε1, α1, γ1)-DP-consistent and πA1

3·α1≈ πA2 .
By Proposition Proposition 2.18, it holds that Pr [D] ≥ 1 − 2 ·

d0/q
m−2·d0 ≥ 1

2
(where the second inequality holds for sufficiently

large h). Furthermore, conditioned on D, the subspace A2 is a uni-
formly distributed d0-subspace of F

m that is independent from A1,
and thus by the choice of A1, it holds that Pr [C|D] ≥ Ω (ε3

1). Lift-
ing the conditioning, it follows that Pr [C] ≥ Ω (ε3

1). Next, observe
that B is distributed uniformly over the d1-subspaces that con-
tain A2, and thus (since in particular A2 is ε1-good) Pr [P|C] ≥ ε1.
It therefore holds that Pr [C and P] ≥ Ω (ε4

1)
Now, let us condition on the events C and P. By Lemma 2.5

(subspace-point sampler) and for sufficiently large h, it holds with
probability at least 1−1/

(
qd1−3·d0−6

)
≥ 3

4
that B contains at most

4 ·α1 ≥ 3α1 + 1/qd0−2 + 1/qd1−2·d0 fraction of coordinates on which
πA1 and πA2 disagree. Furthermore, by the DP-consistency of A2

and for sufficiently large choice of h, it holds with probability at

least 1 − γ1 ≥ 3
4

that Π (B)
α1≈ πA2|B. By the union bound and

the triangle inequality, it follows that with probability at least 1
2
,

it holds that Π (B) disagrees with πA1|B on at most 5 · α1 fraction
of the coordinates. Lifting the conditioning on C and P, we obtain

that with probability at least Ω (ε4
1), it holds that Π (B)

5·α1≈ πA1|B
and Π (B) = Π (A) as required. �
Finally, we turn to prove the theorem. Let π be the assignment
whose existence is guaranteed by the previous claim. Let us denote
by P the event in which Π (B)|A = Π (A) (i.e., the P-test accepts
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A and B), by E1 the event in which Π(B)
5·α1≈ π|B, by E2 the event in

which Π(A)
6·α1≈ π|A, and by E3 the event in which Π (B)|A

6·α1≈ π|A.
Using this notation, it suffices to prove that

Pr [P and E1 and E2] = Ω
(
ε4
1

)
.

By the definition of π, it holds that

Pr [P and E1] = Ω
(
ε4
1

)
.

The subspace A is a uniformly distributed d0-subspace of B, and
therefore, it holds by Lemma 2.5 (subspace-point sampler) that

Pr [¬E3 |E1 ] = O
(
1/qd0/2−2

)
.

This implies that

Pr [P and E1 and E3] = Pr [P and E1] − Pr [P and E1 and ¬E3]

≥ Pr [P and E1] − Pr [¬E3|E1]

= Ω
(
ε4
1

)
−O

(
1/qd0/2−2

)

= Ω
(
ε4
1

)
,

where the last inequality holds for sufficiently large h. Now,
observe that whenever both the events P and E3 occur, the event
E2 also occurs. It follows that

Pr [P and E1 and E2] ≥ Pr [P and E1 and E3] = Ω
(
ε4
1

)
,

as required. �
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