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Abstract

Feed efficiency represents the cumulative efficiency with which the pig utilizes dietary nutrients for maintenance, lean
gain and lipid accretion. It is closely linked with energy metabolism, as the oxidation of carbon-containing components in
the feed drive all metabolic processes. While much is known about nutrient utilization and tissue metabolism, blending
these subjects into a discussion on feed efficiency has proven to be difficult. For example, while increasing dietary energy
concentration will almost certainly increase feed efficiency, the correlation between dietary energy concentration and feed
efficiency is surprisingly low. This is likely due to the plethora of non-dietary factors that impact feed efficiency, such as
the environment and health as well as individual variation in maintenance requirements, body composition and body
weight.
Nonetheless, a deeper understanding of feed efficiency is critical at many levels. To individual farms, it impacts
profitability. To the pork industry, it represents its competitive position against other protein sources. To food economists,
it means less demand on global feed resources. There are environmental and other societal implications as well.
Interestingly, feed efficiency is not always reported simply as a ratio of body weight gain to feed consumed. This review
will explain why this arithmetic calculation, as simple as it initially seems, and as universally applied as it is in science and
commerce, can often be misleading due to errors inherent in recording of both weight gain and feed intake.
This review discusses the importance of feed efficiency, the manner in which it can be measured and reported, its basis in
biology and approaches to its improvement. It concludes with a summary of findings and recommendations for future
efforts.
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Introduction
Feed represents between 60 and 70 % of the total cost of
pork production in modern capital-intensive systems.
Within feed, energy alone may represent 50 % or more
of the total cost [1]. Carbon-containing compounds in
the feed, including fat, carbohydrate and protein, release
energy when oxidized. Such energy is required for such
processes as the biosynthesis of proteins, bones and
lipids, for biochemical processes associated with main-
tenance, for active ion transport and for mechanical
work [2].
Energy is the critical dietary constituent that supports

maintenance, as well as tissue accretion, and knowledge
of energy metabolism and growth is essential to the un-
derstanding of feed efficiency [1]. In general terms, the
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immature pig will typically attempt to consume suffi-
cient feed to meet its energy requirement for mainten-
ance and growth. Yet, in many situations, feed intake is
impaired by social, physiological, or environmental con-
straints. As a result, daily energy intake often falls short
of that needed to support maximal gain. Consequently,
feed and energy intake are highly complex subjects, and
despite decades of research, gaps in our understanding
persist [3].
While feed efficiency strongly influences financial

returns [4], due to its close association with feed costs,
actions taken to improve feed efficiency can inadvert-
ently lead to financial losses rather than gains. This is
due to the fact that single-minded actions taken to im-
prove feed efficiency may affect other aspects of the en-
terprise, not the least of which is the cost of feed. As
one example, genetic selection solely for improved feed
efficiency may reduce growth rate [5]. Another example
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would be increasing dietary energy concentration; while
this simple action will almost always increase feed effi-
ciency, it could actually increase feed cost per pig and
concurrently lower net income.
For such an important subject, feed efficiency is often

misunderstood, and there is little universal agreement
on the best approaches to achieving optimal feed effi-
ciency. Part of this confusion arises from the unfortunate
fact that the biological basis of feed efficiency is poorly
understood [1]. There is also disagreement – and misun-
derstanding – on how to measure and express feed effi-
ciency; for example, expressing feed efficiency on a live
weight gain basis can result in misleading conclusions
[6]. Finally, it needs to also be recognized that effectively
measuring feed efficiency can be extremely difficult.

Measuring feed efficiency
A common and simple definition of feed efficiency in
the scientific literature is body weight gain per unit of
feed consumed. Sometimes, feed efficiency is expressed
on a dietary energy basis rather than feed intake. Al-
though the concept is fairly simple, beneath it lays the
potential for a multitude of practical errors. For ex-
ample, feed consumed is rarely measured; feed dis-
appearance is the actual measurement. Because of
differences in feeder design and feeder adjustment, feed
consumed and feed disappeared can differ by 10 % and
sometimes by as much as 30 % [7]. It is therefore im-
portant to realize that feed disappearance does not ne-
cessarily accurately reflect feed intake by the pig and
improving feed efficiency in a particular circumstance
may be as simple as feeder adjustment or redesign.
The weight range in which feed conversion is measured

is also of critical importance [4]. Animals of different
weights have different requirements for maintenance;
therefore, when comparing groups of pigs for feed effi-
ciency, the variation due to differences in body weights at
which various animals are evaluated must be taken into
account. Equations that can be used to adjust for differ-
ences in initial or final bodyweight are available [4]. This
has implications in both research and commercial applica-
tion. Unfortunately, many experiments are conducted to a
common time endpoint, rather than a common body
weight endpoint, making comparison of feed efficiency
across treatments very difficult, if not impossible.
Energetic differences in diets can also introduce unex-

pected, or even unseen, errors. Some of this error can be
due to inaccurate estimates of dietary energy or due to
the energy system being used for the measurement.
Thus, differences in measured feed efficiency may be the
consequence of unmeasured differences in dietary en-
ergy; this can become a particularly serious problem
when diets widely varying in protein, lipid or fiber con-
tent are being compared. Furthermore, variation in the
composition of gain (fat, lean, or bone) and in related
maintenance requirements prevents this measure from
being a precise estimate of energy conversion rate. Max-
imum lean growth potential, as well as fat deposition
rates, vary as a function of feed intake among genotypes
and sex [8]. Therefore, the most useful criteria to evalu-
ate feed efficiency in meat producing animals should be
the amount of edible product achieved with a given en-
ergy intake, rather than the fraction of energy in the feed
which was converted to total body weight [9].
In studies of genetic variance and heritability, and es-

pecially in selection programs, traditional measures of
feed efficiency treat animals with differing growth rates
and differing mean body weights equally [9]. In an at-
tempt to more effectively compare individual animals,
Koch et al. adjusted feed consumed for rate of gain and
for mean body weight; this new approach evolved in
swine to measuring growth rate as well as body compos-
ition and became known as residual feed intake (RFI).
Residual feed intake is calculated as the difference be-
tween observed feed intake and expected feed intake,
the latter based on the animal’s rate of gain and body
back fat content [9, 10]. Animals with lower RFI are
more efficient and animals with high RFI are less
efficient.
Thus, measuring feed efficiency poses significant chal-

lenges that are often ignored in both research and com-
mercial settings. Failure to appreciate basic factors
affecting the measurement of feed efficiency can lead to
incorrect conclusions in the interpretation of data.

Expressing feed efficiency
Feed efficiency has traditionally been expressed on the
basis of a ratio of feed consumed and growth achieved.
More recently, other expressions of feed efficiency have
been adopted. The selection of the correct term is gener-
ally dictated by the knowledge being sought and the
manner in which the information will be used to make
decisions. It should also be expressed on the basis of
data in which there is the greatest confidence. The prob-
lem of feed wastage, previously discussed, is an obvious
example.
A relatively simple, but increasingly common, modifi-

cation is the calculation of feed conversion on the basis
of carcass gain as opposed to total bodyweight gain
[6, 11, 12]. This correction has evolved with the increas-
ing use of higher fiber diets which are associated with
changes in dressing percentage concurrent with pigs be-
ing sold – and paid for – on a carcass weight basis. Con-
sequently, differences in dressing percentage can have a
substantial impact on net income. Pigs adapt to the feed-
ing of higher fiber diets by increasing viscera weight and
volume [13]; this not only alters carcass dressing per-
centage but it also increases energy and amino acid
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requirements, which further impairs feed efficiency
[14, 15]. One of the challenges of expressing feed effi-
ciency on the basis of carcass gain is access to data on
dressing percentage at both the start and the end of the
study. The latter is easily measured directly, but the
former is often estimated, incorrectly, as the same dress-
ing percentage measured at harvest. Generally speaking,
dressing percentage increases as the pig grows, due to
the fact that the total body of the pig grows at a higher
proportion than the viscera [16, 17].
Feed efficiency can also be expressed on the basis of

energy consumed rather than feed consumed [1]. This
approach has the advantage of placing increased focus
on the efficiency with which dietary energy is used by
the pig. This, in turn, is valuable because energy is by far
the greatest contributor to the cost of the diet [2]. How-
ever, it also has its weaknesses, not the least of which is
the inaccuracy of estimating the concentration of energy
in the diet. The first level of error occurs in quantifying
dietary energy concentration, which is rarely determined
biologically and all too often is a book value that may or
may not reflect the true energy content of the ingredient
(s) in the diet. The second level of error is the method
of expressing dietary energy concentration. Much of the
world continues to use digestible energy or metabolis-
able energy, despite the fact that both contain errors due
to the variation in efficiency with which differing sources
of energy – protein, fat, fiber and starch – are used for
maintenance and for gain [8]. It is therefore very con-
ceivable that differences observed in feed efficiency are
simply artefacts of an inaccurate energy system rather
than being due to any real change in efficiency with
which the pig uses available energy.
Increasingly, there is a desire to represent feed effi-

ciency in financial terms because fundamentally, the goal
of pork production is to use feed resources most effi-
ciently and effectively, and that means generating the
most favorable net income. Thus, preferred expressions
of feed efficiency in financial terms include feed cost per
pig sold, feed cost per kg of live weight gain, feed cost
per kg of carcass weight gain and return over feed cost.
None of these calculations addresses the impact of
growth rate on financial efficiency; the solution is to ex-
presses each of the above on a per pig place, rather than
per pig basis.

Biological basis of feed efficiency
Energetics and the utilization of energy for maintenance
versus gain
Maintenance is a significant component of daily energy
intake in the pig. It has been estimated that in a typical
70 kg pig offered feed on an ad libitum basis, about
34 % of daily energy intake is directed to maintenance
[2]. Consequently, minimizing maintenance costs to
maximize the proportion of daily nutrient intake di-
rected towards growth will improve feed efficiency and
therefore must be a target in pig meat production. This
will include minimizing the energetic cost of unneces-
sary social stress, maintaining the pig in its thermo-
neutral zone, and minimizing the impact of disease on
the pig [1]. Most of the efforts directed at increasing effi-
ciency in pig meat production have focused on genetic
selection towards increased leanness. This effect, how-
ever, will reach a plateau when economically optimum
levels of leanness in the pig carcass are achieved. There-
fore, further efficiency increases may also come from a
reduction in overhead costs, either by a further increase
in growth rate (reduction of the time to reach harvest
weight), efficient manipulation of nutrient partitioning
towards growth (e.g., regulators of nutrient partitioning
such as somatotropin), or by decreasing the overall
maintenance requirements per unit of metabolic body
weight of a growing pig [18]. However, there is no uni-
versal agreement in the literature on the influence of the
production system on maintenance requirements, and
consequently, the importance of reducing maintenance
costs for improvements in feed efficiency. This was illus-
trated by Bauman et al. who concluded that selection
based on genetic merit for milk production in dairy cows
does not influence the maintenance requirement, and
that differences in the maintenance requirement per unit
of metabolic body size represent only a small component
of the differences in productive efficiency among cows
[19, 20].

Effect of feed intake on composition of gain
Growth requires a substantial quantity of nutrients to
support tissue maintenance and deposition. Before esti-
mating any nutritional requirement of a given pig geno-
type, it is essential to understand the process of growth,
which will in turn dictate the requirement. Feed intake
is important to consider because it dictates the magni-
tude of changes in daily growth of lean and fatty tissues,
and carcass quality in meat-producing animals [21]. Pro-
tein growth responds linearly to feed intake up to a max-
imum point at which it plateaus, the so-called PDmax

[22, 23]. Pigs with high feed intakes reach the plateau
earlier in life, and daily nitrogen retention is therefore
constant over a wide range of live weights thereafter
[24]. Similar observations have been reported in male
turkeys where growth rate was accelerated to a plateau
early in life, and this rate did not further increase but
held at a relatively constant daily gain until reaching
70 % of the mature body weight [21]. Lean growth in-
creases linearly with feed supply but reaches a plateau at
the maximum lean growth potential of the animal. How-
ever, improved genotypes or different sexes may show
greater growth rates. The entire male, for example, has a
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much greater potential for lean tissue growth than either
the female or the castrated male [25]. These differences
can only be seen at greater feed intakes. In poultry and
in ruminants, differences in growth rates are also influ-
enced by sex and are much more evident at high feed in-
takes [22].
During the growth phase when there is a linear lean

accretion response to energy intake, it is believed that
the animal prefers to target lean while maintaining a
minimal level of fat gain [21]. Certainly, this is how most
models partition dietary energy; after maintenance needs
are accounted for, and the energy required for lean ac-
cretion is determined, the remaining energy is assigned
to lipid accretion. In this way, lipid accretion rates can
be estimated for any genotype in which the protein de-
position curve is known and daily energy intake is also
known [26]. However, when energy intake is severely re-
stricted, a minimum lipid:protein accretion ratio is ob-
served [27]; this appears to be genetically coded. As
energy intake increases, both protein and fat deposition
will increase. The rate of protein accretion per unit of
energy intake is typically linear until PDmax is achieved.
This is often the point of maximum production effi-
ciency, because growth rate is high and because if energy
intake further increases, only lipid is deposited onto the
carcass [17, 26].
Residual feed intake
Residual feed intake (RFI) is a measure of production ef-
ficiency defined as the difference between the observed
and expected feed intake of an individual based on
growth and backfat [28]. Pigs divergently selected for
RFI consistently demonstrate differences in carcass com-
position and in feed intake. Low RFI pigs had less
carcass fat, consume less feed and exhibit similar or
slightly slower rates of gain compared with high RFI pigs
[10, 28, 29]. In the Iowa State University herd, seven
generations of selection for low RFI resulted in a reduc-
tion in ADFI of 0.6 kg/d with only a modest decline in
growth rate compared to the high RFI line. This corre-
sponds to an increase in feed efficiency of 35 % [28].
Harris et al. reported that selection for low RFI alters
nutrient utilization and energy digestibility, as well as
improving nitrogen and phosphorus balance [30].
The flux through pathways of protein degradation,

which include calpain and the ubiquitin-proteasomal
system within muscle, are decreased in the low RFI line
[31]. Additionally, genetic selection for low RFI may re-
sult in a decrease in oxidative stress due to a reduction
in both electron leakage and production of reactive oxy-
gen species from mitochondria in muscle and liver tis-
sues [32]. Therefore, part of the improvement in feed
efficiency in low RFI pigs could be explained by the
lower rate of protein degradation and by reduced oxida-
tive stress.

Carcass composition and meat quality
Concern has been expressed that pigs highly selected for
improved feed efficiency may produce pork which is of
inferior quality. Compared to a random control, car-
casses of animals selected for low RFI had [29, 33, 34] or
tended to have less back fat [28, 35]. French data indi-
cated that selection for low RFI lowered post mortem
pH and resulted in slightly poorer meat quality [36]. The
French researchers also reported that water holding cap-
acity was reduced [33] and sensory quality was impaired
[34] in low RFI pigs. These results differ somewhat from
that reported by Iowa State University researchers [35].
Smith et al. found that pork from low RFI pigs did not
differ from controls with respect to drip loss or purge
loss and expressed minimal color changes. However, the
authors also reported a correlation between selection for
RFI and decreased sensory traits related to reduced
intramuscular lipid and a decrease in post mortem pro-
teolysis of myofibrillar proteins such as desmin.

Susceptibility to immunological stress
It is well known that pigs exposed to pathogens respond
with reduced feed intake and consequently growth rate
[37, 38]. Exposure of an animal to pathogens triggers a
shift in its metabolic priorities to mount an appropriate
immune response. Under pathogenic challenge, pigs re-
quire nutrients for functions that enable them to defend;
some of these functions include: 1) innate immune re-
sponse, 2) replenishment of damaged or lost tissue
(plasma, sloughed cells etc.) and 3) acquired immune re-
sponse [39]. Under scarce resources due to lower feed
intake, the pig needs to allocate resources to fight the
pathogens and operate the normal functions of a healthy
pig (e.g., maintenance and growth). One important fact
to consider is that protein becomes the first limiting re-
source in immune challenged pigs because many com-
ponents of the immune response are rich in proteins
[39]. It is also generally accepted that energy require-
ments are lower for growing animals during a health
challenge [40], but there is also evidence of energy be-
coming limiting in pathogen-challenged pigs because of
an increase in heat production (fever) and activation of
the immune response [39]. The functions of immunity
may increase the maintenance requirement, and are pri-
oritized over functions of growth in terms of nutrient
allocation [40].
It has been theorized by some that selection for im-

proved efficiency might make pigs more susceptible to
disease. Rakhshandeh et al. evaluated the impact of a re-
peated LPS (lipopolysaccharide) challenge on both high
and low RFI lines [41]. They observed no differences in
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apparent ileal digestibility of nutrients (AID), but did ob-
serve an increase in apparent total tract digestibility
(ATTD) under this modelled immune challenge. They
did not see any impact on intestinal nutrient transport
or barrier function. Divergent selection for low RFI in-
creased apparent total tract digestibility of nutrients, but
it had no effect on apparent ileal digestibility of nutri-
ents. However, immune system stimulation affected both
AID and ATTD of dietary nutrients and may be a major
source of variation in feed efficiency among individuals.
Altogether, genetic selection for LRFI appears to reduce
the total tract digestive capacity of growing pigs during
immune system stimulation. However, additional data
are required to confirm these findings.

Improving feed efficiency
Feed efficiency is a function of body weight [42], so as
the pig grows toward market weight, it becomes less effi-
cient at converting feed into body weight gain (Fig. 1).
Nonetheless, at a given weight, feed conversion can be
affected by numerous internal and external influences,
as previously described. Understanding and controlling
these elements provides the scientific foundation for
achieving improvements in feed efficiency. Internal fac-
tors of particular interest include maintenance processes,
body composition and health status. External factors in-
clude the nutrient and ingredient composition of the
feed, the manner in which the feed has been processed,
the thermal environment in which the pig lives, access
to feed and water and the use of various feed additives.

Internal factors
About one-third of the variation in feed conversion
among animals is related to processes unrelated to the
rate and composition of growth [43]. Consequently, ef-
forts directed at improving feed conversion must con-
sider these maintenance processes. Some, such as basal
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Fig. 1 Relationship between body weight and feed conversion
metabolic rate and body protein turnover rate, are under
at least partial genetic control [43]. Others are related to
activity, which van Milgen et al. [44] reported to be pro-
portional to protein mass in the body, and thermoregula-
tion which changes in a curvilinear manner according to
the deviation from the pig’s thermal comfort zone [45].
Immune function is often considered a component of

maintenance requirements, although classical definitions
exclude it. Nonetheless, host-pathogen interactions place
significant energy demands on the animal as a conse-
quence of a multi-faceted response to infection [46].
Minimizing demands placed on the pig’s immune system
is an effective way to improve feed efficiency [47].
Body composition is fundamentally a function of sex

and genotype, along with prior nutritional regime and
health status. It is well documented that entire males are
more efficient than females, which in turn are more effi-
cient than castrated males [26]. However, at the present
time, most producers have little control over the gender
of the animals they are raising. Sex selection technology
applied to sperm was first demonstrated in 1989 [48],
but in swine faces considerable technical challenges be-
fore it can be applied widely [49]. Selection of pigs with
no or reduced androstenone, along with the implemen-
tation of dietary regimes that minimize skatole produc-
tion, the two essential contributors to boar taint, is
another approach being pursued [50]. Finally, immuno-
logical castration offers another tool to permit the feed-
ing of more efficient intact males rather than castrates
while addressing concerns about pork quality and behav-
ior [51]. At the present time, there appears to be limited
market penetration for this technology, but it has
achieved success in selected markets. Therefore, at the
present time commercial pork production will continue
to be based on traditional castrated males and females,
although this is likely to change in the future – with at-
tendant improvements in feed efficiency.

Factors external to the pig
It is well known that increasing the concentration of en-
ergy in a diet will almost always result in improved feed
efficiency Table 1 [52, 53]. If no improvement is ob-
served, it means that a nutrient deficiency is impairing
the pig’s ability to respond to the energy, or that ingredi-
ent energy values are incorrect.
While increasing dietary energy is virtually guaranteed

to improve feed efficiency, there is a surprisingly poor cor-
relation between energy concentration in the diet and feed
efficiency when measured among farms, among experi-
ments, or among widely differing diet conditions. Oresa-
nya et al. reported a correlation between daily DE or NE
intake and feed efficiency of only 0.12 to 0.14 [54]. The
reason for this discrepancy rests in the diversity of factors
that can influence feed efficiency, the inaccuracy of



Table 1 Impact of increasing dietary energy concentration on
daily energy intake and growth rate

Diet ME, Mcal/kg 2.95 3.05 3.15 3.25 3.35

Initial wt., kg 31.2 31.1 31.5 31.2 31.1

Final wt., kg 115.1 115.3 115.1 115.0 115.5

Daily gain, kg 1.00 1.01 1.03 1.03 1.03

Daily feed, kg1 2.80 2.66 2.64 2.61 2.47

Feed conversion1 2.78 2.63 2.56 2.56 2.38

ME intake, Mcal/d 8.21 8.20 8.38 8.45 8.38
1Effect of diet ME concentration significant, P < 0.05; Source: [52]
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measuring feed efficiency, the imprecision of quantifying
dietary energy concentration and simple animal variation.
Restricted feed intake is practiced in some parts of the

world to achieve 2 objectives: to improve carcass quality
by reducing fat content, and to improve feed efficiency.
This practice improves feed efficiency through the re-
duction in body fat, although the benefit is offset some-
what by the slower rate of growth. The energetic cost of
protein deposition in the body is about 10.03 kcal ME/
kg, while the comparable value for fat is 11.65 Mcal ME/
kg [2]. On this basis, fat deposition requires 16 % more
energy per unit of gain. However, protein accretion is ac-
companied by water deposition in lean gain, in a ratio of
about 4:1, so the actual advantage of lean accretion is
greater than 4:1 over fat [55]. In most major pork produ-
cing regions, limit feeding is not practiced because it
lowers growth rate and thus barn throughput, a key con-
tributor to overall farm profitability.
Feed restriction may also improve feed efficiency by

reducing feed wastage. This occurs because pigs are
more likely to waste feed if it is in abundant supply.
Table 2 Least square means of the impact of decreasing energy int
from 25 to 120 kg

Item Percent of ad libitum

100 93 86 79

Initial wt., kg 24.7 24.7 24.7 24.7

Final wt., kg 120.0 118.9 118.7 119.0

Daily gain, kg/d 1.00 0.92 0.76 0.78

Daily feed, kg/d 2.64 2.44 2.25 2.06

Feed conversion 0.40 0.40 0.40 0.41

Loin, mm 61.6 55.6 55.3 57.1

Backfat, mm 16.7 14.8 13.5 12.7

Daily DE intake, Mcal/d 8.67 8.01 7.41 6.77

Protein accretion, g/d 145.6 135.8 140.8 131.8

Lipid accretion, g/d 294.8 246.6 213.6 183.3

Ash accretion, g/d 27.1 26.7 28.6 23.2

Lipid:protein ratio 2.05 1.89 1.57 1.43

Ash:protein ratio 0.10 0.11 0.14 0.13

Source: [27]
There can be circumstances where restricted feed intake
fails to improve feed efficiency. When restriction is so se-
vere that growth rate is seriously reduced, the additional
days required to achieve market weight also increases the
number of days of maintenance required, such that the
savings due to improved efficiency of gain, due to an im-
proved ratio of gain of lipid to protein, is fully offset by the
energetic cost of additional days in the barn Table 2 [27].
This example illustrates the importance of conducting re-
search to constant final body weight in order to effectively
compare feed efficiency outcomes.
The management of feed processing can substantially

influence feed efficiency. Numerous studies have re-
ported near linear relationships between grain particle
size and feed efficiency [56–58]. There is also a sugges-
tion that reducing the standard deviation of particle size
will also improve the digestibility of the diet, although
more research is clearly required on this understudied
tropic Tables 3 and 4 [59].
The desire to maximize feed efficiency through a more

finely ground feed must be balanced against the cost of
the additional processing, potential difficulties with diet
flowability and possible impacts on animal health, not-
ably gastric ulcers [56]. Ulcers become a greater issue
when particle size falls below about 500 microns and
when diets are pelleted.
The desire to further reduce particle size to less than

600 microns has resulted in problems with the flowability
of diets, which in turn impacts manufacturing, transporta-
tion and delivery of feed. As a consequence, and coinci-
dent with unusually high feed costs since 2009, many pork
producers and feed companies in North America switched
from mash to pelleted diets, something adopted by
ake through feed restriction on barrow and gilt performance

SEM P-values

72 Treatment Linear Quadratic

24.7

119.6 0.2 0.320 0.107 0.001

0.66 0.01 0.001 0.001 0.952

1.87 0.02 0.001 0.001 0.829

0.38 0.01 0.046 0.169 0.033

57.1 0.6 0.047 0.824 0.409

12.3 0.3 0.001 0.001 0.832

6.15

112.9 6.3 0.014 0.012 0.184

144.2 9.7 0.001 0.001 0.874

19.3 1.8 0.010 0.005 0.085

1.30 0.12 0.001 0.001 0.746

0.14 0.01 0.086 0.002 0.737



Table 3 Impact of particle size standard deviation on digestibility of experimental diets

Particle Size ave, μm 545 551 564 599 545
SEM

P value

Particle size SD, μm 1.88 2.11 2.33 2.51 2.73 linear quadratic

Gross Energy, kcal/g (DM)

-Diet 4.43 4.43 4.42 4.45 4.42

-Feces 4.55 4.70 4.61 4.63 4.68 0.02 0.0008 0.88

Apparent Digestibility, %

-Energy 85.79 84.18 81.12 83.37 84.96 0.63 0.31 <0.0001

-Dry Matter 85.31 84.10 81.12 82.96 84.49 0.67 0.34 <0.0001

Source: [59]
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European producers many years earlier due to their higher
feed costs.
Pelleting provides a clear benefit in terms of feed effi-

ciency [60], but the real advantage of pelleting is con-
founded by particle size. It is well understood that the
benefit of pelleting is greatest when particle size is large,
and declines as particle size diminishes [60]. Further-
more, the value of pelleting is maximized when fines are
minimized, but achieving consistent pellet quality is
challenging [61]. Stark has suggested that numerous fac-
tors influence final pellet quality, and that about 40 % is
related to the diet formulation, 20 % to conditioning,
20 % to particle size, 15 % to die specification and 5 % to
cooling [62].
The pig, like all mammals, is a homeotherm, meaning

that it can maintain - and indeed must maintain - a con-
stant body core temperature across a relatively wide
range in ambient temperature. This is achieved by
adjusting heat losses and heat production such that body
temperature stay largely constant. Maintenance activities
in the pig provide about 70 to 72 % of total heat produc-
tion at thermoneutrality [63]. The efficiency of
utilization of dietary energy depends on the substrate;
fat and starch are more efficient than protein and fiber.
Thus, utilization of higher fiber or higher protein diets
in the warm summer months is contra-indicated since
they will generate more heat during metabolism. If ex-
cess heat is produced by the body of the pig, it will
Table 4 Impact of particle size standard deviation on the gross
energy content of diet and of digestible and metabolizable
energy content of the corn, dry matter basis

Items
Particle Size Standard Deviation

SEM
P value

1.88 2.11 2.33 2.51 2.73 linear linear

DM, % 95.62 95.53 95.35 95.59 95.57 0.18 0.83 0.24

GE, Mcal/kg 4.43 4.43 4.42 4.45 4.42

DE, Mcal/kg 3.80 3.73 3.59 3.71 3.76 0.03 0.23 <0.0001

ME, Mcal/kg1 3.74 3.68 3.53 3.66 3.70 0.03 0.23 <0.0001
1Calculated from DE using equation of [67]
Source: [59]
typically respond by reducing feed intake in an attempt
to lower heat production and thus reduce the metabolic
expense of dissipating heat from the body. On the other
hand, if the pig is housed in chilled conditions, diets
higher in protein and fiber could be beneficial due to the
thermic effect of feed. Clearly, the composition of the
diet, as it relates to heat increment can contribute to im-
provements or reductions in feed efficiency.
The pig’s environment will have a substantial impact

on performance. For example, if the temperature drops
below the pigs’ lower critical temperature, feed intake
will increase by 1.5 % per °C [26] and feed efficiency will
become poorer [64]. The lower critical temperature of
the pig is estimated to be about 23 - 24 °C at 25 kg body
weight, dropping to about 15 °C at 100 kg [64].
These lower critical temperatures (LCT) assume that

the pigs are healthy, the floor is dry and there are no
drafts. They also assume that the barn is well insulated.
If any of these situations do not exist, the LCT will be
increased by perhaps 2 to 3 °C to accommodate the
chilling impact of dampness, drafts, etc. Also, if pigs are
not healthy – and therefore not eating to their full po-
tential – their LCT will be much higher.
The limited data that are available suggest that feed

conversion is minimally affected by elevated tempera-
tures in the barn. As pigs become heat stressed, feed in-
take will decline by about 1 % (growing pigs) and 2 %
(finishing pigs) for every degree above the upper critical
temperature [60]. The decline in feed intake is mani-
fested in slower growth, such that changes in feed effi-
ciency are surprisingly small [65].
Delivery of feed to the pig may also play an important

role in improving feed efficiency. Poorly designed
feeders, combined with poor management of the feeders,
can lead to excessive feed wastage and poorer feed effi-
ciency, or to impaired feed intake. Feeders adjusted too
tightly can severely reduce feed intake and lengthen the
time pigs spend at the feeder, thus reducing its capacity
[66]. Feeder design will determine if tight adjustment
will improve feed efficiency, by reducing feed wastage,
or simply reduce feed intake and thus animal growth.
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Optimum feeder adjustment will depend on many fac-
tors, but for dry feeders, 40 % coverage of the feeder pan
with feed is currently recommended [66].
Inadequacy of feeder space may also result in poorer

feed conversion although Weber et al. reported no im-
pact of feeder space until the pigs reached the final
phase of grow-out prior to marketing [6].

Conclusions
Feed efficiency is a critically important topic in pork
production. It is also highly complex in nature, because
it is affected by much more than diet composition. The
utilization of energy in the diet is a foundational driver
of feed efficiency. Knowledge of this is essential to the
most effective management of feed efficiency. However,
many other factors are also involved, such as body com-
position, initial and final body weight, the level of feed
intake, growth rate, the thermal environment, immuno-
logical status and finally, feed processing and delivery.
Given this large number of important variables, it is
clear that this simple calculation of the ratio of body
weight gain to feed consumed provides information that
is actually very complex. Whether it is being measured
in research or in commercial practice, all of the factors
that potentially influence the outcome must be under-
stood and considered.
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