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Abstract In this work we calculate the closed time path
generating functional for the electromagnetic (EM) field
interacting with inhomogeneous anisotropic matter. For this
purpose, we first find a general expression for the electro-
magnetic field’s influence action from the interaction of the
field with a composite environment consisting in the quan-
tum polarization degrees of freedom in each point of space, at
arbitrary temperatures, connected to thermal baths. Then we
evaluate the generating functional for the gauge field, in the
temporal gauge, by implementing the Faddeev–Popov proce-
dure. Finally, through the point-splitting technique, we cal-
culate closed expressions for the energy, the Poynting vector,
and the Maxwell tensor in terms of the Hadamard propaga-
tor. We show that all the quantities have contributions from
the field’s initial conditions and also from the matter degrees
of freedom. Throughout the whole work we discuss how the
gauge invariance must be treated in the formalism when the
EM-field is interacting with inhomogeneous anisotropic mat-
ter. We study the electrodynamics in the temporal gauge,
obtaining the EM-field’s equation and a residual condition.
Finally we analyze the case of the EM-field in bulk material
and also discuss several general implications of our results
in relation with the Casimir physics in a non-equilibrium
scenario.

1 Introduction

The main subject of this paper is to develop a CTP inte-
gral formulation of non-equilibrium quantum electrodynam-
ics in an inhomogeneous, anisotropic real medium. The CTP-
method has been used in quantum field theory as a tool to
non-equilibrium descriptions of dynamical problems, where
dissipative effects arise at the macroscopic level after coarse
graining the detailed information in one or more subsystems,
by tracing out those degrees of freedom. In fact, this approach
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presents a combination of both quantum field theory and non-
equilibrium statistical mechanics. The former is needed by
the quantum electromagnetic (EM) field and the latter for
treating processes involving quantum dissipation and noises.
As far as we know, this complete formulation has not been
applied previously to the quantum theory of the electromag-
netic field in interaction with matter capable to dissipate and
transfer energy to and from an external thermal environment,
at a microscopic level. The general problem is of both basic
and practical importance. The polarization properties of real
media change the properties of the EM-field dramatically in
comparison with the situation in vacuum, especially in the
case of a dispersive and absorbing dielectric. Therefore, the
Casimir effect appears as one macroscopic manifestation of
these effects, for which it is important to have a complete the-
oretical formulation to contrast first principle-based models
with experiments.

The very well-known Lifshitz formula [1] describes the
forces between dielectrics in terms of their macroscopic EM
properties, in thermal equilibrium. Its original derivation is
not based on a first principle quantum framework, but on
a macroscopic approach, starting from stochastic Maxwell
equations and using thermodynamical properties for the
stochastic fields. The connection between this approach
and one based on a fully quantized model including lossy
dielectrics is not completely clear [2–4].

When dealing with a composite system, in which there
are noise, fluctuations, and also dissipative effects between
different parts of the full system (mirrors, vacuum field, and
environment), the theory of open quantum systems [5] is the
most appropriate framework to clarify the role of these effects
in Casimir physics. Indeed, in this description, dissipation
and noise appear in the effective theory of the relevant degrees
of freedom (the EM-field) after integration of the matter and
other environmental degrees of freedom.

The quantization at the steady situation can be per-
formed starting from the macroscopic Maxwell equations,
and including noise terms to account for absorption [6] (one
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can also couple the EM-field to an external reservoir [3], fol-
lowing the standard route to include dissipation). Regarding
microscopic models, the fully canonical quantization of the
EM-field in dispersive and lossy dielectrics has been per-
formed by Huttner and Barnett (HB) [7]. In their model, the
EM-field is coupled to matter (the polarization field), and the
matter is coupled to a reservoir that is included into the model
to describe the losses. In the context of the theory of quantum
open systems, one can think of the HB model as a composite
system in which the relevant degrees of freedom belong to
two subsystems (the EM-field and the matter), and the matter
degrees of freedom are in turn coupled to an environment (the
thermal reservoir). The indirect coupling between the elec-
tromagnetic field and the thermal reservoir is responsible for
the losses.

In Ref. [8], we have followed an equilibrium canoni-
cal quantization program similar to that of Ref. [9], gen-
eralizing it by considering a general and well-defined open
quantum system. Recently, in Ref. [10], we have considered
two simplified models analogous to the one of HB, both
assuming that the dielectric atoms in the slabs are quan-
tum Brownian particles, and that they were subjected to
fluctuations (noise) and dissipation, due to the coupling to
an external thermal environment, also generalizing the con-
stant dissipation model of Ref. [8]. Indeed, after integration
of the environmental degrees of freedom, it was possible
to obtain the dissipation and noise kernels that modify the
unitary equation of motion of the dielectric atoms. Using the
Schwinger–Keldysh formalism (or closed time path (CTP)—
in-in-formalism) [11–14], we have studied the time evolution
of the expectation value of the energy-momentum tensor of
a scalar field in the presence of real materials. The work
included a fully non-equilibrium scenario done for two dif-
ferent couplings between the scalar field and the polariza-
tion degrees of freedom of matter. There it was shown that
two contributions always occur in the transient evolution of
the energy-momentum tensor: one associated with the mate-
rial, and other one only related to the field. Therefore, we
have shown that the material always contributes unless it
is non-dissipative. Conversely, the proper field contribution
vanishes unless the material is non-dissipative or, moreover,
at least for the 1+1 case, if there are regions without material.
We finally concluded that any steady quantization scheme in
1 + 1 dimensions must consider both contributions and, on
the other hand, we argued why these results are physically
expected from a dynamical point of view and also could be
valid for higher dimensions based on the expected continuity
between the non-dissipative and real material cases [10].

In this work, we will extend Ref. [10] in order to calcu-
late the CTP-generating functional for the EM-field (abelian
gauge field) interacting with inhomogeneous and anisotropic
matter through the open system framework. For this purpose,
we will firstly calculate a general expression for the EM-

field’s influence action from the interaction of the field with
a composite environment consisting in quantum polarization
degrees of freedom in each point of space (having arbitrary
temperatures) and connected to thermal baths (with arbitrary
temperatures too). Then we will evaluate the CTP EM-field
generating functional in the temporal gauge by implementing
the Faddeev–Popov procedure. Moreover, we will calculate
closed expressions for the EM-energy, the Poynting vector,
and the Maxwell tensor in terms of the Hadamard propaga-
tor, showing that all of these quantities present contributions
from the field’s initial conditions and also from the matter
degrees of freedom in the mirrors. Then we will analyze the
dynamics of the EM-field in the temporal gauge and study
the case of an infinite homogeneous and isotropic material,
connecting our results with previous ones. A detailed analy-
sis will be performed in relation to how the gauge invariance
must be treated in the CTP formalism when the EM-field is
interacting with inhomogeneous anisotropic matter. We will
also discuss several general implications of our results in rela-
tion to the non-equilibrium calculation of energies and forces
in Casimir physics. In fact, a detailed study of the Casimir–
Lifshitz problem in a fully non-equilibrium situation will be
presented elsewhere using the results of this paper [15].

In another context, in Ref. [16], perturbation theory has
been used in order to calculate the mean values of the Heisen-
berg operators associated to the electromagnetic field, in
interaction with electrons (Dirac fields). A functional repre-
sentation for the generating functionals has also been intro-
duced.

This paper is organized as follows: in the next section we
will discuss the CTP integration of the polarization degrees of
freedom in interaction with both, the EM-field and the ther-
mal environment. In Sect. 3, we evaluate the CTP-generating
functional for the gauge field in the composite system. Sec-
tion 4 contains the formal calculation of the energy, the Poynt-
ing vector, and the mean value of the Maxwell tensor. In Sect.
5, we give insights about the electrodynamics in the temporal
gauge and analyze a concrete example. Finally, in Sect. 6 we
will present the final remarks.

2 CTP integration for the electromagnetic field–matter
interaction

The main goal will be to calculate the generating functional.
Therefore, the first step in this direction is to calculate the
influence action over the field. We will describe the ordinary
polarizable matter by (non-relativistic) quantum degrees of
freedom associated to the polarization vector P of each vol-
ume element of the polarizable body, each one subjected to
an independent bath generating an influence action as in the
quantum Brownian motion (QBM) theory [5], i.e., a quan-
tum harmonic oscillator interacting linearly with a thermal
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bath consisting in a set of quantum harmonic oscillators. On
the other hand, the EM-field is described by a massless spin-
1 gauge field Aμ. The interaction term can be taken as a
coupling between the field and the current generated in the
polarizable matter or, equivalently, as the dipolar interaction
between the polarization dipoles and the field. In other words,
the interaction can be considered in two ways, depending
which degree of freedom is differentiated. However, since
we have non-relativistic matter degrees of freedom coupled
to a gauge field which is, from the beginning, a relativistic
system, differentiation is not only a time derivative, as hap-
pens for the scalar field in Ref. [10].

In other words, the coupling terms can be proportional
to

∫
d4x P j (x) E j (x), coupling the polarization vector to

the field’s canonical momentum (i. e., the electric field) in a
dipole interaction way; or, analogously,

∫
d4x Jμ(x) Aμ(x),

coupling the current four-vector of the (non-relativistic)
polarizable matter to the (relativistic) EM field. From now
on, our sum notation will be Einstein’s for Greek sub- and
superscripts (a subscript sum with a superscript), but Latin
ones may sum without being opposite scripts (the covariant
or contravariant nature of spatial coordinates will be adjusted
by introducing minus signs when passing from a subscript to
a superscript or vice versa).

Since the electric field is E j = −∂ j A0 − ∂0 A j , it is clear
that the interaction term is gauge invariant, while from the
second way it is clear that the interaction term is a Lorentz
scalar. In order to keep gauge invariance and considering
also that the current Jμ must be a conserved current (its four-
divergence must vanish), the current four-vector has to be
written as Jμ = (∇ · P,−Ṗ) (in Ref. [16] it is possible to
follow the calculation for fermion fields).

After the integration over P, we will eventually inte-
grate over the EM-field. Then we will consider the sec-
ond form for the interaction term

∫
d4x Jμ(x) Aμ(x) =∫

d4x(∂ j P j A0 − Ṗ j A j ) and leave a longer discussion
for the next section. However, as we will integrate over P
firstly, we integrate by parts in the respective space coordi-
nate for each derivative of the term involving the divergence.
Therefore, considering that the field paths vanish at infin-
ity in every direction, the interaction term is proportional to
− ∫

d4x(∂ j A0 P j + Ṗ j A j ).
The model for the total system can be described by the

initial total action:

S[Aμ, Px, qn,x] = S0[Aμ]+S0[Px]+
∑

n

S0[qn,x]

+SCurr[Aμ, Px]+
∑

n

Sint[Px, qn,x], (1)

where S0[Aμ], S0[Px], S0[qn,x] are the free actions for the
EM-field, the polarization vector, and the degrees of free-
dom of the thermal baths affecting the polarization vectors
in each spatial point, respectively. The spatial labels denote

the fact that the properties change with the position, while
the degree of freedom presents no spatial differentiation in its
dynamics, i.e., the degrees of freedom are a spatial continu-
ous set of 0+1 fields. The last two actions are the interaction
actions between the EM-field and the polarization vectors
(as we have discussed above) and between the polarization
vectors and the thermal baths in each point (which are linear
couplings).

Therefore, the first step would be CTP integration over
the thermal baths ({qn,x}). However, from the well-known
QBM theory we know that this is already done since, as
we mentioned before, it shows that the polarization vectors
under the influence of the thermal baths behave effectively
as Brownian particles (see Refs. [5,17]). Then, for each j-
component in each point of space, the polarization vector will
have its unitary evolution modified by the QBM influence
action:

SIF[P, P
′ ] =

∫
dx

∫ t f

ti
dt

∫ t f

ti
dt ′ �P j

x (t)

[

− 2 Dx(t, t ′)

× �P j
x (t ′)+ i

2
Nx(t, t ′) �P j

x (t ′)
]

(2)

where Dx and Nx are the QBM’s dissipation and noise
kernels, respectively, while �P = P ′ − P and �P =
(P + P ′)/2 are called difference and sum variables.

We are interested in calculating the CTP integral associ-
ated to the calculation of the influence action which acts over
the EM-field due to the interaction with matter. Considering
a coupling constant λ0 between the field and the polarization
degrees of freedom, the integral is given by

ei SIF[Aμ,A′μ] =
∫

dPf

∫
dPi dP′i

∫ P(tf )=Pf

P(ti)=Pi

DP

×
∫ P′(tf )=Pf

P′(ti)=P′i
DP′ eiλ0

∫
dx g(x)(∇A0·P+A·Ṗ−∇A′0·P′−A′·Ṗ′)

×ei(S0[P]−S0[P′]+SIF[P,P′]) ρP
(
Pi, P′i, ti

)
, (3)

where A · B ≡ ∫ t f
ti

dt A(t) B(t) and, for simplicity, products
between vectors and matrices will be omitted in the vectorial
form, and then for example A · B = ∫ t f

ti
dt A j (t) B j (t)

and so on. The matter distribution function g, which takes
binary values (1 or 0), telling whether or not there is matter
in each point of space x, is introduced to denote the fact
that this calculation takes place in every point of space that
contains polarizable material. Therefore, the influence action
that acts over the EM-field will be defined in space by the
matter distribution function g, which will define in which
points the influence action does not vanish.

As we are dealing with a three-dimensional problem,
the polarization vectors P described as three-dimensional
harmonic oscillators can be decomposed in cartesian com-
ponents, each one suffering the action of different baths.
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Therefore, we trivially have S0[P] = ∑3
j=1 S0[P j ] and

SIF[P, P′] =∑3
j=1 SIF[P j , P ′ j ].

Considering a separable initial state for the polarization
vector, the initial density matrix is the product of density
matrices for each component of the polarization vector,

ρP
(
Pi, P′i, ti

) = ∏3
j=1 ρP j

(
P j

i , P
′ j
i , ti

)
. Then, finally not-

ing that the interaction term also separates in each compo-
nent, the CTP integral can be written as the product of three
integrals for each component or direction. One step further
can be done by taking advantage of the fact that the mate-
rial is conceived as a continuum of independent degrees of
freedom (there are no interactions between them), giving the
chance for skeletonizing the spatial grid in volume elements
�x and writing the integrals for each component as a product
over the spatial points (

∏
x) of a generic CTP integral with a

spatial label x.
We now proceed to write the actions in terms of the dif-

ference and sum variables. For this purpose, we consider that
in each point of space for the interaction terms we have

∂ j A0 · P j−∂ j A
′0 · P ′ j = −∂ j� A0·�P j−∂ j�A0 ·�P j , (4)

A j · Ṗ j − A
′ j · Ṗ ′ j = −� A j �P j

∣
∣
∣
tf

ti
−�A j �P j

∣
∣
∣
tf

ti

+� Ȧ j ·�P j +� Ȧ j ·�P j , (5)

and for the free actions we can write

S0[P j ] − S0[P ′ j ] = −
∫

dx Mx � Ṗ j
x �P j

x

∣
∣
∣
tf

ti

+
∫

dx
∫ tf

ti
dt Mx �P j

x

(
d2

dt2 +�2
x

)

�P j
x , (6)

where we have allowed each degree of freedom, at each point
x, to have its own properties (mass and natural frequency).

The functional integrations over �P j are Gaussians
in each point of space, and can be performed straight-
forwardly considering the noise kernels in each direction
and point, and defining the linear sources as R j (t) =
�x

∫ tf
ti

dt ′ L̃(t, t ′) �P j (t ′)+�x λ0,x
(
� Ȧ j (t)−∂ j� A0(t)

)
,

with the kernel L̃(t, t ′) ≡ Mx

(
d2

dt ′2 +�2
x

)
δ(t − t ′) +

Dx(t, t ′).
At this point, the remaining functional integration is over

�P j in each point of space. However, as was done in
Refs. [10,18], we can write every path �P j in terms of
an homogeneous solution P j

0 (t) satisfying the initial con-

ditions and a particular solution P j
ξ (t) describing the devia-

tion of the paths from the homogeneous ones, i.e., we write
�P j (t) = P j

0 (t)+ P j
ξ (t). Considering that, from the initial

actions, the canonical momentum associated to P j is given
by M Ṗ j + λ0 A j , the solutions can be written as

P j
0 (t) = Mx �P j

i ĠRet,x(t − ti)

+
(



j
i − λ0,x � A j

i

)
GRet,x(t − ti), (7)

P j
ξ (t) =

∫ t

ti
ds GRet,x(t − s) ξ j (s). (8)

with 

j
i = M � Ṗ j

i + λ0 � A j
i and being GRet,x(t − t ′)

the retarded Green function for the linear integro-differential
operator, associated to the kernel L̃ of the degree of freedom
at x.

Therefore, we can replace the functional integration over
�P j with integration limits, by the functional integration
over ξ without them, and an ordinary integration over all the
values of the initial canonical momentum 


j
i .

Then, after realizing the replacements it turns out that the
functional integration over ξ is straightforward and, by omit-
ting for simplicity the spatial labels, we obtain for each inte-
gral in each point of space:

ei SIF[Aμ,A′μ] =
∏

j,x

∫
d�P j

i d�P j
f

∫
d�P j

f δ(�P j
f )d


j
i

×ei�xλ0
(
� Ȧ j−∂ j �A0

)·P j
0 WP j

(
�P j

i ,

j
i , ti

)
ei�xλ0�A j

i �P j
i

× e
−i�x

(
M � Ṗ j

f +λ0 � A j
f

)
�P j

f δ
(
�P j (tf)−�P j

f

)

× e−�x
λ2

0
2

(
� Ȧ j−∂ j �A0

)·GRet ·N ·
[(

� Ȧ j−∂ j �A0
)·GRet

]T

× ei�x λ2
0

(
� Ȧ j−∂ j �A0

)·GRet ·
(
∂ j � A0−� Ȧ j

)
, (9)

where we have introduced a delta function in order to take
into account the restriction on the final points, and the Wigner
function for the j-component of the polarization vector in the
point x defined as in Refs. [10,18] by

Wx (X, p, t)= 1

2π

∫ +∞

−∞
d�ei�x p�ρx

(

X−�

2
, X+�

2
, t

)

.

(10)

Now, on the one hand, we note that the homogeneous solution
can be written as P j

0 (t) = P S, j
0 (t)−λ0,x � A j

i GRet,x(t−ti ),

where P S, j
0 is the homogeneous solution for a bilineal cou-

pling (where the canonical momentum is only related to the
time derivatives of the degree of freedom; see for example
Ref. [10]). On the other hand, we can take the exponent of
the last factor and integrate by parts on the second time inte-
gration, obtaining

GRet,x ·� Ȧ j =
∫ tf

ti
dt ′ GRet,x(t − t ′) � Ȧ j (t ′)

= −GRet,x(t − ti ) � A j
i − ∂t ′GRet,x ·� A j ,

(11)
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where we have used GRet,x(t−tf) = 0 because it is a retarded
Green function involving a Heaviside function.

By replacing it into the CTP integral, we find that one
factor constituted by the second term of the last expression
of P j

0 in Eq. (7) cancels with a factor constituted by the first
term of the right hand side of the last equation.

As a last step to cancel the factors involving initial con-
ditions, we must consider the first term in the exponent of
the first factor in Eq. (9). Again, by integrating by parts and
using the CTP condition for the EM-field, we have

� Ȧ j · P S, j
0 = −�A j

i �P j
i −�A j · Ṗ S, j

0 . (12)

Then the first term in this expression cancels with another
factor containing initial conditions.

Finally, it is straightforward to integrate over �P j
f by

using the delta function. After this step, it is easy to eval-
uate the integral over �P j

f by using the other delta function.
Considering that the result is for the j-component of the
polarization vector at the point x, we obtain the product over
all the positions where there is material. Grouping each fac-
tor and taking the continuum limit for the spatial grid, the
exponents result in integrals limited by the matter distribu-
tion g(x), thus

ei SIF[Aμ,A′μ]

=
∏

j

〈
e
−i

∫
dx g(x) λ0,x

(
�A j ·Ṗ S, j

0 +∂ j �A0·P S, j
0

)〉

�P j
i ,


j
i

e−
1
2

∫
dxg(x)�

(
Ȧ j−∂ j A0

)·λ2
0,xGRet,x·Nx·

[
�

(
Ȧ j−∂ j A0

)·GRet,x
]T

ei
∫

dx g(x)λ2
0,x

(
� Ȧ j−∂ j �A0

)·(∂t ′GRet,x·� A j+GRet,x·∂ j � A0
)

, (13)

where 〈. . .〉
�P j

i ,

j
i
= ∏

x
∫

d�P j
i,x

∫
d


j
i,x . . . WP j

(
�P j

i,x,

j
i,x, ti

)
and we let each material’s property (charge,

noise kernel, and Green function) depend on the position by
introducing a subscript x as a label, allowing the material to
be inhomogeneous.

Now, we have to consider that this last expression is for the
j-component of the polarization vector. The final expression
for the field’s influence action on Eq. (3) results from the
product of this expression for each component. At this point,
we can give the material another degree of freedom, which
is to be anisotropic (birefringent material). Each direction j
of the polarization vector can be matched with each of the
three principal axes of Fresnel’s (or refractive index) ellipsoid
in each point of the material (we give more insights in this
in Sect. 5.1). Therefore, each component can have different
properties (except for the charge), and by introducing delta
functions in space in the last two factors, we can write more
compactly

ei SIF[Aμ,A
′μ]

=
〈
e
−i

∫
dx g(x) λ0,x

(
�A·ṖS,[ j]

0 +∇�A0·PS,[ j]
0

)〉

�Pi ,
i

× e−
1
2

(
�Ȧ−∇�A0

)∗NB∗
(
�Ȧ−∇�A0

)

× ei2
(
�Ȧ−∇�A0

)∗(∂t ′D∗�A+D∗∇� A0
)
, (14)

where the product A ∗ B ≡ ∫
d4x A(x, t) B(x, t), while

D jk(x, x ′) = δ jk δ(x − x′) g(x)
λ2

0,x

2
G[ j]Ret,x(t − t ′), (15)

N
B
jk(x, x ′) = δ jk δ(x−x′) g(x) λ2

0,x G[ j]Ret,x ·N [ j]x ·
[
G[ j]Ret,x

]T
,

(16)

which are the bilinear dissipation matrix-kernel associated
to the EM-field–matter interaction model (see Ref. [10]) and
the bilinear noise matrix-kernel which is only related to the
contribution of the baths. The superscripts [ j] denote the
dependence on direction (anisotropic material).

To give a closed expression for the influence action on
the field, we have firstly to move the temporal and spatial
derivatives on the field’s components to the bilinear matrix-
kernels to define correctly the ‘current’ matrix-kernels which
act over the EM-field. This is in fact straightforward due to
the causal behavior of the Green function, the CTP condition
on the EM-field’s components and the convergence of each
path of the EM-field whenever any spatial coordinate goes to
infinity. These allow us to integrate by parts both in time and
spatial coordinates, resulting in a transfer of the derivative on
the field to the matrix-kernels. Then we can write a covariant
form for the last two factors

ei SIF[Aμ,A
′μ] =

〈
e
−i

∫
dx g(x) λ0,x

(
�A·ṖS,[ j]

0 +∇�A0·PS,[ j]
0

)〉

�Pi,
i

× e−
1
2 �Aμ∗N B

μν∗�Aν

e−i2�Aμ∗Dμν∗� Aν

,

(17)

with the (covariant) EM-dissipation kernels Dμν and the (also
covariant) EM-noise kernel N B

μν associated to the contribu-
tion of the baths are given by

Dμν(x, x ′) = μν
jk

D jk, (18)

N B
μν(x, x ′) = μν

jk
N

B
jk, (19)

where the operator μν
jk ≡ δμ

0 δν
0 ∂2

jk′ − δμ
0 δν

k ∂2
j t ′ −

δμ
j δν

0 ∂2
tk′+δμ

j δν
k ∂2

t t ′ with the prime denoting derivation
on the respective coordinate of the point x ′ and the covariant
delta is introduced with Einstein’s notation, unlike all deltas
in matrix notation employed at the moment for spatial sub-
and superscripts.

It is clear that the first factor on the right hand side of
Eq. (17) is entirely related to the initial state of the polar-
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ization degrees of freedom. However, in order to obtain an
expression for the field’s influence functional, we have to cal-
culate the factor for the chosen initial state. This can easily
be done for the case that the initial state is a thermal one for
each direction of the polarization in each volume element.
Therefore, considering temperatures β

P j
x

for each direction

in each point, the integrals over �P j
i and 


j
i in each point

of space are Gaussian; we obtain by discarding the normal-
ization factor
〈
e
−i

∫
dx g(x) λ0,x

(
�A·ṖS,[ j]

0 +∇�A0·PS,[ j]
0

)〉

�Pi,
i

= e−
1
2 �Aμ∗N P

μν∗�Aν

, (20)

where the EM-noise kernel associated to the polarization
degrees of freedom is given by

N P
μν(x, x ′) = μν

jk
N

P
jk, (21)

with

N
P
jk(x, x ′) = δ jk δ(x − x′)

g(x)λ2
0,x M [ j]x

2�
[ j]
x

coth

⎛

⎝
β

P j
x

�
[ j]
x

2

⎞

⎠

×
[
Ġ[ j]Ret,x(t − ti ) Ġ[ j]Ret,x(t

′ − ti )

+�
[ j]2
x G[ j]Ret,x(t − ti ) G[ j]Ret,x(t

′ − ti )
]
. (22)

Therefore, the EM-field’s influence action reads

SIF[Aμ, A′μ] =
∫

d4x
∫

d4x ′ �Aμ(x)
[
− 2 Dμν(x, x ′)

×� Aν(x ′)+ i

2
Nμν(x, x ′) �Aν(x ′)

]
,

(23)

with Nμν ≡ N P
μν + N B

μν , which satisfies Nμν(x, x ′) =
Nνμ(x ′, x).

First, it is worth noting that it has the form of Eq. (2). This
is in principle not surprising, however, the present influence
action for the EM-field is the result of two CTP integrations
since the system is a composite of three parts, and the fact that
it has this closed form is a merit of the choice of a thermal
initial state for the polarization degrees of freedom. For a
non-thermal initial state, this form is not achieved. Moreover,
while the kernels in the QBM theory depend on the difference
of the arguments, the present EM-kernels do not.

It is remarkable that this last expression is analogous to
the one found for the scalar field case for the polarization
degrees of freedom contribution in Ref. [10]. However, since
in this case we are dealing with an abelian gauge field, all
the kernels contain the differential operator 

jk
μν , which

basically ensures that the influence action is gauge invari-
ant. In fact, it is easy to see that ∂μ

jk
μν = ∂

′ν jk
μν ≡ 0,

which shows that every kernel’s four-divergence vanishes,

i.e., ∂μDμν = ∂μNμν = ∂
′ν Dμν = ∂

′ν Nμν = 0. This is
the property needed to ensure gauge invariance, so it is the
physical requirement for every EM-field’s influence action
of the form of Eq. (23) in order to be gauge invariant. In
other words, every quadratic influence action must contain
EM-dissipation and noise kernels with null four-divergence
in both subscripts.

Nevertheless, this is indeed an expected mathematical
requirement which came from the physical fact that the ker-
nels are basically correlations functions of the current four-
vector Jμ, which is a conserved current thanks to the gauge
invariance of the EM theory. If we break gauge invariance,
the current is not necessarily conserved as happens for the
Proca field theory (see Ref. [21]), so all the obtained prop-
erties are clearly expected as requirements to satisfy by a
physically consistent EM-theory.

3 CTP-generating functional for a gauge field

In this section we will calculate the CTP-generating func-
tional for the gauge field. Clearly, the result obtained in the
last section for the EM-field influence action will be the
starting point. We are dealing with a spin-1 abelian gauge
field Aμ = (A0, A) (being A0 and A the electric and vector
potentials, respectively) under the influence of matter degrees
of freedom, modeled through the EM-dissipation and noise
kernels in the influence action obtained in the last section.
Although we will use the main result in Eq. (23), we resume
briefly some points of the previous discussion of the interac-
tion terms.

It is worth noting that, if we consider a typical spin-0 scalar
field instead of the EM-field, the calculation of the generat-
ing functional can easily be done as was shown in Ref. [10]
for both bilineal and current-type couplings, without critical
changes and obtaining the same formal result. In contrast, for
the case of the EM-field, a few subtle points must be taken
into account.

Considering the gauge symmetry of the EM-theory, the
interaction term with matter must be gauge invariant. Thus,
bilineal coupling models (as the one considered in Ref. [10])
are forbidden from the very beginning because the interaction
term in the initial actions is not gauge invariant. In fact, the
influence action for that case is not gauge invariant since the
kernels do not verify the correct properties that ensures gauge
invariance.

However, the current-type coupling presents a subtle con-
ceptual variation. This type of coupling cannot be on the
field’s time derivative as happens for the scalar field in Ref.
[10] because it also breaks gauge symmetry. Then the interac-
tion term must be in terms of the electric and magnetic fields
in order to keep the gauge invariance of the whole theory. The
general rule that is behind all of these choices is that the inter-
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action for a current-type coupling must be on the canonical
conjugate momentum. In the classical free EM-field theory,
the canonical momenta are defined as 
μ ≡ F0μ = δ

μ
i Ei

(where Fνμ is the Maxwell strength tensor).
From a formal point of view, it is well known that 
0 ≡ 0

and, consequently, the canonical momentum for the tempo-
ral component of Aμ is not well defined, implying that a
quantization procedure will not be so straightforward. How-
ever, we have no need to focus on this point at this time, and
we will see how to deal with that problem in our formal-
ism.

By considering the linearity of the interaction terms, we
can write directly the CTP-generating functional for the
gauge field as a CTP-Feynman path integral:

ZCTP[Jμ, J ′μ] =
∫

dAμ
f

∫
dAμ

i dA′μi
∫ Aμ(tf )=Aμ

f

Aμ(ti)=Aμ
i

DAμ

×
∫ A′μ(tf )=Aμ

f

A′μ(ti)=A′μi
DA′μ e

i
(

Jμ∗ Aμ−J ′μ∗ A′μ
)

×ei(S0[Aμ]−S0[A′μ])

× ei SIF[Aμ,A′μ] ρEM(Aμ
i , A′μi , ti). (24)

We can proceed by performing the Faddeev–Popov proce-
dure to extract the redundant sums over paths on the same
gauge class. Therefore, this includes a gauge fixing term
(depending on the gauge choice defined by the gauge condi-
tion F[Aμ] = 0, which will be taken linear) and the determi-
nant which gives the ghost terms in the Lagrangian, which,
in our case, can be discarded since ghosts do not couple the
EM-field for every linear gauge condition due to the abelian
nature of the field.

We re-write the delta-functionals as lagrangian gauge fix-
ing terms in the exponential containing the free field actions.
For this purpose, we have to continue the typical Faddeev–
Popov procedure one step further. Then we change the gauge
condition on both delta functionals to F[Aμ] = C(x) and
F[A′μ] = C ′(x), respectively, where C and C ′ are arbi-
trary functions of the coordinates (the determinant giving the
ghosts do not change anyway). As the generating functional
is independent of C and C ′, we can multiply by a CTP-type

distribution e− i
2α (C∗C−C ′∗C ′) (having a unique gauge fixing

parameter α for both fields) and then integrate over the arbi-
trary functions. As we need to keep Eq. (24) valid, we must
consider the Landau gauge for a given choice of the gauge
condition, where α → 0, and we effectively re-obtain the
delta-functionals from the gauge fixing exponentials [19].
Thus we get

ZCTP[Jμ, J ′μ] = lim
α→0

∫
dAμ

α,f

∫
dAμ

α,i dA′μα,i

×
∫ Aμ(tf )=Aμ

α,f

Aμ(ti)=Aμ
α,i

DAμ

∫ A′μ(tf )=Aμ
α,f

A′μ(ti)=A′μα,i

DA′μ

×e
i
(

Jμ∗Aμ−J ′μ∗A′μ
)

× ei(S̃0[Aμ]−S̃0[A′μ]+SIF[Aμ,A′μ])ρEM(Aμ
α,i, A′μα,i, ti),

(25)

with S̃0[Aμ] = S0[Aμ] − 1
2α

F[Aμ] ∗ F[Aμ] being the new
action for the EM-field containing the typical gauge fixing
term, which breaks gauge invariance for every α, but which
allows us to treat the components of the field as independent
variables. It is clear that it turns out to be a crucial point that
the gauge fixing parameter is unique, which is indeed very
natural because both fields in the CTP formalism are needed
to describe a unique quantum field, so the effective action
must depend only on one parameter. On the other hand, it can
be said that α must be unique since a CTP integral can always
be written in terms of a unique CTP field, by parameterizing
both branches of the CTP contour. Therefore, applying the
Faddeev–Popov procedure at this point, it is clear that α must
be the same for both branches.

It is worth noting that we have properly included sub-
scripts α as a reminder that when we take the Landau gauge
(taking the limit α→ 0), the initial and final field configura-
tions must be written satisfying the gauge condition, since in
that limit, the result must be the same as the one obtained by
evaluating the deltas on the gauge condition at the very begin-
ning. Indeed, we have to take care of this only for the initial
and final points, and we do not have to introduce subscripts
in the functional integrations since, as we will show below,
the correct result will be naturally ensured by taking the limit
on the Green function associated to the effective CTP action
including the gauge fixing terms. The limit α → 0 or Lan-
dau gauge imposes the vanishing gauge condition (it sets the
arbitrary function C), i.e., taking the limit will imply that,
for each point, the field satisfies the vanishing gauge condi-
tion.

Now, we change variables to �Aμ = A
′μ − Aμ and

� Aμ = (Aμ + A
′μ)/2, which allows us to treat each com-

ponent as an independent variable thanks to gauge fixing
terms which break gauge invariance. To continue the calcu-
lation, we first have to integrate by parts the free field actions,
including the gauge fixing term. Therefore, we have to choose
a gauge condition.

At this point, as we are considering linear gauge con-
ditions, whether the gauge condition actually does or does
not contain a derivative on the field will generate crucial
differences. If we take the temporal or axial gauge, the
gauge condition can be written in general for both cases as
F[Aμ] = tμ Aμ, allowing tμ to be a temporal or spatial four-
vector for each case. For now, we will keep generality on
this four-vector without choosing a specific gauge condition.
Thus, in this case we do not have to integrate by parts because
we directly have
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− 1

2α

(
F[Aμ] ∗ F[Aμ] − F[A′μ] ∗ F[A′μ]

)

= 1

α
F[�Aμ] ∗ F[� Aμ] = 1

α
�Aν ∗ tν tμ � Aν . (26)

For the free field actions, we get

S̃0[Aμ] − S̃0[A′μ] =
∫

dx �Aμ ημν �F0ν
∣
∣
∣
tf

ti

−
∫

d4x �Aμ

(

ημν ∂σ ∂σ − ∂μ∂ν − 1

α
tμtν

)

� Aν. (27)

Finally, considering that Jμ ∗ Aμ − J ′μ ∗ A′μ = −� Jμ ∗
�Aμ−�Jμ∗� Aμ, the functional integration over �Aμ can
easily be done by taking Rμ =

∫
d4x ′ Lμν(x, x ′) � Aν(x ′)−

� Jμ(x) = Lμν ∗� Aν −� Jμ, in analogy to the last section,
with the operator Lμν(x, x ′) ≡ (−ημν �′ + ∂ ′μ∂ ′ν + 1

α
tμtν

)

δ(x − x ′)− 2Dμν(x, x ′). This way, by defining the Wigner
functional for the EM-field as a natural (gauge dependent)
extension of Eq. (10) (see Ref. [20]), we obtain

ZCTP[� Jμ,�Jμ] = lim
α→0

∫
d� Aμ

α,i d� Aμ
α,f

∫
d�Aμ

α,f

×δ
(
�Aμ

α,f

)∫ � Aμ
α,f

� Aμ
α,i

D� Aμe−i�Jμ∗� Aμ

ei
∫

dx�Aμ
α,fημν�F0ν

α,f

× WEM

[
� Aμ

α,i,−ημν�F0ν
α,i, ti

]
e−

1
2 Rμ∗(N−1)μν∗Rν . (28)

The next step is to write the paths of � Aμ in terms of its
initial conditions and the retarded Green function associated
to the operator Lμν . Given the EM-field equation of motion
associated to the CTP effective action by

(
ημν �− ∂μ∂ν − 1

α
tμtν

)
Aν(x)

+2
∫

d4x ′ Dμν(x, x ′) Aν(x ′) = 0, (29)

then the retarded Green function for t > t ′ is defined by

(
ημν �− ∂μ∂ν − 1

α
tμtν

)
Gνλ

Ret,α(x, x′, t − t ′)

+ 2
∫

d4x ′′ Dμν(x, x ′′) Gνλ
Ret,α(x′′, x′, t ′′ − t ′) = 0, (30)

subjected to the initial conditions Gνλ
Ret,α(x, x′, 0) = 0 and

Ġνλ
Ret,α(x, x′, 0) = ηνλ δ(x − x′).

It is worth noting that we have remarked the fact that the
retarded Green function depends on the gauge parameter α

and on the time difference.
Thus, the solutions for each component of � Aμ, splitting

in homogeneous Aμ
0,α and inhomogeneous Aμ

ξ,α solutions,
can be written as

� Aμ(x) = Aμ
0,α(x)+ Aμ

ξ,α(x)

=
∫

dx′ Ġμν
Ret,α(x, x′, t − ti) ηνσ � Aσ

α,i(x
′)

+
∫

dx′ Gμν
Ret,α(x, x′, t − ti) ηνσ � Ȧσ

α,i(x
′)

+
∫

d4x ′ Gμν
Ret,α(x, x′, t − t ′) ξν(x ′), (31)

where we have clearly denoted the fact that both initial con-
ditions on the field and on its time derivative depend on the
gauge parameter, while the four-function ξν does not, since it
represents a deviation of the solutions from the classical ones
and, therefore, each component can be treated independently
without α-dependence.

However, the present step is quite subtle, because it con-
sists in the replacement of the functional integration over pos-
sible paths by two ordinary integrations over the initial field
and momentum configurations (which involve the homoge-
neous solution) and a functional integration over ξμ, which
represents the shift in the path from the classical trajectory
(and it includes the inhomogeneous solution).

In the present case, the replacement is not so easy since
the canonical momenta are not proportional to the field com-
ponents’ time derivatives, as always happens above this sec-
tion. Moreover, the choice on the gauge condition is a crucial
point on defining these replacements. As we have noted in
the beginning of this section, it is well known that the canon-
ical momentum for the temporal component A0 is not well
defined since 
0 ≡ 0. This is intimately related to the prob-
lematic position of the EM-theory in order to be quantized,
since the canonical quantization procedure cannot be devel-
oped in a straightforward way [21]. The same happens for
a (non-CTP) path integral quantization, but the Faddeev–
Popov procedure shows to be efficient in that context hav-
ing no restriction on the values of the gauge parameter α

[22].
At this point, we showed that the Faddeev–Popov proce-

dure allows us to treat the situation, but restricting the theory
with the gauge fixing term to the Landau gauge. We will now
see that taking this limit carefully we may impose the gauge
condition in the CTP formalism.

Then, in the temporal gauge, the four-vector tμ will be
taken as a time-like four-vector, our particular choice being
the simplest one, tμ = (1, 0, 0, 0). The gauge condition reads
F[Aμ] = A0. Note that over all the possible choices of the
functions C , to which the gauge condition will be equal, the
Landau gauge implies the gauge condition for C = 0, i.e.,
the field satisfies the Landau gauge for the temporal gauge
condition. This means that the solutions (and Green func-
tions) obtained for an arbitrary value of the gauge parameter
α must be taken to satisfy the Landau gauge. In this limit, as
we can see from the retarded Green function equation [Eq.
(30)], G0ν

Ret,α→0 must be identical to zero.
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On the other hand, from the EM-theory, the canonical
momentum is given by 
μ ≡ F0μ = δ

μ
j E j . In the tem-

poral gauge, the electric field is given by E j = −∂0 A j ,
so the canonical momentum reads 
μ = −δ

μ
j Ȧ j . But in

our theory with gauge fixing term (without imposing the
gauge condition), the canonical momenta read, as usual,

μ = δ

μ
j

(
∂ j A0 − Ȧ j

)
. This makes that the initial time

derivatives of each field component can be written as � Ȧσ
i =

δσ
0 � Ȧ0

i +δσ
j

(
∂ j� A0

i −�

j
i

)
, where the temporal compo-

nent of the derivative is the only one that cannot be re-written
in terms of the canonical momentum and the spatial deriva-
tive of the temporal component. Therefore, replacing this into
the homogeneous solution Aμ

0,α , we may write it in terms of
the canonical momenta and, after integrating by parts the
terms associated to ∂ j� A0

i (and discard the boundary terms
by convergence), the homogeneous solution reads

Aμ
0,α(x) =

∫
dx′ Gμ0

Ret,α(x, x′, t − ti) � Ȧ0
α,i(x

′)

+
∫

dx′
(
Ġμ0

Ret,α(x, x′, t − ti)− ∂ ′jGμj
Ret,α(x, x′, t − ti)

)

×� A0
α,i(x

′)

−
∫

dx′ Ġμj
Ret,α(x, x′, t − ti) � A j

α,i(x
′)

+
∫

dx′ Gμj
Ret,α(x, x′, t − ti) �
 j,α,i(x′). (32)

Then the integration replacement can be done and then we
can easily integrate on �Aμ

α,f and then on � Aμ
α,f thanks to the

delta functions, and also functionally over ξμ, clearly leading
to

ZCTP[� Jμ,�Jμ] = lim
α→0

∫
d� Aμ

α,i

∫
d�
 j,α,i

×e−i�Jμ∗Aμ
0,α WEM

[
� Aμ

α,i,−�
 j,α,i, ti
]

×e
− 1

2 �Jμ∗Gμν
Ret,α∗Nνβ∗

(
Gσβ

Ret,α

)T∗�Jσ

×e−i�Jμ∗Gμν
Ret,α∗� Jν . (33)

Finally, we take the Landau gauge, α → 0, which implies
Gμν

Ret,α → δ
μ
j δν

k G jk
Ret,LG on the retarded Green function and

it also restricts the integrations because � Aμ
α,i → �Ai and

� Ȧμ
α,i → �
i = −�Ȧi. However, this point encodes the

action of imposing the temporal gauge on the field equations
at every time. Moreover, if we consider that the field is free
for times before the initial one, setting A0 = 0 in the field
equations, result in three equations for the the vector potential
Ai and an additional condition (which is a residual condition
resulting from the equation for A0) given by ∇ · 
i = 0.
This completely defines the field, its components and canon-
ical momenta for earlier times than the initial one, and also
this implies that the field has two independent components.
Therefore, taking the limit α → 0 must entail, particularly,

that the initial conditions check A0
i = 0 and∇·
i = 0 (being

transverse to the direction of propagation of each field mode).
Then we can naturally write

ZCTP[�J,�J] =
∫

d�Ai

∫
d�
i e−i�J∗A0

× WEM [�Ai, �
i, ti]e
− 1

2 �J∗←→G Ret,LG∗
(
∂2

t t ′N
)
∗←→G T

Ret,LG∗�J

×e−i�J∗←→G Ret,LG∗�J

=
〈

e−i�J∗A0
〉

�Ai,�
i
e
− 1

2 �J∗←→G Ret,LG∗
(
∂2

t t ′N
)
∗←→G T

Ret,LG∗�J

×e−i�J∗←→G Ret,LG∗�J, (34)

where Ai and 
i are taken as free initial conditions in the
temporal gauge (and consequently perpendicular to the wave
vector for each mode), having

A j
0(x) = −

∫
dx′ Ġ jk

Ret,LG(x, x′, t − ti ) � Ak
i (x
′)

+
∫

dx′ G jk
Ret,LG(x, x′, t − ti ) �
k

i (x
′), (35)

which is the homogeneous solution for the field equation after
imposing the temporal gauge.

It is worth noting that this is the natural and expected
extension of the result obtained for the scalar field in Ref.
[10]. Nevertheless, the gauge nature of the EM-field causes
us to have to choose a gauge condition in order to develop
the calculations. In the temporal gauge, we see that the first
factor in Eq. (34), involving the initial conditions, enforces
the calculation by introducing the initial conditions in the
chosen gauge.

4 Energy, Poynting vector, and Maxwell tensor

Once we have calculated the CTP-generating functional for
the EM field satisfying a given gauge condition, we can pro-
ceed with the calculation of the field correlation as functional
derivatives of the generating functional. Initially, we have
introduced four-vectors as classical CTP-sources Jμ, J ′μ.
In the temporal gauge the generating functional is func-
tionally dependent on the spatial coordinates of the CTP-
sources four-vectors Jμ, J ′μ, i.e., the generating functional
depends on J, J′. Therefore, correlation functions involv-
ing the temporal coordinate of the field, which are con-
structed from functional derivatives of the generating func-
tional with respect to the temporal coordinate of the source
four-vectors Jμ, J ′μ, will vanish. This is clearly expected
since we have chosen the temporal gauge, where A0 ≡ 0.
Thus, as is well known, the field correlation can be written
in general as
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〈
Âμ(x1) Âν(x2)

〉
= δ

μ
j δν

k

〈
Â j (x1) Âk(x2)

〉

= δ
μ
j δν

k
δ2 ZCT P

δ J ′ j (x1)δ J k(x2)

∣
∣
∣
J=J′=0

. (36)

As in Ref. [10], since the generating functional has a sim-
ple form of Eq. (34), independently of the initial state of the
field, we can easily compute its functional derivatives. Tak-
ing advantage of the symmetry properties of the noise kernel,
we obtain
〈
Â j (x1) Âk(x2)

〉
=

〈
A j

0(x1)Ak
0(x2)

〉

�Ai,�
i

+
[←→G Ret,LG ∗

(
∂2

t t ′N
)
∗

(←→G Ret,LG

)T ] jk
(x1, x2)

+1

2
G jk

Jordan,LG(x1, x2), (37)

where G jk
Jordan,LG(x1, x2) ≡ i

(
Gk j

Ret,LG(x2, x1) − G jk
Ret,LG

(x1, x2)
)

is the Jordan propagator [17] and A j
0 is the homo-

geneous solution of Eq. (35).
This correlation function corresponds to the Whightman

function for the field in this open system and it is the EM-
field generalization of the results found in Refs. [10,18] for
a quantum degree of freedom and a scalar field, respectively.
In fact, considering that G jk

Ret,LG is real, it is clear that the cor-
relation is a complex quantity, with the imaginary part given
by G jk

Jordan,LG, whereas the real part is formed by the other
two terms. It is possible to show, using the typical relations
between the propagators, that the Hadamard propagator is
given by

G jk
H,LG(x1, x2) ≡

〈
A j

0(x1)Ak
0(x2)

〉

�Ai,�
i

+
[←→G Ret,LG ∗

(
∂2

t t ′N
)
∗

(←→G Ret,LG

)T ] jk
(x1, x2), (38)

where this expression holds for every initial state of the field,
and it is clear that this propagator is also gauge dependent.
Note that the Hadamard propagator has two separated contri-
butions. One is associated to the material degrees of freedom
represented by the noise kernel N, which also splits into two
contributions due to the composite nature of the material
(polarization degrees of freedom plus bath in each point of
space). The other contribution is entirely associated to the
field’s effective dynamics and the initial state.

With the field correlation at hand, we may calculate physi-
cal quantities of interest. We begin by giving a formal expres-
sion for the Poynting vector [23,24]. Considering that the
real material considered is non-magnetic, we can define the
Poynting vector as

Ŝ j (x1) = 1

4π
ε jkl Êk(x1)B̂l(x1), (39)

where ε jkl is the Levi-Civita symbol and it is worth noting
that the Poynting vector is a gauge invariant quantity, because
the electric and magnetic fields are.

Following Refs. [10,19], and also using the point-splitting
technique, the expectation value of the Poynting vector reads
〈
Ŝ j (x1)

〉
= − 1

4π
lim

x2→x1
ε jklεlmn ∂t1∂m2

〈
Âk(x1) Ân(x2)

〉

= 1

4π
lim

x2→x1
∂t1

(
∂k2δ jn − ∂ j2δkn

)〈
Âk(x1) Ân(x2)

〉
,

(40)

where ∂t1 denotes the time derivative on the point x1 and so
on for the other derivatives.

It is important to consider that to use the point-splitting
technique, the correlation function must be a regularized
quantity, in order to have finite results. Moreover, all the
expectation values of interest are expected to be real quan-
tities, as happens with the Poynting vector. However, this
seems not to be the case due to the fact that the propagator is
complex. But the coincidence limit, combined with the sym-
metric definition of the Jordan propagator, makes the imag-
inary contribution vanish at the end of the calculation. Then
the expectation value of the Poynting vector can be written
only in terms of the (regularized) Hadamard propagator on
Eq. (38) as follows:
〈
Ŝ j (x1)

〉
= 1

4π
lim

x2→x1
∂t1

(
∂k2 δ jn−∂ j2 δkn

)
Gkn

H,LG(x1, x2).

(41)

This last equation gives the full time evolution of the Poynting
vector, which inherits the two contribution splitting from the
Hadamard propagator.

Once we have worked out the expression for the Poynt-
ing vector in terms of the Hadamard propagator, we may do
so with the EM-energy and the Maxwell (or stress) tensor.
However, this is not so straightforward since these quanti-
ties for the EM-field in real materials do not have unique
definitions. This is related to the freedom on the arbitrary
definitions of the mechanical and EM contributions where
the matter is coupled to the EM-field (see for example the
discussion for the classical theory given in Ref. [23] for
simple linear isotropic media and the general approach on
Ref. [24]) due to the non-coincidence between the displace-
ment and electric vector fields inside a macroscopic mate-
rial.

However, since the energy density and the Maxwell ten-
sor are locally defined at each point of space, we can avoid
the discussion by calculating them in vacuum regions, inde-
pendently of whether there are matter bodies in other points
of space, i.e., whether or not there are material boundaries.
As in those regions there is no distinction between electric
and displacement vector fields, the definitions of the energy
and the Maxwell tensor are unique. Therefore, the quantum
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definitions for both quantities are given by [23,24]

ĤEM(x1) = 1

8π

(
Ê2(x1)+ B̂2(x1)

)
, (42)

T̂ jk
Maxwell(x1) = 1

4π

[

Ê j (x1) Êk(x1)+ B̂ j (x1) B̂k(x1)

−1

2
δ jk

(
Ê2(x1)+ B̂2(x1)

) ]

. (43)

Using again the point-splitting technique, we easily obtain
for the expectation values of both quantities:
〈
ĤEM(x1)

〉
= 1

8π
lim

x2→x1

[ (
∂t1∂t2 + ∂k1∂k2

)
δlm − ∂m1∂l2

]

× Glm
H,LG(x1, x2), (44)

〈
T̂ jk

Maxwell(x1)
〉
= 1

4π
lim

x2→x1

[

∂t1∂t2δ jmδks + ε jlmεkrs∂l1∂r2

−1

2
δ jk

[ (
∂t1∂t2 + ∂q1∂q2

)
δms − ∂s1∂m2

]]

× Gms
H,LG(x1, x2), (45)

where it is clear that both quantities also inherit the two con-
tribution splitting of the Hadamard propagator.

It is important to remark that this expression indeed gives
the key quantities to study the Casimir force between bodies
separated by vacuum regions in a fully non-equilibrium sit-
uation for a EM-field, generalizing the results given for the
scalar field in Ref. [10].

As a final remark, we should note that, in a covariant for-
mulation, these three quantities (Poynting vector, energy den-
sity, and Maxwell tensor) are part of the (covariant) energy-
momentum tensor for the EM-field [24]. However, we have
restricted our calculation to regions without material, avoid-
ing the discussion for the definition of each quantity inside the
material. The crucial point here is that, regardless of whether
a particular definition is considered, we can always write
the expectation value in terms of the Hadamard propagator
through the point-splitting technique. Therefore, all the quan-
tities will contain the contribution structure of the Hadamard
propagator, given in Eq. (38). In a non-equilibrium situation,
the transient dynamics of the EM-field will have contribu-
tions from each part of the composite system. On the other
hand, the long-time regime (t0 → −∞) is expected to be
defined at most by the baths’ contributions and the field’s
initial state contribution, having different steady situations
depending on the chosen initial state, as was shown for the
scalar field in Ref. [10].

5 Open electrodynamics in the temporal gauge

At this point we have fully developed the CTP formalism for
the EM-field interacting with a linear, inhomogeneous, and

anisotropic material in a general context. In the last section,
we have written all the physical EM-quantities in terms of
the Hadamard propagator.

In this section, we are going to study a simple example in
order to get a direct application of the developed formalism.
We start by examining in a general way the EM-equations
of motion and then we focus on the dynamical aspects of
the EM-field in an infinite homogeneous and isotropic mate-
rial.

5.1 EM-field’s equation in the temporal gauge

The EM-retarded Green tensor is defined by the equations
of motion (Eq. (29)) obtained from the EM-CTP action after
imposing the temporal gauge (A0 ≡ 0). For this purpose, it
is important to note that these equations include the gauge
fixing term for the temporal gauge, corresponding to the
term containing the gauge fixing parameter α. Considering
the equation for the temporal coordinate (μ = 0), which
is the only one which contains the gauge fixing term, we
have

�A0−∂0∂ν Aν− 1

α
A0 + 2

∫
d4x ′ D0ν(x, x ′) Aν(x ′)=0.

(46)

Now, by choosing the Landau gauge, where α → 0, it nat-
urally implies that A0 ≡ 0 in order to do not have divergent
terms. Then the (vanishing) temporal gauge is naturally intro-
duced by the choice of the Landau gauge. The equation in
this case remains

− ∂0∂m Am + 2
∫

d4x ′ D0m(x, x ′) Am(x ′) = 0. (47)

The dynamical equation for the temporal component A0 in
the vanishing gauge condition becomes a residual condition
for the remaining components Am . From the definition of
the EM dissipation kernel of Eq. (18), D0m can easily be
calculated and the condition reads

∂m

[

∂0 Am−λ2
0,xg(x)

∫ t

ti
dt ′ Ġ[m]Ret,x(t−t ′)Am(x, t ′)

]

= 0,

(48)

where we have considered that G[m]Ret,x(t − t ′) is a function
of t − t ′ plus the distribution �(t − t ′) in order to write it
derivative and that G[m]Ret,x(0) = 0.

By writing the first term as an integral:

∂0 Am(x, t) = −
∫ t

ti
dt ′ ∂t ′(δ(t

′ − t)) Am(x, t ′), (49)

then, as for any function f we have ∂t f (t− t ′) = −∂t ′ f (t−
t ′), and by the fact that the derivative of the Dirac delta func-
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tion is an odd function, the condition can be written in general
in its vectorial form as

∇ ·
[∫ t

ti
dt ′ ∂t

(←→ε (t − t ′, x)
)
· A(x, t ′)

]

= 0,

(50)

where the permittivity tensor for the inhomogeneous and
anisotropic material is given by

←→ε (t − t ′, x)mr ≡δmr

(
δ(t−t ′)+λ2

0,xg(x)G[m]Ret,x(t−t ′)
)
.

(51)

It is worth noting that since in this basis the tensor is diagonal,
it turns out that it is expressed in the Fresnel principal axes
basis. In fact, it turns out that at any point of space having
material we have the same Fresnel basis. This is why, from the
beginning, we considered the same three directions of oscil-
lation for each polarization degree of freedom. Particularly,
this also holds for disjoint material bodies, although in gen-
eral it is clear that it is possible to have bodies with different
Fresnel bases. All these cases can be considered introducing
changes of basis in order to relate them. However, in order to
keep simplicity in the expressions these complications will
be omitted in this work. Moreover, the residual condition
expressed in Eq. (50) is, for the case of inhomogeneous and
anisotropic material, close to the conditions considered in the
literature. For example, on the one hand, it is close to the one
considered in Ref. [25] (for dissipative isotropic materials)
as a complementary condition for the temporal gauge, but
for the case of anisotropic materials.

On the other hand, the present condition is also close to
the generalized Coulomb gauge condition considered in Ref.
[26]. For the case of non-dissipative and also non-dispersive
isotropic media, i.e., for the case of constant dielectric per-
mittivity, a close condition can be obtained. First, isotropy
implies that the superscripts [m] are omitted. Now, for an
arbitrary type of bath, the well-known QBM theory shows
that the Laplace transform of the retarded Green function for
the material is given by (see Refs. [5,8,10])

GRet,x(s) = 1
(

s2 +�2
x − 2 Dx(s)

) . (52)

Then the constant dielectric permittivity case is given by set-
ting s = 0 in the Laplace transform (Ref. [10]):

GRet,x(s)→ GRet,x(0) = 1

�2
x
≡ G N D

Ret,x. (53)

By Mellin’s transform, the associated retarded Green func-
tion results:

G N D
Ret,x(t−t ′)=

∫ α+i∞

α−i∞
ds

2π i
es(t−t ′) G N D

Ret,x=
1

�2
x

δ(t−t ′).

(54)

All in all, the residual condition in Eq. (50) easily reads

∇ · [ε(x) E(x, t)] = 0, (55)

where the inhomogeneous constant permittivity function

results, ε(x) = 1 + λ2
0,x
�2

x
g(x), clearly ensured by tak-

ing the generalized Coulomb gauge condition of Ref. [26]
(∇ ·[ε(x) A(x, t)] = 0) for the case of inhomogeneous mate-
rials, since in the temporal gauge E = −∂0A. Is clear that
in this case, without dissipation, the permittivity function in
the complex s-plane is real inside the material. Therefore,
the refractive index nx = √ε(x) is real in each point. Due to
isotropy, the Fresnel ellipsoid picture in each point is trivial
and corresponds, in every point, to a sphere because all the
ellipsoid axis are equal.

However, without assuming isotropy, a similar condition
for anisotropic materials can be obtained. It is straightfor-
ward that for the anisotropic case, we would obtain the same
equation as Eq. (55) by replacing the permittivity function
ε(x) with the inhomogeneous constant permittivity tensor
←→ε (x) = I

(

1+ λ2
0,x

�
[ j]2
x

g(x)

)

. As in the last case, since the

material has no dissipation, the permittivity tensor inside the
material in the complex s-plane is real. Therefore, the refrac-
tive indices in each direction are n[ j]x =

√
ε[ j j](x), where

there is no implicit sum in [ j j]. Then, in each point, we
define the typical (real) Fresnel ellipsoid.

We can conclude that, for the temporal gauge, the equation
of motion for μ = 0 reduces to a residual condition given, for
the general case, by Eq. (50). On the other hand, if we take
the remaining equations of motion (μ = m), by imposing
the temporal gauge, we clearly have

−�Am − ∂m∂l Al + 2
∫

d4x ′ Dml(x, x ′) Al(x ′) = 0.

(56)

In this case, considering the components of the EM-
dissipation kernel from Eq. (18), it is straightforward that
the equation reads

−�Am − ∂m∂l Al

+λ2
0,x g(x)

∫ t

ti
dt ′ ∂2

t t ′
(

G[m]Ret,x(t − t ′)
)

Am(x, t ′) = 0.

(57)

Considering twice the derivative property of a product
between a function and a distribution plus the initial con-

123



Eur. Phys. J. C (2015) 75 :93 Page 13 of 16 93

ditions for G[m]Ret,x, we finally obtain

∂2A
∂t2 +∇ × (∇ × A)+ λ2

0,x g(x) A(x, t)

+λ2
0,x g(x)

∫ t

ti
dt ′ ←̈→G Ret,x(t − t ′) · A(x, t ′) = 0, (58)

where
(←→

G Ret,x

)

mk
= δmk G[m]Ret,x. Again, from the fact that

we could write this diagonal tensor associated to the retarded
Green functions, it is clear that the basis that we have cho-
sen is the Fresnel principal axes basis (in general, the tensor
would be non-diagonal). The appearance is also remarkable
of the third term, which constitutes a finite renormalization
position-dependent mass term for the EM-field as the one
found in the scalar case in Ref. [10].

In fact, Eq. (58), in some sense, can be considered as the
electromagnetic or vectorial generalization of the equation
of motion for the scalar field found in Ref. [10], including all
the properties related to dissipation and inhomogeneity and
also to anisotropy, which is a property entirely related to the
vectorial nature of the EM-field. However, the equations are
not formally the same, because for the scalar case the second
term of the l.h.s. of Eq. (58) is a Laplacian, while in the
present case there is one more term related to the divergence
of the field A.

In Ref. [27], a similar model for the interaction between
the matter and the EM-field is considered. For simplicity,
an unidimensional problem is taken with an EM-field in the
Coulomb gauge from the start. The field equation is deduced
by solving the Heisenberg equations of motion for the mat-
ter’s degrees of freedom and a Laplacian is obtained in place
of the second term of the l.h.s. of Eq. (58) due to the Coulomb
gauge condition. This is commented in the beginning in order
to explain the context in which this toy model is inspired, but
no formal treatment related to gauge invariance is given. This
way, the field equation has obviously the same form as for
the scalar field in Ref. [10]. However, the crucial point here
is that the Coulomb gauge, unlike what happens for the free
field case, may not imply A0 = 0. In fact, in that gauge,
the four components of the EM-field may still be coupled
due to the term involving the EM dissipation kernel and the
temporal component A0 cannot be discarded as in Ref. [27].
On the other hand, by taking the temporal gauge, Eq. (50)
is the residual condition that must be satisfied, which is not
necessarily Coulomb condition for the case where there are
variations in material (see next section for the homogeneous
case), and thus the equation of motion is given by Eq. (58)
differing from the one considered in Ref. [27]. All in all, we
can say that the toy model of Ref. [27] shows not to represent
one of the components of the EM-field in the context com-
mented (with spatial variations of the dielectric properties)
and it is closer to the scalar field model considered in Ref.
[10], which fully coincides for the one-dimensional case.

Nevertheless, the temporal gauge shows to be adequate for
the interaction with matter since it decouples the components
of the EM field. Indeed, in the present model, a realistic EM-
field (with gauge and vectorial properties) interacting with
matter must satisfy Eq. (58) and the residual condition given
in general by Eq. (50).

Given the equation of motion, the ‘temporal-gauged’ EM-

retarded Green tensor
←→G Ret (x, x′, t) can be defined as

(omitting the subscripts LG for the Landau gauge because,
from now on, they are useless since the vanishing temporal
gauge was already introduced):

0 = ∂2←→G Ret

∂t2 + ∇ ×
(
∇ ×←→G Ret

)
+ λ2

0,xg(x)
←→G Ret

+λ2
0,xg(x)

∫ t

ti
dt ′′←̈→G Ret,x(t − t ′′)·←→G Ret(x, x′, t ′′−t ′),

(59)

which is now subjected to the initial conditions in the tem-
poral gauge:

G jk
Ret(x, x′, 0) = 0, Ġ jk

Ret(x, x′, 0) = − δ jk δ(x − x′).
(60)

Once we have studied the EM-field’s equations of motion in
the temporal gauge, we can realize an immediate application
to the simple problem of studying the steady state of the
EM-field in bulk homogeneous and isotropic material.

5.2 Steady state of the EM-field in a bulk homogeneous
and isotropic material

Having analyzed the EM-field dynamics in the temporal
gauge, we can straightforwardly study the steady state situa-
tion of the EM-field in an infinite homogeneous and isotropic
material. In this case, as we anticipated in the last section, a
few simplifications overcome features of the results recently
obtained. On the one hand, homogeneity and isotropy implies
dropping all the labels x and [ j] in the material properties.
Moreover, since the material is infinite, g ≡ 1 for every
point. The EM-field’s equation of motion in Eq. (58) and the
residual condition in Eq. (50) read

∂2A
∂t2 + ∇ × (∇ × A)+ λ2

0 A(x, t)

+λ2
0

∫ t

ti
dt ′ G̈Ret(t − t ′) A(x, t ′) = 0, (61)

∇ ·
[∫ t

ti
dt ′ ∂tε(t − t ′) A(x, t ′)

]

= 0, (62)

where the permittivity tensor is proportional to the identity
so the residual condition simplifies.

Moreover, since the permittivity now is independent of the
position, the last condition is guaranteed if we have∇·A = 0.
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Therefore, for the case in which the bulk be (infinite)
homogeneous and an isotropic material, Coulomb condition
is naturally required by the general residual condition for
every time in every point of space. This implies that also the
EM-field’s equation of motion in Eq. (61) simplifies a little
more and reduces to

∂2A
∂t2 −∇2A+ λ2

0 A(x, t)

+λ2
0

∫ t

ti
dt ′ G̈Ret(t − t ′) A(x, t ′) = 0, (63)

where the second term (discussed in the last section where
related with Ref. [27]) is reduced to the Laplacian.

As always, we can now straightforwardly define the EM-

retarded Green tensor
←→G Ret (x, x′, t) for this case as

∂2←→G Ret

∂t2 −∇2←→G Ret + λ2
0
←→G Ret(x, x′, t − t ′)

+λ2
0

∫ t

ti
dt ′′ G̈Ret(t − t ′′)←→G Ret(x, x′, t ′′ − t ′) = 0. (64)

However, we can further take advantage of the translational
invariance provided by the uniformity of the material when
being infinite, homogeneous and isotropic. Thus, we can
Fourier transform in the spatial variables and write the equa-
tion of motion for the EM field’s Fourier transform A(k, t):

∂2A
∂t2 +

(
k2+λ2

0

)
A(k, t)+λ2

0

∫ t

ti
dt ′G̈Ret(t−t ′)A(k, t ′)=0

(65)

where k = |k|, while the Coulomb condition reduces to
k ·A(k, t) = 0 (transverse waves). It is clear that two compo-
nents of EM-field’s Fourier transform are independent. Then,
choosing two of them and its associated equations of motion,
the third equation of motion for the remaining component is
automatically satisfied.

Regarding the choice, the key point is that each compo-
nent satisfies an homogeneous QBM equation for a Brownian

oscillator having a frequency
√

k2 + λ2
0 and a damping kernel

given by λ2
0 G̈Ret(t − t ′) (see Refs. [5,8,17]).

Moreover, due to translational invariance, the EM-retarded
Green tensor will depend on x− x′ and therefore its Fourier
transform can easily be defined by the equation

∂2←→G Ret

∂t2 +
(

k2 + λ2
0

)←→G Ret(k, t − t ′)

+λ2
0

∫ t

ti
dt ′′ G̈Ret(t − t ′′)←→G Ret(k, t ′′ − t ′) = 0, (66)

subjected this time to the ‘Fourier-transformed’ initial
conditions:

G jl
Ret(k, 0) = 0, Ġ jl

Ret(k, 0) = − δ jl . (67)

It can easily be shown by Laplace-transforming the last equa-
tion of motion that the EM-retarded Green tensor is diagonal
and each non-vanishing component corresponds to the QBM
retarded Green function with the respective damping kernel.
Considering the damping kernel, causality implies that the
poles of the Laplace transform of this Green function must
lie on the left half of the complex plane and then its dynamics
will be vanishing in the long-time limit (see Ref. [10] for the
scalar analog). Thus, G jl

Ret(k, t − ti ) will be a tensor which
goes to 0 when ti →−∞.

With this analysis of the EM-retarded Green tensor, we
can study the time evolution of the Hadamard propagator
of Eq. (38) (it is clear that to study the energy, Poynting
vector or Maxwell tensor in this case, we should consider the
expressions in a material region, which we avoid specifically
in Sect. 5 because the arbitrariness in their definitions). For
the first term of the Hadamard propagator, by introducing
the Fourier transform of the retarded Green tensor in the
homogeneous solutions, we can easily write

〈
A j

0(x1) Am
0 (x2)

〉

�Ai ,�
i
=

∫
dk1

(2π)3

∫
dk2

(2π)3

× e−i(k1·x1+k2·x2)
〈
A j

0(k1, t1) Am
0 (k2, t2)

〉

�Ai ,�
i
, (68)

where A j
0(k, t) by direct construction is given by

A j
0(k, t) = −Ġ jl

Ret(k, t − ti )
∫

dx′ eik·x′ � Al
i (x
′)

+G jl
Ret(k, t − ti )

∫
dx′ eik·x′ �
l

i (x
′), (69)

where we explicitly write the integrals over x′, since the

notation
〈
. . .

〉

�Ai ,�
i
implies functional integrations over

�Ai (x),�
i (x).
The key point here is that, beyond the chosen initial state

for the EM-field, for the long-time limit (ti →−∞) we have

G jl
Ret(k, t − ti )→ 0 and therefore

〈
A j

0(x1) Am
0 (x2)

〉

�Ai ,�
i−→ 0. In other words, the term associated to the initial con-
ditions does not contribute to the steady regime.

On the other hand, the second term of Eq. (38), associated
to the material’s contribution presents a simpler behavior
independent of the EM-retarded Green tensor’s properties.
In this case, the initial time ti does not appear in the EM
retarded Green tensors contained in the term, but it does in
one of the parts of the EM-noise kernel given in this gauge
by ∂2

t t ′N. As we have N = N
B + N

P , when each term is
given by Eqs. (16) and (22) respectively, the former does not
contain ti while the latter does. In fact, from its definition it
is easy to see that only N

P goes to 0 in the long-time limit
(ti → −∞). Then N→ N

B in the long-time limit, proving
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that the Hadamard propagator in the steady regime reduces
to the baths’ contribution:

G jk
H (x1, x2)−→

[←→G Ret∗
(
∂2

t t ′N
B
)
∗
(←→G Ret

)T
] jk

(x1, x2),

(70)

which is an analogous result to the one obtained for the scalar
field in Ref. [10] but for the EM-field, and it is also in agree-
ment with the steady functional approach employed in Ref.
[28].

This result is indeed physically expected because of the
dissipative dynamics of the EM-field in every point of space.
It can also easily be shown (see Ref. [10] for the scalar case)
that if a non-dissipative material is considered, all the mate-
rial dynamics should be erased by setting N ≡ 0 and the
Hadamard propagator would be defined only by the initial
conditions’ term, which in this case does not vanish. More-
over, as mentioned in Ref. [28] and shown for an unidimen-
sional scalar field in Ref. [10], a caveat may be present for
a scenario presenting vacuum regions (or at least, regions
where the field has no damping dynamics), where more than
one of the terms define the steady state. This will be the
objective of forthcoming work [15].

6 Conclusions and forthcoming work

In this paper we have mainly extended a previous work
[10] in order to calculate the CTP-generating functional for
the EM-field in interaction with inhomogeneous anisotropic
matter, through the open system framework. We have cal-
culated a general expression for the EM-field’s influence
action from the interaction of the field with a composite
environment, consisting in quantum polarization degrees of
freedom in each point of space, and connected to thermal
baths (with arbitrary temperatures). Then we have evalu-
ated the CTP-EM-field generating functional in the tem-
poral gauge by implementing the Faddeev–Popov proce-
dure. Special care has been taken as regards how the gauge
invariance must be treated in the CTP formalism when the
EM-field is interacting with inhomogeneous anisotropic mat-
ter.

In addition to previous work, we have also found closed
expressions for the EM-energy, the Poynting vector, and the
Maxwell tensor, in vacuum regions, in terms of the Hadamard
propagator, showing that all of these quantities present con-
tributions from the field’s initial conditions and also from the
matter degrees of freedom in the material bodies.

We then study the open electrodynamics in the tempo-
ral gauge, obtaining the EM-field’s equation and a residual
condition closely related to the gauge condition considered
in Ref. [26]. Finally, we analyzed the dynamics and steady

regime of the Hadamard propagator for the case of an infi-
nite homogeneous and isotropic material interacting with the
EM field, showing that, in this case, in the long-time limit,
the only contribution that survives is the one associated to the
bath due to the damping dynamics of the EM-field in every
point of space.

Nevertheless, despite the result obtained for this last sit-
uation, a few general considerations are in order about the
contributions that we found. In the transient evolution, all
the contributions will be present. In the long-time regime,
however, we expect that the bath’s and the field’s initial state
contributions were the only that contribute at most depend-
ing on if there are vacuum regions (or regions where the field
has no damping dynamics) in the problem, as happens for the
scalar field in Ref. [10]. If there is such a dependence with the
initial state contribution, it means that the steady situation is
non-unique. This is clearly caused by the fact that the field
fluctuates freely and without damping in the vacuum regions,
making the contribution of the initial conditions reach the
long-time regime. Following this train of thought, we have
also discussed in detail several implications of our results in
relation to the non-equilibrium calculation of energies and
forces in Casimir physics. As a forthcoming work the study
is pending of the Casimir–Lifshitz problem in a fully non-
equilibrium situation [15], exploiting all the features of the
present quantum approach.
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