Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

®© EURASIP Journal on
Embedded Systems

a SpringerOpen Journal

REVIEW _________ OpenAccess]
Clock refinement in imperative synchronous

languages

Mike Gemunde”, Jens Brandt and Klaus Schneider

Abstract

The synchronous model of computation divides the program execution into a sequence of logical steps. On the one
hand, this view simplifies many analyses and synthesis procedures, but on the other hand, it imposes restrictions on
the modeling and optimization of systems. In this article, we introduce refined clocks in imperative synchronous
languages to overcome these restrictions while still preserving important properties of the basic model. We first
present the idea in detail and motivate various design decisions with respect to the language extension. Then, we
sketch all the adaptations needed in the design flow to support refined clocks.

1 Review

Synchronous languages [1] such as Esterel [2], Lustre
[3], or Quartz [4] have been proposed for the devel-
opment of safety-critical embedded systems. They are
based on a convenient programming model, which
allows one to generate deterministic single-threaded code
from multi-threaded synchronous programs. Thus, syn-
chronous programs can directly be executed on simple
micro-controllers without having the need to use complex
operating systems. In addition, synchronous programs
can straightforwardly be translated to hardware circuits
[4-6], which makes synchronous languages attractive for
the use in hardware—software co-design. Furthermore, the
concise formal semantics of synchronous languages is the
basis for formal verification of the correctness of the pro-
grams as well as of the used compilers [7-10]. Finally,
since macro steps consist of only finitely many micro steps
whose number is known at compile-time, one can deter-
mine tight bounds on the reaction time by a simplified
worst-case execution time analysis [11-14].

All these advantages are due to the underlying syn-
chronous model of computation [1], which divides the
execution of programs into micro and macro steps,
where variables change synchronously only between
macro steps and remain constant during micro steps.
The partitioning into micro and macro steps is explicitly

*Correspondence: gemuende@cs.uni-kl.de
Department of Computer Science, University of Kaiserslautern, Kaiserslautern,
Germany

@ Springer

given by the programmer, and the micro steps are exe-
cuted in a causal ordering so that there are no read-after-
write conflicts [7,15]. As a consequence, all threads of a
program run in lockstep: they execute the micro steps of
their current macro steps in the common global variable
environment, and therefore automatically synchronize at
the end of the macro step.

Obviously, the synchronous model of computation
enforces deterministic concurrency, which has many
advantages in system design, e.g., to avoid Heisenbugs [16]
and to allow compile-time analyses, e.g., on WCET. At
the same time, however, it imposes tight restrictions on
modeling possibilities, since there is no means to express
the independence of threads in certain program loca-
tions. This phenomenon—where synchronous lockstep
execution of threads is enforced even though it is not
necessary—is often referred to as over-synchronization.
Over-synchronization occurs quite frequently, since the
input signals of a system usually have different rates, and
even signals of the same rate do not necessarily need
to be synchronized if there are no data dependencies
among them. While a static clock and data-flow analysis
may be able to detect the dependencies to desynchro-
nize such programs [17], adding an explicit notion of
independence makes it possible for compilers to create
desynchronized code without sophisticated and expensive
analyses.

Another deficiency of the synchronous model is its
inflexibility with respect to temporal changes. Mod-
ifications of the temporal behavior of a component
may be problematic since they can endanger the global

© 2013 GemUinde et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

behavior of the entire system. For this reason, design
methods such as latency-insensitive [18] design or syn-
chronous elastic systems [19,20] have been developed to
maintain the synchronous computation between mod-
ules in case the timing of one of the modules is
changed.

Another desirable feature for imperative synchronous
languages, which requires further temporal abstraction
layers, is function calls, which must be executed within
a micro step: For example, assume that the greatest
common divisor (GCD) of two integers is required in
a program expression. As such non-primitive recursive
functions require data-dependent loops, it is not possi-
ble to implement them as micro steps of a macro step
since the number of micro steps depends on values. Exe-
cuting parallel function calls imposes a lot of problems
since lazy evaluation or other kinds of code optimiza-
tion destroy the temporal behavior. Wrapping functions
into module calls causes even more problems, since the
function parameters should be constant during func-
tion evaluation, which must explicitly be enforced by the
caller. A true function interface would guarantee this by
definition.

All these problems can be solved by providing a hier-
archy of clocks in the synchronous system that does
not only allow to combine macro steps to a larger step
of a slower clock, but that also allows one to refine
the base clock into different faster clocks. Thereby, it is
possible to explicitly describe the point of time, when
synchronization should happen, independent of the num-
ber of steps that have been passed or that are needed
for a calculation. The refinement of the base clock in
a module is particularly attractive since it retains the
external input/output behavior. Thereby, it is possible
to replace a code segment by another one having a
different temporal behavior. For instance, it becomes pos-
sible to exchange components with functionally equiv-
alent ones running at higher clock speeds. Obviously,
refinements make component-based design much more
flexible.

The rest of this article is structured as follows.
Section 2 briefly introduces the imperative synchronous
language Quartz, which serves as the starting point for
our extension which is presented in Section 3. Section 4
sketches a formal semantics for the extension. Section 5
gives details about the compilation of our extended
Quartz to a new intermediate format, and from there
finally to hardware and software. Section6 finally dis-
cusses related work before we draw some conclusions in
Section 7.

2 The synchronous language Quartz
This section introduces the synchronous model of com-
putation with the example of the imperative synchronous

Page 2 of 21

language Quartz. The synchronous model of computa-
tion [1,21] divides the execution of a program into a
sequence of macro steps [22]. In each macro step, the sys-
tem reads the inputs, performs some computation and
finally produces the outputs. In theory, the semantics
assumes that the outputs are computed in zero-time. In
practice, the execution implicitly follows the data depen-
dencies between the micro steps, and outputs have to
be computed in bounded time for the given application.
Thus, the synchronous model of computation abstracts
from communication and computation delays and consid-
ers only the dependencies of the data. A consequence of
this abstraction is that each variable has a designated value
in each macro step.

2.1 Statements
The imperative synchronous language Quartz implements
the synchronous model of computation by means of the
pause statement. While all other primitive statements
do not take time (in terms of macro steps), a pause
marks the end of a macro step and consumes one logi-
cal unit of time. Thus, the behavior of a whole macro step
is defined by all actions between two consecutive pause
statements. Parallel threads run in lock-step: their macro
steps are executed synchronously, and the statement in
both are scheduled according to the data dependencies so
that all variables have a unique well-defined value in the
macro step.

We illustrate the synchronous model of computation by
a simple example shown in Figure la. It takes two inputs
i1, i2, produces two outputs o1, 02, and has one local
variable x. Every pause statement is annotated with a
label for better identification. Figure 1b shows an execu-
tion of the program based on some sample input values.
For space reasons, the values true and false are written
as T and F in the figure. In the first macro step, the pro-
gram is started (st is true) all actions before the first
pause statement are executed. In the example, these are
the assignments to o1 and x which assigns the values 3
and 1 based on the given input values. There is no assign-
ment to 02 which therefore gets its default value 0. In
the second macro step, the execution resumes from the
pause statement with label 11. The label is set to true,
and all other labels are false for this step. In this sec-
ond step, the variables 01, 02 and x are assigned. Since
each variable has a unique value for the entire step, the
value that is assigned to o2 is used to determine the
value for ol. Thus, the assignment to 02 must be exe-
cuted before the assignment to ol. The resulting values
are shown in the table. The next macro step starts from
the pause statement with label 12. Due to the if state-
ment, the assignment to ol is not executed. Since ol
is not set by an assignment, it stores its value from the
last step.

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

Page 3 of 21

module P1
(nat 7i1,7i2,01,02)
{
IliathE 1 2 3 5
oo
o? = il + i2; i1 1 2 3 :
x = il; i2 | 2 4 6 8 0
11: pause; st | T
ol = 02 + il + x; 11 T T
02 = 1i2; 12 T
x = 2; 13 T
12: pause;
if(ilf>4) x |1 2 2 4 2
ol = it; ol 3 &8 8 12 7
02 = il + o1; 02 | 0 4 11 11 0
13: pause;
}
}

(a) P1 Source Code

Figure 1 P1 example.

(b) Sample Ezecution Trace

Basically, all Quartz programs can be reduced to the fol-
lowing set of basic statements, which can be used to define
further macro statements as syntactic sugar:

nothing
This statement has no effect. It only exists for techni-
cal reasons of defining source code transformations.

1: pause

The pause marks the end of a macro step and thus
also the begin of the following step.

X =71

This form of a variable assignment is called an imme-
diate assignment. It sets the value of the variable x for
the current step to the value given by the evaluation of
the expression 7.

next (x) =7

This form of variable assignment is called an delayed
assignment. Like the immediate assignment, it evalu-
ates the expression t with the values of the current
step, but this value is assigned to the variable x only in
the following step.

do ... while(o)

This loop statement first executes its body statement.
If the body statement terminates, the condition o
is evaluated and if o holds, the body statement is
restarted in the same step. Otherwise, the loop termi-
nates. All other loop versions can be reduced to this
basic loop.

e{ ... rI{..)

The parallel statement executes both code blocks
in parallel where in each step, one macro step of
each block is executed. We call the two code sub-
statements of the parallel statement threads. One can
therefore also say that the threads synchronize on
each pause statement that is reached. The parallel
statement terminates if its last thread terminates.

e abort ... when(o)
With the (strong) abortion statement, the execution of
a code block can be aborted when the given condition
holds. The abortion takes place at the beginning of a
macro step: if the condition holds in a step, no action
inside of the code block is executed.

e suspend ... when(o)
With the (strong) suspension statement, the execution
of a code block can be stopped when the given con-
dition holds. In this case, the execution is stopped for
the whole macro step and no action inside the block
is executed. The execution resumes at the next macro
step where the condition does not hold.

There are also other statements which are not consid-
ered here, because we do not define the extension with
refined clocks for them.

2.2 Logical correctness and causality
In the synchronous model of computation, all micro steps
in a macro step are executed synchronously. In theory,

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

every variable assignment that complies to the execu-
tion can be considered as a consistent one. A program
that has for each input assignment exactly one consis-
tent assignment of all variables is called logically correct.
We illustrate this concept with the help of the following
Quartz program.

11: pause;
if (x | y) o
X = true;

} else {
true;
pause;

x =
12:

}

y = true;

13: pause;

Consider the step that starts from label 11. Assume that
the variables x and y had the value false in the previ-
ous step, i. e. if no assignment sets them in the considered
step they will keep their values of the previous step. In
order to be logically correct, a unique variable assignment
has to be found which leads to a valid execution of the
program. In principle, we can check all possible variable
assignments.

It is easily seen that only the assignment (x = true,
y = true) is consistent. Thus, this program (or at least
the considered step) is logically correct. However, for a
real execution of such a program, considering all pos-
sibilities is too inefficient. Therefore, the semantics of
any synchronous language, and the one of Quartz in
particular, also requires a constructive execution of pro-
grams (so that the above example is not a constructive
Quartz program). In Quartz, this means that actions can
be only executed if all control-flow conditions contribut-
ing to their trigger can be evaluated before that action.
The control-flow conditions to execute the assignments
to x and y depend on the values of x and y which is
not allowed. Instead it should be possible to evaluate
those control-flow conditions from already known values.
Checking this property statically is known as causal-
ity analysis [7,15,23-28] in the context of synchronous
programs.

2.3 Compilation and intermediate representation

Quartz is currently the language of the Averest framework
(http://www.averest.org), which contains tools for simu-
lation, compilation, verification, and synthesis for Quartz
[4]. Thereby, its compiler translates the source files to
the Averest Intermediate Format (AIF) [29]. AIF abstracts
from the complexity of the source language: difficult inter-
actions of preemption statements or reincarnations of
local variables [7,30,31] are no longer an issue. Never-
theless, AIF files contain the entire behavior of the given

Page 4 of 21

synchronous program, and they are therefore the central
part of the target-independent analyses of various back
end tools.

The intermediate format describes the behavior with the
help of synchronous guarded actions [31], which turned
out to be well suited to eliminate the complex interac-
tion of statements of the source language on the one hand,
while preserving the synchronous semantics and allowing
efficient analysis and generation of hardware and software
code on the other hand. A guarded action is of the form:

y =4 (1)

where y is called the guard and A is an action, i.e., either
an immediate or a delayed assignment. The intention is
that the action is executed in an instant whenever its
guard holds. Thus, the data-flow actions can be collected
from the source code, and the compiler determines their
corresponding guards.

Guarded actions do not only represent the data-flow,
i.e., assignments occurring in a program, but they are also
used for the control-flow. To this end, all program labels
are encoded as Boolean events (and additionally adding
an implicit start label st). The control flow can then be
described by actions of the form (y = next(£) = true),
where y is a condition that is responsible for moving
the control flow at the next point of time to location ¢.
For instance, the guarded actions for program P1 (see
Figure 1a) are given in Figure 2.

The semantics of the intermediate format is as follows.
In contrast to traditional guarded commands [32-34],
guarded actions follow the synchronous model of compu-
tation. In each macro step, all actions refer to the same
point of time, i.e., the evaluation of all expressions con-
tained in the guarded actions refers to the same variable
environment. If the guard t of an immediate assignment
y = x = Tt is true, the right-hand side 7 is evalu-
ated to determine the value of variable x in the current
macro step, while a delayed action defers the update to the
following step.

Similar to Quartz programs, the AIF description adds an
implicit default reaction: if no action has determined the
value of the variable in the current macro step, then a vari-
able either gets a default value or stores its previous value,
depending on the declaration of the variable (obviously,
this is the case if the guards of all immediate assignments
in the current step and the guards of all delayed assign-
ments in the preceding step of a variable are evaluated
to false). Thereby, event variables are reset to a default
value while memorized variables store their value of the
previous step.

In addition to the description of the behavior by
guarded actions and default reactions, AIF contains
more information such as the declaration of variables

http://www.averest.org

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

Page 5 of 21

st => 01 =1i1+1i2
st = x = 1i2
1 =ol = }.(Jr 11402 st = next (11) = true
11 = 02 =12
11 = next (12) = true
1= x =2
. . 12 = next (13) = true
12731 >4 = ol =il 13 = next (11) = true
12 = 02 =il+ol -
13 = 01 =il+1i2
13 = x =12
Data-Flow Actions Control-Flow Actions
Figure 2 Guarded actions of program P1.

and the input/output interface of the described syn-
chronous system. The intermediate format contains
more information (e.g., about modularity or verifica-
tion), which we skip since it is not needed in this
article.

The algorithm which translates a given Quartz program
to guarded actions is given in [29,31], and we will only
sketch its basic idea in this article. The whole procedure is
split into two functions, which determine the surface and
depth [7] of each statement:

e surface
The surface contains the guarded actions which are
executed in the macro step in which the considered
statement is started.

e depth
The depth contains the guarded actions which are exe-
cuted in all following steps after the statement was
started.

Thereby, the whole compilation slices the program
into steps, i.e., the depth compilation makes use of
the surface compilation, which traverses the abstract
syntax tree (AST). The separation into surface and
depth is essential for the correctness of the compilation
algorithm.

3 Language extension

As already stated in Sectionl, all threads of a Quartz
program are based on the same timescale and therefore,
they synchronize at each pause statement. If they do not
communicate, then the synchronization is not necessary,
but still enforced by the synchronous model of compu-
tation. This so-called over-synchronization is therefore an
undesired side-effect of the synchronous model of com-
putation. We present clock refinement as a solution to
overcome this problem. This extension was recently pro-
posed [35] to avoid the described effects and others. First,
Section 3.1 describes the basic idea of the extension, then

we illustrate the underlying time model in Section 3.2,
and we finally discuss some design decisions and their
consequences in Section 3.3.

3.1 Basicidea of refined clocks

The basic idea of the language extension is explained in
the following with the help of two implementations of
the Euclidean Algorithm to compute the GCD. The first
variant, which is given in Figure 3a, does not use clock
refinement. The module reads its two inputs 4 and b in
the first step and assigns them to the local variables x
and y. Then, the module computes iteratively the GCD
of the local variables. The computation steps are sepa-
rated by the pause statement with label 11. Each variable
has a unique value in a step, and the delayed assignments
set a new value to the variables for the following step.
Finally, the GCD is written to the output variable ged.
Apparently, a drawback of this implementation is that the
computation is spread over a number of steps. The actual
number depends on the input values, and each call to this
module has to take care of the consumption of time. An
example execution trace for the computation of the GCD
of the numbers 7 and 3 is shown in Figure 4a. The com-
putation takes six steps and during this computation, the
inputs a and b may change in principle. Thus, a calling
module has to take care of the computation steps until the
result is available.

The second variant, which is shown in Figure 3b, uses
clock refinement. While the overall algorithm remains the
same, the GCD computation is now hidden in the decla-
ration of the local clock C1. The computation steps are
separated by the pause statement with label 1, which
now belongs to the clock C1. In contrast to the first vari-
ant, the computation does not hit a pause statement of
the outer clock and thus, the computation steps are not
visible to the outside. As a consequence, each call to this
module seems to be completed in a single step. The local
variables x and y are now declared inside the local clock
block and therefore, they can change their value for each

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

Page 6 of 21

module GCD1

(nat 7a, 7b, !gcd)

nat x,
X = a;
y = b;
while(x > 0) {
if(x >= y)
next (x)
else
next (y) =
1: pause;

Y

Il
b

|
<

}

ged = y;

(a) Single Clock

Figure 3 GCD.

module GCD2

(nat ?7a, 7b, !gcd)
{
clock(C1) {
nat x, y;
X = a;
y = b;
while(x > 0) {
if(x >= y)
next (x) = x-y;
else
next (y) = y-x;
1: pause(C1);
}
ged = y;
}
}

(b) Clock Refinement

step of the local clock, which is crucial for the correct
execution of the algorithm in this example. An example
execution trace for the computation of the GCD of the
numbers 7 and 3 is shown in Figure 4b. The computation
for the version with a refined clock takes also six steps,
but these are steps of clock C1. The computation is fin-
ished in one step of the module’s clock. The variables a, b,
and gcd, which are declared on the module’s clock, only
have one value for this base step, while the variables x and
y, which are declared on clock C1, change their value for
each step of clock C1. Thus, the inputs remain constant
during the computation and there is only one value of the
output gcd.

The trace shows even more: In the synchronous model,
each variable has exactly one value for each step, and
this value is valid from the beginning to the end of the

step. The inputs are given from the outside and thus,
they are known for the whole computation. The out-
put gcd is computed after some substeps, but in the
general view, it is valid during the whole step. An addi-
tional note should be given on the term clock, because
it is often used for different concepts. In this case, the
clock is about the description of the computation and
the control-flow of the language. It is not to trigger
computations from the outer environment by, e.g., a
periodic signal. This distinction is considered again in
Section 6.

Obviously, it is not only possible to arbitrarily nest clock
declarations, but also to introduce new clocks in sepa-
rate scopes. This gives rise to the clock tree of a program,
which can directly be obtained from the program struc-
ture. Figure 5 gives an example: the left-hand side shows

1 2 5 |1 2 3 4 5 6
a |7 7 7 77 a |7
b |3 3 3 3 3 3 b |3
st | T st | T
1 T T T T T 1 T T T T T
x |7 4 1 1 1 0 x |7 4 1 1 1 0
y |3 3 3 2 1 1 y |3 3 3 2 1 1
ged |0 0 0 0 0 1 ged | 1

(a) Single Clock
Figure 4 GCD traces.

(b) Clock Refinement

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

Page 7 of 21

/\
/\

Cs C2

(b) Clock Tree

module Clocktree(...)
{
clock(C1) {
clock(C2) {...}
}
clock(C3) {
clock(C4) {...}
||
clock(Cc5) {...}
}
}
(a) Code Structure
Figure 5 Clock tree of program.

the structure of nested clock declarations in source code,
and the right-hand side shows the according clock tree,
which can be derived from it.

3.2 Different views at the time model

The synchronous model abstracts time to reaction
instants. The imperative synchronous language Quartz
implements this model by steps, which range from a
pause statement to another pause statements in the
source code. Thus, in this single clock model, instants
coincide with steps.

This section discusses two different interpretations of
refined clocks and pause statements related to a partic-
ular clock. The first interpretation keeps the view that a
step of the module coincides with an instant, whereas in
the second interpretation new instants are introduced by
the refined clocks, but these instants are not visible to the
outside. We call the first one the step view and the sec-
ond one the instant view. Both of them are discussed in
more detail in the following. In single-clock Quartz, the
following two interpretations of the pause statement are
possible:

1. A step ranges from one pause statement to a
pause statement and everything in between defines
the behavior of the execution instant. Thus, the
pause statement separates two steps.

The program execution waits at a pause statement
for a clock tick. When it occurs, the program is
executed until the next pause statement is reached
and the execution stops and waits for the next clock
tick to occur. It can be seen as a special kind of the
await statement that waits for clocks.

The distinction between the above two views might
appear artificial and irrelevant, so one might say that both

views are the same. This is mostly true for the single clock
case, where both views coincide, but when refined clocks
come into play, both views become different:

1. A step of a clock ranges from one pause statement
of this clock to another one. In between, pause
statements of a lower clock can occur, which
hierarchically divide the step into substeps.

. The execution waits at a pause statement for the
occurrence of the clock the pause belongs to. Then
the execution proceeds to the next pause statement
and waits again. This view introduces new instances
to the execution, but there is no forced
synchronization in each step, because different
threads may wait for different clocks.

The difference of both interpretations for refined clocks
is illustrated by a code example in Figure 6. Note that
the refined clock C1 is locally declared in the first thread.
Assume that the control-flow is currently at labels 11 and
14. Then, we compare both interpretations:

According to the first interpretation, everything
between two pause statements of the same clock
belongs to a step of this clock. We are interested in
steps of the module’s base clock C0, which is not
explicitly declared. In the first thread, this step ends
at the pause statement with label 13. In the second
thread, this step ends at label 15. Both threads
execute one step synchronously, and thus, all parts of
Ai, Ay, and Aj referring to the module clock C0 are
executed together, regardless of the separation of 4;
and Ay due to C1.

. According to the second interpretation, the program
waits for a clock tick of the clocks given as the
argument of the pause statements, and the

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

clock(C1) {
11: pause;
A1
12:
As
13:

oA
14 .

As
15:

-

pause (C1) ;

pause

-

pause

-

pause;

-

by

Figure 6 Comparison of the step and instant view.

execution proceeds to the next pause statements,
waiting there for the next tick. When a tick of the
module clock occurs, A; and Ajz are executed
synchronously, and the labels 12 and 15 are reached,
where the execution waits for the next tick, which
can only be C1. The execution proceeds with A3, and
the first threads finally reaches label 13 while the
second threads simply waits at label 15 for the next
tick of C0.

In the first interpretation, Ay and A3 are executed syn-
chronously and thus, A3 can depend on Aj. In the second
interpretation, both blocks are explicitly ordered, and .43
is executed before Aj so that A3 cannot depend on Aj.
Thus, the second interpretation is a more operational style
of description, whereas the first one can be seen as a more
declarative way.

The intention of this extension is to provide an (oper-
ational) executable model, which lead to the conclu-
sion that the second view is taken. This decision can
be justified with constructive semantics for Quartz and
Esterel: not each logically correct program is consid-
ered a good one for execution. Even if some actions
are executed in the same instant, they also can any-
way depend on each other by an causal order. The
discussion in the following section will also confirm
this choice.

Page 8 of 21

3.3 Refined clocks in Quartz programs
This section discusses several design decisions for our
extension and their effects, in particular to the data-
flow of Quartz programs. As we will see, the most gen-
eral variant of the extension has to deal with many
problems, which makes it too inefficient for practi-
cal examples (and probably too complex for develop-
ers). The result of our discussion are several restrictions
which limit the set of valid programs to a reasonable
subset, where the additional complexity is manageable.
This approach is similar to the constructive seman-
tics of Quartz which does not allow all logically correct
programs.

In the following, we use the notation .4; to identify some
arbitrary actions (assignments) in the source code. Direct

. C .
dependencies are denoted as A; — A, which means that
X

there is an action in A; that writes the variable x of clock
C that is read by an action in A;. Thus, Ay cannot be
executed before Aj;.

3.3.1 Backward data flow

From the semantical point of view, substeps can be seen
as micro steps of the higher clock level. In principle,
they are executed simultaneously in a single step based
on the higher clock. However, if we take a finer grained
view, we notice that the substeps are actually executed
sequentially. Without any additional constraints, this has
the consequence that information can flow backwards
in the program across substeps since a variable on the
higher level does not change throughout the whole (super)
step. Consider the following fragment of code as an
example:

clock(C1) {
11: pause;

Ay

12: pause(C1);
A

13: pause;

3

This code fragment basically contains one step of clock
CO0, which starts at 11 and ends at 13. This step is divided
into two substeps of clock C1, where the first substep exe-
cutes the actions A; and in the second one the actions
As. The following cases of dependencies can occur for the
above example:

e A % A
The variable x of clock CO is written by an action in
Aj and read by an action in Aj;. Since x refers to clock
Co, it has exactly one value for the whole step from
11 to 13. This dependency seems to be no problem,
because both steps of clock C1 can be executed in the
right order.

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

[AZ 2) Al
X
The variable x of clock CO is written by an action in
Aj and read by an action in A;. Since x refers to clock
CoO, it has exactly one value for the whole step from
11 to 13 and value of x is needed for the execution of
Aj. However, an implicit execution order of the both
steps is given by their ordering in source code. Thus,
the information flows backwards due to the substeps.

It seems to be possible to solve the second dependency for
the second case in the above example by a simple analysis.
However, the examples can be much more complex, since
control-flow introduces the question whether an action is
finally reached or not.

clock(C1) {
11:
Ai
while (y) {

A

12: pause(Cl);

pause;

}
As
13:

) co
Assume that we have the dependencies A3 —
X

pause;

AL A 2y, 4, S5 Az of the actions for example
Z

above. Thz condition y of the loop depends on a variable
y of clock CO but the computation of the variable in 4;
depends on another variable x, which is computed at the
end of the step. In addition, the loop must terminate to
reach the end of the step of clock C0. The variable z, which
belongs to clock C1, is changed in the loop and finally it
is used to compute x. Thus, the whole loop has to be iter-
ated to its end to check whether the loop has to be entered
or not.

The example illustrates two points: First, introduc-
ing refined clocks without additional constraints would
require an expensive (reachability) analysis, and second, it
seems to be unnatural to the developer since pause state-
ments of clock C1 impose a sequential order of substeps.
In consequence, backward data flow is forbidden in our
approach, and a sequential execution of the substeps must
be able to compute all values.

3.3.2 Scheduling parallel threads

Several refined clocks can also be declared in parallel
threads so they are unrelated to each other (substeps of
one thread are not visible to the other thread). Thus,
there is no stepwise synchronization for these clocks.
Instead, synchronization is only given by steps of a higher
clock which is declared outside the parallel statement
and visible to both threads. In the rest of this section,

Page 9 of 21

we first look at a simpler situation, where we have two
threads and a refined clock in addition to the module
clock.

clock (C1)

11: pause;

Ar

12: pause(Cl) ;
Ay

13: pause;
P Ao

14: pause;

As

15: pause;

}

In the first reaction, both threads are entered and
the control-flow stops at labels 11 and 14. The first
thread starts the next step of clock CO at 11, executes
the actions A; and A; in two substeps, and ends at
13. In the second thread, this step of clock CO starts
at label 4, includes the actions A3 and ends at label
15. Due to the synchronous model, the steps of both
threads are executed synchronously. However, the step
of clock C0 of the first thread is divided into two
steps of the lower clock C1 (the first one executes the
actions A1, and the second one executes the actions A5).
Assume that we have the following dependencies between
actions:

The sequential dependency between A; and Aj is given
by the source code. However, both can use the same vari-
ables of clock C1, which generally have different values
in different substeps. A3 writes a variable that is read by
Aj, and A, writes a variable that is used by As. This is
not necessarily a cycle because the variables imposing the
dependencies can occur in different actions in A3. The
model itself just means that all actions A3 are executed
until label 15 is reached. Thus, splitting A3 into parts
seems to be possible where the actions with dependencies
to A, are executed together with .4; and the other actions
are executed with A,.

Consider a second example, which looks very similar at
first glance:

clock(C1) {

{

11: pause;

Ay

12: pause(Cl);
Ay

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

13: pause;
oo

14: pause;
A3

15: pause;
}
}

The code is mostly the same as the previous one—only
the clock C1 is declared outside the parallel statement
so that it is visible in both threads (as well as variables
declared on this clock). Thus, dependencies between A3
and A; are now also possible on clock C1. Assume the
following dependencies:

@ Mo ")

The sequential dependency between .4; and A, is still
present. First, consider case (a), where a dependency by
variable x of clock C1 exists from A3 to A;j. The second
dependency is imposed by variable y of clock CO from
Ay to As. If the variable x can be computed without the
knowledge of variable v, it is still possible to split .A3 and
execute one part with .4; and the other one with 4;. How-
ever, if y is needed to determine the value of %, a cycle
is present and the execution is not possible. Now, con-
sider case (b) where the dependency goes from A; to As.
Again, if x and y are not needed in the same actions, a split
is possible. However, if both occur in the same guarded
actions, the situation becomes more complicated. This
action needs to be executed when the value of y is known,
i.e.,, when A, is executed. However, the value of y deter-
mined by A; has to be used which is the value from the
last substep. Thus, the value has to be stored so that the
action in A3 can be executed later.

Finally, consider the following example:

clock(C1l) {
11: pause;

Ay

12: pause(C1);
Az

13: pause;

oI A

14: pause;

As

15: pause(C1);
Ay

16: pause(Cl);
Ay

17: pause;

Page 10 of 21

The step in the first thread is now divided into two
substeps of clock C1 and the step in the second thread
into three substeps. Due to the parallel threads, the sub-
steps are also executed in parallel. Thus, a synchronization
takes place at labels 12 and 15, and the actions A; and
As are executed together. After this first substep, there
is a very similar situation to the previous example: the
first thread has one step to reach label 13 and the second
one has to execute two substeps. However, in the previ-
ous example we talked about splitting the actions of the
first thread. However, this seems to be very confusing,
especially to the developer to decide when actions can be
moved to different substeps and when not. Therefore, we
only allow the actions within an instant to be executed
synchronously.

4 Formal semantics

We formally define the semantics of our language exten-
sion in the style of Plotkin’s Structural Operations Seman-
tics (SOS) [36,37]. This formalism has already success-
fully been used in the context of synchronous languages
[7,38,39], and the formal semantics of single-clocked
Quartz [4] already exists in this format. As the name sug-
gests, SOS rules are defined over the structure of a given
program, i.e., the AST.

In sequential programming languages, a program is exe-
cuted step-by-step as given in the source code. However,
due to the synchronous abstraction of time, the execution
of synchronous programs must follow data dependencies,
which is not necessarily the order given in the source
code. Hence, we cannot use SOS rules directly, but our
semantics uses two sets of SOS rules: transition rules and
reaction rules.

The execution of the program is based on an environ-
ment £, which is an assignment of values to each variable
of the program. The transition rules specify an inter-
preter: they take an environment and a given program
and execute its first step, i.e., they transform the pro-
gram according to the environment. The computation of
the actual environment (which also comprises a dynamic
causality analysis) is accomplished by the second set of
rules, the reaction rules. In the following, we focus on the
first part, the transition rules. For the reaction rules, we
refer to [40,41].

4.1 Basic definitions

This section introduces some basic notations and formal-
izations. First, we define the basis of our temporal model,
namely clocks, and their refinements. As all refinements
always refine existing clocks, they can be organized in a
tree-like relation, which is defined as follows.

Definition 1. (Clocks) We write ¢c; > c3 if the clock cy
is declared in the scope of ci, i.e, c1 is on a higher level

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

(slower) than cy. The relations >, <, < are used accord-
ingly. If two clocks ¢1 and cy are independent, i.e., neither
c1 > ¢ nor ¢1 < ¢y holds, we write c1 # cs.

Two clocks are independent, i.e., ¢1 # cp, if they are
either declared in parallel threads, or they are declared
in two distinct parts of a sequence or an if statement.
For example, the clock relations C5 < C1 and C2 # C3
hold for the program in Figure 5. In addition to the
clocks, each program uses a finite set of variables and
each variable is declared inside the scope of a clock. The
following definition takes care of the variables and their
clocks:

Definition 2. (Variables) V is the set of variables of a
synchronous program. Each variable x € V stores a value
of its domain dom(x), and it is declared in the scope of a
clock, which is given by clock(x). Additionally, we denote
with VN, VOUT YLOC the sets of all input, output and local
variables respectively. For a variable x, default(x) denotes
its default value.

For example, the default value of a Boolean variable is
false and that of an integer variable is 0. As an example, the
clock of the variable x in the program GCD2 in Figure 3 is
C1 (clock (x) = C1). For assigning values to variables,
we use the following actions:

Definition 3. (Action) The actions in a synchronous
program are assignments of one of the following forms.

x =T
next (x) =

(immediate assignment)
(delayed assignment)

|
a

An immediate assignment assigns the value of the expres-
sion t directly to the variable x. A delayed assignment
evaluates the value of T directly but assigns it in the next
step of clock(x).

Note that a delayed assignment takes care of the clock
of the variable that is assigned. In the semantics definition
of synchronous programs the values of variables are deter-
mined iteratively for each step. Therefore, a notion of not
yet known is needed for variables. This is covered by the
following definition.

Definition 4. (Environment) An environment £ maps
each variable x € V to a value of dom(x) U {_L}. Hence, the
extended domain of a variable x additionally contains the
value 1, which is interpreted as not known. We write £ (x)
to retrieve the value of x in environment &£, and similarly
[z]¢ to evaluate the expression T with respect to the values
of the variables in environment £. The environment which
is undefined for each variable is denoted with E*.

Page 11 of 21

In addition, we define operations on environments.

Definition 5. (Environment Combination) For two
environments £1 and &, we define the intersection and
union as follows:

&E1né&)) =

1 otherwise

{V ifv=&6 (=& @

S if & x) =1
S) if&r(x) =1
v ifv=£&(x) =& @

(E1U&) () :

The union is only allowed if there are no conflicting
values for the same variable in both environments.

Definition 6. (Environment Restriction) A restriction
of an environment £ with respect to Oc (Where © €

{= = <, =% A £)) is defined as follows:

| E@) if clock (%) © ¢
(E))p ¢ @) = { L otherwise

Thus, (&) Jos € describes the environment where all

variables with a clock lower or equal to c are set to L, the
values of all other variables in £ are kept.

Definition 7. (Partial Order of Environments) An envi-
ronment & is smaller than environment &, (greater resp.),
if the following holds:

EICEHoVxeV.E W EL—->E R =E®K)

Thus, at least the variables which are defined by &; are
defined by &, with the same values.

4.2 Transition rules

The transition rules define the execution of a single
step on the source code based on an existing environ-
ment for this step. Previous sections discussed the view
at the model and emphasized the characteristics of the
pause (C) statement as wait for clock C. In the transition
rules, this view is pointed out by renaming pause (C)
to await clock (C). Analogous to the original await
statement, the transition rules also use the statement
immediate await clock (C) to define the behavior.
Transition rules have the form

(87 CS,S) E»(S/: A,C)

and describe how the statement & is transformed to
the residual statement S’ when an instant of clock c¢ is
executed with the environment £. Thereby, the set A con-
tains the assignments which are executed during this step
and the set C contains the clocks for which a correspond-
ing pause statement is reached during the execution.
Thus, C collects the clocks which can be used for the

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

next step. The statement clock Cgs is the lowest clock the
statement is defined in.

In the following, we only give the rules for the new state-
ments of our extension. All the other rules are similar to
the original definition for single-clocked Quartz, and they
can be found in Appendix 1. Additional details about their
definition can be found in [35].

Now consider a simple example for the transition rules.
Thereby, depending on the input i, the following state-
ment S can either be derived to S] or S:

X = true;

if (i) { x = false;

y = true; S 12: pause(C0);

11: pause(CO0); ' 13: pause(C0);
S: x = false; y = false;

12: pause(CO);

}

13: pause(C0); S): y = false;

y = false;

For an instant where input i holds, i.e., & (1) = true,
the i £-branch is entered and the statement is reduced by
the transition rules to:

(&1,C0,8) E»(S{, {x=true, y=true}, {C0})

For an instant where & (i) = false holds, the if-
branch is not entered and the statement is transformed by
the transition rules to:

(62,C0,8) > (S}, (x=true}, (CO})

Note that the i f statement is completely removed after
it is reached. The condition is only checked when the
statement is reached and in this instant it is substituted
with the one or the other branch depending on the evalu-
ation of the condition.

The transition rules which are used to define the seman-
tics of single-clocked Quartz in [4] use a Boolean flag
instead of the set C. In the single clock case it is sufficient
to indicate whether a pause statement is reached and
whether the macro step terminated. For refined clocks,
we collect the clocks of all pause statements which are
reached to be able to determine a clock for the next
step. However, the same information is still available by
checking the emptiness of C as it can be found in the rules.

Exemplarily, the rules for the new pause (C) state-
ment, or as it is called in the transition rules await
clock (C), are explained. When this statement is
reached, it is changed to immediate — await
clock (C). More important, the clock C is added to the

Page 12 of 21

set C which indicates that a new step of clock C can
be done. The rules for immediate await clock (C)
only proceed with the execution when a step on the
associated clock is performed.

The rules for the clock declaration (¢; and c¢3) are
straightforward. Both rules update the statement clock to
the current declaration. The rules differ in whether the
local block is executed in an instant or not. If this is the
case, the whole block is removed, otherwise it remains
with the residual statement.

4.3 Program execution
Based on the transition rules, the execution of a program
can be defined as a sequence of tuples.

(65, £5UR, £, £255, 50, cr),

R A
(EPRY, ECUR, ENXT ghSS 3, ¢},
~

(EPRY, ECUR, ENXT £ASS 5 ¢,)

Thereby, each tuple coincides with an instant in which
¢; holds. The environments El«CUR store the current values
of the variables, QPRV hold the values of the values in the
previous step (w.r.t. the clock ¢;), and ELNXT hold the val-
ues of delayed assignments which have to be committed in
the next step (w.r. t. the clock ¢;). In addition, the environ-
ments 524\55 hold the values of the current step which has
been already assigned by an immediate assignment. The
module is initially started with the module clock, and thus,
co = CO0 and Sy is the whole program. All other instants
(0 < i < n) are defined by the transition rules:

Ci
(£i,C0,S8;) = (Sit1, A, C)

Thereby, the clock for the following instant is defined by
the pause statements which are reached:

ciy1 €C,PceC.c> cipr

With the clock ¢;, a new step of this clock is started.
Thus, the environment EiPRV which holds the values of
each variable from its last step has to be updated for the
variables with clock ¢; or lower clocks. The values of all
other variables are retained:

PRV _ PRV J(ECUR
gl' - (gi_l)/Ciﬁ H (gi_l)/ciﬁ

The same holds for the environment €iCUR. However,
here it is only required that the values of the variables with

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

a clock not lower or equal to ¢; are kept and all variables
are assigned a value:
CUR CUR
= (o)/c'ﬁ
Fx e V. SiCUR x)=L1

The definition of the both environments EL.NOWASS and
EiNXTASS are used to treat the executed actions in envi-
ronments. Thus, if there is an action in A which sets the
variable x to 7, the value of t evaluated by 5iCUR is assigned
by EiNOWASS. Accordingly, SiNXTASS holds the values of the
delayed assignments:

ecr if x=7€ A
EiNOWASS (x) = [ﬂsi ‘
1 otherwise

ENXTASS (1) .— [[TﬂgiCUR if next(x) =7 A
' L otherwise

The environments SiNXT and EIASS are updated according
to the executed assignments. A delayed assignment from
the last step is also transferred to an immediate one of the
new step:

NXT * oNXTASS
& u &

_ NXT
G

= (&), - (ENT),, 0 Epowass

i

ASS
gi

With the clock of the next instant ¢;;; a new step of
this clock is started. It is also necessary to ensure that the
variables had the correct value for the step:

Vx € (V"oc U VOUT> .clock(x) < ¢ciy1 —

EMS() if EMSw) AL
5LPRV (%) if x is memorized variable
default (x) if x is event variable

ECWR () 1=

Since 0 < i < n, we need to initially define EEF}V =

ENXT — A% — £L and Vx € V. EWR (x) := default(x).

5 Compilation

This section explains the compilation of Quartz with
refined clocks. Similar to traditional Quartz, we also use
guarded actions as an intermediate format. However, the
intermediate format has to be extended appropriately so
that it can represent systems with refined clocks. The
translation to the intermediate format is presented in
Section 5.1. Based on this, we discuss two possible targets:
hardware synthesis in Section 5.2 and software synthesis
in Section 5.3.

5.1 Translation to the intermediate format

Similar to the extension of Quartz with refined clocks, we
also have to extend the intermediate format. As already
shown in Section 2.3, the intermediate format represents

Page 13 of 21

the behavior of a system by guarded actions defined over
a set of explicitly declared variables. Obviously, clocks
and their relations are additionally needed to describe
the data flow in the context of refined clocks, and the
extended intermediate format contains all this technical
information.

In the single-clock case, each guarded action is bound
to at least one label which defines the control flow loca-
tion in the source code where the action is executed from.
For refined clocks, it is now necessary to only execute
the actions when (1) the label holds and (2) the according
clock ticks. Therefore, the label in the guard is strength-
ened with the corresponding clock, which requires to
introduce variables for the clocks.

Before we go into details about the compilation, we first
recall the remarks from Section 3.3. There, we saw that
a pause statement is only left when its clock is present
(it will block until the given clock ticks). Consider the
following guarded action (see also Figure 2):

12Ail>4=01=1il

This action originates from a single clock example but it
can be also extended by the module clock C0 (which is the
clock of all labels in the single clock case):

(12ACO)Ail>4=0l =11

In the single-clock case, both guarded actions do not
make any difference since CO holds in every instant. How-
ever, we will extend the idea to refined clocks, where
clocks do not generally tick in every instant, and store for
each variable its clock. In particular, the Boolean control
flow labels are also bound to a clock. Finally, without going
into technical details, since the intermediate format stores
everything which is needed for further processing, also
the dependencies between clocks, i.e., the clock tree of the
system, are stored. A concrete example of a clock tree was
given in Figure 5, which would in this case be contained in
the intermediate format.

The compilation algorithm for refined clocks to
the extended intermediate format can be found in
Appendix 2. It is based on the original compilation algo-
rithm [4]. In particular, we also use the notion of surface
and depth. Thereby, the surface of a statement are the
actions which can be executed in the first instant, and
the depth are the actions which can be executed in the
following instants.

The algorithm basically works in the same way as the
original one, it traverses the AST of the programm and
determines with CompileSurface the actions which
are executed in the instant starting from the current posi-
tion. The entry point is defined by the function Compile
which calls CompileSurface and CompileDepth for
the whole program. It also sets the module clock C0 as the
highest one, because it is not explicitly defined. The labels

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

of the pause statements are strengthened by the clock
as described above. In addition, the abort and suspend
conditions need only to be checked on the corresponding
labels. On labels which are defined on a lower clock inside
of an abort block, those conditions do not need to be
checked. Therefore, the algorithm uses maps to store the
conditions of the surrounding abort and suspend blocks
related to each clock. At a pause statement, the condi-
tion for the clock just needs to be added. For a detailed
description of the compilation algorithm consider [40,42].
The guarded actions of the example program GCD2 are
given in Figure 7.

5.2 Hardware synthesis

The next step of the translation to hardware circuits is
an equation system. Given a library for all operators in
our data flow, the equations can syntactically be translated
to any hardware description language such as verilog or
VHDL. In principle, the translation can be also used to gen-
erate software but, as shown in Section 5.3, there is a more
efficient translation for that purpose.

In the equation system, we use three different kinds
of equations. The first type represents wires which are
directly connected to some logic so that the com-
puted value is immediately available. Such an immediate
equation has the following form:

X=T

for a variable x set to the current value of 7.

State elements such as registers are represented by
the remaining equations. Each one is defined by two
equations, one for the initial step and one for subsequent
transitions.

initx) = 1n1

next(x) = 1T

COAst = X
COANst = y =

CINIAX #0 =
Data-Flow Actions

CO A st = next (1) = true
CI1AL1Ax >0 = next(l) = true
Control-Flow Actions
Figure 7 Guarded actions of program GCD2.

Page 14 of 21

Note that the clock which defines the steps is now the
hardware clock, which is generally different to the logical
clocks of the source language.

5.2.1 Control flow

For the translation of the control flow, every label is
considered separately. Such a label £ can be written by
multiple delayed guarded actions (note that the control
flow does not contain immediate actions). Assume that
the label ¢ is written by the following actions:

y1 = next({) = true
¥y = next(£) = true

Vn = next(f) = true

The label can be set by this guarded actions, and it
remains active until its clock holds. Therefore, the actions
are combined to define a register in the following way:

false

YiIVy2V...

guards

init () =

next (/) = V y3 Vv (£ A —clock(?))

default

The expression to set the register is split into two parts.
The first one is given by the guards of the control flow
guarded actions which ensures that the label is set when
one of the guards hold. The second part is the default value
which ensures that the label remains activated as long as
no tick of its clock occurs. The special start label st is
translated as follows:

init (st) = true

next (st) = st A —clock(st)

Thus, we just set it initially, and reset it for the rest of
the execution.

5.2.2 Data flow

The translation of the data flow is more sophisticated
since we have to consider the following issues: (1) data
flow variables can be written by delayed and immediate
assignments and (2) delayed assignments do not necessar-
ily take place in the next instant, instead the value has to
be kept until the next tick of the variables clock. In gen-
eral, two registers are needed for each variable (for some
special cases, the following general solution can be opti-
mized but we will present the full solution for the sake of
completeness). Assume that a variable x is written by the
following guarded actions:

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

yli =>x = 1:{ yfl = Next(x) = tld
yzi =>x = ré yzd = Next(x) = 12“'

i _ i d _ +d
Ve =>X=T1, vy = Next(x) =1,

For a variable x, two new variables are introduced which
are converted to a register:

° xnxt

Delayed assignments are expected to take place at the
next occurrence of the clock of x. The variable x™**

stores values from those delayed assignments, until the
clock holds.

'Y xprv
Since the steps of a certain clock do no longer coin-
cide with the instants, the values of variables have to
be kept for the whole step. Therefore, the variable xP*"
stores the value of x from the previous instant.

The equations can then be defined as follows:

init (#™*) = default(x)
oA
B
next (x"*%) :
oyl
trans (x) : default

init (xprv) = default(x)
next (xprv) = x
ooy
2N
x = ‘ '
T, LV,
X7XE : clock(x)
xPTV . default

where the expression trans (x) depends on the storage
type of the variable x:

{ default(x) : x is event variable
trans (x) := . . .
x : x is memorized variable

Optimizations are possible e.g. if no delayed assign-
ments exists and trans (x) is a constant value (e. g. false).
In this case, the variable x™** can completely be removed
because it always holds a constant value. Similarly, opti-
mizations are possible if there are not immediate assign-
ments for a variable x. In this case, the translation shown
for the control flow can be used.

Page 15 of 21

5.2.3 Scheduling
In addition to the translation of the control flow and the
data flow, we have to consider the clocks for the synthesis.
In single-clock Quartz, this is simple since the hardware
clock coincides with the module clock of the Quartz mod-
ule. Thus, in each clock cycle one instant of the module
is executed. The hardware synthesis for refined clocks is
based on the same idea but for independent clocks the
one or the other instant can be executed. In addition, not
every clock is allowed to occur in every instant due to
the restrictions imposed by the clock tree and the control
flow. Restrictions can also be imposed by the data flow, if
one thread waits for a value which is computed by an inde-
pendent step in a later instant. To sum up, scheduling the
clocks according to the semantics requires some analysis.
In the following, we assume that communication
between unrelated clocks is only done by delayed actions
(for a generalization see [40,41]). This means that no data
dependencies exist for unrelated clocks and communica-
tion among them are synchronized by a common higher
clock. In this case, there is no need to consider data-flow
dependencies and we can describe a scheduler for the
clocks only by the control flow. We call a clock C enabled
if one of its labels holds:

enabled(C) := \/ £
te L clock(¢)=C

A clock is only allowed to tick, if at least one of the
related pause statements are reached. In addition, it can
only tick if no lower clock is enabled, because execu-
tion should synchronize on common pause statements.
Therefore, we also define the sets of all lower and all
higher clocks of C by:

lower(C) :=
higher(C) :=

{ceClc=<C}
{ceClc> C}

With these definitions, we can finally construct the
equation for the clock C as follows:

C =enabled(C) A /\

celower(C)

—enabled(c) v

tick by its own

\/
cehigher(C)
~———
tick forced by higher clock

Thus, a clock can tick by its own, if it is enabled, but no
lower clock is. In addition, a clock tick can be forced by a
higher clock which also includes all lower ones. This is to
trigger the delayed assignments also for the lower clocks.

5.3 Software synthesis
Synchronous languages can be used to build hardware
and software from the same description. One possible

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

solution for this is a software synthesis which simulates
the hardware that is described above. However, there are
more efficient solutions. One possibility is based on the
extended finite state machine. Thereby, the possible com-
binations of labels form the states. The guarded actions
are grouped by the labels which occur in their guards and
are assigned to the corresponding states. Thus, in each
state only the guarded actions which are possibly executed
have to be evaluated.

With the introduction of refined clocks, there exists
another parameter to classify the guarded actions. There-
fore, the guarded actions are first divided by the clocks
(of the labels) which occur in their guards. The guarded
actions of each clock are combined to a task. The advan-
tage is that local variables of a task are the local variables of
the clock and do not have to be made visible to other tasks.
Inputs of a task come from the higher level and outputs go
back to the higher level or to a lower one.

To complete one step, a module usually has to complete
several substeps. The substeps can be associated by unre-
lated clocks, thus, they can be executed independently.
With the model of tasks, the inputs and the according
state can be send to the tasks and they can concurrently
execute several substeps. The tasks can be scheduled
dynamically whenever a lower clock level is entered. Thus,
tasks model the parallelism which is inherent to refined
clocks.

5.4 Example

In this section, we will discuss by an example that refined
clocks can be used to relax over-synchronization and
that this advantage can be used for a more liberal code
generation. The software realization does not need to
introduce needless synchronization, and hardware imple-
mentations can use different schedulers for the refined
clocks to control the trade-off between resources (space of
the hardware design) and execution time.

Consider the following example which consists of two
parallel threads with two unrelated clocks. In each one,
the same resource is used—for illustration, assume that it
is a multiplier.

clock(C1) {

11: pause(Cl);

a =b *x c;

} 11 elock(C2) {
12 pause (C2) ;
X =y % z;

}

Without refined clocks, synchronization of both threads
would be necessary (due to the semantics) on each pause

Page 16 of 21

statement. The original single-clocked hardware synthe-
sis considers each instant as a clock cycle. Therefore,
using the same multiplication unit for both multiplica-
tions would require a reachability analysis to ensure that
both are not executed in the same clock cycle.

Refined clocks relax the need for synchronization and
only require them for the same clocks. Therefore, syn-
chronization is not necessary for the above example. The
scheduler, as it is described in Section 5.2.3, can (1) exe-
cute both steps containing multiplications together or it
can (2) ensure that both steps are executed one after the
other. For the first case, two multipliers are necessary, and
both are used in parallel. For the second case, since the
scheduler ensures the mutual exclusive access, only one
multiplication unit is necessary, since the multiplications
are executed one after the other. To summarize, both cases
differ in space (of the hardware design) and (execution)
time in terms of clock cycles. From this point of view,
the first case can also be achieved without refined clocks.
However, refined clocks initially introduce the possibility
of selecting between space and time.

6 Related work

Using more than one clock in a system is a quite common
approach to deal with timing, synchronization, and inde-
pendent execution in synchronous systems, even though
the term clock can be misleading since it is used for many
different concepts: a hardware developer will probably
understand by clock a periodic signal whose occurrence is
based on a fixed physical time. In this case, the clock signal
is typically fed in from the environment (clock generator)
into the actual circuit and is used to drive the execution.
Another interpretation is given from synchronous data-
flow languages like Lustre or Signal where each signal has
a clock that identifies the availability/presence of data.
Thereby, the presence of data can depend on the pres-
ence of other data and also on other data values. These
clocks are not necessarily all given by the environment,
and can be instead computed by the system from the given
ones. Finally, the imperative languages mentioned in this
article, Esterel and Quartz, are single-clock synchronous
languages where a clock is used to separate the execution
into single reaction steps. If these languages are trans-
lated to synchronous hardware circuits, each step can be
mapped to a hardware-clock cycle, but there is no rea-
son to compile it in this way. Different approaches related
to refined clocks are introduced and compared to the
presented work in the following.

6.1 Esterel

The synchronous language Esterel is quite similar to
the language Quartz described in Section2. A differ-
ence which should be pointed out is the interpretation
of the terms signal and variable. Since both are used

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

synonymously in Quartz, Esterel makes a clear distinc-
tion between both. Where the Esterel signals behave like
Quartz signals/variables, which are only allowed to have
one value per step, Esterel variables can be assigned mul-
tiple times. When a variable is read, its last assigned value
is used:

X := 0;

emit S1(X)

X := X + 1,

emit S1(X);

The example is taken from [43]. The variable X is
assigned two times and used to set the values of the sig-
nals S1 and S2. Thereby, S1 receives the value 0 and
S1 receives the value 1. Even though these variables of
Esterel are useful, they also have some limitations: It is not
allowed to write and read them in independent threads.
Also, since Esterel forbids instantaneous loops, the intro-
ductory GCD2 example cannot be converted to Esterel.
Moreover, the Esterel variables only provide one simpli-
fied abstraction layer for data. In contrast, refined clocks
can be arbitrarily deep nested, can be used in paral-
lel threads, and they can also interact with preemption
statements.

6.2 Multiclock Esterel

Originally, Esterel also has the single-clock abstraction
of steps, but in the past, it has been enriched with two
different multiclock extensions. They are both named
multiclock Esterel and introduced in [44,45].

Berry and Sentovich [44] introduced their version of
multiclock Esterel. Their work addresses the need to
design systems with multiple clock domains in a mod-
ular way. Each module can run on its own clock, where
each step of the module coincides with a clock tick of the
module’s clock. The modules itself are still single-clock
modules with the possibility to call other modules
on a different clock. To communicate data between
clock domains, the authors defined two possible
communication devices, named sampler and reclocker.
Finally, a system consists of different modules each
running at their own clock and communicating by the
defined communication devices. In case of this version of
multiclock Esterel, the clocks trigger the computation of
each module and have to be additionally provided by the
outer environment, which can be, e.g., a hardware clock.

The second multiclock Esterel extension was proposed
by Rajan and Shyamasundar [45,46]. Their solution intro-
duces a new statement which allows to override the clock
locally by an expression based on known signals. The local
statement tick is then based on this new clock expression.
Finally, the signals where the local clocks are defined with,
have also to be provided by the outer environment. The
difference to Berry’s extension is that no dedicated clock

Page 17 of 21

signal is used, but any signal can be used to define a new
tick.

Both extensions basically allow to define new (arbitrary)
clocks for a module or a code block. However, they do not
allow to access multiple clocks at the same time. In addi-
tion, the clocks have a different meaning here, since they
are intended to be given from the environment to trig-
ger computations. Instead, our Quartz extension refines
the inner descriptions where clocks are used to divide
steps into substeps. This is only used for modeling, not for
execution.

6.3 Lustre and Signal

Multi-clocked systems can also be described by the syn-
chronous language Lustre [3,47]. Each Lustre program
basically consists of a set of equations over data streams.
In addition to functions and delays, there are two opera-
tors to change the rate/clock of a stream. The clock of a
stream identifies the positions where a value is present.
The downsampling operator when takes a stream of arbi-
trary type and a Boolean stream and keeps only the events
of the first one at those instants where the second one
is true. The upsampling operator current undoes a
previous downsampling operation by inserting the last
known value in the missing locations of the stream. Each
node has a so-called base clock and at least one input
of the node must run on this clock. New signal defini-
tions always come with the definition of the clock. Hence,
since upsampling only undoes the last downsampling,
there is no means to refine the base clock. Therefore,
the base clock is the fastest clock of a node and contains
all instants at which any computation or communication
may happen. Lustre specifications are completely deter-
ministic due to their bottom-up design from the base
clock.

In contrast to this, the polychronous language Signal
[48-50] is also based on multiple clocks. While the syn-
tax looks almost like Lustre, its semantics is very differ-
ent due to its assumption that there may not be a base
clock. As a consequence, Signal specifications are rela-
tional and not functional like Lustre: they do not describe
a single behavior, but several possible ones, which differ
in the clocks. Hence, Signal solves most of the prob-
lems mentioned in introduction—however, the price one
has to pay for this powerful model is that input/output
determinism is generally lost. It can be guaranteed if the
program is shown to be endochronous [51] or weakly
endochronous [52]. While endochrony proves determin-
ism by the existence of a base clock (usually called
master trigger in this context), weak endochrony also
reveals some internal nondeterminism that can safely be
exploited for a more efficient execution. Unfortunately,
weak endochrony cannot be automatically checked in
general. However, Signal cannot solve all the problems

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

we have mentioned in the introduction. In particular, the
definition of program functions which hide a sequen-
tial computation in an instantaneous expression is not
possible. For example, a basic Signal node which instan-
taneously computes the GCD (i.e., its result is avail-
able at the same instant when the inputs arrive), cannot
be replaced by other nodes running at a higher rate
(cf. the introductory GCD2 example).

Both Lustre and Signal deal with inputs and outputs
based on different clocks. Again, those clocks are different
to the clocks of the Quartz extension since their computa-
tion steps are refined internally. In addition, since Signal
is able to solve some of the introductory problems, it is a
matter of taste whether to use a (descriptive) data flow lan-
guage like Signal or to use a control-flow-based language
like Quartz.

6.4 Discrete event

The discrete event languages Verilog and VHDL are hard-
ware description languages used to model circuits. A
simulation semantics is defined for them which allows
similar to the Esterel variables multiple updates to sig-
nals in so-called delta cycles where the physical simulation
time does not proceed. In this way, a signal can have mul-
tiple values in a clock cycle. However, besides the fact, that
this behavior is hard to survey, it is only available for hard-
ware simulation, hence not for synthesis and also not for
software designs.

Page 18 of 21

Finally, the same observation as for Esterel holds, i.e.,
the delta-cycle changes only provide a single abstraction
for data and cannot influence the control-flow of substeps.
Even more, Esterel and Quartz provides more rich control-
flow statements which can be used for the whole design
process including code generation. With refined clocks,
the same rich control-flow statements can be used for
arbitrarily many abstraction layers.

7 Conclusion

Imperative synchronous languages are limited so far to
a single clock abstraction of time which imposes restric-
tions to the programmer. We introduce refined clocks as
a language extension to the language Quartz. This article
presents the problems introduced by this new extension
and it shows how they can be solved in a practical way. It
formally defines the semantics for the new extension and a
compilation algorithm to translate the programs to a new
intermediate format. In addition, synthesis to hardware
and to software is presented. It is also shown how these
synthesis procedures can benefit from the new features
which have been introduced.

Appendix 1: Transition rules

The transition rules defining the semantics of the language
extesnion are given in Figure 8 for the basic statements, in
Figure 9 for the parallel execution, in Figure 10 for strong
abortion, and in Figure 11 for the strong suspension.

A Transition Rules

Assignments

£(x) =1Irle

(a1)

Time Consuming Statements

(p1) (€.Cs.await clock(C)) - <

(€,Cs,x =7) ~ (nothing, {x = 7}.{})

(az) (€,Cs,next (x) = 7) — (nothing, {next (x) =7}, {})

immediate .
await clock() * 1€)>

c=C

(p2)

immediate
await clock(C)

> ~ (nothing, {},{})

c#C

immediate

(p3) <5.('

Clock Definitions

S await clock(()

C#{} A

c immediate .
>*< await clock() '€ }>

(£,C,8) = (8" A.C)

(e1)

(c2) il

(€.Cs,elock(CI{ S }) > (elock(CI{ S’ }. A.C)

A (E.C,.8) 5 (S AC)

Conditional Statements

(€,Cs,elock(CI{S})

[o]e = true A (£,Cs,81) > (S}

5 (8, A.0)

(ir)

(£,Cs,i£(0) S; else

A (E,Cs,82)

(i2)

Sequence

(£,Cs.1£(0) S; else Sy)

A} A

(84, Az, C2)

(€,Cs,81) ~ (S}, A1,C1)

(£.C5.815 &) =

a={} A (£Cs8)>

(S]5 80, A1, Cr)

(€,Cs,85) ~ (Sh, Az, Cs)

Figure 8 Transition rules | (basic statements).

(£,Cs,815 Sz

(S5 A1 U Az, C)

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

Page 19 of 21

Parallel Threads
(£,C5,81) = (S}, A1,C1) A (E,Cs,82) —» (S, Az, Ca)

(p1) .
<8,C§,81 | | 82> - <S{ | | Sé,Al UAQ,C1 UCQ>

Figure 9 Transition rules Il (parallel execution).

(Strong) Abortion
C={} A (£,Cs,8) = (S,AC)
(€,Cs,abort S when(c)) ~» (nothing, A,C)
o YeeCe<Cs A C£{} A (£,Cs,8) = (S, A,C)
2 c

(€,Cs,abort S when (o)) — (abort &' when (o), A,C)

YeeCe=Cs A C£{} A (£,Cs,8) 5 (S, A,C)

(a1)

(£,Cs,abort S when (o)) 5 (immediate abort &' when(o),A,C)

[o]¢ = true

(€,Cs,immediate abort S when(o)) 5 (nothing, {},{})

[o]l. =false A C#{} A (£,Cs,8) — (S, A,C)

(aq) immediate abort . immediate abort
<€.,Cs, S >ﬂ>< S’ ,A,C>

when (o) when (o)

[o]s =false A C={} A (£,Cs,8) (S, 4,C)

(€,Cs, immediate abort S when(o)) 5 (nothing, A,C)

(as)

Figure 10 Transition rules lll (strong abortion).

(Strong) Suspension
C={} A (£,Cs.8) = (S, AC)
(€,Cs, suspend S when(0)) —» (nothing, A,C)
VeeCe=<Cs AN C£{} A (£,Cs,8) > (S, A,C)

(a1)

(€,Cs, suspend S when (o)) S (suspend S’ when (o), A,C)
VeeCe=Cs N CA{} A (£,Cs,8) > (S, A,C)

immediate

(€,Cs,suspend S when (o)) — < suspend S’ when (0) 7.A,C>

[o]e = true

GRCRY

(as) cC immediate - immediate

S’ suspend S when (o) suspend S when (o) ’
[o]e =false A C#{} A (£,Cs,8) > (S, AC)
immediate c immediate AcC
suspend S when (o) suspend &’ when (o) 77

<5-,Cz57

[ols =false A C={} A (£,Cs,8) > (S',AC)

(as)

(£,Cs,immediate suspend S when(o)) 5 (nothing, A,C)

Figure 11 Transition rules IV (strong suspension).

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

Appendix 2: Compilation algorithm

The compilation algorithm for programs of the presented
language extension to the intermediate format are given in
Figure 12, Figure 13, and in Figure 14.

B Compilation Algorithm
function Compile(S)
begin

(A?ata s Acitrl)

CompileSurface(CO, st, S)

(Ag) ASM) := CompileDepth(CO, S)
return (ASSUAPSE, AU AS)
end

Figure 12 Pseudo code of function Compile.

function CompileSurface (¢, strt, §)
begin
switch §
case [nothing]:
return ({}, {})
case [z = 7]: # actions
return ({strt = next(z)=r7}, {})
case [(: pause((C)]: # pause
return ({}, {strt = next ()= true})
case [if (7)) { & } else { S }]: # conditional
(At Ay = CompileSurface (e, strtAvy, Sp)
(Ag2, A := CompileSurface (c, strtA—y, Sp)
return (Acliata uAgata, AitrIUAgtrI)

case [S1; S:]1: # sequence

(.Acfa‘a, Ai”') := CompileSurface (¢, strt, &)
(Ag, Ay = CompileSurface(c, strtAinsts,, Sa)
return (A?ata UAgata’ ATtrIUAgtrl)

case [S) || S]: # parallel threads
(At Ay := CompileSurface(c, strt, Sp)
(.A%a‘a, Ag"') := CompileSurface (¢, strt, S»)

return (ARUAR, AS U AS)

case [suspend { & } when(y)]:
return CompileSurface(c, strt, S')

case [(: immediate suspend { &’ } when(y)]:
(A%t Aty = CompileSurface (¢, strtA—y, S')
return (A%, A {strt A v = next ({) = true})

case [abort { & } when(y)]:
return CompileSurface(c, strt, S')

case [immediate abort { & } when(y)]:
return CompileSurface (¢, strtA -7y, S

case [clock (C) { & }]: # clock declaration
return CompileSurface (C, strt, §)
end

Figure 13 Pseudo code of function CompileDepth.

Page 20 of 21

function CompileDepth(c, S)
begin

switch S
case [nothing]:
return ({}, {})
case [z = 7]: # actions
return ({}, {})
case [(: pause(C)]: # pause
return ({}, {{AC Asusps(C) = next ({) = true})
case [if (y) { & } else { S }]: # conditional
(Afeta | ASM) .= CompileDepth(c, S;)
(A, AS™) := CompileDepth(c, So)
return (APRUAPR, AU AST)

case [S1; Sy]: # sequence

(A2, AS™) := CompileDepth(c, Sp)
(A2, ASM) := CompileSurface(c, terms,, S»)
(Agata, A?") := CompileDepth(c, S»)
return (ATataUAgata, .Aﬁ"' UAE“I)
case [S) || S]: # parallel threads
(A2, ASM) := CompileDepth(c, Sp)
(A%, ASM) := CompileDepth(c, Si)

return (AR U AR, AU AST)
case [suspend { & } when(y)]:
return CompileDepth(c, S")
case [/: immediate suspend { & } when(y)]:
(A%t Aty .= CompileDepth(c, S')
return (A%®, AU {strt Ay = next (¢) = true})
case [abort { & } when(y)]:
return CompileDepth(c, S")
case [immediate abort { & } when(y)]:
return CompileDepth(c, §)

case [clock (C) { & }): # clock declaration
return CompileDepth(C, &)

end

Figure 14 Pseudo code of function CompileSurface.

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
We thank the German Research Foundation (DFG) for supporting this work.

Received: 27 February 2012 Accepted: 31 January 2013
Published: 10 April 2013

References

1.

A Benveniste, P Caspi, S Edwards, N Halbwachs, P Le Guernic, R de Simone,
The synchronous languages twelve years later. Proc. IEEE. 91, 64-83 (2003)
G Berry, in Proof, Language and Interaction: Essays in Honour of Robin
Milner, ed. by G Plotkin, C Stirling, and Tofte M. The foundations of Esterel
(MIT Press Cambridge, 1998), pp. 425-454

N Halbwachs, P Caspi, P Raymond, D Pilaud, The synchronous dataflow
programming language LUSTRE. Proc. [EEE. 79(9), 1305-1320 (1991)

K Schneider, The synchronous programming language Quartz. Internal
Report 375, Department of Computer Science, University of
Kaiserslautern, Kaiserslautern, Germany, 2009

G Berry, A hardware implementation of pure Esterel. Sadhana. 17, 95-130
(1992)

Gemiinde et al. EURASIP Journal on Embedded Systems 2013, 2013:3
http://jes.eurasipjournals.com/content/2013/1/3

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

F Rocheteau, N Halbwachs, in Real-Time: Theory in Practice vol. 600 of LNCS,
ed. by J de Bakker, C Huizing, WP de Roever, and Rozenberg G.
Implementing reactive programs on circuits: a hardware implementation
of LUSTRE (Springer Mook, The Netherlands, 1992), pp. 195-208

G Berry, The constructive semantics of pure Esterel (1999). http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.2076

K Schneider, in Distributed and Parallel Embedded Systems (DIPES), ed. by
Rammig F. A verified hardware synthesis for Esterel (Kluwer Schlof3
Ehringerfeld, 2000), pp. 205-214

K Schneider, in Application of Concurrency to System Design (ACSD).
Embedding imperative synchronous languages in interactive theorem
provers (IEEE Computer Society Newcastle Upon Tyne, 2001), pp. 143-154
K Schneider, J Brandt, T Schuele, A verified compiler for synchronous
programs with local declarations. Electron. Notes Theor. Comput. Sci.
(ENTCS). 153(4), 71-97 (2006)

. YT Li, S Malik, Performance analysis of real-time embedded software.

(Kluwer, The Netherlands, 1999)

G Logothetis, K Schneider, in Design, Automation and Test in Europe (DATE).
Exact high level WCET analysis of synchronous programs by symbolic
state space exploration (IEEE Computer Society Munich, 2003),

pp. 10196-10203

M Boldt, C Traulsen, R von Hanxleden, Worst case reaction time analysis of
concurrent reactive programs. Electron. Notes Theor. Comput. Sci.
(ENTCS). 203(4), 65-79 (2008)

L Ju, B Khoa Huynh, A Roychoudhury, S Chakraborty, in Design Automation
Conference (DAC), ed. by S Sapatnekar. Timing analysis of Esterel programs
on general purpose multiprocessors (ACM Anaheim, 2010), pp. 48-51

K Schneider, J Brandt, T Schuele, Causality analysis of synchronous
programs with delayed actions (ACM, Washington, 2004), pp. 179-189

B Titzer, J Palsberg, in Languages, Compilers, and Tools for Embedded
Systems (LCTES), ed. by Y Paek, Gupta R. Nonintrusive precision
instrumentation of microcontroller software (ACM Chicago, IL, 2005),

pp. 59-68

JBrandt, K Schneider, in Formal Methods and Models for Codesign
(MEMOCODE), ed. by R Bloem, P Schaumont. Static data-flow analysis of
synchronous programs (IEEE Computer Society Cambridge, 2009),

pp. 161-170

L Carloni, K McMillan, A Sangiovanni-Vincentelli, Theory of
latency-insensitive design. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst. (T-CAD). 20(9), 1059-1076 (2001)

J Cortadella, M Kishinevsky, B Grundmann, in Design Automation
Conference (DAQ), ed. by Sentovich E. Synthesis of synchronous elastic
architectures (ACM San Francisco, 2006), pp. 657-662

S Krstic, J Cortadella, M Kishinevsky, J O'Leary, in Formal Methods in
Computer-Aided Design (FMCAD), ed. by A Gupta, Manolios P. Synchronous
elastic networks ([EEE Computer Society San Jose, 2006), pp. 19-30

N Halbwachs, Synchronous Programming of Reactive Systems. (Kluwer, The
Netherlands, 1993)

D Harel, A Naamad, The STATEMATE semantics of Statecharts. ACM Trans.
Softw. Eng. Methodol. (TOSEM). 5(4), 293-333 (1996)

S Malik, Analysis of cycle combinational circuits. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. (T-CAD)

13(7), 950-956 (1994)

N Halbwachs, F Maraninchi, in Euromicro Conference. On the symbolic
analysis of combinational loops in circuits and synchronous programs
(IEEE Computer Society Como, 1995)

J Brzozowski, CJ Seger, Asynchronous Circuits. (Springer, New York, 1995)
T Shiple, G Berry, H Touati, in European Design Automation Conference
(EDAC). Constructive analysis of cyclic circuits (IEEE Computer Society
Paris, 1996), pp. 328-333

F Boussinot, SugarCubes implementation of causality. Research Report
3487, Institut National de Recherche en Informatique et en Automatique
(INRIA), Sophia Antipolis, France 1998

K Schneider, J Brandt, T Schuele, T Tuerk, in Application of Concurrency to
System Design (ACSD), ed. by J Desel, Watanabe Y. Maximal causality
analysis, (IEEE Computer Society Saint-Malo, 2005), pp. 106-115

JBrandt, K Schneider, Separate translation of synchronous programs to
guarded actions. Internal Report 382/11, Department of Computer
Science, University of Kaiserslautern, Kaiserslautern , Germany 2011

O Tardieu, R de Simone, in Formal Methods and Models for Codesign
(MEMOCODE). Curing schizophrenia by program rewriting in Esterel (IEEE
Computer Society San Diego, 2004), pp. 39-48

31

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

Page 21 of 21

J Brandt, K Schneider, in Software and Compilers for Embedded Systems
(SCOPES) Volume 320 of ACM International Conference Proceeding Series,
ed. by Falk H. Separate compilation for synchronous programs (ACM
Nice, 2009), pp. 1-10

K Chandy, J Misra, Parallel Program Design. (Addison-Wesley, Austin, 1989)
D Dill, in Computer-Aided Verification (CAV), Volume 110 of LNCS, ed. by R
Alur, Henzinger T. The Murphi verification system (Springer New
Brunswick, 1996), pp. 390-393

L Lamport, The temporal logic of actions. Technical Report 79. Digital
Equipment Cooperation 1991

M Gemiinde, J Brandt, K Schneider, in Application of Concurrency to System
Design (ACSD), ed. by L Gomes, V Khomenko, and Fernandes J. A formal
semantics of clock refinement in imperative synchronous languages (IEEE
Computer Society Braga, 2010), pp. 157-168

G Plotkin, A structural approach to operational semantics. Technical
Report FN-19, DAIMI, Arhus, Denmark 1981

P Mosses, Formal semantics of programming languages. Electron. Notes
Theor. Comput. Sci. (ENTCS). 148, 41-73 (2006)

G Berry, L Cosserat, in Seminar on Concurrency (CONCUR) Volume 197 of
LNCS, ed. by S Brookes, A Roscoe, and G Winskel. The Esterel synchronous
programming language and its mathematical semantics (Springer
Pittsburgh, 1985), pp. 389-448

S Tini, Structural operational semantics for synchronous languages. PhD
thesis. University of Pisa, Italy, 2000

M Gemiinde, J Brandt, K Schneider, in Forum on Specification and Design
Languages (FDL), ed. by K Morawiec, J Hinderscheit, and Ghenassia O.
Schizophrenia and causality in the context of refined clocks (IEEE
Computer Society Oldenburg, 2011), pp. 1-8

M Gemdinde, J Brandt, K Schneider, in High Level Design Validation and Test
Workshop (HLDVT). Causality analysis of synchronous programs with
refined clocks (IEEE Computer Society, 2011), pp. 25-32

M Gemiinde, J Brandt, K Schneider, in Formal Methods and Models for
Codesign (MEMOCODE), ed. by L Carloni, Jobstmann B. Compilation of
imperative synchronous programs with refined clocks (IEEE Computer
Society Grenoble, 2010), pp. 209-218

G Berry, A quick guide to Esterel. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.42.2222, 1997

G Berry, E Sentovich, ed. by T Margaria, Melham T. Correct Hardware
Design and Verification Methods (CHARME), Volume 2144 of LNCS
(Springer Livingston, 2001), pp. 110-125

B Rajan, R Shyamasundar, in International Parallel and Distributed
Processing Symposium (IPDPS), Cancuin. Multiclock ESTEREL: a reactive
framework for asynchronous design (IEEE Computer Society Quintana
Roo, 2000), pp. 201-209

B Rajan, R Shyamasundar, in Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE/PSTV), ed. by T Bolognesi,
Latella D. Modeling distributed embedded systems in multiclock Esterel
(Kluwer Pisa, 2000), pp. 301-316

N Halbwachs, in Formal Methods and Models for Codesign (MEMOCODE). A
synchronous language at work: the story of Lustre (IEEE Computer
Society Verona, 2005), pp. 3-11

T Gautier, P Le Guernic, L Besnard, in Functional, Programming Languages
and Computer Architecture, Volume 274 of LNCS, ed. by G Kahn. SIGNAL, a
declarative language for synchronous programming of real-time systems
(Springer Portland, 1987), pp. 257-277

P Le Guernic, T Gauthier, M Le Borgne, C Le Maire, Programming real-time
applications with SIGNAL. Proc. IEEE. 79(9), 1321-1336 (1991)

P Le Guernic, JP Talpin, JC Le Lann, Polychrony for system design. J.
Circuits Syst. Comput. (JCSC). 12(3), 261-304 (2003)

D Potop-Butucaru, B Caillaud, A Benveniste, in Application of Concurrency
to System Design (ACSD). Concurrency in synchronous systems (IEEE
Computer Society Hamilton, 2004), pp. 67-76

D Potop-Butucaru, B Caillaud, in Application of Concurrency to System
Design (ACSD). Correct-by-construction asynchronous implementation of
modular synchronous specifications (IEEE Computer Society Saint-Malo,
2005), pp. 48-57

doi:10.1186/1687-3963-2013-3
Cite this article as: Geminde et al: Clock refinement in imperative syn-
chronous languages. EURASIP Journal on Embedded Systems 2013 2013:3.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.2076
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.2076
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2222
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2222

	Abstract
	Review
	The synchronous language Quartz
	Statements
	Logical correctness and causality
	Compilation and intermediate representation

	Language extension
	Basic idea of refined clocks
	Different views at the time model
	Refined clocks in Quartz programs
	Backward data flow
	Scheduling parallel threads

	Formal semantics
	Basic definitions
	Transition rules
	Program execution

	Compilation
	Translation to the intermediate format
	Hardware synthesis
	Control flow
	Data flow
	Scheduling

	Software synthesis
	Example

	Related work
	Esterel
	Multiclock Esterel
	Lustre and Signal
	Discrete event

	Conclusion
	1
	2
	Competing interests
	Acknowledgments
	References

