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Cilia in autophagy and cancer
Muqing Cao* and Qing Zhong*

Abstract 

Cancer cells are distinguished from normal cells by increased proliferation and metabolism, loss of polarity control, 
and the potential to invade other tissues of the body. As hubs of signaling transduction, primary cilia have been 
linked to diverse developmental and degenerative disorders. Interestingly, loss of cilia has been observed in multiple 
malignant tumors, suggesting a potential suppressive role of cilia in cancer development. More recently, emerging 
studies began to unveil the bidirectional interaction of cilia and autophagy, a basic cellular clearance and recycling 
mechanism to regulate cell homeostasis. Here, we summarize the interplay between cilia and autophagy and discuss 
the roles of cilia in both autophagy and cancer.
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Background
Cilia/flagella are eukaryotic cell organelles protruding 
from cell surface into environment. Most vertebrate cells 
assemble a single primary cilium, when they exit from 
the cell cycle into differentiated or quiescent status [1]. 
This ~5 μm tall, microtubule-based protrusion is essen-
tial for multiple signaling transductions [2, 3]. Autophagy 
is a destructive cellular process to degrade disordered 
cell organelles and protein aggregates, and maintain cel-
lular homeostasis. More recently, cilia are attracting 
interests as structures having bidirectional interaction 
with autophagy. This review will discuss the relationship 
between cilia and autophagy and emphasize the function 
of cilia in cancer development.

The connections between cilia and cancer
Primary cilium possesses an axoneme consisting of nine 
doublet microtubules, which is surrounded by a special-
ized membrane [4]. In interphase, cilium biogenesis is 
initiated by the attachment of a Golgi-derived membrane 
vesicle on the distal end of mother centriole [5, 6]. Sub-
sequently, the nucleated axoneme buds from mother 
centriole and bends the cell membrane to form the struc-
ture [5, 6]. Considering that centrosomes direct spindle 
formation in mitosis, cilia must be disassembled before 

mitosis to liberate the captive centriole and to promote 
the formation of spindle [7–10]. The presence of cilia can 
suppress abnormal cell growth by restricting cell cycle 
(Fig.  1). Although the ciliary membrane is continuous 
with cell membrane, the lipid and protein compositions 
of ciliary membrane are different from cell membrane 
compositions [11–15]. The specialized ciliary membrane 
makes cilia capable of transducing multiple cellular sign-
aling [2, 16–21].

Since primary cilia have the ability to influence cell 
cycle and modulate cilia-related signaling transduction, 
dysfunction of cilia has long been proposed as a prereq-
uisite step of cancer development [7, 22]. In contrast to 
normal cells, cilia are lost in multiple cancer types [22]. 
Clinical data also show that cilia formation is compro-
mised in multiple human cancers including breast cancer, 
cholangiocarcinoma, melanoma, pancreatic cancer, pros-
tate cancer, and renal cell carcinoma [17, 22–30]. These 
observations suggest that cilia play a suppressive role in 
cancer development. Although defective cilia and cancer 
are always associated, a direct role of cilia in tumorigen-
esis is still elusive.

The negative correlation between cilia and cell cycle 
has been discovered for many decades. The studies in 
Snell’s group provided the first molecular link between 
cilia disassembly and cell cycle progression [7, 31]. They 
found that the disassembly of Chlamydomonas cilia 
requires protein CALK, a member of Aurora kinase fam-
ily, which promotes cell cycle [31]. In 2007, Golemis’s 
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group optimized a system to study the mechanisms of 
cilia disassembly [32]. Briefly, cells were treated by serum 
starvation to induce cilia formation. Serum was added 
into the medium to trigger cilia disassembly and cell 
cycle re-entry. Like the observation in Chlamydomonas, 
they found that mammalian cells also shorten their cilia 
through Aurora kinase-dependent pathway. Upon serum 
stimulation, HEF1 activated Aurora A, which phospho-
rylated HDAC6 to promote cilia disassembly during 
cell cycle re-entry [32, 33]. According to these findings, 

a straightforward question will be whether cell cycle 
progression is blocked with defective cilia disassembly? 
Tsiokas and colleagues found that knockdown of Nde1, 
a mother centriole-localized protein, led to elongated 
cilia in mammalian cells [34]. Interestingly, G0 cells 
with longer cilia by depletion of Nde1 delayed cell cycle 
re-entry after serum addition. To confirm the delayed 
re-entry was caused by cilia, the group co-knockdown 
Nde1 with either Ift88 or Ift20, two essential genes for 
ciliogenesis, and found that the inhibitory effect was 
reversed [34]. Concomitantly, Sung’s group showed that 
Tctex-1 localizes to transition zone after phosphoryla-
tion at Thr94, where it promotes cilia disassembly before 
S-phase entry [35]. Consistently, depletion of Tctex-1 
resulted in delayed cilia disassembly along with delayed 
cell cycle re-entry in ciliated cells, but not in non-ciliated 
cells [35]. Both of the studies indicate a suppressive role 
of cilia in cell cycle progression (Fig. 1), raising the pos-
sibility that loss of cilia promotes unrestricted cell cycle 
progression in cancer cells.

The other important function of primary cilium is 
its ability to regulate multiple signaling pathways, the 
dysfunctions of which are associated with a number of 
cancers [22]. As a cilia-dependent pathway (Fig.  2a), 
Sonic Hedgehog (Shh) signaling has important func-
tions in guiding embryonic development by regulating 
cell differentiation and proliferation [20, 36–39]. In the 
absence of Shh ligand, membrane proteins Patched and 
Gpr161 are localized to cilia. On the other hand, the 
most majority of Smoothened is excluded from cilia, 
though a basal level of protein is thought to be traffic 
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Fig. 1 The centriole–cilium cycle in mitosis. Primary cilium is 
assembled on the distal end of mother centriole during G0/G1 phase. 
Before S-phase entry, Aurora A, Nde1, and Tctex-1 trigger the disas-
sembly of primary cilium. Delayed S-phase re-entry is observed in the 
cells that have defects in cilia disassembly
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Fig. 2 Cilia-related signaling pathways. a Several Shh proteins are located in cilia. In repression state, Gpr161 and Ptch are present in cilia, but SMO 
is excluded from cilia. Gli proteins are cleaved as the repressive form to inhibit Shh target gene transcription. With the binding of Shh ligand, GPR161 
and Ptch move out from cilia, but SMO is transported into cilia. The stabilized Gli proteins are activated to trigger the transcription of Shh target 
genes. b Primary cilium provides an additional brake for canonical Wnt signaling by promoting the degradation of β-catenin. c Cilia are involved in 
the regulation of PCP signaling, disruption of which leads to abnormal cell orientation. Abnormal cell polarity is a major symptom of diseases with 
defective cilia
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through cilia as well [37, 39]. Shh transcriptional factors 
Gli2 and Gli3 are cleaved to Gli2R and Gli3R repressor 
forms and inhibit Shh downstream transcriptions [40]. 
Upon the Shh ligand binding, Patched and Gpr161 are 
moved out from cilia, but Smoothened is accumulated 
in cilia. Consequently, the stabilized Gli2 and Gli3 can 
be activated as Gli2A and Gli3A, which trigger the tran-
scription of Gli1 and other Shh target genes [39, 40]. 
In several types of cancers, the abnormal activations of 
Shh are observed [22, 41–43]. For instance, dysregulated 
activation of Shh contributes to basal cell carcinoma 
and medulloblastoma development [41, 43]. It is inter-
esting that primary cilia are either positive or negative 
regulators of Shh-related oncogenesis, depending on 
the initiating oncogenic mutations [41, 43]. Wnt signal-
ing is critical to animal development and homeostasis 
[44]. Upregulation of Wnt signaling has also been linked 
to tumorigenesis [22, 42, 44]. Although the functions 
of cilia in Wnt signaling are still controversial, it seems 
that both canonical and non-canonical Wnt signaling 
can be regulated by cilia (Fig.  2b, c). Down regulation 
or loss of ciliary proteins, including BBS1, BBS4, Kif3a, 
IFT88, and OFD1, leads to accumulation of β-catenin, 
which subsequently increases the transcription of Wnt 
target genes in Zebrafish embryos and mouse cells and 
embryos [21, 44, 45]. Interestingly, Ift88, Ift172, and 
Kif3a mutant mice, which also lack functional primary 
cilia, failed to show any phenotype caused by upregu-
lated Wnt signaling [46]. Considering that Wnt signaling 
is strictly regulated in specific developmental stage and 
tissue, these results may still reflect the ability of cilia to 
regulate Wnt signaling. In contrast to canonical Wnt, 
non-canonical signaling is β-catenin independent and 
involved in the regulation of cell polarity [47–49]. Cystic 
diseases are well-established models of human diseases 
caused by dysfunctional cilia. Similar with tumor cells, 
a typical symptom of cystic organs is a loss of cell polar-
ity [17, 50–52]. Consistent with these observations, pla-
nar cell polarity (PCP) mutant phenotypes, including 
open eyelids and disorganized stereocilia, are found in 
Bbs1, Bbs4, and Bbs6 defective mice [53]. Loss of two 
cilia-related proteins, Ivn/NPHP2 and OFD1, also leads 
to PCP-regulated convergent extension defects in ver-
tebrates [48, 54]. All of these studies demonstrated that 
cilia are capable of regulating both canonical and non-
canonical Wnt signaling [18, 44, 46, 55–57].

Including Shh and Wnt, the list of cilia-related signal-
ings is growing fast. TGF-beta, Hippo, and notch signal-
ing are also connected with cilia [17, 58–61]. In addition 
to the function of receiving and transducing signaling, 
recent studies in Chlamydomonas showed cilia can also 
release signaling active vesicles and act as signaling trans-
mitting organelles to regulate the behavior of other cells 

[62–64]. All these studies show a strong link between 
cilia and cancer development. However, if and how cilia 
function in tumorigenesis remains unclear. Tumors are 
highly heterogeneous tissues and consisted of different 
cell types, including tumors cells and tumor-associated 
fibroblasts, endothelial cells, and immune cells [65–69]. 
These cells and extra-cellular matrix constitute tumor 
stroma [66, 69, 70]. Functioning as sensing organelles, 
loss of cilia may alter the signaling network and cell–cell 
communications inside tumor stroma. Involved in mul-
tiple signaling, the function of cilia in tumorigenesis will 
be far more complex than it appears now and will not be 
limited to the cell cycle regulation and polarity control. If 
and how cilia contribute to cancer development remains 
an important question to be addressed.

The bidirectional interplay between cilia and autophagy
Autophagy has essential functions in multiple physiologi-
cal processes [71]. The relationship of cilia and autophagy 
has been missing for a long period. A set of recent stud-
ies established the relationship of cilia and autophagy 
(Fig. 3) [72–74]. In contrast to cells in vivo, most in vitro 
cultured cells do not express cilia. Early studies showed 
that serum withdrawal leads to cell cycle exit and induces 
ciliogenesis. Interestingly, serum starvation can also 
trigger autophagy. The most natural question to ask is if 
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Fig. 3 Illustrative model of the links between cilia, autophagy, 
and cancer. Autophagy has dual roles in ciliogenesis by selectively 
degrading cilia essential protein IFT20 to suppress cilia formation, 
or degrading suppressive protein OFD1 to promote cilia formation. 
Inversely, cilia can enhance autophagy through cilia-dependent Shh 
signaling. Both cilia and autophagy are proposed as regulators for 
cancer development. The cross-talk between cilia and autophagy 
may provide new applications for cancer drug discovery
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these two concurrent events are related? Tang and col-
leagues demonstrated that OFD1, a ciliopathy protein, 
was degraded by autophagy to promote cilia formation 
upon serum starvation [72, 75]. OFD1 is localized to two 
cilia-related subcellular structures, distal end of centri-
oles and centriolar satellites [72, 76–78]. The centriolar 
OFD1 is thought to maintain centriolar length and integ-
rity, which is required for cilia formation [76]. However, 
the function of satellite pool was unclear. Tang showed 
that autophagy largely eliminated the satellite OFD1 but 
not centriolar OFD1. Inhibition of autophagy attenuated 
satellite OFD1 degradation and led to lower ciliogenesis 
rate and shorter cilia. Consistently, depletion of OFD1 
by RNA interference dramatically increased cilia forma-
tion in murine embryonic cells and restored ciliogenesis 
in MCF7 cells, a breast cancer cell line originally lack-
ing cilia [72]. All these data demonstrated a suppressive 
role of satellite OFD1 in cilia formation and suggested a 
positive role of autophagy in ciliogenesis. In contrast to 
stimulated autophagy, Cuervo’s group showed that basal 
level autophagy acts as a negative regulator for ciliogen-
esis by degrading IFT20, ciliary essential protein [74]. 
The switch of basal autophagy and stimulated autophagy 
may potentiate autophagy positively or negatively con-
trolling cilia formation in response to environmental 
changes [79]. However, a surprising aspect in these two 
studies is that the ratio of ciliated cells to ciliary length in 
ATG5−/− autophagy-defective MEF cells are quite differ-
ent [72, 74]. Given that the confluence of cells has strong 
influence on cilia formation, one possible explanation of 
the observations might be attributed to the different sta-
tus of cell density in these two studies. MTOR is a known 
negative regulator of autophagy [80]. Wang et al. showed 
that MTOR activity is upregulated in cilia-suppressed 
cells, also suggesting that lower autophagy level is asso-
ciated with attenuated cilia formation [81]. Consistent 
with the observation, they also showed that upregulating 
autophagy activity prompted cilia elongation and down-
regulating autophagy activity led to shortened cilia in 
kidney cells [81]. Taken together; these studies demon-
strated that autophagy can serve as a dual-role regula-
tor of ciliogenesis by alternatively eliminating ciliary 
essential protein(s) or its suppressive protein(s) [75, 
79]. Understanding of the mechanisms that controls the 
autophagy switch to turn on/off of cilia formation will be 
an important question for future studies.

Despite the function of autophagy in ciliogenesis, cilia 
and cilia-related Shh signaling are potential regulators of 
autophagy. Several components of autophagic machin-
ery localize around ciliary or periciliary region [74, 79]. 
ATG16L, AMBRA1, LC3, GABARAP, and VPS15 stain-
ing showed discrete puncta along cilia [74, 79]. ATG14, 
VPS34, ATG7, and ATG5 are found at the basal body 

region [74, 79]. Regarding the vesicular activity of ciliary 
pocket, the presence of autophagic initiating molecules 
around cilia suggests ciliary area as a possible novel ori-
gin of autophagosome formation to activate autophagy. 
Consistently, lower autophagy activity is observed in 
IFT20 knockdown MEF cells and IFT88 knockout kidney 
epithelial cells, both of which have defects in ciliogenesis 
[74, 79]. Interestingly, the activation of Shh rescued the 
defective autophagy flux, indicating that cilia upregu-
late autophagy through cilia-dependent Shh signaling 
[74, 79]. In another study, cilia-suppressed cells also 
showed repressed autophagy, which might be resulted 
from enhanced MTOR activity [81]. In ciliated neuron 
and smooth muscle cells, autophagy activation was also 
observed after the upregulation of Shh by its ligand bind-
ing [82, 83]. One argument against the positive role of 
cilia in promoting autophagy comes from the studies of 
Pancreatic ductal adenocarcinoma (PDAC). PDAC are 
malignant tumors with high-level autophagy [84]. How-
ever, cilia are absent in human and mouse PDAC tissues 
compared to highly ciliated normal tissues [27]. In other 
word, cilia loss fails to downregulate autophagy in these 
malignant cells. Although cilia and cilia-dependent Shh 
have emerged as possible regulators of autophagy, more 
insightful mechanisms of the regulating system remain to 
be elucidated.

Does the crosstalk between cilia and autophagy influence 
cancer development?
The first link between autophagy and cancer is from the 
studies of Beclin 1, an essential protein for autophagy 
initiation [85, 86]. Unlike other tumor suppressors, Bec-
lin 1 is characterized as a haploid-insufficient tumor 
suppressor gene, monoallelic mutations of which lead 
to defective function [85, 86]. Interestingly, only prema-
lignant tumors, but not malignant tumors, are observed 
in autophagy-deficient mice by knockout of atg5 or atg7, 
two autophagy essential genes, suggesting a suppressive 
role of autophagy in cell transformation [87]. In contrast 
to the function of autophagy in transformation, high level 
of autophagy is required in malignant tumors, including 
PDAC and non-small cell lung cancer, to maintain the 
high level of metabolism [84, 88, 89]. These data suggest 
a dual role of autophagy in cancer development (Fig. 3). 
One possible explanation is that autophagy plays different 
roles in cell transformation and transformed cell progres-
sion. At the early stage of cancer development, autophagy 
can degrade harmful factors, including aggregated pro-
teins and aged mitochondria, to prevent cells from accu-
mulating genomic mutations [89–92]. After cancer cell 
transformation, autophagy can provide substrates for 
high-level metabolism and prevent toxic product accu-
mulation, both of which promote cancer survival and 
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proliferation [89, 92]. Additionally, autophagy may also 
have function inside tumor stroma via the altered secre-
tory products and surface characters [93–98]. Emerging 
studies suggested that autophagy contributes to starva-
tion and hypoxia-evoked angiogenesis, which promotes 
tumor stroma accessing more nutrients [99–101]. Acti-
vated autophagy in cancer-associated fibroblasts pro-
vides more metabolic products to ‘feed’ high proliferative 
cancer cells with enhanced energy demands [102–105]. 
Regarding immunity changes in tumor stroma are impor-
tant for cancer development, studies to demonstrate 
whether and how autophagy affects immunosurveillance 
will give more insightful information of autophagy and 
tumorigenesis [93].

As discussed above, cilia can restrict mitosis and 
inhibit abnormal cell proliferation [7, 17, 22]. In this way, 
theoretically, cilia serve as negative regulator of cancer 
development by providing additional checkpoint of cell 
cycle progression.

In ciliated cells, the presence of cilia might positively 
regulate autophagy, preventing metabolic waste accumu-
lation and constitutive cellular damage, which is a potent 
factor in inducing cancer development [74, 92]. However, 
in malignant cells, why the loss of cilia and upregulated 
autophagy are associated together is still poorly under-
stood. Reversely, autophagy has dual roles in ciliogen-
esis by degrading essential or suppressive cilia-related 
proteins. If autophagy plays a role in cancer through 
cilia, how cells modulate the switch to turn on/off cilia 
expression will be an important point to be addressed. 
Although the interplay between cilia and autophagy has 
emerged, recent studies may have just begun to touch a 
small tip of a giant iceberg. Future studies will hopefully 
provide more evidences to reveal the complicated con-
nections between cilia and autophagy.

Conclusion
The list of cilia’s functions is growing fast. As discussed 
above, cilia can restrict mitosis and inhibit abnormal cell 
proliferation [7, 17, 22]. In this way, theoretically, cilia 
serve as negative regulator of cancer development by 
providing additional checkpoint of cell cycle progression. 
Interestingly, the bidirectional interplay between cilia 
and autophagy is emerging as a new field for future stud-
ies. Autophagy selectively turns on/off cilia formation by 
alternatively degrading ciliary essential protein, IFT20, or 
suppressive protein, OFD1. The mechanisms modulating 
this switch are still unknown. Involved in autophagy ini-
tiation, cilia enhance autophagy flux through cilia-related 
Shh. Whether and how other cilia-related signaling(s) 
participate(s) autophagy regulation remains unclear. 
Given the broad functions of cilia and autophagy in the 
regulation of cell proliferation and metabolism, discovery 

of drugs specifically targeting these two regulators will 
provide a wide therapeutic approach for cancer and other 
diseases.
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