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1 Introduction

The quantum many-body problem of a non-relativistic two-component Fermi gas with

short-range attractive interactions is a longstanding problem in condensed matter physics.

At low temperature, the system is known to be superfluid and undergoes a smooth crossover

from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-Condensate (BEC) regime

as the two-body attraction is increased (see [1–4] for recent reviews). Considerable progress

in atomic physics in the two last decades allowed to study the BCS to BEC crossover with

unprecedented accuracy. Of special theoretical interest is the regime in between BCS and

BEC known as the unitary Fermi gas.1 In three spatial dimensions, the unitary Fermi gas

is intrinsically strongly coupled and no obvious small parameter is available, precluding the

reliable application of a perturbative expansion. In this way, the unitary Fermi gas provides

a great theoretical challenge and requires the development and subsequent applications of

advanced non-perturbative many-body methods.

A special property of the unitary Fermi gas in vacuum (describing few-body physics)

is the invariance of the action under the scale transformations and more generally under

the Schrödinger group of Niederer and Hagen [5, 6]. This group of space-time symmetries

provides a direct non-relativistic analogue of the conformal group. Although the general

proof is still lacking, it is believed that for the unitary Fermi gas there is no conformal

anomaly and thus that the Schrödinger symmetry survives quantisation [7–10]. Motivated

by this, Nishida and Son extended the general methods of conformal field theory (CFT) to

the realm of non-relativistic physics and applied them to the unitary Fermi gas [11, 12].

Due to the non-relativistic conformal symmetry of the unitary Fermi gas in vacuum,

Son, Balasubramanian and McGreevy [13, 14] recently have initiated an attempt to apply

the methods of the gauge-gravity duality to this system. While their seminal papers revived

the interest of mathematical and high-energy physicists toward non-relativistic symmetries,

they mostly triggered an intensive body of research for the putative holographic duals of

various non-relativistic systems originating from condensed matter theory. However the

initial target, i.e. a holographic description of the unitary Fermi gas, remains tantalising

despite several steps forward [15–17]. As mentioned by Son in [13], a possible direction of

investigation is the unitary Fermi gas with U(1)×Sp (2N) symmetry introduced in [18, 19]

(see also [20]) whose gravity dual might be a classical theory in the large-N limit. Notably,

this gravity theory would have an infinite tower of fields with unbounded spin, similar to

the conjectured anti de Sitter (AdS) dual of the critical O(N) model [21]. Interestingly,

an impressive check of this latter conjecture has recently been performed for three-point

correlation functions [22, 23]. These encouraging results strengthen the natural expecta-

tion that this AdS/O(N) model correspondence provides a proper source of inspiration

for an AdS/unitary-fermions correspondence. Our recent letter [24] aims to represent a

further step towards a precise conjecture along these lines. The goal of the present work

is to present in detail some findings about the free and unitary fermions that support our

proposal. Some of these results were already announced in [24] without a proof. Although

1In this regime the two-body low-energy cross section saturates the maximal bound originating from the

unitarity of the S-matrix. This property gives rise to the term “unitary” Fermi gas.
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the body of our paper focuses on the CFT (boundary) side, some comments on the gravity

(bulk) side and the holographic correspondence are in order.

The AdS/O(N) correspondence proposed by Klebanov and Polyakov [21] pursuing

earlier insights of Sezgin and Sundell [25] involves, on the boundary, a multiplet of N

massless scalar fields in the fundamental representation of O(N) with a quartic O(N)-

invariant interaction and, in the bulk, an infinite tower of symmetric tensor gauge fields with

interactions governed by Vasiliev equations [26] (see [27–31] for introduction). The crucial

point in this correspondence is that there is an infinite collection of O(N)-singlet symmetric

currents of all even ranks, bilinear in the boundary scalar field, that precisely matches the

spectrum of the higher-spin gauge theory. These boundary currents are conformal primary

fields and are exactly conserved for the free theory (while only at leading order in 1/N

for the interacting theory) so their bulk duals should indeed be gauge fields. They are

actually the Noether currents of the maximal symmetry algebra of the massless Klein-

Gordon equation [32], that is the infinite-dimensional symmetry algebra of a free conformal

scalar field. This algebra of rigid symmetries is isomorphic to the algebra which is gauged

in the bulk higher-spin theory [26]. A precise statement of the correspondence is that the

generating functional of the connected correlators of the boundary currents is given, in the

large-N limit, by the on-shell classical action of the bulk fields expressed in terms of the

boundary data. In the large-N limit, the generating functionals of the critical theory and

of the free theory are related by a Legendre transformation, which should be dual to a

mere change of boundary conditions for the same bulk theory, as follows from the general

analysis of [33, 34].

So what could be an educated guess for a gravity dual of unitary fermions? We will

turn back to this cardinal issue in the conclusion but, before, let us start by looking for the

non-relativistic analogue of the above-mentioned construction. As was found in [18, 19], a

sensible large-N extension of the unitary Fermi gas has U(1)×Sp (2N) symmetry2 and in-

volves a multiplet of 2N non-relativistic massive fermions transforming in the fundamental

representation of Sp (2N). The general arguments of [34] imply that, in the large-N limit,

the Helmholtz free energies of unitary fermions and of non-interacting fermions are related

by a Legendre transformation. Thus, in this limit the results obtained from the free theory

are of direct interest for the theoretically more challenging critical regime at the unitarity

point. This important observation motivated us to focus in this paper on a collection of

free non-relativistic massive fermions in the fundamental representation of Sp (2N) and to

study its symmetries and currents.

The summary of our main results and the plan of the paper are as follows: In sec-

tion 2, we start with an introduction to the unitary Fermi gas and its large-N extension.

We also present the general arguments of [34] and demonstrate that, in the large-N limit,

the generating functionals of the unitary Fermi gas and of the ideal Fermi gas are re-

lated by a Legendre transformation. In section 3, the maximal symmetry algebra of the

free Schrödinger equation is identified and shown to be isomorphic to the Weyl algebra

2Note that we are following the physicist convention here and define the compact symplectic group as

Sp (2N) := U(2N) ∩ Sp (2N,C). Alternatively, physicists also frequently use the notation USp (2N) while

mathematicians usually refer to this group as Sp (N).
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of quantum observables in the time-reversed Heisenberg picture. It provides an infinite-

dimensional extension of the Schrödinger algebra, as was recognised in [35]. In section 4,

an infinite collection of Sp (2N) or O(N) singlet symmetric tensors of all ranks, bilinear

in the fermionic field is obtained from the corresponding relativistic currents through a

dimensional reduction along a light-like direction. In section 5, the coupling of these bilin-

ears to external sources is considered and written in a compact form by making use of the

Weyl quantisation. This allows us to identify the algebra of gauge symmetries with the

algebra of quantum observables with arbitrary time dependence. These symmetries can

be thought as the higher-spin generalisations of the non-relativistic general coordinate and

Weyl symmetries discussed in [36]. In section 6, we summarise our results and review our

proposal [24] of a possible gravity dual of the unitary and the ideal Fermi gases: the O(N)-

singlet bilinear sector of the large-N extension of the free or unitary fermions in d space

dimensions should be dual to the null-reduction of classical Vasiliev theory on AdSd+3 with

u(2)-valued tensor gauge fields of all integer ranks and suitable boundary conditions. In

particular, the bulk dual of the “physical” (i.e. N = 1, d = 3) unitary UV-stable Fermi gas

would be the null dimensional reduction of the u(2) higher-spin gauge theory on AdS6 with

the exotic boundary condition for the complex scalar field dual to the Cooper-pair field.

Wherever possible, we will stick to the notations and conventions of [13]. Except in

appendix A, we set ~ = 1.

2 Unitary Fermi gas and its large-N extension

2.1 Action and symmetries

Nowadays a dilute two-component Fermi gas near a broad Feshbach resonance can be cooled

with the help of lasers to ultra-low temperatures ∼ 10−9K, and is studied extensively in

experiments with ultracold atoms. In three spatial dimensions (d = 3) at low densities it

can be very well described by the microscopic action

S[ψ ; c0] =

∫
dt

∫
dx


 ∑

α=↑,↓
ψ∗
α

(
i∂t +

∆

2m
+ µ

)
ψα − c0 ψ

∗
↓ψ

∗
↑ψ↑ψ↓


 , (2.1)

where the two species of fermionic atoms of mass m are represented by the Grassmann-odd

fields ψ↑ and ψ↓, while µ stands for the chemical potential, and c0 measures the micro-

scopic interaction strength. In actual experiments with ultracold gases the two different

components denote different hyperfine eigenstates which we denote here for simplicity by

↑ and ↓ but which have nothing to do with genuine spins “up” and “down”.3 This action

has an internal U(2) symmetry. Due to the contact nature of the interaction term, the

non-relativistic quantum field theory defined by the action (2.1) must be regularised. This

can be achieved, for example, by introducing a sharp ultraviolet cutoff. Subsequently, the

bare interaction parameter c0 is related via renormalisation to a low-energy observable: the

3Note that due to the lack of the spin-statistics theorem for non-relativistic quantum field theories, the

spin of fermions (and thus the number of components) is not constrained [37, 38]. For example, we can

have spinless one-component fermions.
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s-wave scattering length a. The concrete functional relation between c0 and a depends on

the regularisation scheme and will not be presented here. In this paper we will be mainly

interested in excitations above the vacuum state, i.e. a system at zero temperature and

zero density. For a 6 0 there are no bound states in the two-component Fermi gas and

in this range the vacuum corresponds to µ = 0 (see e.g. [18] for a detailed explanation).

Due to the presence of a universal two-body dimer bound state for a > 0, the chemical

potential in vacuum is negative and is related to the scattering length via µ = − 1
2ma2

.

In any case, the only length scale in the renormalised theory in vacuum is given by the

scattering length a.

The non-interacting Fermi gas is obtained for a = 0 which translates into c0 = 0.

In vacuum it is obviously scale invariant. Another theoretically interesting regime is the

strongly interacting unitary Fermi gas, where a−1 = 0. The only length scale defined by

the scattering length drops out in this regime. Hence the classical theory for the unitary

Fermi gas is scale invariant. Although there is no general proof yet, there are numerous

theoretical and experimental evidences collected by now that the quantum unitary Fermi

gas in vacuum is also scale invariant.4 More precisely, the action of the unitary Fermi gas is

invariant under the Schrödinger symmetry, which will be introduced in section 3, and the

theory is believed to be an example of a strongly interacting non-relativistic CFT [7, 11].

A sensible large-N extension of the unitary Fermi gas that preserves the pairing struc-

ture of the interaction term was found in [18, 19]. The model with N “flavors” is defined

by the action

S[ψ ; c0, N ] =

∫
dt

∫
dx

[
ψ†
(
i∂t +

∆

2m
+ µ

)
ψ − c0

4N

∣∣ψT Jψ
∣∣2
]
, (2.2)

where ψ denotes a multiplet of 2N massive fermions with components ψA = ψα,a with

α = ↑, ↓ and a = 1, . . . , N . The symbol J represents the symplectic 2N × 2N matrix

JAB = ǫαβ ⊗ δab which has the block form J =

(
0 1

−1 0

)
. For N = 1, one recovers

the original model (2.1), i.e. S[ψ ; c0, N = 1] = S[ψ ; c0]. As far as internal symmetries

are concerned, the kinetic term in eq. (2.2) is invariant under U(2N), while the quartic

interaction is invariant under U(1) × Sp (2N,C). As a result, the full interacting theory

is invariant under the intersection of U(2N) with U(1)× Sp (2N,C), which happens to be

U(1) × Sp (2N) (see the footnote in section 1). For N = 1, one finds as mentioned above

U(1)× Sp (2) ∼= U(2) as the internal symmetry group, since Sp (2) ∼= SU(2).

The preceding construction introduces a new integer parameter into the theory and

resembles in various respects the structure of the relativistic linear O(N) models. While

the analogy is suggestive, there is an important difference which is worth to be emphasised

already here. On the one hand, in the relativistic O(N) model the internal symmetries of

the free and of the critical theory happen to be the same. On the other hand, the internal

4In other words there is no quantum anomaly associated with the scale transformation. Interestingly,

the unitary Bose gas suffers from a quantum scale anomaly, known in the nuclear and atomic physics as

the Efimov effect. Presence of this anomaly hinders an experimental realisation of a stable unitary Bose

gas in experiments with ultracold quantum gases.
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symmetry of the kinetic part of the action (2.2) is larger than the internal symmetry of

the full action. Thus, the N > 1 extensions of the ideal and of the unitary Fermi gas have

different internal symmetries. This makes the relation between these two theories more

subtle than in the relativistic O(N) case.

Let us finally note that for general N flavors, U(2) × O(N) is a subgroup of U(1) ×
Sp (2N). Mathematically, the subgroups U(2) and O(N) are centralisers5 of each other

inside U(1) × Sp (2N),6 as they transform independently spin and flavor indices. In the

following, U(2)×O(N) symmetry subgroup will play a central role in the suggestion of the

putative holographic dual of the unitary Fermi gas.

2.2 Ideal and unitary gases as Legendre conjugates

The celebrated BCS theory has taught us that the physical phenomena of superfluidity and

superconductivity have their origin in the condensation of particle-particle Cooper pairs

at low temperature. From this insight, it becomes clear that a proper understanding of

physics of these Cooper pairs is of a central importance for quantum Fermi systems. By

applying the general observation of Gubser and Klebanov on the double trace deformations

of conformal field theories [34] to the large-N extension of the unitary Fermi gas, we

show here that the generating functionals of Cooper pair connected correlators in the non-

interacting and in the unitary Fermi gases are related by a Legendre transformation in the

large N limit (or, similarly, in the mean field approximation).

The following discussion will closely parallel the derivation of Gubser and Klebanov

that was introduced for an infrared relevant double trace deformation of a conformal field

theory like, for example, the relativistic linear O(N) model in three space-time dimensions.

There is one important difference between the relativistic and the non-relativistic problems

of interest that we would like to emphasize here. In theO(N) model , the quartic interaction

term is an infrared relevant perturbation of a free CFT triggering the renormalisation group

flow to approach the infrared stable Wilson-Fisher fixed point. Due to a distinct power

counting in the non-relativistic physics, the four-fermion contact interaction in (2.1) is

infrared irrelevant in the most physically interesting case of three spatial dimensions. This

implies that the Gaussian fixed point is infrared stable and the unitarity fixed point (in

vacuum) is in fact approached in the ultraviolet of the renormalisation group flow.

With a slight abuse of terminology, by “Cooper pair” we mean here the Sp (2N)-singlet

bilinear

k(t,x) :=
1

2
ψT Jψ =

1

2
ψA JAB ψ

B =

N∑

a=1

ψ↑, a ψ↓, a , (2.3)

5Let G1 and G2 be two subgroups of G. The subgroup G1 is the centraliser of G2 ⊆ G if and only if

G1 is the largest subgroup of G such that all its elements commute with all elements of G2. Usually, the

centraliser of G2 ⊆ G is denoted by C(G2) (= G1 here). Such a pair of subgroups G1 and G2 is sometimes

called a Howe dual pair by mathematicians.
6This follows from the fact that Sp (2)×O(N) is a subgroup of Sp (2N) where the subgroups Sp (2) and

O(N) are centralisers of each other. This property plays an important role (though for a different reason)

in the construction of higher-spin algebras [27–31].
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which reproduces the genuine Cooper pair ψ↑ψ↓ when N = 1. The generating functional

W [ϕ ; c0, N ] of Cooper-pair connected correlators in the Fermi gas described by (2.2) is

defined by the path integral

exp iW [ϕ ; c0, N ] =

∫
DψDψ† exp i S[ψ ,ϕ ; c0, N ] , (2.4)

where

S[ψ ,ϕ ; c0, N ] := S[ψ ; c0, N ] −
∫
dt dx

(
kϕ∗ + k∗ϕ

)
(2.5)

is the action in the presence of an external charged scalar field ϕ coupled to the Cooper

pair k.

In particular, the free (c0 = 0, infrared fixed point in d = 3) action in the presence of

the source ϕ reads

Sfree[ψ ,ϕ] := S[ψ ,ϕ ; 0, N ] =

∫
dt dx

[
ψ†
(
i∂t +

∆

2m
+ µ

)
ψ −

(
kϕ∗ + k∗ϕ

) ]
,

(2.6)

and is quadratic in the dynamical field ψ (since the kinetic term and the Cooper pair k

are). This quadratic functional is usually rewritten in a more elegant form by making use

of the Nambu-Gor’kov field

Ψ =

(
ψ↑
ψ∗
↓

)
. (2.7)

Notice that ψ and Ψ are not related by a unitary transformation (not even by a linear or

anti-linear transformation) but the canonical anti-commutation relations are preserved. In

terms of the Nambu-Gor’kov field, the quadratic action (2.6) takes the form

Sfree[Ψ ,ϕ] =

∫
dt dxΨ†

(
i∂t + ( ∆

2m + µ) ϕ

ϕ∗ i∂t − ( ∆
2m + µ)

)
Ψ . (2.8)

The generating functional of connected correlators of Cooper pairs in the ideal Fermi

gas is Wfree[ϕ ;N ] := W [ϕ ; 0, N ]. It can easily be evaluated formally since the path

integral (2.4) is Gaussian in such case:

Wfree[ϕ ;N ] = −iN Tr log

(
i∂t + ( ∆

2m + µ) ϕ

ϕ∗ i∂t − ( ∆
2m + µ)

)
=: N Wfree[ϕ ] (2.9)

providing an explicit solution of the infrared stable conformal field theory in d = 3. In

order to prepare the ground for the later discussion, let us already here introduce the field

π :=
δWfree[ϕ]

δϕ∗ . (2.10)

conjugate to the free field ϕ, and the Legendre transformation

Γfree[π ] := Wfree[ϕ] −
∫
dt dx

(
ϕπ∗ +ϕ∗ π

)
, (2.11)

of the free connected correlator generating functional Wfree[ϕ].

– 7 –
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In order to relate this to the interacting theory, we use a standard trick: the Hubbard-

Stratonovich transformation which reformulates any system of particles with a two-body

interaction equivalently as a system of particles interacting only via a fluctuating auxiliary

field. More precisely, here one transforms the path integral over the fundamental fermionic

field Ψ with quartic vertex into a Gaussian path integral via the introduction of an auxiliary

complex scalar field φ mediating the interaction in the particle-particle channel. This

auxiliary field is called “dimer” in the literature on the unitary Fermi gas. More concretely,

on the right-hand-side of (2.4) one can introduce a Gaussian path integral over the auxiliary

field φ to get

exp iW [ϕ ; c0, N ] ∝
∫
DΨDΨ†DφDφ∗ exp i SHS[Ψ ,φ ,ϕ ; c0, N ] , (2.12)

where SHS[Ψ ,φ ,ϕ ; c0, N ] is the Hubbard-Stratonovich transformation of the action (2.5).

It is equal to the sum of a chemical-potential like term for the dimer plus the free action

in presence of the source ϕ shifted by the dimer φ,

SHS[Ψ ,φ ,ϕ ; c0, N ] :=
4N

c0

∫
dt dx |φ|2 + Sfree[Ψ ,ϕ+ φ] . (2.13)

In the following, it is convenient to work directly with the shifted dimer field φ = φ + ϕ.

The integral over the dynamical field Ψ in (2.12) can now be evaluated and gives as a result

exp iW [ϕ ; c0, N ] ∝
∫
DφDφ∗ exp i Seff[φ ,ϕ ; c0, N ] , (2.14)

where the effective action for the dimer field depends linearly on the number N of flavors:

Seff[φ ,ϕ ; c0, N ] = N Seff[φ ,ϕ ; c0] and is the sum of the chemical-potential like term

plus the free effective action for the auxiliary field (2.9)

Seff[φ ,ϕ ; c0] :=
4

c0

∫
dt dx |φ−ϕ|2 + Wfree[φ] . (2.15)

The linear dependence of the effective action on the parameter N means that 1/N controls

the loop expansion of the dimer effective theory. The large-N limit allows for a saddle

point approximation of the integral (2.14) over the dimer field:

W [ϕ ; c0, N ] = N Wmean[ϕ ; c0] + O(1) , (2.16)

where

Wmean[ϕ ; c0] := Seff[φ(ϕ) ,ϕ ; c0] (2.17)

is the celebrated “mean field” approximation of the generating functional of connected

correlators. Notice that in the physically relevant N = 1 case, this term is a priori of the

same order as the 1/N corrections. Nevertheless, the mean field approximation becomes

exact at N = ∞, providing an explicit relation between the generating functionals of the

free and interacting theory:

Wmean[ϕ ; c0] =
4

c0

∫
dt dx |φ(ϕ)−ϕ|2 + Wfree[φ(ϕ)] . (2.18)

– 8 –
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On the right-hand-side of (2.17) and (2.18), the field φ depends on the source ϕ because

it should be understood as the solution of the classical equation of motion

δSeff[φ ,ϕ ; c0]

δφ∗
= 0 =⇒ δWfree[φ]

δφ∗
=

4

c0
(ϕ− φ) . (2.19)

Sometimes in this paper, the large-N limit and the mean field approximation will be

loosely said to be equivalent. By this, we mean that the equations (2.18)–(2.19) provide

an approximation for the interacting generating functional which can either be understood

as the leading-order approximation in the large-N limit analogous to the ’t Hooft limit in

gauge theories (that is N →∞ at fixed c0) or as the mean field approximation at fixed N

(say N = 1).

Now, two distinct limits of the approximated generating functional (2.18)–(2.19) can

be considered: either a large-c0 limit in which case the coefficient c0/N of the quartic term

in the bare action (2.2) might be kept finite (though possibly small, e.g. in the ultraviolet)

or instead a small-c0 limit in which case the coefficient c0/N goes to zero, even if N is kept

finite (though possibly large for the validity of the saddle point approximation). In both

cases, one finds that the generating functionals are Legendre conjugates, but expressed

in terms of different rescaled fields in the distinct limits. First, let us consider the limit

c0 →∞ . If one rescales the source ϕ := 4
c0
ϕ, then the equation of motion (2.19) becomes

δWfree[φ]

δφ∗
= ϕ+O

(
1

c0

)
, (2.20)

which means that the shifted dimer field and the rescaled source are exact Legendre con-

jugates at c0 = ∞. Moreover, the approximated generating functional (2.18) takes the

suggestive form

Wmean

[
c0ϕ

4
; c0

]
= −

∫
dt dx

(
ϕφ∗ + ϕ∗φ

)
+
c0
4

∫
dt dx |ϕ|2 + Wfree[φ(ϕ)] +O

(
1

c0

)
.

(2.21)

Comparing with the definitions (2.10)–(2.11), one is lead to the relation

lim
c0→∞

{
Wmean

[
c0ϕ

4
; c0

]
− c0

4

∫
dt dx |ϕ |2

}
= Γfree[ϕ] . (2.22)

This result is very similar to the calculation performed in [34], the interpretation of which

is very natural in the O(N) model where the infrared stable Wilson-Fisher fixed point

corresponds to an infinitely large dimensionful coupling. In the non-relativistic Fermi gas

the above derivation is applicable to the spatial dimension d < 2, where the unitary fixed

point is infrared stable.

In d > 2 the unitarity fixed point is ultraviolet stable which in regularisation with a

sharp cutoff corresponds to the limit c0 → 0. It appears therefore that the limit c0 → 0 is

necessary in d > 2 for the unitary Fermi gas.7 So let us now consider the limit c0 → 0 and

7 Note, however, that c0 → ∞ in any spatial dimension for the unitary Fermi gas in dimensional

regularisation [12].
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rescale the shifted dimer field φ̃ := 4
c0
φ. If we express the generating functional of the free

theory in terms of the rescaled dimer field,

W̃free[ φ̃ ] := Wfree

[
c0
4
φ̃

]
, (2.23)

then the equation of motion (2.19) reads

δW̃free[φ̃]

δφ̃∗
= ϕ+O

(
c0

)
. (2.24)

Thus the source ϕ and the rescaled dimer φ̃ form a Legendre conjugate pair in the limit

c0 → 0 . In addition, if we express the generating functional of the mean field theory in

terms of the rescaled dimer field,

W̃mean[ φ̃ ; c0 ] := Wmean

[
c0
4
φ̃ ; c0

]
, (2.25)

then the relation (2.18) can be written as

W̃mean

[
φ̃ ; c0

]
= −

∫
dt dx

(
ϕ φ̃∗ +ϕ∗φ̃

)
+

4

c0

∫
dt dx |ϕ|2 + W̃free[φ̃(ϕ)] + O

(
c0

)
.

(2.26)

Therefore,

lim
c0→0

{
W̃mean

[
φ̃(ϕ) ; c0

]
− 4

c0

∫
dt dx |ϕ |2

}
= Γ̃free[ϕ] , (2.27)

with

Γ̃free[ϕ] := W̃free[φ̃]−
∫
dt dx

(
ϕ φ̃∗ +ϕ∗φ̃

)
,

δW̃free[φ]

δφ̃∗
= ϕ. (2.28)

Thus, we just demonstrated that, up to a divergent contact term, the unitary Fermi gas in

d > 2 is related to the ideal Fermi gas via a Legendre transformation in the large-N limit

or, equivalently, in the mean field approximation.

We remark that the intimate relation between the free and unitary fermions in the

large N limit gives rise to a simple relation between the scaling dimensions of the dimer

field at the two fixed points

∆free
φ +∆int

φ = d+ 2. (2.29)

Since in the free theory ∆free
φ = 2∆ψ = d, this implies ∆int

φ = 2. The non-trivial fixed

point is physically admissible only for 0 < d < 2 and 2 < d < 4. Indeed, for d > 4

one obtains ∆int
φ = 2 < d

2 which violates the unitarity bound. Moreover, in d = 2 both

fixed points merge together (∆free
φ = 2 = ∆int

φ ), and only the trivial fixed point exists.

Remarkably, due to simplicity of the non-relativistic vacuum, the relation (2.29) receives

no 1/N corrections in the theory of non-relativistic fermions and thus is exact.

From the point of view of the holographic duality, the Legendre transformation corre-

sponds to a change of the boundary condition for the bulk scalar dual to the Cooper-pair
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field in the same theory in the bulk [33], in agreement with the comments in [13]. More

precisely, the highest of the two scaling dimensions (∆free
φ = d and ∆int

φ = 2) is denoted

∆+ and corresponds to an infrared (IR) stable fixed point on the boundary side and to a

standard (Dirichlet-like) boundary condition on the bulk side, while the lowest dimension,

∆−, corresponds to an ultraviolet (UV) stable fixed point and to an exotic (Neumann-like)

boundary condition.

We conclude that, in the large-N limit, the dimer effective theory of the ideal and the

unitary Fermi gases for 0 < d < 4 are related via a Legendre transformation and should

thus share the same set of conserved currents and symmetries.8 For this reason, although

we are primarily interested in the unitary Fermi gas in the large N limit, it is sufficient

from now on to focus on the theory of the ideal Fermi gas.

3 Higher symmetries of the Schrödinger equation

3.1 The Schrödinger group of kinematical symmetries

In mathematical terms, the Galilei principle of relativity is encoded in the Galilei group.

For this reason the structure of this group plays an important role in non-relativistic

physics [39]. In d spatial dimensions the group acts on the spatial coordinates x and

time t as

(t,x)→ g(t,x) = (t+ β,Rx+ vt+ a), (3.1)

where β ∈ R; v,a ∈ Rd and R is a rotation matrix in d spatial dimensions. In quantum

mechanics, the Galilei group acts by projective representations on the Hilbert space of

solutions to the Schrödinger equation when the potential is space and time translation

invariant.9 In other words, in such case any solution is transformed to a solution of the form

ψ(t,x)→ γ
(
g(t,x)

)
ψ
(
g−1(t,x)

)
, (3.2)

where γ is a phase factor compatible with the group multiplication laws [40]. For example,

a scalar wave function ψ describing a single particle of mass m transforms under a pure

Galilei boost gv as

ψ(t,x)→ exp

[
− im

2
(v2t− 2v · x)

]
ψ
(
g−1
v (t,x)

)
. (3.3)

The presence of the mass-dependent phase factor in the transformation law implies a su-

perselection rule forbidding the superposition of states of different masses, known as the

Bargmann superselection rule [41]. This rule constrains the dynamics and states that ev-

ery term in the Lagrangian of a non-relativistic Galilei-invariant theory must conserve the

total mass. For this reason, the mass plays the role of a conserved charge in non-relativistic

physics.

8For the interacting system, however, most of these symmetries are expected to be broken by 1/N

corrections.
9Of course, for a single particle such a potential must be constant.
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By enlarging the Galilei group through a central extension, known as the mass op-

erator (or alternatively the particle number operator), we can make the representations

unitary [39, 40]. The centrally extended Galilean group is sometimes referred to as the

Bargmann group [42]. Its Lie algebra consists of the following generators: the mass M̂ ; one

time translation P̂t ; d spatial translations P̂i ;
d(d−1)

2 spatial rotations M̂ij and d Galilean

boosts K̂i . The non-trivial commutators are

[M̂ij , M̂kl] = i(δikM̂jl − δjkM̂il − δilM̂jk + δjlM̂ik) ,

[M̂ij , K̂k] = i(δikK̂j − δjkK̂i) , [M̂ij , P̂k] = i(δikP̂j − δjkP̂i) ,
[P̂i, K̂j ] = −iδijM̂, [P̂t, K̂j ] = −iP̂j .

(3.4)

Notice that the commutation relations between the translation and Galilean boost gen-

erators are the canonical commutation relations of the Heisenberg algebra hd in d space

dimensions (see appendix A for the definition), where the Galilean boost generators play

the role of the position operators while the role of the reduced Planck constant is played

by the mass.

It is remarkable that the group of space-time symmetries of the free Schrödinger equa-

tion with vanishing chemical potential

i ∂tψ(t,x) = −
∆

2m
ψ(t,x) (3.5)

is larger than the Bargmann group if one relaxes the restriction of unit module on the

factor appearing in the transformation law. Following Niederer [5], we call kinematical

symmetry of the Schrödinger equation any transformation of the form (3.2), where γ is a

complex factor compatible with the group structure, that maps solutions to solutions.10

First, remember that the mass is just a charge and so it has scaling dimension zero.

Thus, the non-interacting system has no parameter with non-vanishing scaling dimension,

which implies an additional scale symmetry. In non-relativistic physics, this symmetry

scales the time and spatial coordinates differently

(t,x)→
(
t

α2
,
x

α

)
, α ∈ R. (3.6)

This corresponds to the dynamical critical exponent z = 2, which determines the relative

scaling of time and space coordinates.

Second, Niederer found in [5] that, in addition to the scale symmetry, a discrete inver-

sion transformation Σ which acts on space-time as

(t,x)→ Σ(t,x) =

(
−1

t
,
x

t

)
(3.7)

is also a symmetry of the free Schrödinger equation. By conjugating a time translation gβ
via the inversion Σ,

(t,x)→ (Σ−1gβΣ)(t,x) =

(
t

1 + βt
,

x

1 + βt

)
(3.8)

10Mathematicians would call such transformations a “multiplier” representation of the symmetry group.
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a new symmetry of the free Schrödinger equation is found [5, 6]. This transformation is

known as expansion and is a non-relativistic analogue of the special conformal transfor-

mations. Note that a Galilean boost gv is conjugate to a spatial translation ga via the

inversion Σ.

The extension of the Bargmann group by scale transformations and expansions is

known as the Schrödinger group in d spatial dimensions, denoted by Sch(d). Apparently

this structure was known already to Jacobi (see the conclusion of [43]), but was redis-

covered after the advent of quantum mechanics in [5, 6]. The Schrödinger group is the

non-relativistic counterpart of the conformal group, though the former cannot be obtained

as an Inönu-Wigner contraction from the latter. The Schrödinger group is simply generated

by the Euclidean isometries (rotations and spatial translations), the time translations, the

scale transformations and the inversion.11 In addition to (3.4), the non-trivial commutators

of the Schrödinger algebra sch(d) in d spatial dimensions are

[P̂i, D̂] = iP̂i , [P̂i, Ĉ] = −iK̂i , [K̂i, D̂] = −iK̂i ,

[D̂, Ĉ] = 2iĈ , [D̂, P̂t] = −2iP̂t , [Ĉ, P̂t] = −iD̂ .
(3.9)

Together, the time translation generator P̂t, the scale generator D̂ and the expansion

generator Ĉ span a subalgebra sl(2,R) of the full Schrödinger algebra. These generators

commute with the generators M̂ij of the rotation subalgebra o(d). The Schrödinger algebra

has the structure of a semi-direct sum: sch(d) = hd B

(
o(d)⊕ sl(2,R)

)
.

Finally, the “standard” representation of the Schrödinger algebra as differential oper-

ators of order one acting on the one-particle wave function ψ(t,x) is

P̂i = −i∂i, P̂t = i∂t, M̂ = m,

M̂ij = −i(xi∂j − xj∂i),

K̂i = mxi + it∂i,

D̂ = i

(
2 t ∂t + xi∂i +

d

2

)
,

Ĉ = i

(
t2∂t + t

(
xi∂i +

d

2

))
+
m

2
x2.

(3.10)

3.2 The Weyl algebra of higher symmetries

The algebra of space-time symmetries of the free single-particle Schrödinger equation is

actually much larger than the Schrödinger algebra. More precisely, the Weyl algebra (see

appendix A for the definition) is realised as an infinite-dimensional symmetry algebra

of the free Schrödinger equation, as was pointed out in the inspiring work [35]. Here, we

further prove that the Weyl algebra is the maximal algebra of space-time symmetries of the

Schrödinger equation. In the present context, this result can be used as the non-relativistic

counterpart of the theorem of Eastwood [32] on the maximal symmetry algebra of the

11The Galilean boosts and the expansions come “for free” (more precisely, via conjugation of the space-

time translations by the inversion).
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massless Klein-Gordon equation (see e.g. section 4 of [44] for a review). Accordingly, the

Weyl algebra (and, possibly, its proper matrix-valued extension) provides a non-relativistic

higher-spin algebra which is the precise analogue of Vasiliev’s (possibly extended) higher-

spin algebras [26].

3.2.1 The maximal symmetry algebra of the Schrödinger equation

In order to make precise and rigorous statements analogous to the known results on the

conformal scalar field, let us start with some definitions mimicking the ones of [32, 44]. A

symmetry of the Schrödinger equation is a linear differential operator Â(t, X̂, P̂t, P̂) obeying

to the condition

Ŝ Â = B̂ Ŝ , (3.11)

for some linear differential operator B̂, where Ŝ is the Schrödinger operator defined by

Ŝ := P̂t − Ĥ , (3.12)

and Ĥ is a Hamiltonian of a massive non-relativistic particle taking the usual form

Ĥ(X̂, P̂) =
P̂2

2m
+ V (X̂) . (3.13)

The Schrödinger equation reads

i ∂tψ(t,x) ≈ Ĥψ(t,x) ⇐⇒ Ŝψ(t,x) ≈ 0, (3.14)

where the “weak equality” symbol ≈ stands for an equality valid when the Schrödinger

equation is satisfied. By definition, any symmetry Â preserves the space KerŜ of solutions

to the Schrödinger equation (3.14): it maps any solution ψ to a solution ψ′ = Âψ. The

general solution of the Schrödinger equation (3.14) is of course

ψ(t,x) = Û(t)ψ(0,x) , (3.15)

where

Û(t) = exp(−itĤ) (3.16)

is the time evolution operator. Obviously, the time evolution

F̂ (t) = Û(t) F̂ (X̂, P̂) Û−1(t) = F̂
(
X̂(t), P̂(t)

)
, (3.17)

of any spatial differential operator F̂ (X̂, P̂) defines a symmetry of the Schrödinger equation

in the above sense. It is clear that F̂ (t) maps solutions to solutions, where the initial wave

functions are related by the initial operator F̂ (0) = F̂ . The condition (3.11) is satisfied

with Â = B̂ = F̂ (t) since i∂tF̂ (t) = [Ĥ, F̂ (t)], which follows from (3.17). Note that (3.17)

is the inversed (t→ −t) time evolution of F̂ (X̂, P̂) in the Heisenberg picture.12

12Notice that in [24], the inversed time evolution in the Heisenberg picture was written F̂ (−t) in order

to emphasise this fact. Here, we chose the simpler notation F̂ (t) in order to avoid overloading the many

formulas where such notations appear.
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A symmetry Â is said to be trivial if Â = ÔŜ for some linear operator Ô because it

maps any solution to zero. Such a trivial symmetry is always a symmetry of the Schrödinger

equation, since it obeys (3.11) with B̂ = ŜÔ. The algebra of trivial symmetries forms a left

ideal in the algebra of linear operators endowed with the composition ◦ as multiplication.

Furthermore, it is also a right ideal in the algebra spanned by all the symmetries of the

Schrödinger equation. Two symmetries Â1 and Â2 are said to be equivalent if they differ by

a trivial symmetry. The corresponding equivalence relation is denoted by a weak equality

Â1 ≈ Â2 ⇐⇒ Â1 = Â2 + ÔŜ . (3.18)

The maximal symmetry algebra of the Schrödinger equation is the complex algebra of all

inequivalent symmetries of the Schrödinger equation, i.e. the algebra of all symmetries

quotiented by the two-sided ideal of trivial symmetries. Let us show that for any time-

independent Hamiltonian the maximal symmetry algebra of the single-particle Schrödinger

equation is isomorphic to the Weyl algebra of spatial differential operators.13

The proof goes in three steps: Let Â(t, X̂, P̂t, P̂) be a symmetry of the Schrödinger

equation. Firstly, one remarks that it is equivalent to a representative independent of the

time translation generator:

Â(t, X̂, P̂t, P̂) ≈ Â′(t, X̂, P̂) , (3.19)

because one may assume that the operator Â has been ordered in such a way that all

the operators P̂t are on the right. Thus each P̂t can be traded for Ĥ since P̂t ≈ Ĥ.

Secondly, one observes that the representative Â′ must commute with the Schrödinger

operator Ŝ. Indeed, the representative Â′ is also a symmetry, so it must obey to the

condition Ŝ Â′ = B̂′ Ŝ which is equivalent to

[Ŝ, Â′] = (B̂′ − Â′) Ŝ. (3.20)

As follows from the definition (3.12) of the Schrödinger operator, the left-hand-side of this

equation is equal to

[Ŝ, Â′] = i∂tÂ
′ − [Ĥ, Â′] (3.21)

where the time derivative acts on the explicit time dependence of the operator Â′(t, X̂, P̂).

In order to compare the left and right hand sides of eq. (3.20), let us assume that each

side is ordered as before. On the one hand, the left-hand-side of eq. (3.20) is given by

the expression (3.21) which does not depend on P̂t since both the Hamiltonian Ĥ and the

representative Â′ do not. On the other hand, the right-hand-side of eq. (3.20) explicitly

depends on P̂t due to the presence of the Schrödinger operator Ŝ = P̂t− Ĥ. Therefore each

side must vanish separately, which means that the commutator between Â′ and Ŝ is zero.

Thirdly, this commutation relation implies that the representative Â′ is the (inversed) time

evolution of a spatial differential operator

Â′(t, X̂, P̂) = Û(t) Â′(0, X̂, P̂) Û−1(t) . (3.22)

This becomes clear from the commutation relation (3.21) which is the Schrödinger equation

in the (time reversed) Heisenberg picture.

13For an n-component wave function, the maximal symmetry algebra of the Schrödinger equation is

isomorphic to the tensor product between the algebra of n × n square matrices and the Weyl algebra of

spatial differential operators: Mn ⊗Ad.
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3.2.2 The Schrödinger subalgebra

As should be expected, the reversed time evolution of the initial observables span all

the inequivalent symmetries of any Schrödinger equation. But how does the Schrödinger

algebra sch(d) fits into this result? And what is so special about the free evolution?

A useful observation is that, when the particle is free (Ĥ = Ĥfree = P̂ 2

2m) all the

differential operators (3.10) are equivalent to polynomials at most of degree two in the

time-evolved operators of positions and momenta. For instance, the mass M̂ = m is the

degenerate case of degree zero. Moreover, the time translation generator is equivalent to

the quadratic Hamiltonian P̂t ≈ Ĥfree = P̂ 2

2m and the rotation generators can be written

as the angular momentum M̂ij = X̂iP̂j − X̂jP̂i. For the other generators, it is easier to

first verify this property at time t = 0. The Galilean boost generators evaluated at t = 0

are proportional to the positions, K̂i
∣∣
t=0

= mX̂i while the scale and expansion generators

can be written as the quadratic polynomials, D̂
∣∣
t=0

= −X̂iP̂i + id/2 and Ĉ
∣∣
t=0

= m
2 X̂

2.

All together, these differential operators at t = 0 provide a unitary representation of the

Schrödinger algebra on the Hilbert space of initial one-particle wave functions. Therefore,

so does the (reversed) time evolutions of these observables for any Hamiltonian. However,

the time-dependent operator P̂ 2(t)
2m = exp(−iĤt) P̂ 2

2m exp(+iĤt) must be identified with

the generator P̂t in this particular realisation of the Schrödinger algebra, but it does not

correspond to the genuine Hamiltonian Ĥ (except when the particle is free) and thus in

general it will not generate the genuine time evolution of the wave function. In other words,

the reversed time evolution of the above-mentioned generators of degree at most two are

symmetries (in the sense of our definition), they satisfy to the commutation relations of

the Schrödinger algebra, but they do not have any simple physical interpretation for a

generic Hamiltonian.

In general, the transformations generated by the (reversed) time evolution of some

observables are not “kinematical” [45], in the sense that they do not generate transforma-

tions of the form (3.2). A kinematical transformation is generated by a first-order linear

differential operator (in particular, a mere change of coordinates is generated by a vec-

tor field). In the following, the first-order symmetries of the Schrödinger equation will

be called kinematical symmetries, while the higher-order symmetries will be denoted by

higher symmetries (following the usage of mathematicians). Note that a higher-order lin-

ear differential operator does not generate a kinematical transformation. This explains

why higher symmetries are usually not considered by physicists. Nevertheless from the

mathematical perspective, the Schrödinger algebra is always a subalgebra of symmetries

of any one-particle Schrödinger equation but none of its realisation generate a kinematical

representation of the Schrödinger group, except for the special cases of potentials deter-

mined by Niederer [46]. As mentioned above, the simplest case is the free Hamiltonian,

where the time evolution of the position and momentum operators is X̂(t) = X̂ − t P̂/m

and P̂(t) = P̂. In such case, the differential operators (3.10) can be rewritten in terms of

the time evolved positions and momenta,

P̂t ≈
P̂ 2(t)

2m
=
P̂ 2

2m
= Ĥfree , M̂ = m,
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M̂ ij = X̂i(t)P̂ j(t)− X̂j(t)P̂ i(t),

K̂i = mX̂i(t), (3.23)

D̂ ≈ −X̂i(t)P̂i(t) + i
d

2
,

Ĉ ≈ m

2
X̂2(t).

Furthermore, a nice observation of [35, 47] is that all these symmetries are equivalent to

polynomials of degree two in the Galilean boost and translation generators (more precisely,

M̂ is of degree zero while by definition P̂ and K̂ are of degree one). Indeed, one may replace

everywhere X̂(t)→ K̂/m and P̂(t)→ P̂ to get

P̂t ≈
P̂ 2

2m
,

M̂ij =
K̂iP̂j − K̂jP̂i

m
,

D̂ ≈ −K̂
iP̂i
m

+ i
d

2
,

Ĉ ≈ K̂2

2m
.

(3.24)

This implies that the associative algebra of polynomials in the Galilean boost and transla-

tion generators is isomorphic to the maximal symmetry algebra of the free single-particle

Schrödinger equation. In more mathematical terms, the realisation of the enveloping alge-

bra U
(
sch(d)

)
of the Schrödinger algebra on the space of solutions to the free one-particle

Schrödinger equation is isomorphic to the Weyl algebra Ad of spatial differential operators.
The proof is straightforward: As was already observed, the Galilean boost and trans-

lation generators play in the Schrödinger algebra a role equivalent to the positions and

momenta in the Heisenberg algebra. Therefore, by themselves they generate algebraically

the whole Weyl algebra Ad which has been shown to be isomorphic to the maximal symme-

try algebra of the Schrödinger equation. The other generators of the Schrödinger algebra

are functions of the Galilean boost and translation generators, so they cannot produce

anything extra.

3.2.3 The maximal symmetry algebra of the Schrödinger action

One should scrutinise the issue of Hermiticity of the symmetries. This is important at the

level of the action principle and also for the unitarity of the representations. Let † stands

for the spatial Hermitian conjugation with respect to the spatial Hermitian form

〈ψ1 | ψ2 〉 :=
∫
dxψ∗

1(t,x)ψ2(t,x) , (3.25)

on the Hilbert space L2(Rd) of square-integrable functions, e.g. (X̂i)† = X̂i and (P̂i)
† = P̂i.

As usual, the scalar product (3.25) is time-independent for wave functions ψ1 and ψ2 which

are solutions of the Schrödinger equation, as in (3.15). The Weyl algebra of quantum
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observables is the real form of the complex Weyl algebra spanned by the spatial differential

operators that are Hermitian. All Schrödinger algebra generators (3.24) at time t = 0

are quantum observables. However, notice that the generators (3.10) containing a time

derivative (i.e. the generators of time translations, scale transformations and expansions)

are, in general, not Hermitian with respect to the spatial conjugation. Actually, the spatial

conjugate of the time derivative is not well defined since one is not allowed to integrate it by

part in (3.25). The apparent paradox can be solved if one restricts the domain of definition

of the generators to wave functions which are solutions of the Schrödinger operator, because

then the generators are equivalent to the observables (3.23).

The spatial Hermitian conjugation can be extend to space-time differential operators.

The space-time Hermitian conjugation will be denoted by the same symbol † although it

is the Hermitian conjugation with respect to the space-time Hermitian form

(ψ1 | ψ2 ) =

∫
dt 〈ψ1 | ψ2 〉 :=

∫
dt dxψ∗

1(t,x)ψ2(t,x) , (3.26)

such that t† = t and (P̂t)
† = P̂t. However, the scale and expansion generators in the

standard representation (3.10) are not Hermitian with respect to the space-time conjuga-

tion, D̂† = D̂ + 2i and Ĉ† = Ĉ + 2it∂t. Nevertheless, all the generators are equivalent to

Hermitian operators (with respect to both conjugations), when the Schrödinger equation

is satisfied, as can be seen from (3.23).

The Schrödinger action for a non-relativistic massive field described by the Schrödinger

equation (3.14) can be written as the quadratic form

S[ψ] = (ψ | Ŝ | ψ ) , (3.27)

where the Schrödinger operator (3.12) is Hermitian with respect to the space-time conju-

gation, Ŝ† = Ŝ. The Euler-Lagrange equation extremising the quadratic action is of course

the Schrödinger equation (3.14). A symmetry of the Schrödinger action is an invertible

linear operator Û preserving the quadratic form (3.27). In other words,

Û† Ŝ Û = Ŝ . (3.28)

A symmetry generator of the Schrödinger action is a linear differential operator Â which

is self-adjoint with respect to the quadratic form (3.27) in the sense that (ψ | Ŝ | Âψ ) =

( Âψ | Ŝ | ψ ). More concretely,

Ŝ Â = Â†Ŝ . (3.29)

Any symmetry generator Â defines a symmetry Û = eiÂ of the Schrödinger action. The

maximal algebra of symmetries of Schrödinger action is the real Lie algebra of symmetry

generators of the quadratic action endowed with i times the commutator as Lie bracket,

quotiented by the ideal of trivial symmetries. One can show that the Weyl algebra of

quantum observables is the maximal symmetry algebra of the Schrödinger action.14

14For an n-component wave function, the maximal symmetry algebra of the Schrödinger action is isomor-

phic to the tensor product of the algebra of Hermitian n × n matrices with the Weyl algebra of quantum

observables: u(n)⊗Ad(R).
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The proof goes as follows: Firstly, any symmetry generator Â of the Schrödinger

action is a symmetry of the Schrödinger equation with B̂ = Â† in the condition (3.11), due

to (3.29). Secondly, we have seen previously that any symmetry of the Schrödinger equation

is equivalent to a representative which is function only of the translation and Galilean

boost generators. Such a representative automatically commutes with the Schrödinger

operator Ŝ. Thirdly, any symmetry of the quadratic action that commutes with Ŝ must be

Hermitian with respect to the space-time conjugation, Â = Â†, as can be seen from (3.29).

Consequently, the representative must be Hermitian, i.e. a quantum observable.

From the point of view of holography, the precise identification of the maximal algebra

of rigid symmetries of the (non-relativistic) CFT is of prime importance since it should

correspond to the symmetry transformations preserving the vacuum of the bulk theory,

e.g. in the usual AdS/CFT the isometry group of AdS is isomorphic to the conformal

group of the boundary. In the generalisation of the holography conjecture of [21, 25]

to any spacetime dimension, the maximal symmetry algebra of the massless Klein-Gordon

action [32] is precisely isomorphic to the higher-spin algebra of Vasiliev equations [26] which

appears as the algebra preserving the AdS solution. The maximal symmetry algebra of the

Schrödinger action could play an analogous role in a non-relativistic version of higher-spin

gravity. This expectation is rather natural given the fact that Vasiliev theory is formulated

in a frame-like language (à la Cartan) with a connection one-form taking values in the

relativistic higher-spin algebra which can be replaced by its non-relativistic analogue (see

next section).

4 Light-like dimensional reduction of currents

4.1 Bargmann framework

To realise geometrically the Schrödinger symmetry, we first embed the Schrödinger algebra

in d spatial dimensions sch(d) into the relativistic conformal algebra in d + 2 space-time

dimensions O(d+2, 2). That the Schrödinger algebra can be embedded into the relativistic

conformal algebra can be made manifest at the level of the equations of motion. More con-

cretely, an old trick (the so-called “Bargmann framework” [42, 43, 48, 49]) is the derivation

of the free Schrödinger equation from the massless Klein-Gordon equation via a Kaluza-

Klein reduction along a null direction.

4.1.1 Equations of motion: from Klein-Gordon to Schrödinger

Consider the massless Klein-Gordon equation in d+2-dimensional Minkowski space-time,15

�Ψ(x) ≡ −∂20Ψ(x) +
d+1∑

i=1

∂2iΨ(x) = 0. (4.1)

This equation is conformally invariant. Defining the light-cone coordinates,

x± =
x0 ± xd+1

√
2

, (4.2)

15We follow closely [13] (see e.g. [48, 49] for more details on the method of null dimensional reduction).
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the Klein-Gordon equation becomes16

(
−2 ∂

∂x−
∂

∂x+
+

d∑

i=1

∂2i

)
Ψ(x) = 0. (4.3)

The global coordinates xµ = (x+, x−,x) have minuscule Greek indices which will span d+2

values while the spatial coordinates xi = (x) have minuscule latin indices which will span

d different values.17 If the relativistic scalar field is assumed to be of the form

Ψ(x) = e−imx
−

ψ(x+,x) , (4.4)

one can make the identification18 ∂/∂x− := ∂− = −im. Then the equation (4.3) has the

form of the Schrödinger equation in free space

(
2im∂+ +

d∑

i=1

∂2i

)
Ψ(x) = 0. (4.5)

The light-cone coordinate x+ can be identified with the time t (∂+ = ∂t is the time

derivative) and the operator
∑d

i=1 ∂
2
i is the Laplacian operator ∆ in flat space,

(2im∂t +∆)Ψ(x) = 0. (4.6)

Thanks to the dimensional reduction (4.4), the exponential can be factorised and we obtain

the equation of motion for the non-relativistic scalar field (3.5). This equation is invari-

ant under the Schrödinger group Sch(d) as was explained in the previous section. Since

the original Klein-Gordon equation has conformal symmetry, this means that Sch(d) is a

subgroup of O(d+2, 2).

4.1.2 Symmetry algebra: from conformal to Schrödinger

Let us now discuss the embedding of the Schrödinger algebra into the conformal algebra

explicitly, following the discussion in [13]. The conformal algebra o(d+2, 2) can be defined

by the following commutation relations:

[M̃µν , M̃αβ ] = i(ηµαM̃νβ + ηνβM̃µα − ηµβM̃να − ηναM̃µβ),

[M̃µν , P̃α] = i(ηµαP̃ ν − ηναP̃µ),
[D̃, P̃µ] = −iP̃µ, [D̃, K̃µ] = iK̃µ,

[P̃µ, K̃ν ] = −2i(ηµνD̃ + M̃µν),

(4.7)

where Greek indices run from 0 to d+1, and all other commutators are equal to 0. The tilde

symbols denote relativistic generators; we reserve hatted symbols for the non-relativistic

16The elements of the metric are defined by η+− = η−+ = −1; ηij = 1 and the others are zero.
17In the sequel, the index will often be left implicit for the space-time coordinates xµ ≡ x. No ambiguity

arises since the spatial coordinates are written xi ≡ x.
18In the same way, we denote ∂/∂x+ by ∂+.
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operators. The conformal algebra generators can be realised as differential operators of

order one acting on the relativistic scalar field Ψ(x)

P̃µ = −i∂µ, M̃µν = −i(xµ∂ν − xν∂µ),

K̃µ = i

(
2xµ

(
xν∂ν +

d

2

)
− x2∂µ

)
, D̃ = i

(
xµ∂µ +

d

2

)
.

(4.8)

We identify the light-cone momentum P̃+ = (P̃ 0 + P̃ d+1)/
√
2 with the mass operator

M̂ in the non-relativistic theory (in agreement with the previous identification ∂− = −im).

We now select all operators in the conformal algebra that commute with P̃+, i.e. which

preserve the Kaluza-Klein ansatz (4.4). Clearly these operators form a subalgebra, and one

may check that it is the Schrödinger algebra sch(d) [50]. The identification is as follows:

M̂ = P̃+, P̂t = P̃−, P̂ i = P̃ i, M̂ ij = M̃ ij ,

K̂i = M̃ i+, D̂ = D̃ + M̃+−, Ĉ =
K̃+

2
.

(4.9)

From eq. (4.7), one finds that the commutators between the operators (4.9) are exactly the

Schrödinger algebra commutators (3.4) and (3.9). Furthermore, the realisation (3.10) fol-

lows from (4.8) via the identification (4.9). The maximal symmetry algebra of the massless

Klein-Gordon equation (4.1) is the algebra of polynomials in the conformal generators (4.8)

modulo the equivalence relations following from the Klein-Gordon equation [32].19 The

maximal symmetry algebra of the free Schrödinger equation (3.5) is the algebra of poly-

nomials in the Schrödinger generators (3.10) modulo the equivalence relations following

from the Schrödinger equation. The embedding similar to the one described above actu-

ally holds at the level of maximal symmetry algebra, as could be expected: The maximal

symmetry algebra of the free Schrödinger equation is isomorphic to the subalgebra of the

maximal symmetry algebra of the massless Klein-Gordon equation, that commutes with a

translation generator in a fixed light-like direction.

The proof is direct: The free Schrödinger equation is equivalent to a system of two

equations: the massless Klein-Gordon equation �Ψ = 0 and the null reduction P̃+Ψ =

mΨ . Therefore, the maximal symmetry algebra of the Schrödinger equation is isomorphic

to the maximal symmetry algebra of the previous system of equations.

In other words, the maximal symmetry algebra of the free Schrödinger equation is

isomorphic to the centraliser of a given light-like translation generator inside the maximal

symmetry algebra of the massless Klein-Gordon equation. Therefore, a polynomial in the

conformal generators is equivalent to a polynomial in the Schrödinger generators if and

only if it commutes with P̃+. Obvious examples are the polynomial in the generators (4.9)

of sch(d) which do commute with P̃+. A more interesting example of the previous property

is the polynomial α = K̃iP̃i − 2M̃+iM̃+i , quadratic in the generators of o(d+ 2, 2). With

the help of the commutation relations (4.7), one can check that α commutes with P̃+. By

making use of (3.10) and (4.8), one further finds that it is equivalent to a polynomial in

the generators of sch(d): α ≈ M̂ ijM̂ij + idD̂ + d2/2.

19The maximal symmetry algebra of the massless Klein-Gordon action was denoted by hu(1/sp(2)[d+2, 2])

by Vasiliev in [26].
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4.2 Generalities on the currents

4.2.1 Currents: from relativistic to non-relativistic ones

A relativistic symmetric conserved current of rank r > 1 is a real contravariant symmetric

tensor field Cµ1...µr(x) obeying to the conservation law

∂µ1C
µ1...µr(x) ≈ 0 , (4.10)

where the “weak equality” symbol ≈ stands for “equal on-mass-shell,” i.e. modulo terms

proportional to the equations of motion. A generating function of relativistic conserved

currents [51] is a real function C(x; p) on space-time phase-space which is (i) a formal

power series in the “momenta” pµ

C(x; p) =
∑

r>0

1

r!
Cµ1...µr(x) pµ1 . . . pµr , (4.11)

and which is (ii) such that (
∂

∂xµ
∂

∂pµ

)
C(x; p) ≈ 0 . (4.12)

The terminology follows from the fact that all the coefficients of order r > 1 in the power

expansion (4.11) of the generating function are symmetric tensors which are all conserved,

since (4.10) follows from expanding eq. (4.12) in power series. In flat space-time, the indices

of the “momenta” pµ can be raised with the Minkowski metric. Hence, one may define the

bilocal function

C(x; p) = Ψ1

(
x+

i

2
p

)
Ψ2

(
x− i

2
p

)
, (4.13)

which is a generating function of relativistic conserved currents for any pair of functions

Ψ1 and Ψ2 satisfying the Klein-Gordon equation, as can be checked by direct computation

(c.f. [51] for more details).

In order to look for the proper implementation of the Bargmann framework in the

case of conserved currents, one should write the conservation law (4.10) of the relativistic

conserved currents Cµ1...µr(x) in the light-cone coordinates,

∂+C
+µ1···µr−1 + ∂−C

−µ1···µr−1 + ∂iC
iµ1···µr−1 ≈ 0 . (4.14)

If the components C−µ1···µr−1 of the relativistic currents are independent of x− or even

vanish, then the relativistic conservation law (4.14) embodies a collection of non-relativistic

conservation laws of the type (with s > r)

∂tC
+i1···is−1+···+−···− + ∂iC

i i1···is−1+···+−···− ≈ 0 . (4.15)

since ∂+ is identified with ∂t. As one can see, the extra light-cone directions with respect

to the spatial ones imply that a single relativistic current actually generates a collection of

(not necessarily independent) non-relativistic currents.
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By analogy with the relativistic definitions, one will call the following function on

space-time phase-space

c(t,x ; pt,p) := C(x+ = t, x− = 0,x ; p+ = −pt, p− = 0,p) (4.16)

the generating function of non-relativistic “currents” obtained from the generating func-

tion C(x, p) of relativistic currents. For the bilocal generating function (4.13), the ex-

pression (4.16) together with the dimensional reduction ansatz (4.4) lead to the following

generating function of non-relativistic symmetric “currents”

c(t,x ; pt,p) = ψ1

(
t− i

2
pt,x+

i

2
p

)
ψ2

(
t+

i

2
pt,x−

i

2
p

)
. (4.17)

The non-relativistic symmetric “currents” c(a) i1···ib can now be defined from

c(t,x ; pt,p) =
∑

r,s

1

r! s!
c(r) i1···is(t,x) pi1 · · · pis (pt)r . (4.18)

The word “current” is a slight abuse of terminology here since these symmetric tensors

c(a) i1···ib may not be conserved, even if the tensors Cµ1...µr(x) are.20 For instance, thanks

to the dimensional reduction ansatz,

Ψ1(x) = e−im1x−ψ1(x
+,x) , Ψ2(x) = e−im2x−ψ2(x

+,x) , (4.19)

the generating function of relativistic currents can be written as

C(x; p) = e−i(m1+m2)x−+ 1
2
(m1−m2)p−C(x+, x− = 0,x ; p+, p− = 0,p) , (4.20)

which is independent of x− if and only if m1 + m2 = 0. Notably the non-relativistic

“currents” generated by (4.17) will thus only be conserved when m1 + m2 = 0. The

explicit expressions of these currents will be given in the next subsection for the cases

which are relevant for the present paper.

The symmetric tensor c(r) i1···is of rank s is said to be of level r. As explained below

in detail on some specific examples, the bilinears of non-vanishing level r 6= 0 generated

by (4.17) are not genuinely independent. Indeed, these bilinears contain time derivatives

of the field which can be traded for spatial derivatives via the equation of motion. Conse-

quently, one might scrutinise on the generating function

c(t,x ; pt = 0,p) = ψ1

(
t,x+

i

2
p

)
ψ2

(
t,x− i

2
p

)
, (4.21)

of non-relativistic “currents”, c(0) i1···is(t,x), of vanishing level as can be seen from evalu-

ating (4.18) at pt = 0. The function (4.21) is local in time but bilocal in space. When

|m1| = |m2|, it can be interpreted physically as a composite field, at instant t, made of two

particles with the same mass, described respectively by ψ1(t,x1) and ψ2(t,x2). Accordingly,

in (4.21) the coordinate x correspond to the center of mass position. For x1 6= x2 6= x,

20For this reason, to avoid confusion in the following we will call them bilinears.
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the two bodies have a non-vanishing relative orbital angular momentum which may be

reinterpreted as the spin of the two-body composite. More technically, this reinterpreta-

tion corresponds to the decomposition of the generating function in terms of tensor fields

c(0) i1···is(t,x) of “spin” s. In fact, considering bilinears of any spin is very natural in the

study of general pairing.

4.2.2 Singlet bilinears

By analogy with the simplest prescription of Klebanov and Polyakov in [21], one might

focus on the bilinears in the ψ which are singlets of the internal symmetry group, i.e.

U(1) × Sp (2N) here. For the unitary Fermi gas, however, the Cooper pair is the main

object of interest and it is charged under U(1), so one prefers to slightly relax the previ-

ous requirement.

One option is to consider all the bilinears which are singlets of Sp (2N). Remember that

ψA = ψα,a where the indices take values as α = ↑, ↓ and a = 1, . . . , N while the orthogonal

and symplectic metrics are δAB = δαβ ⊗ δab and JAB = ǫαβ ⊗ δab. Essentially, there are

only two independent ways to construct Sp (2N)-singlets out of two multiplets ψ1 and ψ2

transforming in the fundamental representation of Sp (2N): either as the Hermitian form

ψ†
1ψ2 = ψ∗A

1 δABψ
B
2 of U(2N) or as the symplectic form ψ1Jψ2 = ψA1 JABψ

B
2 of Sp (2N,C).

Only the Hermitian form is invariant under U(1).

The restriction to the Sp (2N)-invariant sector appears natural for the large-N ex-

tension of the Fermi gas but is questionable for the physical (N = 1) Fermi gas with

internal symmetry group U(2) ∼= U(1) × Sp (2). Motivated by this remark and the ex-

istence of the embedding U(2) × O(N) ⊂ U(1) × Sp (2N), one may consider instead

the larger sector of flavor (i.e. O(N) ) singlet bilinears. Essentially, there is only one

way to construct O(N)-singlets out of multiplets transforming in the fundamental rep-

resentation of O(N): via the scalar product. However, this provides three independent

O(N)-singlets since the multiplets ψα are complex: either as the two (up or down) Her-

mitian forms ψα1
†ψα2 = ψ∗α, a

1 δabψ
α, b
2 (no sum on the index α) or as the symplectic form

ψ1Jψ2 = ψα, a1 ǫαβδabψ
β, b
2 . Again, only the Hermitian forms are invariant under U(1). Notice

that the two Hermitian forms and the symplectic form together reconstruct the Hermitian

form of U(2). This is in agreement with the analogue of the generalised prescription of

Klebanov and Polyakov in [21] since one focuses on the bilinears in ψ which are in the

adjoint representation of the unitary group U(2), the internal symmetry of the physical

unitary Fermi gas.

In both cases, there exists two types of singlet generating functions: the corresponding

bilinears are either neutral or charged with respect to the U(1) group associated with mass

conservation. The charged bilinears transform in massive representations (of mass 2m) of

the Schrödinger algebra, while the neutral bilinears carry massless representations. We

refer the reader to appendix B for a detailed discussion devoted to the unitary irreducible

representations (UIRs) of the Schrödinger algebra.
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4.3 Singlet bilinears of the symplectic subgroup

4.3.1 Neutral bilinears

Following the above discussion, we impose that21

Ψ1 = Ψ† ; Ψ2 = Ψ (4.22)

in (4.13) such that m1 = −m and m2 = m in order to construct a real current generating

function denoted by J :

J(x; p) = Ψ†
(
x+

i

2
p

)
Ψ

(
x− i

2
p

)
= ΨA∗

(
x+

i

2
p

)
δABΨ

B

(
x− i

2
p

)

=

[
Ψ

(
x− i

2
p

)]†
Ψ

(
x− i

2
p

)
= J∗(x; p) . (4.23)

This relativistic parent obeys the law of conservation (4.12). The corresponding con-

served currents, satisfying (4.10) and (4.14), were introduced by Berends, Burgers and

vanDam [52] long time ago and more recently were summarised in a generating function

in [51]. Using (4.11), one sees that they take the explicit form:

Jµ1...µr(x) =

(
− i
2

) r r∑

s=0

(−1)s
(
r

s

)
∂(µ1 . . . ∂µsΨ

†(x) ∂µs+1 . . . ∂µr)Ψ(x)

=

(
− i
2

) r

Ψ†(x)
←→
∂µ1 . . .

←→
∂µrΨ(x) (4.24)

where the usual notation
←→
∂ is defined by

Φ
←→
∂µΨ := Φ(∂µΨ) − (∂µΦ)Ψ .

The symmetric conserved current (4.24) of rank r is bilinear in the scalar field and contains

exactly r derivatives. The currents of odd rank are absent if the field is a real Grassmann-

even scalar.

After expressing the corresponding currents in terms of the non-relativistic field by

making use of the dimensional reduction ansatz (4.4),

J+ . . .+︸ ︷︷ ︸
r

i1...is− . . .−︸ ︷︷ ︸
q

(x) = (−m)q
(
− i
2

)r+s
ψ†(t,x)

←→
∂t . . .

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 . . .

←→
∂isψ(t,x) , (4.25)

one can check that they do not depend on x−: Jµ1···µr(x) = Jµ1···µr(t,x). In addition,

there is a relation of recurrence J−µ1···µr = −mJµ1···µr . From the last remark and the

equation (4.14), the conservation law of neutral currents becomes:

− ∂+J−µ1...µr−1(x) + ∂iJiµ1...µr−1(x) ≈ 0

⇒ m∂+Jµ1...µr−1(x) + ∂iJiµ1...µr−1(x) ≈ 0 . (4.26)

21The auxiliary relativistic scalar field Ψ that we use here is Grassmann-odd and (Ψ1 Ψ2)
† = Ψ†

2 Ψ
†
1.
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One can check even more simply all these properties in terms of the generating function.

Due to the definitions (4.23) and (4.4), one obtains:

J(x; p) = e−mp
−

j(t,x; pt,p) (4.27)

where the generating function of non-relativistic neutral currents is

j(t,x ; pt,p) = ψ†
(
t− i

2
pt,x+

i

2
p

)
ψ

(
t+

i

2
pt,x−

i

2
p

)
. (4.28)

since pt = p− = −p+ . The conservation law is
(
− ∂

∂x+
∂

∂p−
+ δij

∂

∂xi
∂

∂pj

)
J(x; p) ≈ 0 (4.29)

since J(x; p) does not depend on x−, which becomes
(
m

∂

∂t
+

∂

∂xi
∂

∂pi

)
j(t,x ; pt,p) ≈ 0 (4.30)

when expressed in terms of the generating function of non-relativistic neutral currents

via (4.27). The neutral non-relativistic conserved currents which are generated as

in (4.18) read

j
(r)
i1···is(t,x) = (−1)r

(
− i
2

)r+s
ψ†(t,x)

←→
∂t · · ·

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 · · ·

←→
∂isψ(t,x) (4.31)

and are related to the relativisitic neutral currents as follows:

J+ . . .+︸ ︷︷ ︸
r

i1...is− . . .−︸ ︷︷ ︸
q

(x) = (−1)r+qmq j
(r)
i1···is(t,x) . (4.32)

Let us give few examples in order to make contact with the standard conserved currents

of low rank. The “current” of rank zero is the number density n

J = j(0) = ψ†(t,x)ψ(t,x) = n . (4.33)

For rank one, the relativistic current is expressed by

Jµ(x) = −
i

2
Ψ†(x)

←→
∂µΨ(x) (4.34)

and it leads to the mass density ρ, the energy density

ǫ =
1

2m
∂iψ

†∂iψ (4.35)

and the momentum density ji (our notations and conventions are as in [11, 13]):




J+ = mj(0) = mψ†(t,x)ψ(t,x) = mn = ρ

J− = j(1) = i
2 ψ

†(t,x)
←→
∂t ψ(t,x) ≈ ǫ − 1

4m∆n

Ji = j
(0)
i = − i

2 ψ
†(t,x)

←→
∂i ψ(t,x) = j i .

(4.36)
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The relevant law of conservation is the continuity equation: ∂tρ + ∂ij
i ≈ 0 . Notice that

the total energy is given by

E =

∫
dx ǫ ≈

∫
dx j(1) (4.37)

modulo a boundary term. For rank two, one obtains:

Jµν(x) = −
1

4
Ψ†(x)

←→
∂µ
←→
∂νΨ(x) (4.38)

which leads to




J++ = m2j(0) = m2 ψ†(t,x)ψ(t,x) = m2 n = mρ

J+− = mj(1) = i
2 mψ†(t,x)

←→
∂t ψ(t,x) ≈ mǫ − 1

4m∆n

J+
i = mj

(0)
i = − i

2mψ†(t,x)
←→
∂i ψ(t,x) = mji

J−− = j(2) = −1
4ψ

†(t,x)
←→
∂t
←→
∂t ψ(t,x)

J−
i = j

(1)
i = 1

4ψ
†(t,x)

←→
∂t
←→
∂i ψ(t,x) = mjǫi +

1
4∂i∂tn

Jij = j
(0)
ij = − 1

4ψ
†(t,x)

←→
∂i
←→
∂j ψ(t,x) = mΠij − 1

4( ∂i∂j − δij ∆)n

(4.39)

where

jǫi = −
1

2m
(∂tψ

†∂iψ + ∂iψ
†∂tψ) (4.40)

is the energy current and

Πij =
1

2m
(∂iψ

† ∂jψ + ∂jψ
† ∂iψ) −

1

4m
δij ∆n (4.41)

is the stress tensor in the conventions of [11, 13]. The conserved currents j
(0)
ij and Πij are

physically equivalent since they differ only by a trivially conserved current. The supple-

mentary laws of conservation are:

{
∂tǫ+ ∂ij

ǫ i ≈ 0 ,

∂tj
i + ∂jΠ

ij ≈ 0 .
(4.42)

4.3.2 Charged bilinears

In order to construct the second type of currents which are singlets bilinears of Sp (2N),

one chooses

Ψ1 = Ψ2 = Ψ (4.43)

and the components are contracted by the symplectic matrix J/2. The generating function

of such charged currents is denoted by K and given by

K(x; p) =
1

2
ΨA

(
x+

i

2
p

)
JAB ΨB

(
x− i

2
p

)
(4.44)

=
∑

r>0

1

r!
Kµ1... µr(x) pµ1 . . . pµr .
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Notice that it is an even function in the momenta,K(x; p) = K(x,−p), thus only relativistic

charged currents of even rank are non-vanishing. It leads to the relativistic charged currents

Kµ1... µr(x) =
1

2

(
− i
2

) r r∑

s=0

(−1)s
(
r

s

)
JAB ∂(µ1 . . . ∂µsΨ

A(x) ∂µs+1 . . . ∂µr)Ψ
B(x)

=
1

2

(
− i
2

) r

JAB ΨA(x)
←→
∂µ1 . . .

←→
∂µrΨ

B(x) . (4.45)

Like the neutral currents, the relativistic charged currents are conserved. However, the

corresponding charged non-relativistic bilinears are not conserved, because the relativistic

ones depend on x−. Indeed,

K(x; p) = e−2imx− k(t,x ; pt,p) . (4.46)

As one can see, the generating function in this case does not depend on p−. Therefore the

conservation law becomes

(
− ∂

∂x−
∂

∂p+
+ δij

∂

∂xi
∂

∂pj

)
K(x; p) ≈ 0 . (4.47)

The generating function of non-relativistic charged bilinears is:

k(t,x ; pt,p) =
1

2
ψA
(
t− i

2
pt,x+

i

2
p

)
JAB ψ

B

(
t+

i

2
pt,x−

i

2
p

)
. (4.48)

It is not conserved but nevertheless satisfies

(
−2im ∂

∂pt
+

∂

∂xi
∂

∂pi

)
k(t,x ; pt,p) ≈ 0 , (4.49)

as follows from (4.46)–(4.47). The non-relativistic charged bilinears read

k
(r)
i1···is(t,x) =

(−1)r
2

(
− i
2

)r+s
JAB ψ

A(t,x)
←→
∂t · · ·

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 · · ·

←→
∂isψ

B(t,x) (4.50)

and are related to the relativistic charged currents as follows:

K+ . . .+︸ ︷︷ ︸
r

i1...is(x) = (−1)re−2imx− k
(r)
i1···is(t,x) . (4.51)

The non-relativistic charged bilinears satisfy

2imk
(r+1)
i1···is (t,x) + ∂jk

(r)
ji1···is(t,x) ≈ 0 . (4.52)

For rank zero, one gets the Cooper pair (2.3)

K(x− = 0) = k(0) =
1

2
ψA(t,x) JAB ψ

B(t,x) = k . (4.53)
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For charged bilinears of rank two, one finds:





K++(x− = 0) = 0

K+−(x− = 0) = 0

K+i(x− = 0) = 0

K−−(x− = 0) = k(2)(t,x) = −1
8JAB ψ

A(t,x)
←→
∂t
←→
∂t ψ

B(t,x)

K−
i (x

− = 0) = k
(1)
i (t,x) = +1

8 JAB ψ
A(t,x)

←→
∂t
←→
∂i ψ

B(t,x)

Kij(x
− = 0) = k

(0)
ij (t,x) = −1

8 JAB ψ
A(t,x)

←→
∂i
←→
∂j ψ

B(t,x) .

(4.54)

These bilinears are not conserved but instead obey:

{
∂ik

(1)i ≈ 2imk(2)

∂ik
(0)ij ≈ 2imk(1)j .

(4.55)

4.3.3 Traceless condition

Since the massless scalar fields are conformally symmetric, one may expect to get infinitely

many traceless conserved currents, while the Berends-Burgers-vanDam currents generated

from (4.13) are not traceless, even on-shell: ∂2p C(x; p) 6≈ 0 . From the representation point

of view, it is important that the relativistic currents are traceless in order to have irreducible

conformal primary fields. The massless Klein-Gordon equations for Ψ1 and Ψ2 imply the

conservation condition, (∂x · ∂p)C(x; p) ≈ 0 for the bilocal generating function (4.13), as

well as another on-shell condition:
(
−∂2p +

1

4
∂2x

)
C(x; p) ≈ 0 , (4.56)

which relates trace of the Berends-Burgers-vanDam currents to their d’Alembertian. For

example, eq. (4.56) at p = 0 for the generating function of neutral currents reads

ηµνJ
µν = 2η+−J

+− + δijJ
ij ≈ 1

4
�J , (4.57)

which relates the trace of the rank-two current Jµν to the d’Alembertian of the scalar J .

The relativistic eq. (4.57) leads to the non-relativistic relation

− 2mj(1) + δijj
(0)ij ≈ 1

4
�j(0) , (4.58)

which, in turn, gives

− 2ǫ+ δijΠ
ij ≈ − d

4m
∆n , (4.59)

due to (4.33), (4.39) and (4.41). This implies the standard relationship between the total

energy and the pressure valid both for ideal and unitary Fermi gases [11, 13]:

∫
dxΠii ≈ 2E , (4.60)
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modulo a boundary term. Notice that the analogue of the relativistic eq. (4.57) for the

charged currents leads to the non-relativistic relation

δijk
(0)ij ≈ 1

4
(4mi∂t +∆) k , (4.61)

as can be checked using (4.54).

Due to the second on-shell condition (4.56), one can construct a generating function

C̄(x; p) of relativistic currents that are conserved and traceless on-shell [53]:

∂2p C̄(x; p) ≈ 0 , (∂x · ∂p) C̄(x; p) ≈ 0 . (4.62)

This can be achieved by acting with a differential operator Pd+2(p, ∂x) on the generating

function of currents

C̄(x; p) = Pd+2(p, ∂x)C(x; p) . (4.63)

The conservation of both C̄ and C requires that Pd+2 commutes with ∂x ·∂p on-shell. If we
construct Pd+2 as a power series in the transversal projector π(p, ∂x) := [p2 ∂2x−(p·∂x)2]/4 ,
then the conservation condition is satisfied since ∂x · ∂p π = π ∂x · ∂p . The tracelessness

condition, ∂2p Pd+2(p, ∂x)C(x; p) ≈ 0 can be solved recursively and the operator Pd+2 is

determined by these conditions (up to a constant factor) [53]:

Pd+2(p, ∂x) :=
∞∑

n=0

1

n! (−p · ∂p − d−3
2 )n

(
1

4
π(p, ∂x)

)n
, (4.64)

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol. More concretely, if one applies

this formula to the currents of spin two, it leads to the traceless current:

C̄µν(x) = Cµν(x) +
1

4(d+ 1)
(∂µ∂ν − ηµν�)C(x) . (4.65)

Due to (4.27), one can express the action of the two operators p · ∂p and π on the

neutral current generating function as

(p · ∂p)J(x; p) =

(
p+

∂

∂p+
− mp− + pi

∂

∂pi

)
J(x; p) , (4.66)

πJ(x; p) =
1

4

[(
pip

i − 2p−p+
)
∆−

(
p+

∂

∂x+
+ pi

∂

∂xi

)2
]
J(x; p) , (4.67)

since J(x; p) does not depend on x−. This is helpful for writing the neutral traceless

current generating function J leading, after evaluating at p− = 0, to the non-relativistic

generating function

j̄(t,x ; pt,p) =
∞∑

n=0

1

n! 42n(−pt ∂
∂pt
− pi ∂

∂pi
− d−3

2 )n
×

×
(
(pip

i)∆ −
(
−pt ∂t + pi ∂i

)2)n
j(t,x ; pt,p) . (4.68)
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Notably, this function generates currents which satisfy the non-relativistic version of the

traceless condition
(
−2m ∂

∂pt
+ δij

∂

∂pi
∂

∂pj

)
j̄(t,x ; pt,p) ≈ 0 . (4.69)

For instance, for rank two we get a simple relation

− 2mj̄(1) + δij j̄
(0)
ij ≈ 0 (4.70)

to be contrasted with (4.58). Notice that this shows that the higher-level r > 0 neutral

currents j̄(r)... are proportional to traces of currents of level zero j̄(0)... .

The formula analogous to (4.68) for the charged bilinears is very similar

k̄(t,x ; pt,p) =
∞∑

n=0

1

n! 42n(−pt ∂
∂pt
− pi ∂

∂pi
− d−3

2 )n
× (4.71)

×
(
(pip

i)(−4im∂t +∆) −
(
−pt ∂t + pi ∂i

)2 )n
k(t,x ; pt,p) .

Notice that, since all the components K+··· vanish, the charged non-relativistic bilinears

are spatially traceless: δij k̄
(a)ij··· ≈ 0 to be contrasted with e.g. (4.61). Remarkably,

the generating function k̄ gives rise to the non-relativistic spatially traceless tensors k̄
(0)
i1...ir

which are actually non-relativistic conformal primary fields22 (such as the scalar Cooper-

pair field) while the higher-level ones k
(r)
i1...ir

for r > 0 are their descendants as can be seen

from eq. (4.52).

4.4 Singlet bilinears of the orthogonal subgroup

Since the Sp (2N)-singlet bilinears have been investigated above in much detail and the

O(N)-singlet bilinears are their natural extension, the presentation of the latter bilinears

will be brief.

The neutral relativistic currents are now split in up and down ones, as one chooses

in (4.13)

Ψ1 = (Ψα)† , Ψ2 = Ψα (4.72)

with α = ↑ , ↓ and the O(N)-flavor components are contracted by the identity matrix. The

generating functions of such neutral relativistic currents are denoted by J α,

J α(x; p) = Ψα†
(
x+

i

2
p

)
Ψα

(
x− i

2
p

)
= Ψα,a∗

(
x+

i

2
p

)
δabΨ

α,b

(
x− i

2
p

)

=

[
Ψα

(
x− i

2
p

)]†
Ψα

(
x− i

2
p

)
= J α∗(x; p) , (4.73)

where there is no sum over the index α.

For the charged currents, one chooses

Ψ1 = −Ψ↓ , Ψ2 = Ψ↑ (4.74)

22For a definition of a non-relativistic conformal primary field see appendix B.
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and the O(N)-vector components are again contracted by the identity matrix. The gener-

ating function of such charged relativistic currents will be denoted by K, e.g.

K(x; p) = −Ψa
↓

(
x+

i

2
p

)
δabΨ

b
↑

(
x− i

2
p

)
= Ψa

↑

(
x− i

2
p

)
δabΨ

b
↓

(
x+

i

2
p

)
. (4.75)

Notice that the analogous generating function with up and down subscripts exchanged is

not independent, more precisely it is equal to −K(x;−p).
We will not write explicitly the corresponding non-relativistic bilinears and generat-

ing functions jα(t,x ; pt,p) and k(t,x ; pt,p), since all the corresponding formulas are the

straightforward analogues of the ones in the previous subsections. We just notice that the

scalar bilinears jα(t,x ; pt = 0,p = 0) = nα(t,x) are the density fields of the up and down

fermions, while k(t,x ; pt = 0,p = 0) = k(t,x) denotes the complex Cooper-pair field. Two

real fields and one complex field precisely match the entries of a 2 × 2 Hermitian matrix.

For instance, at rank and level zero

(
−j(0)↑ k(0)

k(0)∗ j
(0)
↓

)
=

(
−ψ∗

↑ · ψ↑ ψ↑ · ψ↓
ψ∗
↓ · ψ∗

↑ ψ∗
↓ · ψ↓

)
= Ψα · Ψ∗β . (4.76)

This collection of O(N)-singlet bilinears of all ranks and levels appears to be very natural

for our proposal of the gravity dual of the unitary Fermi gas [24].

5 Coupling to background fields

The generating functional Wfree[h,ϕ ;N ] of connected correlators of Sp (2N)-singlet bi-

linears in the non-interacting Fermi gas described by the quadratic action

Sfree[ψ ;N ] := S[ψ ; c0 = 0, N ] =

∫
dt dxψ†

(
i∂t +

∆

2m
+ µ

)
ψ , (5.1)

is defined by the path integral

exp iWfree[h ,ϕ ;N ] =

∫
DψDψ† exp i Sfree[ψ , h ,ϕ ;N ] , (5.2)

where

Sfree[ψ , h ,ϕ ;N ] := Sfree[ψ ;N ] (5.3)

−
∑

r,s>0

1

r! s!

∫
dt dx

(
j(r)i1··· is h(r)i1··· is + k(r)i1··· is∗ϕ(r)

i1··· is + k(r)i1··· isϕ(r)∗
i1··· is

)

is the free action in the presence of Sp (2N)-invariant external tensor fields, h
(r)
i1··· is and

ϕ
(r)
i1···is , coupled respectively to the neutral and charged bilinears, j(r)i1··· is and k(r)i1··· is .

In other words, the Sp (2N)-invariant bilinears are minimally coupled to the background

fields which share the same properties, i.e. all h
(r)
i1··· is are real and ϕ

(r)
i1···is are complex and

vanish for odd rank s. Here and below, we will refrain from writing explicitly the similar

formulas for the O(N)-singlet bilinears j
(r)i1··· is
α and k(r)i1··· is coupling respectively to the
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background fields h
(r)α
i1··· is and ϕ

(r)
i1···is for all ranks. The collection of such fields will also be

referred to as h and ϕ for short in order to cover the general case at once. The Sp (2N)-

invariant background correspond to the particular case: h↑ = h↓ and momentum-even ϕ

generating functions.

The functional (5.3) is quadratic in the dynamical field ψ (since the kinetic term and the

bilinears are), therefore the path integral (5.2) can easily be evaluated formally since it is a

Gaussian integral. In order to write the generating functional of connected correlators in a

compact form, one should start by writing (5.3) manifestly as a quadratic form. This can be

done elegantly via the Weyl quantisation (reviewed in appendix A) performed on the space-

time phase-space, following the same procedure as in the relativistic case [51, 53]. In other

words, the canonical commutation relations (A.2) must be supplemented by [ P̂t , T̂ ] = i,

where T̂ denotes the operators corresponding to multiplication by the time coordinate t.23

Let us stress that all the steps performed in the subsection 2.2 can be adapted to

apply in the presence of background tensor fields as well, because the external fields of

non-vanishing rank do not play any role in these specific manipulations (only the scalar

fields such as the Cooper pair and the dimer are pertinent in that case). In other words,

the interacting and the non-interacting Fermi gases in the presence of background fields

are still related, in the mean field approximation, by a Legendre transformation over the

(properly shifted and/or rescaled) scalar charged dimer field.

5.1 Quadratic functional

The free action (5.1) in the absence of background can of course be written as a Schrödinger

action (3.27)

Sfree[ψ ;N ] = (ψ | Ŝfree | ψ) = δAB (ψA | Ŝfree | ψ
B) , (5.4)

where the operator

Ŝ = P̂t − Ĥfree , (5.5)

is the Schrödinger operator (3.12) for the free Hamiltonian Ĥfree = P̂2/2m. The crucial

observation of this section is that even the minimal coupling terms in (5.3) can be explicitly

written as a quadratic functional via integrations by part. Let us perform this rewriting

in the generic case, i.e. let us consider the following minimal coupling

∑

r,s>0

1

r! s!

∫
dt dx c

(r)
i1··· is(t,x) f

(r)i1··· is(t,x) (5.6)

between a collection of external symmetric tensor fields f
(r)
i1··· is and the non-

relativistic bilinears

c
(r)
i1···is(t,x) = (−1)r

(
− i
2

)r+s
ψ1(t,x)

←→
∂t · · ·

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 · · ·

←→
∂isψ2(t,x)

=
1

2r+s
ψ1(t,x)

←→̂
Pt · · ·

←→̂
Pt︸ ︷︷ ︸

r

←→̂
Pi1 · · ·

←→̂
Pisψ2(t,x) (5.7)

23If not specified, the notations and definitions in this section are the straightforward extension of the

ones in appendix A.
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defined by (4.17)–(4.18). The main idea is to integrate by parts all momentum operators

acting on ψ1 inside (5.6), in order to have all operators acting on ψ2. One may con-

vince oneself that taking into account the ordering and the change of signs will result in

the equality
∫
dt dx c

(r)
i1··· is(t,x) f

(r)i1··· is(t,x) (5.8)

=
1

2r+s

∫
dt dx ψ1(t,x) { · · · {f (r)i1...is(T̂, X̂) , P̂t} , · · · , P̂t} , P̂i1} , · · · , P̂is}ψ2(t,x)

where { , } denotes the anticommutator and implicitly r operators P̂t appear in the above

formula. Therefore, the minimal coupling (5.6) can be rewritten in a compact form as the

quadratic functional

∑

r,s>0

1

r! s!

∫
dt dx c

(r)
i1··· is(t,x) f

(r)i1··· is(t,x) = (ψ∗
1 | F̂ | ψ2) (5.9)

where the curly bra-ket notation for the space-time Hermitian form has been introduced

in (3.26) and the space-time differential operator F̂ is given by

F̂ (T̂ , X̂; P̂t, P̂) =
∑

r,s>0

1

r! s! 2r+s
{ · · · {f (r)i1...is(T̂, X̂) , P̂t} , · · · , P̂t} , P̂i1} , · · · , P̂is} .

(5.10)

As explained in appendix A, this means that the generating function

f(t,x ; pt,p) =
∑

r,s

1

r! s!
f (r) i1···is(t,x) pi1 · · · pis (pt)r (5.11)

of symmetric tensor fields is the Weyl symbol of the operator (5.10).

Therefore, one finds that the free action in the presence of Sp (2N)-invariant back-

ground fields, i.e. (5.3), can be written manifestly as a quadratic form

Sfree[ψ , h ,ϕ ;N ] = δAB (ψA | Ŝ | ψB) +
1

2
JAB

[
(ψA | ϕ̂ | ψB∗) − (ψA∗ | ϕ̂† | ψB)

]
,

(5.12)

where the operator Ŝ is the Schrödinger operator (3.12)

Ŝ = P̂t − Ĥ = Ŝfree − Ĥint , (5.13)

defined in terms of the Hamiltonian

Ĥ = Ĥfree + Ĥint . (5.14)

The operators Ĥint and ϕ̂ are the images under the Weyl map of the generating functions

of the background fields h(t,x ; pt,p) and ϕ(t,x ; pt,p) respectively.

More generally, the free action in the presence of O(N)-invariant background fields can

be written as follows:

Sfree[ψ , h ,ϕ ;N ] = (ψ↑ | Ŝ↑ | ψ↑) + (ψ↓ | Ŝ↓ | ψ↓)

+ (ψ↑ | ϕ̂ | ψ∗
↓) + (ψ∗

↓ | ϕ̂† | ψ↑) , (5.15)
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where the flavor indices have been left implicit and the two (up and down) Schrödinger

operators Ŝα are built from the corresponding interaction Hamiltonians hα(t,x ; pt,p).

Let us elaborate on some physical interpretations of this rewriting by concentrating

first on the simplest case where there is no coupling to the charged fields (ϕ = 0). As

can be seen from (5.12), the free action in the presence of only U(1) × Sp (2N)-invariant

background fields can be rewritten as a Schrödinger action (3.27) where the Hamiltonian

is of the form (5.14), i.e. the usual potential term V (t,x) is replaced by a general function

on space-time phase-space h(t,x ; pt,p). In particular, a scalar background field h(t,x)

coupling to the particle density n(t,x) can obviously be interpreted as a position- and

time-dependent external potential term in a standard Schrödinger action.

In the more general case where the charged sources are present, another suggestive

way of interpreting (5.12)–(5.15) is by casting it in the Nambu-Gor’kov form. In order to

write (5.12) in terms of the Nambu-Gor’kov field (2.7), it is necessary to perform integra-

tions by part in the term (ψ↓ | Ŝ↓ | ψ↓) of (5.15). This can be formalised by introducing

the operation τ defined by F̂ τ (T̂ , X̂; P̂t, P̂) := F̂ (T̂ , X̂;−P̂t,−P̂) such that

(ψ1 | F̂ | ψ2 ) = − (ψ∗
2 | F̂ τ | ψ∗

1 ) . (5.16)

Notice that the minus sign in (5.16) arises because the fundamental fields are Grassmann

odd and the complex conjugation appears in accordance to the definition of the space-time

Hermitian form (3.26).24 The fact that the neutral (charged) Sp (2N)-invariant generating

function is a real (respectively, momentum-even) function translates into the fact that the

operator Hint (resp. ϕ̂) is Hermitian: Ĥ†
int = Ĥint (resp. τ -symmetric: ϕ̂τ = ϕ̂). The

latter properties together with (5.16) imply the following relations

δAB (ψA | Ŝ | ψB) = δab (ψ
a
↑ | Ŝ | ψb↑) − δab (ψ

a∗
↓ | Ŝτ | ψb∗↓ ) , (5.17)

JAB (ψA | ϕ̂ | ψB∗) = 2 δab (ψ
a
↑ | ϕ̂ | ψb∗↓ ) , (5.18)

JAB (ψA∗ | ϕ̂† | ψB) = − 2 δab (ψ
a∗
↓ | ϕ̂† | ψb↑) . (5.19)

The relations (5.18)–(5.19) show that (5.12) is indeed a particular case of (5.15) (remember

that for the Sp (2N)-invariant background Ŝ↑ = Ŝ↓ = Ŝ). More generally, the properties

of the O(N)-invariant generating functions translate into H†
α = Hα. The relation (5.17)

allows to rewrite the quadratic functional (5.15) in the compact form of a Schrödinger

action in terms of the Nambu-Gor’kov field (2.7)

Sfree[Ψ , h ,ϕ ;N ] = (Ψ | Ŝ | Ψ ) =

∫
dt dxΨ†

(
Ŝ↑ ϕ̂

ϕ̂† −Ŝτ↓

)
Ψ , (5.20)

where the Schrödinger operator is the 2× 2 matrix

Ŝ =

(
Ŝ↑ ϕ̂

ϕ̂† −Ŝτ↓

)
. (5.21)

24Mathematically, the operation τ is a linear antiautomorphism of the Weyl algebra. The operation τ

must be contrasted with the Hermitian conjugation † which is an antilinear antiautomorphism obeying to

(ψ1 | F̂ | ψ2) = (ψ2 | F̂ † | ψ1)
∗ .
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This suggestive rewriting is one of the main results of this section, because it allows many

further insights. The Schrödinger matrix-operator Ŝ = Ŝfree−Ĥint is the difference of the
free Schrödinger 2× 2 matrix-operator

Ŝfree =

(
P̂t − P̂ 2

2m 0

0 P̂t +
P̂ 2

2m

)
(5.22)

and the interaction Hamiltonian

Ĥint =

(
Ĥ↑ int ϕ̂

ϕ̂† −Ĥτ
↓ int

)
(5.23)

containing the background fields. As one can see, the free action in the presence of general

background fields can be rewritten in a form which generalises (2.8) in the sense that,

in the 2 × 2 matrix, the free Schrödinger operators i∂t ± ( ∆
2m + µ) on the diagonal are

replaced by the most general ones and the field ϕ is replaced by a general differential

operator ϕ̂. Notice that the Schrödinger matrix-operator (5.21) is Hermitian with respect

to the simultaneous combination of matrix and space-time Hermitan conjugations. For

notational simplicity, this operation will also be denoted by † since no ambiguity arises.

This Hermiticity property of (5.21) can be made manifest in terms of Pauli matrices:

Ŝ = i∂t σ0 − Ĥ , Ĥ = Ĥ0 σ0 + Ĥ1 σ1 + Ĥ2 σ2 + Ĥ3 σ3 , (5.24)

since the coefficients

Ĥ0 =
1

2
(Ĥ↑−Ĥτ

↓ ) , Ĥ1 = −
1

2
(ϕ̂+ϕ̂†) , Ĥ2 = −

i

2
(ϕ̂−ϕ̂†) , Ĥ3 =

1

2
(Ĥ↑+Ĥ

τ
↓ ) , (5.25)

are all space-time Hermitian operators. It is important to stress that in the particular case

of a Sp (2N)-invariant background the operators Ĥi (i = 1, 2, 3) are τ -symmetric while Ĥ0

is a τ -antisymmetric operator:

Ĥτ
0 = −Ĥ0 , Ĥτ

i = Ĥi , (i = 1, 2, 3) . (5.26)

More generally, in the presence of an O(N)-invariant background the free action takes the

form of a Schrödinger action with the most general 2 × 2 Hermitian matrix-operator. As

we demonstrate in the following, these differences between Sp (2N)- and O(N)-invariant

backgrounds play an important role in the correct identification of the gauge symmetry

algebra and of a putative dual bulk spectrum.

The generating functional (5.2) of connected correlators of singlet bilinears in the non-

interacting Fermi gas can now be evaluated formally due to the quadratic form of (5.20):

Wfree[h,ϕ ;N ] = −iN Tr log Ŝ =: N Wfree[h,ϕ ] (5.27)

where Ŝ is given by (5.21). A crude but standard (BCS theory) approximation of such

a complicated object would be to evaluate it in the case where the background fields are

constant in space-time and momentum coordinates (in which case only the correlators of the

number-density and of the Cooper-pair are evaluated). Another possible approximation
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is the assumption that the background fields are weak in which case one might start a

perturbative expansion in powers of the background fields along the lines of [53]. Notice

that the trace in the functional (5.27) corresponds to an integral over the energy and

momentum flowing along the fermion loop. This functional can be obtained as a light-like

dimensional reduction from its higher-dimensional relativistic counterpart by fixing, in the

integral over the corresponding relativistic momentum, one of the light-like component to

be equal to m instead of integrating over it.

Finally, since the Schrödinger matrix-operator Ŝ is Hermitian, it is formally diagonal-

isable via a generalised unitary Bogolioubov transformation Ψ 7→ Ψ ′ = Û−1Ψ , in the sense

that Ŝ ′ = Û†ŜÛ = (i∂t + Ĥ ′
0)σ0 + Ĥ ′

3 σ3. In general, the operators Ĥ ′
0 and Ĥ ′

3 depend on

both background fields h and ϕ. In terms of the new quasi-particle field Ψ ′, the quadratic

form (5.20) can be written as a sum of two Schrödinger actions:

Sfree[ψ
′ , h ,ϕ ;N ] =

∑

α=↑, ↓
(Ψα′ | Ŝ′

α | Ψα′) . (5.28)

Physically, this means that the free action in the presence of background fields describes (up

and down) quasi-particles governed respectively by two Hamiltonian operators depending

on both background fields h and ϕ. Again, this is nothing but a natural generalisation of

the BCS theory.

5.2 Gauge and rigid symmetries

This subsection is devoted to the analysis of the gauge symmetries of the free classical

action (in the presence of background fields) and of the corresponding effective action.

Due to the simple expression of these actions (respectively, “quadratic form” and “trace-

log”), their symmetries are manifest. These symmetries are important because, as usual,

the gauge invariance of the effective action encodes the Ward-Takahashi identities (here, on

the connected correlators of bilinears). The algebraic structure and physical interpretation

of these symmetries will be addressed in more details in the next subsection.

Note that any quadratic functional such as (5.20) is formally invariant if

a transformation,

Ψ −→ Û−1 Ψ , (5.29)

of the field Ψ in the fundamental representation of invertible matrix-operators Û−1 is

compensated by a suitable transformation,

Ŝ −→ Û†Ŝ Û , (5.30)

of the Hermitian Schrödinger matrix-operator (5.21). These finite transformations of Ŝ
correspond to gauge transformations of the background fields, as will be shown explicitly

below. Physically, this means that the group of invertible 2 × 2 matrix-operators can be

interpreted as the group of gauge symmetries of the free classical action Sfree[ψ , h ,ϕ ;N ]

in the presence of a general O(N)-invariant background. The corresponding infinitesimal

transformations span the Lie algebra of 2 × 2 matrix-operators. This Lie algebra of in-

finitesimal gauge symmetries is nothing else but the complex algebra M2(C) ⊗ Ad+1(C),
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i.e. the tensor product of the algebra M2 of 2× 2 matrices and the Weyl algebra Ad+1 of

space-time operators (both algebras are over C).

On the other hand, any trace functional such as (5.27) is formally invariant under

the subgroup of unitary matrix-operators (Û† = Û−1), because the Schrödinger matrix-

operator Ŝ transforms in the adjoint representation

Ŝ −→ Û−1Ŝ Û , (5.31)

of this subgroup. The generating functional Wfree[h,ϕ ;N ] of connected correlators arises

from integrating out the fundamental fields Ψ. More precisely, it arises from one-loop

diagrams for the fermions and it can be interpreted as the background effective action of the

free theory. Physically, the symmetries (5.31) of the O(N)-invariant background effective

action Wfree[h,ϕ ;N ] can be interpreted as the subset of gauge symmetries of the classical

action which remain manifestly preserved at quantum level. The other transformations

are in general anomalous because the trace in (5.27) is only invariant under the adjoint

transformation (5.31), hence not always under (5.30).25 As one can see, formally the group

of unitary matrix-operators may always be preserved at quantum level in the present

construction. The corresponding algebra of infinitesimal transformations is the real Lie

algebra of Hermitian 2 × 2 matrix-operators. As was explicitly shown in eq. (5.24), this

real algebra is spanned by the linear combinations of sigma matrices with coefficients in

the real Weyl algebra, hence it isomorphic to u(2) ⊗ Ad+1(R), i.e. the tensor product of

the algebra u(2) of Hermitian 2× 2 matrices and the Weyl algebra of Hermitian operators

(both algebras are over R).26

In order to describe the gauge symmetries (5.30) more explicitly, let us consider in-

finitesimal transformations near the identity: Û = 1̂+ iÂ where the infinitesimal generator

Â is a general 2× 2 matrix-operator expressed in the form

Â =

(
â↑ b̂

ĉ −âτ↓

)
. (5.32)

The space-time operators â↑, â↓, b̂ and ĉ are infinitesimal gauge parameters. The infinites-

imal version of (5.30) now reads

δŜ = i ( Ŝ Â − Â† Ŝ) . (5.33)

Since the free Schrödinger matrix-operator Ŝfree is kept fixed in the variation of the total

Schrödinger matrix-operator Ŝ = Ŝfree − Ĥint, one obtains δ Ŝ = − δĤint = i ( Ŝ Â −
Â† Ŝ ) which decomposes as

δĤint = i ( Â† Ŝfree − Ŝfree Â ) + i ( Ĥint Â − Â† Ĥint ) . (5.34)

25However, since the trace in (5.20) implicitly requires a regularisation in order to be well defined, notice

that its finite or its logarithmically divergent parts may admit more symmetries than the full regularised

effective action (c.f. [53] for more comments in the relativistic case).
26In more abstract terms, the algebra M2(C)⊗Ad+1(C) is Z2-graded with respect to the eigenvalues ±1

of the Hermitian conjugation †. A real form of this complex algebra is the subalgebra of Hermitian 2 × 2

matrix-operators (elements of eigenvalue +1).
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Although the term of degree one in Ĥint in eq. (5.34) is crucial for having exact symmetries

of the action, for the sake of simplicity in the following subsection we will concentrate on

the term of degree zero in order to discuss the interpretation of the gauge symmetries.

In terms of the corresponding Weyl symbols, the transformation (5.34) reads

δH(t,x ; pt,p) = i
(
A∗(t,x ; pt,p) ⋆ Sfree − Sfree ⋆ A(t,x ; pt,p)

)
(5.35)

+ i
(
H(t,x ; pt,p) ⋆ A(t,x ; pt,p) − A∗(t,x ; pt,p) ⋆ H(t,x ; pt,p)

)
,

where

H(t,x ; pt,p) =

(
h↑(t,x ; pt,p) ϕ(t,x ; pt,p)

ϕ(t,x ; pt,p) −h↓(t,x ;−pt,−p)

)
(5.36)

is the Weyl symbol of the interaction Hamiltonian matrix-operator Ĥint,

A(t,x ; pt,p) =

(
a↑(t,x ; pt,p) b(t,x ; pt,p)

c(t,x ; pt,p) −a↓(t,x ;−pt,−p)

)
(5.37)

is the Weyl symbol of the infinitesimal matrix-operator Â, and ⋆ stands for the Moyal

product on the space-time phase-space (c.f. appendix A) defined by

⋆ = exp

[
i

2

(
−
←−
∂

∂t

−→
∂

∂pt
+

←−
∂

∂pt

−→
∂

∂t
+

←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
, (5.38)

where the left and right arrows indicate on which side the corresponding derivative acts.

The above Weyl symbols (5.36)–(5.37) should be interpreted as generating functions of

symmetric tensor fields via the corresponding analogue of the power series expansion in

momenta (5.11). In other words, the infinitesimal gauge transformation (5.35) can be

written explicitly in terms of tensor fields only but the resulting expression would be rather

complicated in complete generality. For the sake of simplicity, in the following subsection

this will be done only to the lowest zeroth order in the background fields.

What is the relation of the gauge symmetries of the free action in the presence of back-

ground fields and the rigid symmetries of the Schrödinger action investigated in section 3?

As can be seen from the conditions (3.28) and (3.29) defining, respectively, the symmetries

of the Schrödinger action and their generators, they can be seen as gauge symmetries of

the free action preserving the background fields, e.g. δĤint = 0. In the absence of any

background field (h = ϕ = 0 ↔ Ĥint = 0), the classical action (5.3) reduces to the free

Schrödinger action (5.1). Therefore the symmetries of the free Schrödinger action can be

seen as the subalgebra of gauge symmetries that preserve the absence of background fields.

The maximal symmetry algebra of the free Schrödinger action for two-component wave

functions has been identified in subsection 3.2.3 with the real Lie algebra u(2) ⊗ Ad(R)
of quantum observables. Physically, this means that the algebra u(2) ⊗ Ad+1 of 2 × 2

Hermitian space-time operators can be seen as arising from gauging the algebra u(2)⊗Ad
of rigid symmetries via the Noether procedure, c.f. the minimal coupling (5.3). As usual

in non-relativistic physics, the gauging amounts to an arbitrary dependence on the time
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coordinate t. Here, one adds an arbitrary dependence on the time momentum P̂t = i∂t
of the transformation parameters. However, only the arbitrary time dependence is gen-

uinely non-trivial because, on-shell, any time derivative can be traded for the Laplacian.

A related subtlety is that the charged non-relativistic bilinears are not Noether currents

since they are not conserved. Thus, strictly speaking, the coupling (5.3) to external fields

is not a pure minimal coupling à la Noether. As will be seen in the next subsection, the

pseudo “conservation laws” of the charged bilinears are thus not associated with genuine

rigid symmetries. Their related local symmetries simply allow to get rid of the charged

background fields ϕ(r) with level r > 0, as is consistent with the fact that the bilinears

k(r) with r > 0 are descendants. A somewhat similar result is actually true even for the

neutral background fields and currents.

As a side remark, let us notice that the restriction to the Sp (2N)-invariant background

fields subsector is a consistent truncation. However, it seems that the corresponding non-

relativistic higher-spin algebra has no relativistic parent algebra. Let us describe in some

details the subalgebra of symmetries related to the restriction to the Sp (2N)-invariant sub-

sector. In order to describe this subtle subalgebra, some algebraic technology is needed.

More precisely the operation τ , defined on the algebra of space-time operators in subsec-

tion 5.1, can be extended to a linear antiautomorphism of the algebra of matrix-operators

by defining

στ0 = σ0 , στi = −σi , (i = 1, 2, 3) . (5.39)

The algebras of 2× 2 matrices and of space-time operators are Z2-graded with respect to

the eigenvalues ±1 of τ and decompose as: u(2) ∼= u(1) ⊕ sp(2) (since σ0 is of eigenvalue

+1 and the Pauli matrices σi are of eigenvalues −1) and Ad+1 = Aevend+1 ⊕ Aoddd+1 (where

even/odd refer to the momentum parity). The eigenvalue −1 of this antiautomorphism

correspond to the property (5.26). The corresponding real subalgebra of 2 × 2 matrix-

operators is isomorphic to
(
u(1) ⊗ Aoddd+1

)
⊕
(
sp(2) ⊗ Aevend+1

)
. As one can clearly see,

this subalgebra for the Sp (2N)-invariant subsector is much more complicated than the

corresponding algebra of infinitesimal gauge transformations, u(2) ⊗ Ad+1, for the O(N)-

invariant sector. Moreover, the operation τ seems to have no counterpart in the relativistic

construction of Vasiliev [26]. This provides a strong motivation for focusing on the flavor-

invariant (i.e. O(N)-invariant) bilinears when looking for a bulk dual.

5.3 Gauge symmetries to lowest order

Since, as any operator, the infinitesimal gauge parameter Â in eq. (5.32) is the sum of

a Hermitian and an anti-Hermitian operator, it is enough to consider these two cases of

gauge parameters separately.

If the operator-matrix Â is Hermitian, it becomes

Â =

(
â↑ b̂

b̂† −âτ↓

)
= Â† (5.40)
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where the operators â↑ and â↓ are Hermitian. Then we obtain that (5.34) can be written as
(
δĤ↑ int δϕ̂

δϕ̂† −δĤτ
↓ int

)
= − i

(
[P̂t − P̂ 2

2m , â↑] [P̂t , b̂]− 1
2m {P̂ 2 , b̂}

[P̂t , b̂
†] + 1

2m{P̂ 2 , b̂†} −[P̂t + P̂ 2

2m , âτ↓ ]

)
, (5.41)

modulo the linear term in the backgrounds which will always be dropped from now on.

This transformation is equivalent to the following infinitesimal transformation:

δĤα
int = −i

[
P̂t −

P̂ 2

2m
, âα

]
(5.42)

for the (up and down) interaction Hamiltonians, and

δϕ̂ = −i [P̂t , b̂] +
i

2m
{P̂ 2 , b̂} (5.43)

for the off-diagonal term. The transformation (5.42) reads in terms of the corresponding

Weyl symbols

δhα(t,x ; pt,p) = − i
[
pt −

p2

2m
⋆, aα(t,x ; pt,p)

]
=

(
∂

∂t
+

1

m
pi

∂

∂xi

)
aα(t,x ; pt,p)

(5.44)

where ⋆ stands for the Moyal product (5.38) on the space-time phase space. The above

Weyl symbols should be interpreted as generating functions of symmetric tensor fields via

the corresponding analogue of the power series expansion in momenta (5.11). This leads

to the following gauge transformations at order zero in the neutral background fields

δh
(r)α
i1··· is = ∂ta

(r)α
i1··· is +

s

m
∂(i1a

(r)α
i2··· is) (5.45)

where the round bracket stands for the symmetrisation over all indices with weight one,

e.g. h(i1··· is) = hi1··· is . These gauge symmetries of the neutral background fields are thus

the pendant of the conservation laws of the neutral currents encoded in (4.30). These

symmetries indeed leave invariant the minimal coupling terms on-shell, as can be checked

explicitly by integrating by parts and making use of the conservation laws. The gauge

symmetries, in the case of neutral background field such that h↑ = h↓, generalise to higher

spins the non-relativistic general-coordinate symmetries discussed in [13].27 Similarly, the

infinitesimal transformations corresponding to (5.43) can also be written in terms of the

Weyl symbols as

δϕ(t,x ; pt,p) = −i
[
pt ⋆, b(t,x ; pt,p)

]
+

i

2m

{
p2 ⋆, b(t,x ; pt,p)

}

=

(
∂t +

i

m

(
p2 − ∆

4

))
b(t,x ; pt,p). (5.46)

27Explicitly, the dictionary between notations of [13] and ours is: A0 = − 1
m
h(0)+ 1

8m
(∂i∂j −δij∆)h(0)ij +

1
4m

∆h(1) − 1
4m
∂t∂ih

(1)i, Ai = −h
(0)
i , Φ = −h(1), Bi = −mh

(1)
i , hij = −mh

(0)
ij and ξ− = − 1

m
a(0), ξi = a

(0)
i ,

ξt = −a(1). Employing these identifications we recover the gauge transformations of [13] to zeroth order in

the background fields. More precisely, we find a higher-spin generalisation of transformations of [13] since

only transformations which originate from the relativistic spin one and two gauge transformations were

considered in [13].
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This leads to the following gauge transformations at order zero in the charged back-

ground fields

δϕ
(r)
i1··· is =

(
∂t −

i

4m
∆

)
b
(r)
i1··· is +

i s(s− 1)

m
δ(i1i2b

(r)
i3··· is) . (5.47)

These transformations actually correspond to the tracelessness-like condition for the

charged currents k, i.e. of the type (4.61). If we instead had made use of the trace-

less currents k̄, then the above transformation would take the simpler form of a Weyl

transformation δϕ̄
(r)
i1··· is = i s(s−1)

m δ(i1i2 b̄
(r)
i3··· is) . Such kind of higher-spin generalisations of

linearised Weyl transformations appear in conformal higher-spin gravity [54].

If the matrix-operator Â is anti-Hermitian, it is of the form

Â = i

(
ĉ↑ d̂

d̂† −ĉτ↓

)
. (5.48)

where the operators ĉ↑ and ĉ↓ are Hermitian. Then we obtain that (5.34) can be written as

(
δĤ↑ int δϕ̂

δϕ̂† −δĤτ
↓ int

)
=

(
{P̂t − P̂ 2

2m , ĉ↑} {P̂t, d̂} − 1
2m [P̂ 2, d̂ ]

{P̂t, d̂†} + 1
2m [P̂ 2, d̂†] −{P̂t + P̂ 2

2m , ĉ
τ
↓}

)
, (5.49)

which is equivalent to the following infinitesimal transformation:

δĤα
int =

{
P̂t −

P̂ 2

2m
, ĉα

}
(5.50)

for the (up and down) interaction Hamiltonians, and

δϕ̂ = {P̂t , d̂} −
1

2m
[P̂ 2 , d̂ ] . (5.51)

This leads to the following gauge transformations at order zero in the background fields

δh
(r)α
i1··· is = 2 r c

(r−1)α
i1··· is +

1

m

(
1

4
∆ c

(r)α
i1··· is − s(s− 1)δ(i1i2c

(r)α
i3··· is)

)
(5.52)

and

δϕ
(r)
i1··· is = 2 r d

(r−1)
i1··· is +

i s

m
∂(i1 d

(r)
i2··· is) . (5.53)

The first important observation to be made is that the first term in these transformations

for level r 6= 0 is of Stuckelberg type and therefore allows to get rid (at this order in the

background expansion) of all tensor fields of non-vanishing level r > 0. This is natural

since the bilinears to which they couple are not independent: the neutral (respectively,

charged) bilinears of the non-vanishing level r > 0 are traces (respectively, descendants) of

the ones with r = 0. One should be careful that it is not clear whether this gauge choice

is accessible at non-linear level. In addition, the non-vanishing levels are useful for the clo-

sure of the non-Abelian gauge algebra. Moreover, these Stuckelberg-like transformations

might be anomalous at quantum level. In any case, the second terms in the transforma-

tions (5.52)–(5.53) are more familiar: they correspond respectively to Weyl-like (Fradkin-

Tseytlin’s) transformations of the neutral tensor fields and to Maxwell-like (Fronsdal’s)
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transformations of the charged tensor fields. They correspond respectively to the trace-like

(or pseudo-conservation) conditions on the neutral (or charged) bilinears (4.69) (or (4.49) ).

The gauge symmetries (5.52), in the case of neutral background field such that h↑ = h↓,
generalise to higher spins the non-relativistic Weyl symmetries discussed in [36].

Let us stress that it is very useful to make use of the traceless currents k̄, because

the transformations δϕ̄
(r)
i1··· is take a simpler form for the part independent of the back-

ground fields. However, the explicit form of the non-linear completion would be much

more complicated, which is why we refrained from making direct use of them in this sec-

tion. Nevertheless, one should observe that the scalar charged background field at level

zero, i.e. the dimer ϕ = ϕ̄(0) coupling to the Cooper pair, transforms linearly under the

symmetries. More precisely, δϕ̄(0) is linear in the background field. This property should

be useful to write the symmetry transformations of the Legendre transform Γ[h ,ϕ ;N ]

of the background effective action Wfree[h ,ϕ ;N ] with respect to the dimer. Anyway,

at leading order in 1/N , the bulk dual of the ideal and of the unitary Fermi gases has

the same symmetries. Only the 1/N corrections are expected to break the higher-spin

symmetries [55].

6 Conclusion and outlook

Recent advances in holographic duality motivated us to investigate the symmetries and

the currents of non-relativistic free fermions. Since in the large-N limit the unitary and

free Fermi gases are Legendre conjugate of each other, our studies might be useful for a

better understanding of the strongly-coupled many-body problem of unitary fermions. We

identified the maximal symmetry algebra of the free single-particle Schrödinger equation

with the Weyl algebra of quantum observables. This higher-spin algebra is an infinite-

dimensional extension of the well-studied Schrödinger algebra. Further, by applying the

light-like dimensional reduction to relativistic Noether currents we constructed the infinite

collection of non-relativistic “currents” bilinear in the elementary fermions. In addition,

the formalism of Weyl quantisation allowed us to express the minimal coupling of these

bilinears to background sources in a compact way. The final result is formally identical to

the Nambu-Gor’kov formulation of the BCS theory except that the chemical potential and

the Cooper-pair source are replaced by space-time differential operators.

One of the leitmotives behind our work is the null reduction method, advocated as

“Bargmann framework” in [42, 43, 48, 49], which allows to obtain non-relativistic structures

from given relativistic ones. The other way around, i.e. a null lift (or “oxydation”) of a given

non-relativistic structure to its higher-dimensional relativistic counterpart, is sometimes

called an “Eisenhart lift”. One should stress that the higher-dimensional counterpart

of a consistent non-relativistic field theory may be sick as a relativistic quantum field

theory per se. For instance, the spin-statistics theorem does not apply to non-relativistic

theories so it may be violated in the Eisenhart lift. Therefore, in general the relativistic

higher-dimensional theory should be understood as an auxiliary tool.28 The results of

28In any case, a priori the Eisenhart lift should not be trusted beyond tree level. Nevertheless, this

restriction might be overcome by working with the quantum effective action since then all Feynman diagrams

become trees (written in terms of full propagators and of proper vertices).
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the present paper demonstrate the usefulness of the Eisenhart lift for the free and the

unitary Fermi gases.

The Bargmann framework might also apply to the holographic duality in the sense

that the AdS/CFT correspondence might lead to the AdS/unitary fermions correspon-

dence upon null reduction, along the lines of [56–58] and as proposed in [24]. In these

proposals, the background bulk geometry is an asymptotically AdS space-time (rather than

the Schrödinger manifold, as proposed in [13, 14]) possessing a nowhere vanishing covari-

antly constant null vector field.29 The isometry group of AdS is broken to the Schrödinger

subgroup by the dimensional reduction itself. A nice property of this approach is that

if the dimensional reduction is performed on both sides of the correspondence, then the

validity of the holographic duality between the pair of relativistic parent theories would

ensure the duality between the pair of reduced non-relativistic theories, at least in the

large-N limit. Notice that, in this picture, the reduced holographic duality should be be-

tween a non-relativistic conformal field theory living on the boundary of a Newton-Cartan

space-time and a non-relativistic gravity theory in its interior. Indeed, the reduction of

vacuum Einstein equations along a non-vanishing covariantly-constant (or at least Killing)

null vector field leads to the Newton-Cartan equations describing in a geometric fashion

the non-relativistic gravity theory of Newton [42, 59].

So, with these various results in mind, let us come back to our original question: What

is an educated guess for a gravity dual of unitary and free fermions? On the boundary side,

the Bargmann framework allowed us to understand the higher-spin symmetries of the free

fermions and to obtain from the relativistic massless Grassmann-odd scalar free theory the

corresponding currents and couplings to background sources. Our results closely resemble

the boundary data in the AdS/O(N) correspondence mentioned in the introduction.30 On

the bulk side, one might thus speculate that the null reduction of a higher-spin gauge

theory would be a natural candidate. Assuming that the Bargmann framework can be

applied to both sides of the correspondence, the gravity dual of the ideal and unitary

Fermi gases should be a non-relativistic higher-spin gravity theory obtained directly from

Vasiliev equations upon light-like reduction.31 Looking in the catalogue of Vasiliev theories

in any dimension [26], one can see that the flavor-singlet bilinear sector of the large-N

extension of the unitary fermions in d space dimension should be dual to the null-reduction

of classical Vasiliev theory on AdSd+3 with u(2)-valued tensor gauge fields of all integer

ranks.32 Therefore, one is led to speculate that the bulk dual of the “physical” (i.e. N = 1,

d = 3) unitary UV-stable Fermi gas might be the null dimensional reduction of the u(2)

higher-spin gauge theory on AdS6 with the exotic (∆− = 2) boundary condition for the

complex scalar field dual to the Cooper-pair field [24].

29Such space-times would be called asymptotically AdS Bargmann manifolds in the terminology of [42].

They can somehow be interpreted physically as gravitational waves propagating in AdS with parallel rays.
30Interestingly, an Euclidean Sp (2N) vector model with anticommuting scalars has recently been con-

jectured to be dual to Vasiliev’s higher-spin gravity on de Sitter space [60].
31An alternative, more along the lines of [13, 14], would be to look for a natural embedding of the

Schrödinger manifold as a natural background for some (possibly modified) version of Vasiliev equations.
32The corresponding higher-spin algebra was denoted by hu(2/sp(2)[d+ 2, 2] ) in [26]. It is isomorphic to

the product between u(2) and the higher-spin algebra hu(1/sp(2)[d+ 2, 2] ).
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These speculations are supported by our results on the large-N extension of the ideal

and the unitary Fermi gases, so let us summarise them with emphasis on their relevance

for the above proposal: In section 2, it was demonstrated that, in the large-N limit, the

generating functionals of the unitary Fermi gas and of the ideal Fermi gas are related by

a Legendre transformation. Therefore the corresponding Fermi gases can be dual to the

same bulk theory for two distinct choices of boundary conditions, as in the conjecture [21]

(and its generalisation to higher dimensions). The corresponding scaling dimensions of the

Cooper-pair field was found to be precisely in agreement with the mass-square m2 = −2 d
of the AdSd+3 scalar field in Vasiliev higher-spin multiplet [26]. The holographic degener-

acy is admissible in the range 0 < d < 4 in agreement with the field theory prediction. In

section 3 the maximal symmetry algebra of the free Schrödinger action was identified and

in section 4 it was shown that it originates from the maximal symmetry algebra of the free

massless Klein-Gordon action via light-like dimensional reduction. Since the identification

of the proper higher-spin algebras is a crucial step in the construction of higher-spin gravi-

ties of Vasiliev, the embedding of the non-relativistic higher-spin algebra into its relativistic

parent (as the centraliser of a given light-like momentum) provides a strong evidence for

the consistency of the dimensional reduction of Vasiliev equations. More precisely, we

believe that the techniques of the light-like dimensional reduction for Einstein gravity in

the frame formalism, developed in [59], must have a natural higher-spin extension since

Vasiliev gravity is based on a frame-like formalism à la Cartan where, in the fiber, the AdS

isometry algebra for usual gravity is replaced by the higher-spin algebra. For the relativis-

tic conjecture [21, 25], the validity of the holographic dictionary at the kinematical level

(i.e. two-point functions) between bilinear boundary currents and bulk gauge fields in any

dimension and for any integer spin is actually a corollary of the Flato-Fronsdal theorem

and its generalisation [61, 62]. The above embedding of the non-relativistic higher-spin

algebra into its relativistic parent combined with the Flato-Fronsdal theorem automati-

cally validates the holographic dictionary proposed above between O(N)-singlet bilinears

in the non-relativistic fields on the boundary, constructed in section 4, and u(2)-valued

symmetric tensor gauge fields of all integer spins in the bulk. In section 5, the generat-

ing functional of connected correlators of O(N)-singlet bilinears for the non-interacting

Fermi gas was computed explicitly together with the non-relativistic conformal higher-

spin Ward identities. According to the Gubser-Klebanov-Polyakov-Witten prescription,

the generating functional should be equal to the on-shell bulk higher-spin action with pre-

scribed boundary conditions while the Ward identities should be dual to the asymptotic

remnant of bulk higher-spin gauge transformations. In the large-N limit, these properties

would follow directly from the light-like dimensional reduction if the parent relativistic

duality [21, 25] is valid.

In order to test these ideas explicitly in the bulk, various issues need to be investi-

gated: Firstly, one should clarify how concretely the higher-spin unitary representations

of the Schrödinger group also describe free higher-spin fields in the bulk. Secondly, the

non-relativistic analogues of the Flato-Fronsdal theorem [61, 62] and of the Vasiliev equa-

tions [26] should be spelled out. These interesting open problems may prove to be chal-

lenging exercises to perform explicitly but one should stress that they are ensured to be
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well posed problems because their answers have to follow from their known relativistic

counterparts via the light-like dimensional reduction, since the latter is well defined and

consistent. Both at the kinematical and dynamical level, this consistency is ensured by

our embedding of the non-relativistic higher-spin algebra into its relativistic parent as the

centraliser of a given light-like momentum.

Endowed with these results, one could try to perform non-trivial tests of the conjecture,

presumably along the lines of the encouraging results of Giombi and Yin in AdS4 [22, 23].

So far most tests of the higher-spin AdS/CFT correspondence have been restricted to

bulk dimensions D 6 4, because Vasiliev theory is technically simpler in these dimensions

(due to the use of twistors, see e.g. [63] for a review). For this reason, technically it

might be easier to check whether the null reduction of u(2) Vasiliev theory around AdS4
with the standard (∆+ = 2) boundary condition is dual to the d = 1 scale-invariant

“unitary” IR-stable two-component Fermi gas. Remarkably, the latter is well-understood

as it corresponds to an infinite repulsion between “up” and “down” fermions and thus

is equivalent to the non-interacting one-component Fermi gas with the same density (see

e.g. [64] and references therein).

A possible angle of attack toward a derivation of the holographic duality would be to

parallel the strategy of Douglas, Mazzucato and Razamat [65]. More precisely, one might

consider the exact renormalisation group equation for the regularised generating functional

describing free fermions in the presence of a higher-spin background. The corresponding

higher-spin sources flow under the renormalisation group and one may look for a suggestive

rewriting of their scale evolution as a radial evolution of higher-spin bulk fields.

The relative simplicity of the non-relativistic higher-spin algebra and of the null reduc-

tion method supports the optimistic view that the holographic dual of unitary fermions is

an accessible goal worth investigating.

Note added.33 After the present work was completed and submitted to arXiv, we were

informed that it has some overlap with results obtained in the context of the Sp (2d,R)-

covariant unfolded equations initiated in [66]. In particular, the isomorphism between the

maximal symmetry algebra of the free Schrödinger equation and the Weyl algebra of spatial

differential operators follows as a corollary34 from the general results on global symmetries

of unfolded equations upon the identification of the spatial coordinates with the twistor

variables of [66] and of the time35 coordinate with the trace of the matrix coordinates of [66].

Moreover, the structure (4.21) of the generating function of non-relativistic bilinear currents

of vanishing level is a particular instance of the “generalised stress tensor” of [67]. Bilinear

current generating functions constructed in terms of two different solutions with opposite

signs of the Planck constant, identified with the mass here, were presented before in [69].

33We are grateful to M.A. Vasiliev for calling these points to our attention and for his useful explanations.
34See e.g. the subsection 2.1 of [67] for a review of the general argument and its application to the case

relevant here.
35Notice that the latter identification of a “time” coordinate among the sp(2d,R) matrix coordinates was

motivated in [68] (see e.g. the subsection 2.2 of [67] for a concise review of this point).
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A Weyl quantisation

The Weyl-Wigner-Grönewold-Moyal formalism [70–74] offers a classical-like formulation of

quantum mechanics using phase space functions as observables and the Wigner function

as an analogue of the Liouville density function.

Classical mechanics is based on the commutative algebra of classical observables, i.e.

real functions f(x,p) on the phase space T ∗Rd ∼= Rd × Rd∗, endowed with the canonical

Poisson bracket

{f, g}P.B. =
∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi
. (A.1)

Quantum mechanics is based on the non-commutative associative algebra of quantum

observables, i.e. Hermitian operators F̂ (X̂, P̂) on the Hilbert space L2(Rd) of square-

integrable functions. The Weyl algebra Ad is the associative algebra of quantum observ-

ables that are polynomials in the positions and momenta. The Heisenberg algebra hd is

the Lie algebra of quantum observables that are polynomials of degree one in the positions

and momenta, it is spanned by X̂i, P̂j and a central element ~ obeying to the canonical

commutation relations

[ X̂i , P̂j ] = i~ δij . (A.2)

In more abstract terms, the Weyl algebra Ad is the universal enveloping algebra U(hd) of
the Heisenberg algebra. The Schur lemma implies that the real eigenvalue (which we denote

by the same symbol ~) of the central element labels the UIRs of the Heisenberg algebra.

The theorem of Stone and von Neumann asserts that, up to equivalence, there is a unique

UIR of the Heisenberg algebra hd for each real value of ~ 6= 0. Moreover, the corresponding

representation of Ad is faithful, which legitimates the equivalence between the abstract

definitions and the concrete realisations of the Heisenberg and Weyl algebras.36

The Weyl map W : f(x,p) 7→ F̂ (X̂, P̂) associates to any function f a Weyl(i.e.

symmetric)-ordered operator F̂ defined by

F̂ :=
1

(2π~)d

∫
dk dv F(k,v) e i

~
( ki X̂

i − vi P̂i) , (A.3)

36For ~ = 0, the UIRs of hd reduce to the one-dimensional UIRs of the commutative algebra R
d × R

d∗

labeled by the eigenvalues x and p of the operators X̂ and P̂. Obviously, when ~ = 0 the algebra Ad is

realised as the commutative algebra of polynomials f(x,p) on phase space.
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where F is the Fourier transform37 of f over the whole phase space (in other words, over

position and momentum spaces)

F(k,v) :=
1

(2π~)d

∫
dx dp f(x,p) e−

i
~
( ki x

i − vi pi) . (A.4)

The function f(x,p) is called the Weyl symbol of the operator F̂ (X̂, P̂) which need not be

in the symmetric-ordered form. A nice property of the Weyl map (A.3) is that it relates

the complex conjugation ∗ of symbols to the Hermitian conjugation † of operators, W :

f∗(x,p) 7→ F̂ †(X̂, P̂). Consequently, the image of a real function (a classical observable)

is a Hermitian operator (a quantum observable). The inverse W−1 : F̂ (X̂, P̂) 7→ f(x,p) of

the Weyl map is called the Wigner map.

The canonical commutation relations (A.2) between the position and momentum op-

erators and the Baker-Campbell-Hausdorff formula imply two very useful equalities:

e
i
~
( ki X̂

i − vi P̂i) = e−
i
2~
vi P̂i e

i
~
ki X̂

i

e−
i
2~
vi P̂i (A.5)

= e−
i
2~
vi { P̂i, } e

i
~
ki X̂

i

(A.6)

where { , } denotes the anticommutator.

On the one hand, combining (A.3) with (A.6) implies that one way to explicitly perform

the Weyl map is via some “anticommutator ordering” for half of the variables with respect

to their conjugates. For instance, the image of a Weyl symbol which is a formal power

series in the momenta,

f(x,p) =
∑

r>0

1

r!
f i1...ir(x) pi1 . . . pir

= f(x) + f i(x) pi +
1

2
f ij(x) pipj + O(p3) , (A.7)

can be written as

F̂ (X̂, P̂) =
∑

r>0

1

r! 2r
{ · · · {f i1...ir(X̂) , P̂i1} , · · · , P̂ir}

= F̂ (X̂) +
1

2

(
F̂ i(X̂) P̂i + P̂i F̂

i(X̂)
)

+
1

4

(
F̂ ij(X̂) P̂iP̂j + 2 P̂i F̂

ij(X̂) P̂j + P̂iP̂j F̂
ij(X̂)

)
+ . . . (A.8)

On the other hand, eq. (A.5) implies that one way to explicitly perform the Wigner

map is via a Fourier transformation of the “point shifted” integral kernel of the operator.

The integral kernel of an operator F̂ is the matrix element 〈x | F̂ | x′〉 appearing in the

position representation of the state F̂ | ψ 〉 as follows

〈x | F̂ | ψ 〉 =
∫
dx′ 〈x | F̂ | x′ 〉 ψ(x′) , (A.9)

37The Weyl map is well defined for a much larger class than square integrable functions, including for

instance the polynomial functions, Fourier transforms of which are distributions.

– 48 –



J
H
E
P
0
2
(
2
0
1
2
)
1
1
3

where the wave function in position space is ψ(x′) := 〈x′ | ψ 〉 and the completeness relation∫
dx′ | x′ 〉 〈x′ |= 1̂ has been inserted. The definition (A.3) and the relation (A.5) enable

to write the integral kernel of an operator in terms of its Weyl symbol,

〈x | F̂ | x′ 〉 =
∫

dp

(2π~)d
f
( x+ x′

2
, p
)
e

i
~
(xi−x′ i) pi . (A.10)

Conversely, this provides an explicit form of the Wigner map

f(x,p) =

∫
dq 〈x− q/2 | F̂ | x+ q/2 〉 e i

~
qi pi , (A.11)

as follows from the expression (A.10). This shows that indeed the Weyl and Wigner maps

are bijections between the vector spaces of classical and quantum observables.

The Moyal product ⋆ is the pull-back of the composition product in the algebra of

quantum observables with respect to the Weyl map W , such that

W
[
f(x,p) ⋆ g(x,p)

]
= F̂ (X̂, P̂) Ĝ(X̂, P̂) . (A.12)

The Wigner map (A.11) allows to check that the following explicit expression of the Moyal

product satisfies the definition (A.12),

f ⋆ g = f exp

[
i ~

2

( ←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
g

= f g +
i ~

2
{f , g}

P.B.
+O(~2), (A.13)

where the arrows indicate on which factor the derivatives should act.

Let Ĥ be a Hamiltonian operator with the corresponding Weyl symbol h(x,p) . In the

Heisenberg picture, the time evolution of a quantum observable F̂ (which does not depend

explicitly on time) is governed by the differential equation

dF̂

dt
=

1

i ~
[F̂ , Ĥ] (A.14)

or equivalently in terms of symbols

df

dt
=

1

i ~
[ f ⋆, h ] (A.15)

where [ ⋆, ] denotes the Moyal commutator defined by

[ f ⋆, g ] := f ⋆ g − g ⋆ f

= 2 i f sin

[
~

2

( ←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
g

= i ~ { f , g }
P.B.

+ O(~2) , (A.16)

as can be seen from (A.13). The Moyal bracket is related to the Moyal commutator by

{ f , g }
M.B.

:=
1

i ~
[ f ⋆, g ] = { f , g }

P.B.
+O(~).
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Note that the Moyal bracket { , }
M.B.

is a deformation of the Poisson bracket { , }
P.B.

,

and one can see that the equation (A.15) is a perturbation of the Hamiltonian flow. If

either f(x,p) or g(x,p) is a polynomial of degree two, then their Moyal bracket reduces to

their Poisson bracket. So when the Hamiltonian is quadratic (free) the quantum evolution

of a Weyl symbol is identical to its classical evolution.

B Representations of the Schrödinger algebra

Besides the free Schrödinger theory, there are known examples of interacting theories which

preserve the Schrödinger symmetry at quantum level. Nishida and Son called them “non-

relativistic conformal field theories” (NRCFT) and made an important step towards a

systematic understanding of this class of theories [11, 12].38 In this appendix, we review

their basic results and investigate the structure of the unitary irreducible representations

(UIR) of the Schrödinger algebra.

In close analogy with relativistic conformal field theories, it is useful to introduce

primary operators39 in NRCFT [11]. A local primary operator Ô(t,x) has a well defined

“spin” s
Ô
, scaling dimension ∆

Ô
and mass number M

Ô
. In other words, it carries an

irreducible representation of the rotation algebra o(d) and it is an eigenvector of the scaling

and mass operators.40 For a scalar primary Ô with s
Ô

= 0 (to which we restrict our

attention here for the sake of simplicity), this means

[D̂, Ô] = −i∆
Ô
Ô, [M̂, Ô] =M

Ô
Ô, (B.1)

where Ô ≡ Ô(t = 0,x = 0). By definition, a primary operator Ô must also commute with

K̂i and Ĉ

[K̂i, Ô] = 0, [Ĉ, Ô] = 0. (B.2)

Most importantly, from the primary operator Ô one can build a representation41 of the

Schrödinger algebra. Specifically, the primary operator is the lowest weight operator as it

has the lowest scaling dimension in the representation. The descendants are constructed by

taking spatial and temporal derivatives of the primary operator Ô. Using the Schrödinger

algebra it is possible to show that the generators P̂i and Ĥ form a pair of canonical creation

operators which increase the scaling dimension by one and two units respectively.

The commutation relation

[P̂i, K̂j ] = −iδijM̂ (B.3)

suggests that −iK̂j plays the role of a canonical annihilation operator as it decreases the

scaling dimension by one unit. Actually, this is only true for the massive representations

(with M
Ô
6= 0). The descendants are thus higher weight operators in a massive representa-

tion. The massless case is special since [P̂i, K̂j ] = 0, and thus all Galilean boost generators

38See also earlier important works of Henkel and Unterberger [75, 76] on this subject.
39or quasiprimary in the language of [75, 76]
40For d > 3, the irreducible representations of the rotation algebra o(d) are characterised by Young

diagrams rather than a single half-integer. By “spin”, one should understand the collection of labels

characterising uniquely the representation.
41more precisely, a “Verma module” in mathematical jargon
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Figure 1. Massive unitary irreducible representation of the Schrödinger algebra: The primary is

represented by a full square, while descendants are depicted as solid circles.

K̂j commute with all “descendants” generated by P̂i. Notably, there are operators in the

massless representation which are both descendants and primaries. This implies that the

structures of the massive and massless representations are very different and they will be

discussed separately in the following.

In a similar fashion, the commutation relation

[Ĥ, Ĉ] = iD̂ (B.4)

hints that iĈ plays the role of an annihilation operator as it always decreases the scaling

dimension by two units.42 Indeed, due to the unitarity bound (∆
Ô
> d

2 > 0) the right-

hand-side of eq. (B.4) is never zero. Thus, for the pair Ĥ and Ĉ there is no analogous

subtlety which we encountered for the pair P̂i and K̂j in the particular case of M
Ô
= 0.

After this general discussion we are ready to construct explicitly a massive UIR of

the Schrödinger algebra on the basis of a primary Ô. In general, the representation is

characterised by the scaling dimension ∆
Ô
, spin s

Ô
and mass numberM

Ô
6= 0. Its structure

is schematically illustrated in figure 1 which makes the irreducibility of the representation

manifest. We must mention that figure 1 is in fact oversimplified since P̂i and K̂i do not

commute with Ĥ and Ĉ and thus some arrows corresponding to the action of K̂i and C on

descendants are not shown explicitly.

The operator/state correspondence of [11, 12]43 provides a very interesting alternative

viewpoint on the massive representations. According to this correspondence the operators

(the primary and descendants) of a NRCFT are mapped onto energy states of the same

system placed in an external harmonic potential (with some frequency ω). In particular,

the primary operator corresponds to the ground state of the system of mass M
Ô

(i.e.

with particle number N
Ô
=

M
Ô

m ) with the internal angular momentum s
Ô
. The ground

42In order to obtain the canonical commutation relation, the operators Ĥ and iĈ must be properly

renormalised (see [8–10] for details).
43See also [8–10, 77] for the earlier quantum-mechanical formulation of this correspondence.
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state in the trap reads
∣∣ψ

Ô

〉
= e−Ĥ/ωÔ | 0 〉 and has the energy related to the scaling

dimension of the primary via E = ω∆
Ô
. In this picture, descendants of the NRCFT

simply correspond to the excited states. Specifically, the towers generated by P̂i (see

horizontal lines in figure 1) are mapped into excitations of the center-of-mass motion in

the harmonic trap. Indeed the oscillator energy spectrum is equidistant with the spacing ω

which matches precisely with the NRCFT result mentioned above. Explicitly, the center-

of-mass excitations of the trapped system are constructed by acting repeatedly with the

creation operators Q̂†
i = 1√

2

(
P̂i√
ω
+ i
√
ωK̂i

)
on the ground state

∣∣ψ
Ô

〉
. On the other

hand, one can also excite the internal motion (so called breathing modes) in the harmonic

potential which is mapped into the towers generated by Ĥ in the NRCFT (see vertical

lines in figure 1). Due to scale invariance the energy spectrum of breathing modes is also

equidistant with the spacing 2ω [8–10]. The proper operator that excites the breathing

modes turns out to be B̂† = L̂† − Q̂†
i Q̂

†
i

2m
Ô

, where L̂† = 1
2

(
Ĥ
ω − ωĈ − iD̂

)
. Note that the

pairs of operators Q̂†
i , Q̂i and B̂

†, B̂ commute with each other, since they act on different

degrees of freedom. Finally, we mention that the operator/state correspondence makes the

unitarity of the massive representation manifest, because it maps the representation onto

a Hilbert space of the N
Ô
-particle problem in a harmonic trap.

The light-like dimensional reduction method also provides a complementary perspec-

tive on the massive representations. Indeed, the restriction of relativistic conformal pri-

maries to some proper subset of components leads to non-relativistic conformal primaries

(with the other components being descendants). To clarify this, let us remind the definition

of a primary operator in a relativistic CFT: a local primary operator Õ(x) has a well defined

“spin” s
Õ
and scaling dimension ∆

Õ
. In other words, it carries an irreducible representation

of the Lorentz algebra o(d+ 1, 1) spanned by the generators M̃µν and it is an eigenvector

of the dilatation operator D̃: [D̃, Õ] = −i∆
Õ
Õ where Õ = Õ(x = 0). By definition, a

relativistic primary operator Ô must also commute with the conformal boost generators

K̃µ: [K̃µ, Õ] = 0. Furthermore, the dimensional reduction ansatz requires to consider an

eigenvector of a null translation operator: [P̃+, Õ] = M
Õ
Õ. This ansatz implies that the

non-relativistic operator Ô(t,x) := Õ(x+ = t, x− = 0,x) has mass M
Ô
= M

Õ
. Moreover,

the identification (4.9) together with the fact that Õ commutes with all conformal boost

generators implies that Ô commutes with the expansion generator Ĉ. Now comes a crucial

additional ansatz: let us assume that Õ further commutes with the generators M̃µ− which

is equivalent to the fact that all the components Õ+... vanish. As the result, the purely

spatial components Ôi1i2...(t,x) span a non-relativistic primary with spin s
Ô

= s
Õ

and

scaling dimension ∆
Ô
= ∆

Õ
, while the other components Ô−···−i1i2...(t,x) are descendants.

This can be verified via the identification (4.9), the previously stated commutations and

the branching rules for the restriction of o(d + 1, 1) to o(d). As a corollary, this property

ensures that the charged bilinears k(0)i1···is(t,x) (see section 4 for their definition) are local

non-relativistic primary operators.

Another useful perspective on the massive representations of the Schrödinger algebra

is the so-called “standard” realisation of the generators. Actually, for spinning massive

particles, the space-time differential operators (3.10) correspond to the “orbital” part of
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the generators which must be supplemented by a “spinning” (or “internal”) part spanning

an irreducible representation of the subalgebra o(d) ⊕ sl(2,R). As was mentioned in the

subsection 3.1, the translation and Galilean boost generators P̂i and K̂
j together with the

mass operator span the Heisenberg subalgebra hd ⊂ sch(d). The theorem of Stone and von

Neumann (see appendix A) implies that, given the mass m, there is a unique UIR of the

Heisenberg subalgebra. The authors of [47] proved that any massive representation of the

Schrödinger algebra is equivalent to the following realisation of the remaining generators

P̂t =
P̂ 2

2m
+ L̂− ,

M̂ij =
K̂iP̂j − K̂jP̂i

m
+ L̂ij ,

D̂ = −K̂
iP̂i
m

+ i
d

2
+ L̂0 ,

Ĉ =
K̂2

2m
+ L̂+ ,

(B.5)

where the operators L̂ij , L̂± and L̂0 commute with all the other generators and provide

a representation of o(d) ⊕ sl(2,R) with usual notations. In a sense, the latter operators

correspond to the “spinning” or “internal” part of the generators while the “orbital” part

is entirely built out of the translation and boost generators. In order to have an irreducible

representation of sch(d), the internal part of the representation of o(d) ⊕ sl(2,R) should

be irreducible, so it is characterised by spin and scaling dimension (for lowest weight

representations). Therefore, one recovers in a different way the results obtained from the

non-relativistic conformal field theory techniques.

Let us now turn to massless representations of the Schrödinger algebra. As emphasized

above, they have a distinct structure and are not so well understood. The representation

containing e.g. the non-relativistic currents j
(0)
i1...in

(see section 4 for their definition) has a

form of a pyramid and is illustrated in figure 2.44 The density operator j(0) = n is a non-

relativistic primary, but not a descendant. On the other hand, the operators ∂i1 · · · ∂inj(0)
are both primaries and descendants. The spatial currents j

(0)
i1...in

are neither primaries nor

descendants. As is clear from figure 2, this representation is not irreducible. Formally,

one can generate the full representation starting from the current j
(0)
i1...in

with n → ∞.

The operator/state correspondence cannot be applied in a straightforward fashion to the

normal-ordered neutral currents as they act trivially on the vacuum state.

In the AdS/CFT correspondence, a special role is played by the very exceptional

irreducible representations of the Poincaré group that can be lifted to representations of

the conformal group. They are called “singletons” and describe dynamical elementary

fields living on the conformal boundary of AdS. So an important question is: which UIRs

of the Bargmann group can be extended to representations of the Schrödinger group?

The massive (sometimes called “physical”) representations of the Bargmann group are

44We are thankful to S. Golkar and D.T. Son for presenting this to us.
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Figure 2. Massless representation of the Schrödinger algebra: The operators are depicted as solid

circles.

classified (see e.g. [37, 38]) by the mass, the “spin” and the so-called internal energy45

corresponding to the fact that in non-relativistic physics there is no privileged zero of

the energy. One can see that all the massive representations of the Bargmann group with

vanishing internal energy can be extended to representations of the Schrödinger group.

Indeed, conformal invariance requires that the internal energy must vanish because it is

not preserved by scale transformations. Physically the internal energy may always be put

to zero.46 In order to complete the proof, one simply verifies that one may associate, to any

representation of zero internal energy, a representation of the Schrödinger group (as follows

from the above discussion). The only massive representations of the Schrödinger algebra

with vanishing internal energy are those for which the UIR of the sl(2,R) subalgebra

on the internal (i.e. spinning) degrees of freedom is trivial. Furthermore, looking at

the classification of the UIRs of the Schrödinger group [45], one can see that the massive

representations are the only non-trivial unitary irreducible representations of the Bargmann

group that can be obtained as restrictions of the Schrödinger group. In a sense, the analogue

of the singleton representations of the Poincaré and conformal groups is identified with

the massive representations (with zero internal energy) of the Bargmann and Schrödinger

groups.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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