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Abstract We discuss general concept of Markov statistical dynamics in the continuum. For a class of spatial
birth-and-death models, we develop a perturbative technique for the construction of statistical dynamics.
Particular examples of such systems are considered. For the case of Glauber type dynamics in the continuum
we describe a Markov chain approximation approach that gives more detailed information about statistical
evolution in this model.

Mathematics Subject Classification 46E30 · 82C21 · 47D06

1 Introduction

Dynamics of interacting particle systems appear in several areas of the complex systems theory. In particular,
we observe a growing activity in the study of Markov dynamics for continuous systems. The latter fact is
motivated, in particular, by modern problems of mathematical physics, ecology, mathematical biology, and
genetics, see, e.g. [27,28,31–34,36–39,51–53,68] and literature cited therein. Moreover, Markov dynamics
are used for the construction of social, economic, and demographic models. Note that Markov processes for
continuous systems are considered in the stochastic analysis as dynamical point processes [43,44,46] and they
appear even in the representation theory of big groups [10–14].

Amathematical formalizationof the problemmaybedescribed as follows.As aphase spaceof the systemwe
use the space �(Rd) of locally finite configurations in the Euclidean space Rd . An heuristic Markov generator
which describes the considered model is given by its expression on a proper set of functions (observables) over
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�(Rd). With this operator we can relate two evolution equations, namely Kolmogorov backward equation for
observables andKolmogorov forward equation onprobabilitymeasures on the phase space�(Rd) (macroscopic
states of the system). The latter equation is also known as Fokker–Planck equation in the mathematical physics
terminology. Compared with the usual situation in stochastic analysis, there is an essential technical difficulty:
the corresponding Markov process in the configuration space may be constructed only in very special cases.
As a result, a description of Markov dynamics in terms of random trajectories is absent for most models under
considerations.

As an alternative approach we use a concept of statistical dynamics that substitutes the notion of a Markov
stochastic process. A central object now is an evolution of states of the system that will be defined by mean of
the Fokker–Planck equation. This evolution equationw.r.t. probabilitymeasures on�(Rd)may be reformulated
as a hierarchical chain of equations for correlation functions of considered measures. Such kind of evolution
equations are well known in the study of Hamiltonian dynamics for classical gases as BBGKY chains but
now they appear as a tool for construction and analysis of Markov dynamics. As an essential technical step,
we consider related pre-dual evolution chains of equations on the so-called quasi-observables. As it will be
shown in the paper, such hierarchical equations may be analyzed in the framework of semigroup theory with
the use of powerful techniques of perturbation theory for the semigroup generators, etc. Considering the dual
evolution for the constructed semigroup on quasi-observables we then introduce the dynamics on correlation
functions. The described scheme of the dynamics construction looks quite surprising because any perturbation
techniques for initial Kolmogorov evolution equations one cannot expect. The point is that states of infinite
interacting particle systems are given by measures which are, in general, orthogonal to each other. As a result,
we cannot compare their evolutions or apply a perturbative approach. But under quite general assumptions
they have correlation functions and corresponding dynamics may be considered in a common Banach space
of correlation functions. A proper choice of this Banach space means, in fact, that we find an admissible class
of initial states for which the statistical dynamics may be constructed. There we see again a crucial difference
with the framework of Markov stochastic processes where the initial distribution evolution is defined for any
initial data.

The structure of the paper is as follows. In Sect. 2 we discuss general concept of statistical dynamics for
Markov evolutions in the continuum and introduce necessary mathematical structures. Then, in Sect. 3, this
concept is applied to an important class of Markov dynamics of continuous systems, namely to birth-and-death
models. Here general conditions for the existence of a semigroup evolution in a space of quasi-observables
are obtained. Then we construct evolutions of correlation functions as dual objects. It is shown how to apply
general results to the study of particular models of statistical dynamics coming frommathematical physics and
ecology.

Finally, in Sect. 4we describe an alternative technique for the construction of solutions to hierarchical chains
evolution equations by means of an approximative approach. For concreteness, this approach is discussed in
the case of the so-called Glauber-type dynamics in the continuum. We construct a family of Markov chains
on configuration space in finite volumes with concrete transition kernels adopted to the Glauber dynamics.
Then the solution to the hierarchical equation for correlation functions may be obtained as the limit of the
corresponding object for the Markov chain dynamics. This limiting evolution generates the state dynamics.
Moreover, in the uniqueness regime for the corresponding equilibrium measure of Glauber dynamics which
is, in fact, Gibbs, dynamics of correlation functions is exponentially ergodic.

This paper is based on a series of our previousworks [26,28–30,34,53], but certain results and constructions
are detailed and generalized, in particular, in more complete analysis of the dual dynamics on correlation
functions.

2 Statistical description for stochastic dynamics of complex systems in the continuum

2.1 Complex systems in the continuum

In recent decades, different branches of natural and life sciences have been addressing to a unifying point
of view on a number of phenomena occurring in systems composed of interacting subunits. This leads to
formation of an interdisciplinary science which is referred to as the theory of complex systems. It provides
reciprocation of concepts and tools involving wide spectrum of applications as well as various mathematical
theories such that statistical mechanics, probability, nonlinear dynamics, chaos theory, numerical simulation,
and many others.
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Nowadays complex systems theory is a quickly growing interdisciplinary area with a very broad spectrum
of motivations and applications. For instance, having in mind biological applications, Levin [61] characterized
complex adaptive systems by such properties as diversity and individuality of components, localized interac-
tions among components, and the outcomes of interactions used for replication or enhancement of components.
We will use a more general informal description of a complex system as a specific collection of interacting
elements which have so-called collective behavior. This means appearance of properties of the system which
are not peculiar to inner nature of each element itself. The significant physical example of such properties is
thermodynamical effects which were a basis for creation by Boltzmann of statistical physics as a mathematical
language for studying complex systems of molecules.

We assume that all elements of a complex system are identical by properties and possibilities. Thus, one can
model these elements as points in a proper space whereas the complex system will be modeled as a discrete set
in this space. Mathematically this means that for study of complex systems a proper language and techniques
are delivered by the interacting particle models which form a rich and powerful direction in modern stochastic
and infinite dimensional analysis. Interacting particle systems have a wide use as models in condensed matter
physics, chemical kinetics, population biology, ecology (individual based models), sociology, and economics
(agent based models). For instance, a population in biology or ecology may be represented by a configuration
of organisms located in a proper habitat.

In spite of completely different orders of numbers of elements in real physical, biological, social, and
other systems (typical numbers start from 1023 for molecules and, say, 105 for plants) their complexities
have analogous phenomena and need similar mathematical methods. One of them consists in mathematical
approximation of a huge but finite real-world system by an infinite system realized in an infinite space. This
approach was successfully applied to the thermodynamic limit for models of statistical physics and appeared
quite useful for the ecological modeling in the infinite habitat to avoid boundary effects in a population
evolution.

Therefore, our phase space for the mathematical description should consist of countable sets from an
underlying space. This space itself may have discrete or continuous nature that leads to segregation of the
world of complex systems on two big classes. Discrete models correspond to systems whose elements can
occupy some prescribing countable set of positions, for example, vertices of the lattice Zd or, more generally,
of some graph embedded toRd . These models are widely studied and the corresponding theories were realized
in numerous publications, see, e.g. [62,63] and the references therein. Continuous models, or models in the
continuum, were studied not so intensively and broadly. We concentrate our attention exactly on continuous
models of systems whose elements may occupy any points in Euclidean space Rd . (Note that most part of our
results may be easily transferred to much more general underlying spaces). Having in mind that real elements
have physical sizes we will consider only the so-called locally finite subsets of the underlying space Rd that
means that in any bounded region we assume to have finite number of elements. Another restriction will be
prohibition of multiple elements at the same position of the space.

We will consider systems of elements of the same type only. The mathematical realization of considered
approaches may be successfully extended to multi-type systems; meanwhile such systems will have richer
qualitative properties and will be an object of interest for applications. Some particular results can be found,
e.g. in [21,22,39].

2.2 Mathematical description for a complex systems

We proceed to the mathematical realization of complex systems.
Let B(Rd) be the family of all Borel sets in R

d , d ≥ 1; Bb(R
d) denotes the system of all bounded sets

from B(Rd).
The configuration space over space Rd consists of all locally finite subsets (configurations) of Rd , namely

� = �
(
R
d) :=

{
γ ⊂ R

d
∣∣∣ |γ�| < ∞, for all � ∈ Bb(R

d)
}
.

Here | · | means the cardinality of a set, and γ� := γ ∩ �. We may identify each γ ∈ � with the non-negative
Radon measure

∑
x∈γ δx ∈ M(Rd), where δx is the Dirac measure with unit mass at x ,

∑
x∈∅ δx is, by

definition, the zero measure, and M(Rd) denotes the space of all non-negative Radon measures on B(Rd).
This identification allows to endow � with the topology induced by the vague topology on M(Rd), i.e. the
weakest topology on � with respect to which all mappings

123



258 Arab. J. Math. (2015) 4:255–300

� � γ 	→
∑

x∈γ

f (x) ∈ R (2.1)

are continuous for any f ∈ C0(R
d) that is the set of all continuous functions on R

d with compact supports. It
is worth noting the vague topology may be metrizable in such a way that � becomes a Polish space (see, e.g.
[50] and references therein).

Corresponding to the vague topology the Borel σ -algebra B(�) appears the smallest σ -algebra for which
all mappings

� � γ 	→ N�(γ ) := |γ�| ∈ N0 := N ∪ {0} (2.2)

are measurable for any � ∈ Bb(R
d), see, e.g. [1]. This σ -algebra may be generated by the sets

Q(�, n) := {
γ ∈ �

∣
∣ N�(γ ) = |γ�| = n

}
, � ∈ Bb(R

d), n ∈ N0. (2.3)

Clearly, for any � ∈ Bb(R
d),

� =
⊔

n∈N0

Q(�, n).

Among all measurable functions F : � → R̄ := R ∪ {∞} we mark out the set F0(�) consisting of such
of them for which |F(γ )| < ∞ at least for all |γ | < ∞. The important subset of F0(�) formed by cylindric
functions on �. Any such a function is characterized by a set � ∈ Bb(R

d) such that F(γ ) = F(γ�) for all
γ ∈ �. The class of cylindric functions we denote by Fcyl(�) ⊂ F0(�).

Functions on � are usually called observables. This notion is borrowed from statistical physics and means
that typically in course of empirical investigation we may estimate, check, and see only some quantities of a
whole system rather then look on the system itself.

Example 2.1 Let ϕ : Rd → R and consider the so-called linear function on �, cf. (2.1),

〈ϕ, γ 〉 :=
{∑

x∈γ
ϕ(x), if

∑

x∈γ
|ϕ(x)| < ∞, γ ∈ �,

+∞, otherwise.

Then, evidently, 〈ϕ, ·〉 ∈ F0(�). If, additionally, ϕ ∈ C0(R
d), then 〈ϕ, ·〉 ∈ Fcyl(�). Not that for, e.g.

ϕ(x) = ‖x‖Rd (the Euclidean norm in R
d ) we have that 〈ϕ, γ 〉 = ∞ for any infinite γ ∈ �.

Example 2.2 Let φ : R
d\{0} → R be an even function, namely φ(−x) = φ(x), x ∈ R

d . Then one can
consider the so-called energy function

Eφ(γ ) :=
{∑

{x,y}⊂γ
φ(x − y), if

∑

{x,y}⊂γ
|φ(x − y)| < ∞, γ ∈ �,

+∞, otherwise.
(2.4)

Clearly, Eφ ∈ F0(�). However, even for φ with a compact support, Eφ will not be a cylindric function.

Aswe discussed before, any configuration γ represents some systemof elements in a real-world application.
Typically, investigators are not able to take into account exact positions of all elements due to huge number
of them. For quantitative and qualitative analysis of a system researchers mostly need some its statistical
characteristics such as density, correlations, spatial structures, and so on. This leads to the so-called statistical
description of complex systems when people study distributions of countable sets in an underlying space
instead of sets themselves. Moreover, the main idea in Boltzmann’s approach to thermodynamics based on
giving up the description in terms of evolution for groups of molecules and using statistical interpretation
of molecules motion laws. Therefore, the crucial role for studying of complex systems plays distributions
(probability measures) on the space of configurations. In statistical physics these measures usually called
states that accentuates their role for description of considered systems.

We denote the class of all probability measures on
(
�,B(�)

)
byM1(�). Given a distribution μ ∈ M1(�)

one can consider a collection of random variables N�(·), � ∈ Bb(R
d) defined in (2.2). They describe random
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numbers of elements inside bounded regions. The natural assumption is that these random variables should
have finite moments. Thus, we consider the class M1

fm(�) of all measures from M1(�) such that
∫

�

|γ�|n dμ(γ ) < ∞, � ∈ Bb(R
d), n ∈ N. (2.5)

Example 2.3 Let σ be a non-atomic Radon measure on
(
R
d ,B(Rd)

)
. Then the Poisson measure πσ with

intensity measure σ is defined on B(�) by

πσ

(
Q(�, n)

) =
(
σ(�)

)n

n! exp
{−σ(�)

}
, � ∈ Bb(R

d), n ∈ N0. (2.6)

This formula is nothing but the statement that the random variables N� have Poissonian distribution with mean
value σ(�), � ∈ Bb(R

d). Note that by the Rényi theorem [47,74] a measure πσ will be Poissonian if (2.6)
holds for n = 0 only. In the case then dσ(x) = ρ(x) dx one can say about nonhomogeneous Poisson measure
πρ with density (or intensity) ρ. This notion goes back to the famous Campbell formula [15,16] which states
that

∫

�

〈ϕ, γ 〉 dπρ(γ ) =
∫

Rd
ϕ(x)ρ(x) dx, (2.7)

if only the right-hand side of (2.7) is well defined. The generalization of (2.7) is the Mecke identity [65]
∫

�

∑

x∈γ

h(x, γ ) dπσ (γ ) =
∫

�

∫

Rd
h(x, γ ∪ x) dσ(x) dπσ (γ ), (2.8)

which holds for all measurable nonnegative functions h : R
d × � → R. Here and in the sequel we will

omit brackets for the one-point set {x}. In [65], it was shown that the Mecke identity is a characterization
identity for the Poisson measure. In the case ρ(x) = z > 0, x ∈ R

d one can say about the homogeneous
Poisson distribution (measure) πz with constant intensity z. We will omit sub-index for the case z = 1, namely
π := π1 = πdx . Note that the property (2.5) is followed from (2.8) easily.

Example 2.4 Let φ be as in Example 2.2 and suppose that the energy given by (2.4) is stable: there exists
B ≥ 0 such that, for any |γ | < ∞, Eφ(γ ) ≥ −B|γ |. An example of such φ my be given by the expansion

φ(x) = φ+(x) + φ p(x), x ∈ R
d , (2.9)

where φ+ ≥ 0, whereas φ p is a positive defined function on R
d (the Fourier transform of a measure on R

d ),
see, e.g. [40,75]. Fix any z > 0 and define the Gibbs measure μ ∈ M1(�) with potential φ and activity
parameter z as a measure which satisfies the following generalization of the Mecke identity:

∫

�

∑

x∈γ

h(x, γ ) dμ(γ ) =
∫

�

∫

Rd
h(x, γ ∪ x) exp{−Eφ(x, γ )} zdx dμ(γ ), (2.10)

where

Eφ(x, γ ) := 〈φ(x − ·), γ 〉 =
∑

y∈γ

φ(x − y), γ ∈ �, x ∈ R
d\γ. (2.11)

The identity (2.10) is called the Georgii–Nguyen–Zessin identity, see [45,67]. If potential φ is additionally
satisfied the so-called integrability condition

β :=
∫

Rd

∣∣e−φ(x) − 1
∣∣ dx < ∞, (2.12)

then it can checked that the condition (2.5) for theGibbsmeasure holds.Note that under conditions zβ ≤ (2e)−1

there exists a unique measure on
(
�,B(�)

)
which satisfies (2.10). Heuristically, the measure μ may be given

by the formula

dμ(γ ) = 1

Z
e−Eφ(γ ) dπz(γ ), (2.13)

where Z is a normalizing factor. To give rigorous meaning for (2.13) it is possible to use the so-called DLR-
approach (named after R.L.Dobrushin, O.Lanford, D.Ruelle), see, e.g. [2] and references therein. As was
shown in [67], this approach gives the equivalent definition of the Gibbs measures which satisfies (2.10).
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Note that (2.13) could have a rigorous sense if we restrict our attention on the space of configuration which
belong to a bounded domain � ∈ Bb(R

d). The space of such (finite) configurations will be denoted by �(�).
The σ -algebra B(�(�)) may be generated by family of mappings �(�) � γ 	→ N�′(γ ) ∈ N0, �′ ∈ Bb(R

d),
�′ ⊂ �. A measure μ ∈ M1

fm(�) is called locally absolutely continuous with respect to the Poisson measure
π if for any � ∈ Bb(R

d) the projection of μ onto �(�) is absolutely continuous with respect to (w.r.t.)
the projection of π onto �(�). More precisely, if we consider the projection mapping p� : � → �(�),
p�(γ ) := γ� then μ� := μ ◦ p−1

� is absolutely continuous w.r.t. π� := π ◦ p−1
� .

Remark 2.5 Having inmind (2.13), it is possible to derive from (2.10) that theGibbsmeasure fromExample 2.4
is locally absolutely continuous w.r.t. the Poisson measure, see, e.g. [24] for the more general case.

By, e.g. [48], for any μ ∈ M1
fm(�) which is locally absolutely continuous w.r.t the Poisson measure there

exists the family of (symmetric) correlation functions k(n)
μ : (Rd)n → R+ := [0, ∞) which is defined as

follows. For any symmetric function f (n) : (Rd)n → R with a finite support the following equality holds
∫

�

∑

{x1,...,xn}⊂γ

f (n)(x1, . . . , xn) dμ(γ )

= 1
n!
∫

(Rd )n
f (n)(x1, . . . , xn)k

(n)
μ (x1, . . . , xn) dx1 . . . dxn (2.14)

for n ∈ N, and k(0)
μ := 1.

Themeaning of the notion of correlation functions is the following: the correlation function k(n)
μ (x1, . . . , xn)

describes the non-normalized density of probability to have points of our systems in the positions x1, . . . , xn .

Remark 2.6 Iterating the Mecke identity (2.8), it can be easily shown that

k(n)
πρ

(x1, . . . , xn) =
n∏

i=1

ρ(xi ), (2.15)

in particular,

k(n)
πz

(x1, . . . , xn) ≡ zn . (2.16)

Remark 2.7 Note that if potential φ from Example 2.4 satisfies to (2.9), (2.12), then, by [76], there exists
C = C(z, φ) > 0 such that for μ defined by (2.10)

k(n)
μ (x1, . . . , xn) ≤ Cn, x1, . . . , xn ∈ R

d . (2.17)

The inequality (2.17) is referred to as the Ruelle bound.

We dealt with symmetric function of n variables from R
d ; hence, they can be considered as functions on

n-point subsets from R
d . We proceed now to the exact constructions.

The space of n-point configurations in Y ∈ B(Rd) is defined by

�(n)(Y ) := {
η ⊂ Y

∣∣ |η| = n
}
, n ∈ N.

We put �(0)(Y ) := {∅}. As a set, �(n)(Y ) may be identified with the symmetrization of

Ỹ n = {
(x1, . . . , xn) ∈ Yn

∣∣ xk �= xl if k �= l
}
.

Hence, one can introduce the corresponding Borel σ -algebra, which we denote by B(�(n)(Y )
)
. The space of

finite configurations in Y ∈ B(Rd) is defined as

�0(Y ) :=
⊔

n∈N0

�(n)(Y ). (2.18)
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This space is equipped with the topology of the disjoint union. Let B(�0(Y )
)
denote the corresponding Borel

σ -algebra. In the case of Y = R
d we will omit the index Y in the previously defined notations, namely

�0 := �0(R
d), �(n) := �(n)(Rd), n ∈ N0. (2.19)

The restriction of the Lebesgue product measure (dx)n to
(
�(n),B(�(n))

)
we denote by m(n). We set

m(0) := δ{∅}. The Lebesgue–Poisson measure λ on �0 is defined by

λ :=
∞∑

n=0

1

n!m
(n). (2.20)

For any � ∈ Bb(R
d) the restriction of λ to �0(�) = �(�) will be also denoted by λ.

Remark 2.8 The space
(
�,B(�)

)
is the projective limit of the family of measurable spaces

{(
�(�),

B(�(�))
)}

�∈Bb(Rd )
. The Poisson measure π on

(
�,B(�)

)
from Example 2.3 may be defined as the pro-

jective limit of the family of measures {π�}�∈Bb(Rd ), where π� := e−m(�)λ is the probability measure on(
�(�),B(�(�))

)
and m(�) is the Lebesgue measure of � ∈ Bb(R

d) (see, e.g. [1] for details).

Functions on �0 will be called quasi-observables. Any B(�0)-measurable function G on �0, in fact, is
defined by a sequence of functions

{
G(n)

}
n∈N0

where G(n) is a B(�(n))-measurable function on �(n). We

preserve the same notation for the function G(n) considered as a symmetric function on (Rd)n . Note that
G(0) ∈ R.

A set M ∈ B(�0) is called bounded if there exists � ∈ Bb(R
d) and N ∈ N such that

M ⊂
N⊔

n=0

�(n)(�).

The set of bounded measurable functions on �0 with bounded support we denote by Bbs(�0), i.e. G ∈ Bbs(�0)
iff G ��0\M= 0 for some bounded M ∈ B(�0). For any G ∈ Bbs(�0) the functions G(n) have finite supports in
(Rd)n and may be substituted into (2.14). But, additionally, the sequence of G(n) vanishes for big n. Therefore,
one can summarize equalities (2.14) by n ∈ N0. This leads to the following definition.

Let G ∈ Bbs(�0); then we define the function KG : � → R such that

(KG)(γ ) :=
∑

η�γ

G(η)

= G(0) +
∞∑

n=1

∑

{x1,...,xn}⊂γ

G(n)(x1, . . . , xn), γ ∈ �, (2.21)

see, e.g. [48,59,60]. The summation in (2.21) is taken over all finite subconfigurations η ∈ �0 of the (infinite)
configuration γ ∈ �; we denote this by the symbol, η � γ . The mapping K is linear, positivity preserving,
and invertible, with

(K−1F)(η) :=
∑

ξ⊂η

(−1)|η\ξ |F(ξ), η ∈ �0. (2.22)

By [48], for any G ∈ Bbs(�0), KG ∈ Fcyl(�), moreover, there exists C = C(G) > 0, � = �(G) ∈ Bb(R
d),

and N = N (G) ∈ N such that

|KG(γ )| ≤ C
(
1 + |γ�|)N , γ ∈ �. (2.23)

The expression (2.21) can be extended to the class of all nonnegative measurable G : �0 → R+, in this
case, evidently, KG ∈ F0(�). Stress that the left-hand side (l.h.s.) of (2.22) has a meaning for any F ∈ F0(�),
moreover, in this case (KK−1F)(γ ) = F(γ ) for any γ ∈ �0.
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For G as above we may summarize (2.14) by n and rewrite the result in a compact form:
∫

�

(KG)(γ )dμ(γ ) =
∫

�0

G(η)kμ(η)dλ(η). (2.24)

As was shown in [48], the equality (2.21) may be extended on all functions G such that the l.h.s. of (2.24) is
finite. In this case (2.21) holds for μ-a.a. γ ∈ � and (2.24) holds too.

Remark 2.9 The equality (2.24) may be considered as definition of the correlation function kμ. In fact, the
definition of correlation functions in statistical physics, given by Bogolyubov in [7], based on a similar relation.
More precisely, consider for a B(Rd)-measurable function f the so-called coherent state, given as a function
on �0 by

eλ( f, η) :=
∏

x∈η

f (x), η ∈ �0\{∅}, eλ( f, ∅) := 1. (2.25)

Then for any f ∈ C0(R
d) we have the point-wise equality

(
Keλ( f )

)
(γ ) =

∏

x∈γ

(
1 + f (x)

)
, η ∈ �0. (2.26)

As a result, the correlation functions of different ordersmay be considered as kernels of a Taylor-type expansion

∫

�

∏

x∈γ

(
1 + f (x)

)
dμ(γ ) = 1 +

∞∑

n=1

1

n!
∫

(Rd )n

n∏

i=1

f (xi )k
(n)
μ (x1, . . . , xn) dx1 . . . dxn

=
∫

�0

eλ( f, η)kμ(η) dλ(η). (2.27)

Remark 2.10 By (2.18)–(2.20), we have that for any f ∈ L1(Rd , dx)
∫

�0

eλ( f, η)dλ(η) = exp
{∫

Rd
f (x)dx

}
. (2.28)

As a result, taking into account (2.15), we obtain from (2.27) the expression for the Laplace transform of the
Poisson measure

∫

�

e−〈ϕ,γ 〉 dπρ(γ ) =
∫

�0

eλ

(
e−ϕ(x) − 1, η

)
eλ(ρ, η) dλ(η)

= exp
{
−
∫

Rd

(
1 − e−ϕ(x))ρ(x)dx

}
, ϕ ∈ C0(R

d).

Remark 2.11 Of course, to obtain convergence of the expansion (2.27) for, say, f ∈ L1(Rd , dx) we need
some bounds for the correlation functions k(n)

μ . For example, if the generalized Ruelle bound holds, that is, cf.
(2.17),

k(n)
μ (x1, . . . , xn) ≤ ACn(n!)1−δ, x1, . . . , xn ∈ R

d (2.29)

for some A,C > 0, δ ∈ (0, 1] independent on n, then the l.h.s. of (2.27) may be estimated by the expression

1 + A
∞∑

n=1

(
C‖ f ‖L1(Rd )

)n

(n!)δ < ∞.

For a given system of functions k(n) on (Rd)n the question about existence and uniqueness of a probability
measure μ on � which has correlation functions k(n)

μ = k(n) is an analog of the moment problem in classical
analysis. Significant results in this area were obtained by Lenard.

Proposition 2.12 ([58,60]) Let k : �0 → R.
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1. Suppose that k is a positive definite function that means that for any G ∈ Bbs(�0) such that (KG)(γ ) ≥ 0
for all γ ∈ � the following inequality holds:

∫

�0

G(η)k(η) dλ(η) ≥ 0. (2.30)

Suppose also that k(∅) = 1. Then there exists at least one measure μ ∈ M1
fm(�) such that k = kμ.

2. For any n ∈ N, � ∈ Bb(R
d), we set

s�
n := 1

n!
∫

�n
k(n)(x1, . . . , xn) dx1 · · · dxn.

Suppose that for all m ∈ N, � ∈ Bb(R
d)

∑

n∈N

(
s�
n+m

)− 1
n = ∞. (2.31)

Then there exists at most one measure μ ∈ M1
fm(�) such that k = kμ.

Remark 2.13 1. In [58,60], the wider space of multiple configurations was considered. The adaptation for
the space � was realized in [57].

2. It is worth noting also that the growth of correlation functions k(n) up to (n!)2 is admissible to have (2.31).
3. Other conditions for existence and uniqueness for the moment problem on � were studied in [4,48].

2.3 Statistical descriptions of Markov evolutions

Spatial Markov processes inRd may be described as stochastic evolutions of configurations γ ⊂ R
d . In course

of such evolutions points of configurations may disappear (die), move (continuously or with jumps from one
position to another), or new particles may appear in a configuration (that is birth). The rates of these random
events may depend on whole configuration that reflect an interaction between elements of the our system.

The construction of a spatial Markov process in the continuum is highly difficult question which is not
solved in a full generality at present, see, e.g. a review [71] and more detail references about birth-and-death
processes in Sect. 3. Meanwhile, for the discrete systems the corresponding processes are constructed under
quite general assumptions, see, e.g. [62]. One of the main difficulties for continuous systems includes the
necessity to control number of elements in a bounded region. Note that the construction of spatial processes
on bounded sets from R

d are typically well solved, see, e.g. [41].
The existing Markov process � � γ 	→ Xγ

t ∈ �, t > 0 provides solution to the backward Kolmogorov
equation for bounded continuous functions:

∂

∂t
Ft = LFt , (2.32)

where L is the Markov generator of the process Xt . The question about existence and properties of solutions
to (2.32) in proper spaces itself is also highly nontrivial problem of infinite-dimensional analysis. The Markov
generator L should satisfy the following two (informal) properties: (1) to be conservative, that is L1 = 0, (2)
maximum principle, namely if there exists γ0 ∈ � such that F(γ ) ≤ F(γ0) for all γ ∈ �, then (LF)(γ0) ≤ 0.
These properties might yield that the semigroup, related to (2.32) (provided it exists), will preserve constants
and positive functions, correspondingly.

To consider an example of such L let us consider a general Markov evolution with appearing and disap-
pearing of groups of points (giving up the case of continuous moving of particles). Namely, let F ∈ Fcyl(�)
and set

(LF)(γ ) =
∑

η�γ

∫

�0

c(η, ξ, γ \η)
[
F((γ \η) ∪ ξ) − F(γ )

]
dλ(ξ). (2.33)
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Heuristically, it means that any finite group η of points from the existing configuration γ may disappear and
simultaneously a new group ξ of points may appear somewhere in the space Rd . The rate of this random event
is equal to c(η, ξ, γ \η) ≥ 0. We need some minimal conditions on the rate c to guarantee that at least

LF ∈ F0(�) for all F ∈ Fcyl(�) (2.34)

(see Sect. 3 for a particular case). The term in the sum in (2.33) with η = ∅ corresponds to a pure birth of a
finite group ξ of points whereas the part of integral corresponding to ξ = ∅ (recall that λ({∅}) = 1) is related
to pure death of a finite sub-configuration η ⊂ γ . The parts with |η| = |ξ | �= 0 corresponds to jumps of one
group of points into another positions inRd . The rest parts present splitting and merging effects. In the present
paper the technical realization of the ideas below is given for one-point birth-and-death parts only, i.e. for the
cases |η| = 0, |ξ | = 1 and |η| = 1, |ξ | = 0, correspondingly.

As we noted before, for most cases appearing in applications, the existence problem for a corresponding
Markov process with a generator L is still open. On the other hand, the evolution of a state in the course of a
stochastic dynamics is an important question in its own right. Amathematical formulation of this question may
be realized through the forward Kolmogorov equation for probability measures (states) on the configuration
space �, namely we consider the pairing between functions and measures on � given by

〈F, μ〉 :=
∫

�

F(γ ) dμ(γ ). (2.35)

Then we consider the initial value problem

d

dt
〈F, μt 〉 = 〈LF, μt 〉, t > 0, μt

∣
∣
t=0 = μ0, (2.36)

where F is an arbitrary function from a proper set, e.g. F ∈ K
(
Bbs(�0)

) ⊂ Fcyl(�). In fact, the solution
to (2.36) describes the time evolution of distributions instead of the evolution of initial points in the Markov
process. We rewrite (2.36) in the following heuristic form:

∂

∂t
μt = L∗μt , (2.37)

where L∗ is the (informally) adjoint operator of L with respect to the pairing (2.35).
In the physical literature, (2.37) is referred to the Fokker–Planck equation. The Markovian property of

L yields that (2.37) might have a solution in the class of probability measures. However, the mere existence
of the corresponding Markov process will not give us much information about properties of the solution to
(2.37), in particular, about its moments or correlation functions. To do this, we suppose now that a solution
μt ∈ M1

fm(�) to (2.36) exists and remains locally absolutely continuous with respect to the Poisson measure
π for all t > 0 provided μ0 has such a property. Then one can consider the correlation function kt := kμt ,
t ≥ 0.

Recall that we suppose (2.34). Then, one can calculate K−1LF using (2.22), and, by (2.24), wemay rewrite
(2.36) in the following way:

d

dt
〈〈K−1F, kt 〉〉 = 〈〈K−1LF, kt 〉〉, t > 0, kt

∣∣
t=0 = k0, (2.38)

for all F ∈ K
(
Bbs(�0)

) ⊂ Fcyl(�). Here the pairing between functions on �0 is given by

〈〈G, k〉〉 :=
∫

�0

G(η)k(η) dλ(η). (2.39)

Let us recall that then, by (2.20),

〈〈G, k〉〉 =
∞∑

n=0

1

n!
∫

(Rd )n
G(n)(x1, . . . , xn)k

(n)(x1, . . . , xn) dx1 . . . dxn,

Next, if we substitute F = KG, G ∈ Bbs(�0) in (2.38), we derive

d

dt
〈〈G, kt 〉〉 = 〈〈L̂G, kt 〉〉, t > 0, kt

∣
∣
t=0 = k0, (2.40)
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for all G ∈ Bbs(�0). Here the operator

(L̂G)(η) := (K−1LKG)(η), η ∈ �0

is defined point-wise for all G ∈ Bbs(�0) under conditions (2.34). As a result, we are interested in a weak
solution to the equation

∂

∂t
kt = L̂∗kt , t > 0, kt

∣
∣
t=0 = k0, (2.41)

where L̂∗ is dual operator to L̂ with respect to the duality (2.39), namely
∫

�0

(L̂G)(η)k(η) dλ(η) =
∫

�0

G(η)(L̂∗k)(η) dλ(η). (2.42)

The procedure of deriving the operator L̂ for a given L is fully combinatorial; meanwhile, to obtain the
expression for the operator L̂∗ we need an analog of integration by parts formula. For a difference operator L
considered in (2.33) this discrete integration by parts rule is presented in Lemma 3.4 below.

We recall that any function on �0 may be identified with an infinite vector of symmetric functions of the
growing number of variables. In this approach, the operator L̂∗ in (2.41) will be realized as an infinite matrix(
L̂∗
n,m

)
n,m∈N0

, where L̂∗
n,m is a mapping from the space of symmetric functions of n variables into the space of

symmetric functions ofm variables. As a result, instead of Eq. (2.36) for infinite-dimensional objects we obtain
an infinite system of equations for functions k(n)

t ; each of them is a function of a finite number of variables,
namely

∂

∂t
k(n)
t (x1, . . . , xn) = (

L̂∗
n,mk

(n)
t

)
(x1, . . . , xn), t > 0, n ∈ N0,

k(n)
t (x1, . . . , xn)

∣
∣
t=0 = k(n)

0 (x1, . . . , xn). (2.43)

Of course, in general, for a fixed n, any equation from (2.43) itself is not closed and includes functions k(m)
t of

other orders m �= n; nevertheless, the system (2.43) is a closed linear system. The chain evolution equations
for k(n)

t consists the so-called hierarchywhich is an analog of the BBGKY hierarchy for Hamiltonian systems,
see, e.g. [18].

One of the main aims of the present paper was to study the classical solution to (2.41) in a proper functional
space. The choice of such a space might be based on estimates (2.17), or more generally, (2.29). However, even
the correlation functions (2.16) of the Poisson measures show that it is rather natural to study the solutions
to the Eq. (2.41) in weighted L∞-type space of functions with the Ruelle-type bounds. Integrable correlation
functions are not natural for the dynamics on the spaces of locally finite configurations. For example, it is
well known that the Poisson measure πρ with integrable density ρ(x) is concentrated on the space �0 of
finite configurations [since in this case on can consider Rd instead of � in (2.6)]. Therefore, typically, the
case of integrable correlation functions yields that effectively our stochastic dynamics evolves through finite
configurations only. Note that the case of an integrable first-order correlation function is referred to zero density
case in statistical physics.

In the present paper we restrict our attention to the so-called sub-Poissonian correlation functions. Namely,
for a given C > 0 we consider the following Banach space:

KC := {
k : �0 → R

∣
∣ k · C−|·| ∈ L∞(�0, dλ)

}
(2.44)

with the norm

‖k‖KC := ‖C−|·|k(·)‖L∞(�0,λ).

It is clear that k ∈ KC implies, cf. (2.17),
∣∣k(η)

∣∣ ≤ ‖k‖KC C |η| for λ-a.a. η ∈ �0. (2.45)

In the following, we distinguish two possibilities for a study of the initial value problem (2.41). We may
try to solve this equation in one space KC . The well-posedness of the initial value problem in this case is
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equivalent with an existence of the strongly continuous semigroup (C0-semigroup in the sequel) in the space
KC with a generator L̂∗. However, the space KC is isometrically isomorphic to the space L∞(�0,C |·|dλ),
whereas by the Lotz theorem [3,64], in a L∞ space any C0-semigroup is uniformly continuous, that is it has
a bounded generator. Typically, for the difference operator L given in (2.33), any operator L̂∗

n,m , cf. (2.43),
might be bounded as an operator between two spaces of bounded symmetric functions of n and m variables,
whereas the whole operator L̂∗ is unbounded in KC .

To avoid these difficulties we use a trick which goes back to Phillips [72]. The main idea is to consider the
semigroup in L∞ space not itself but as a dual semigroup T ∗(t) to a C0-semigroup T (t) with a generator A
in the pre-dual L1 space. In this case T ∗(t) appears strongly continuous semigroup not on the whole L∞ but
on the closure of the domain of A∗ only.

In our case this leads to the following scheme. We consider the pre-dual Banach space to KC , namely for
C > 0,

LC := L1(�0,C
|·|dλ

)
. (2.46)

The norm in LC is given by

‖G‖C :=
∫

�0

∣
∣G(η)

∣
∣C |η| dλ(η) =

∞∑

n=0

Cn

n!
∫

(Rd )n

∣
∣G(n)(x1, . . . , xn)

∣
∣ dx1 . . . dxn.

Consider the initial value problem, cf. (2.40), (2.41),

∂

∂t
Gt = L̂Gt , t > 0, Gt

∣∣
t=0 = G0 ∈ LC . (2.47)

Let (2.47) be well-posed in LC ; then there exists a C0-semigroup T̂ (t) in LC . Then using Philips’ result we

obtain that the restriction of the dual semigroup T̂ ∗(t) onto Dom(L̂∗) will be C0-semigroup with generator
which is a part of L̂∗ (the details see in Sect. 3 below). This provides a solution to (2.41) which continuously

depends on an initial data from Dom(L̂∗). And after we would like to find a more useful universal subspace of
KC which is not dependent on the operator L̂∗. The realization of this scheme for a birth-and-death operator
L is presented in Sect. 3 below. As a result, we obtain the classical solution to (2.41) for t > 0 in a class of
sub-Poissonian functions which satisfy the Ruelle-type bound (2.45). Of course, after this we need to verify
existence and uniqueness of measures whose correlation functions are solutions to (2.41), cf. Proposition 2.12
above. This usually can be done using proper approximation schemes, see, e.g. Sect. 4.

There is another possibility for a study of the initial value problem (2.41) which we will not touch below,
namely one can consider this evolutional equation in a proper scale of spaces {KC }C∗≤C≤C∗ . In this case we
will have typically that the solution is local in time only. More precisely, there exists T > 0 such that for any
t ∈ [0, T ) there exists a unique solution to (2.41) and kt ∈ KCt for some Ct ∈ [C∗,C∗]. We realized this
approach in series of papers [5,25,37,38] using the so-called Ovsyannikov method [69,77,78]. This method
provides less restrictions on systems parameters; however, the price for this is a finite time interval. And,
of course, the question about possibility to recover measures via solutions to (2.41) should be also solved
separately in this case.

3 Birth-and-death evolutions in the continuum

3.1 Microscopic description

One of themost important classes ofMarkov evolution in the continuum is given by the birth-and-deathMarkov
processes in the space � of all configurations from R

d . These are processes in which an infinite number of
individuals exist at each instant, and the rates at which new individuals appear and some old ones disappear
depend on the instantaneous configuration of existing individuals [46]. The corresponding Markov generators
have a natural heuristic representation in terms of birth and death intensities. The birth intensity b(x, γ ) ≥ 0
characterizes the appearance of a new point at x ∈ R

d in the presence of a given configuration γ ∈ �. The
death intensity d(x, γ ) ≥ 0 characterizes the probability of the event that the point x of the configuration
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γ disappears, depending on the location of the remaining points of the configuration, γ \x . Heuristically, the
corresponding Markov generator is described by the following expression, cf. (2.33):

(LF)(γ ) :=
∑

x∈γ

d(x, γ \x) [F(γ \x) − F(γ )
]

+
∫

Rd
b(x, γ )

[
F(γ ∪ x) − F(γ )

]
dx, (3.1)

for proper functions F : � → R.
The study of spatial birth-and-death processes was initiated by Preston [73]. This paper dealt with a solution

of the backward Kolmogorov equation (2.32) under the restriction that only a finite number of individuals are
alive at each moment of time. Under certain conditions, corresponding processes exist and are temporally
ergodic, that is, there exists a unique stationary distribution. Note that a more general setting for birth-and-
death processes only requires that the number of points in any compact set remains finite at all times. A further
progress in the study of these processes was achieved by Holley and Stroock in [46]. They described in detail
an analytic framework for birth-and-death dynamics. In particular, they analyzed the case of a birth-and-death
process in a bounded region.

Stochastic equations for spatial birth-and-death processes were formulated in [42], through a spatial version
of the time-change approach. Further, in [43], these processes were represented as solutions to a system of
stochastic equations, and conditions for the existence and uniqueness of solutions to these equations, as well
as for the corresponding martingale problems, were given. Unfortunately, quite restrictive assumptions on the
birth and death rates in [43] do not allow an application of these results to several particular models that are
interesting for applications (see, e.g. some of examples below).

A growing interest to the study of spatial birth-and-death processes, which we have recently observed,
is stimulated by (among others) an important role which these processes play in several applications. For
example, in spatial plant ecology, a general approach to the so-called individual based models was developed
in a series of works, see, e.g. [8,9,17,66] and the references therein. These models are described as birth-and-
deathMarkov processes in the configuration space� with specific rates b and d which reflect biological notions
such as competition, establishment, fecundity, etc. Other examples of birth-and-death processes may be found
in mathematical physics. In particular, the Glauber-type stochastic dynamics in � is properly associated with
the grand canonical Gibbs measures for classical gases. This gives a possibility to study these Gibbs measures
as equilibrium states for specific birth-and-death Markov evolutions [6]. Starting with a Dirichlet form for a
given Gibbs measure, one can consider an equilibrium stochastic dynamics [54]. However, these dynamics
give the time evolution of initial distributions from a quite narrow class, namely the class of admissible initial
distributions is essentially reduced to the states which are absolutely continuous with respect to the invariant
measure. Below we construct non-equilibrium stochastic dynamics which may have a much wider class of
initial states.

This approach was successfully applied to the construction and analysis of state evolutions for different
versions of the Glauber dynamics [28,34,53] and for some spatial ecology models [26]. Each of the considered
models required its own specific version of the construction of a semigroup, which takes into account particular
properties of corresponding birth and death rates.

In this section, we realize a general approach considered in Sect. 2 to the construction of the state evolution
corresponding to the birth-and-death Markov generators. We present conditions on the birth-and-death inten-
sities which are sufficient for the existence of corresponding evolutions as strongly continuous semigroups in
proper Banach spaces of correlation functions satisfying the Ruelle-type bounds. Also we consider weaker
assumptions on these intensities which provide the corresponding evolutions for finite time intervals in scales
of Banach spaces as above.

3.2 Expressions for L̂ and L̂∗. Examples of rates b and d

We always suppose that rates d, b : Rd × � → [0;+∞] from (3.1) satisfy the following assumptions:

d(x, η), b(x, η) > 0, η ∈ �0\{∅}, x ∈ R
d\η, (3.2)

d(x, η), b(x, η) < ∞, η ∈ �0, x ∈ R
d\η, (3.3)
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∫

M

(
d(x, η) + b(x, η)

)
dλ(η) < ∞, M ∈ B(�0) bounded, a.a. x ∈ R

d , (3.4)
∫

�

(
d(x, η) + b(x, η)

)
dx < ∞, η ∈ �0, � ∈ Bb(R

d). (3.5)

Proposition 3.1 Let conditions (3.2)–(3.5) hold. The for anyG ∈ Bbs(�0) and F = KG one has LF ∈ F0(�).

Proof By (2.23), there exist � ∈ Bb(R
d), N ∈ N, C > 0 (dependent on G) such that

∣
∣F(γ \x) − F(γ )

∣
∣ ≤ C11�(x)

(
1 + |γ�|)N , x ∈ γ, γ ∈ �,

∣∣F(γ ∪ x) − F(γ )
∣∣ ≤ C11�(x)

(
2 + |γ�|)N , γ ∈ �, x ∈ R

d\γ.

Then, by (3.3), (3.5), for any η ∈ �0,

∣∣(LF)(η)
∣∣ ≤ C

(
2 + |η�|)N

(∑

x∈η�

d(x, η\x) +
∫

�

b(x, η)dx
)

< ∞.

The statement is proved. ��
We start from the deriving of the expression for L̂ = K−1LK .

Proposition 3.2 For any G ∈ Bbs(�0) the following formula holds:

(L̂G)(η) = −
∑

ξ⊂η

G(ξ)
∑

x∈ξ

(
K−1d(x, · ∪ ξ\x))(η\ξ)

+
∑

ξ⊂η

∫

Rd
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η\ξ)dx, η ∈ �0. (3.6)

Proof First of all, note that, by (3.3) and (2.22), the expressions
(
K−1b(x, · ∪ ξ)

)
(η) and

(
K−1d(x, · ∪ ξ)

)
(η)

have sense. Recall that G ∈ Bbs(�0) implies F ∈ Fcyl(�) ⊂ F0(�); then, by (2.21),

F(γ \x) − F(γ ) =
∑

η�γ \x
G(η) −

∑

η�γ

G(η)

= −
∑

η�γ \x
G(η ∪ x) = −(K (G(· ∪ x)))(γ \x). (3.7)

In the same way, for x /∈ γ , we derive

F(γ ∪ x) − F(γ ) = (K (G(· ∪ x)))(γ ). (3.8)

ByProposition 3.1, the values of (L̂G)(η) are finite, and, by (2.22), one can interchange order of summations
and integration in the following computations, that takes into account (3.7), (3.8):

(L̂G)(η) = −
∑

ζ⊂η

(−1)|η\ζ | ∑

x∈ζ

d(x, ζ\x)
∑

ξ⊂ζ\x
G(ξ ∪ x)

+
∫

Rd

∑

ζ⊂η

(−1)|η\ζ |b(x, ζ )
∑

ξ⊂ζ

G(ξ ∪ x) dx,

and making substitution ξ ′ = ξ ∪ x ⊂ ζ , one may continue

= −
∑

ζ⊂η

(−1)|η\ζ | ∑

ξ ′⊂ζ

∑

x∈ξ ′
d(x, ζ\x)G(ξ ′)

+
∫

Rd

∑

ζ⊂η

(−1)|η\ζ |b(x, ζ )
∑

ξ⊂ζ

G(ξ ∪ x) dx .
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Next, for any measurable H : �0 × �0 → R, one has

∑

ζ⊂η

∑

ξ⊂ζ

H(ξ, ζ ) =
∑

ξ⊂η

∑

ζ⊂η
ξ⊂ζ

H(ξ, ζ ) =
∑

ξ⊂η

∑

ζ ′⊂η\ξ
H(ξ, ζ ′ ∪ ξ).

Using this changing of variables rule, we continue:

(L̂G)(η) = −
∑

ξ⊂η

∑

ζ ′⊂η\ξ
(−1)|η\(ξ∪ζ ′)| ∑

x∈ξ

d(x, ζ ′ ∪ ξ\x)G(ξ)

+
∫

Rd

∑

ξ⊂η

∑

ζ ′⊂η\ξ
(−1)|η\(ζ ′∪ξ)|b(x, ζ ′ ∪ ξ)G(ξ ∪ x) dx,

that yields (3.6), using the equality
∣
∣η\(ξ ∪ ζ ′)

∣
∣ = ∣

∣(η\ξ)\ζ ′∣∣ and (2.22). ��
Remark 3.3 The initial value problem (2.47) can be considered in the following matrix form, cf. (2.43),

∂

∂t
G(n)

t (x1, . . . , xn) = (
L̂n,mG

(n)
t
)
(x1, . . . , xn), t > 0, n ∈ N0,

G(n)
t (x1, . . . , xn)

∣
∣
t=0 = G(n)

0 (x1, . . . , xn).

The expression (3.6) shows that the matrix above has on the main diagonal the collection of operators L̂n,n ,
n ∈ N0 which forms the following operator on functions on �0:

(L̂diagG)(η) = −D(η)G(η) +
∑

y∈η

∫

Rd
G
(
(η\y) ∪ x

)[
b(x, η) − b(x, η\y)] dx, (3.9)

where the term in the square brackets is equal, by (2.22), to
(
K−1b(x, · ∪ (η\y)))({y}). Next, by (3.6), there

exists only one non-zero upper diagonal in the matrix. The corresponding operator is

(L̂upperG)(η) =
∫

Rd
G(η ∪ x)b(x, η) dx, (3.10)

since
(
K−1b(x, · ∪ η)

)
(∅) = b(x, η). The rest part of the expression (3.6) corresponds to the low diagonals.

As we mentioned above, to derive the expression for L̂∗ we need some discrete analog of the integration
by parts formula. As such, we will use the partial case of the well-known lemma (see, e.g. [56]):

Lemma 3.4 For any measurable function H : �0 × �0 × �0 → R

∫

�0

∑

ξ⊂η

H (ξ, η\ξ, η) dλ (η) =
∫

�0

∫

�0

H (ξ, η, η ∪ ξ) dλ (ξ) dλ (η) (3.11)

if at least one side of the equality is finite for |H |.
In particular, if H(ξ, ·, ·) ≡ 0 if only |ξ | �= 1 we obtain an analog of (2.8), namely

∫

�0

∑

x∈η

h(x, η\x, η)dλ(η) =
∫

�0

∫

Rd
h(x, η, η ∪ x)dxdλ(η), (3.12)

for any measurable function h : Rd × �0 × �0 → R such that both sides make sense.
Using this, one can derive the explicit form of L̂∗.
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Proposition 3.5 For any k ∈ Bbs(�0) the following formula holds:

(L̂∗k)(η) = −
∑

x∈η

∫

�0

k(ζ ∪ η)
(
K−1d(x, · ∪ η\x))(ζ )dλ(ζ )

+
∑

x∈η

∫

�0

k(ζ ∪ (η\x))(K−1b(x, · ∪ η\x))(ζ )dλ(ζ ), (3.13)

where L̂∗k is defined by (2.42).

Proof Using Lemma 3.4, (2.42), (3.6), we obtain for any G ∈ Bbs(�0)

∫

�0

G(η)
(
L̂∗k

)
(η) dλ(η)

= −
∫

�0

∑

ξ⊂η

G(ξ)
∑

x∈ξ

(
K−1d(x, · ∪ ξ\x))(η\ξ)k(η) dλ(η)

+
∫

�0

∑

ξ⊂η

∫

Rd
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η\ξ) dxk(η) dλ(η)

= −
∫

�0

∫

�0

G(ξ)
∑

x∈ξ

(
K−1d(x, · ∪ ξ\x))(η)k(η ∪ ξ) dλ(η) dλ(ξ)

+
∫

�0

∫

�0

∫

Rd
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η) dxk(η ∪ ξ) dλ(η) dλ(ξ).

Applying (3.12) for the second term, we easily obtain the statement. The correctness of using (2.8) and (3.12)
follows from the assumptions that G, k ∈ Bbs(�0); therefore, all integrals over �0 will be taken, in fact, over
some bounded M ∈ B(�0). Then, using (3.4), (3.5), we obtain that the all integrals are finite. ��
Remark 3.6 Accordingly to Remark 3.3 [or just directly from (3.13)], we have that the matrix corresponding
to (2.43) has the main diagonal given by

(L̂∗
diagk)(η) = −D(η)k(η)

+
∑

x∈η

∫

Rd
k
(
(η\x) ∪ y

)[
b
(
x, (η\x) ∪ y

) − b
(
x, η\x)] dy, (3.14)

where we have used (3.12). Next, this matrix has only one non-zero low diagonal, given by the expression

(L̂∗
lowk)(η) =

∑

x∈η

k(η\x)b(x, η\x). (3.15)

The rest part of expression (3.13) corresponds to the upper diagonals.

Let us consider now several examples of rates b and d which will appear in the following considerations
(concrete examples of birth-and-death dynamics, with such rates, important for applications will be presented
later). Aswe see from (3.6), (3.13), we always need to calculate expressions like

(
K−1a(x, ·∪ξ)

)
(η), η∩ξ = ∅,

where a equal to b or d . We consider the following kinds of function a : Rd × � → R:

– Constant rate:
a(x, γ ) ≡ m > 0. (3.16)

If we substitute f ≡ 0 into (2.26), we obtain that

(K−1m)(η) = m0|η|, η ∈ �0, (3.17)

where as usual 00 := 1, and, of course, in this case K−1a(x, · ∪ ξ)(η) also equal to m0|η| for any ξ ∈ �0;
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– Linear rate:
a(x, γ ) = 〈c(x − ·), γ 〉 =

∑

y∈γ

c(x − y), (3.18)

where c is a potential like in Example 2.2. Any such c for a given x ∈ R
d defines a function Cx : �0 → R

such thatCx (η) = 0 for all η /∈ �(1) and, for any η ∈ �(1), y ∈ R
d with η = {y}, we haveCx (η) = c(x− y).

Then, in this case, taking into account (3.17) and the obvious equality

〈c(x − ·), η ∪ ξ〉 = 〈c(x − ·), η〉 + 〈c(x − ·), ξ〉, (3.19)

we obtain (
K−1a(x, · ∪ ξ)

)
(η) = a(x, ξ)0|η| + Cx (η), η ∈ �0. (3.20)

– Exponential rate:

a(x, γ ) = e〈c(x−·),γ 〉 = exp

⎧
⎨

⎩

∑

y∈γ

c(x − y)

⎫
⎬

⎭
, (3.21)

where c as above. Taking into account (3.19) and (2.26), we obtain that in this case
(
K−1a(x, · ∪ ξ)

)
(η) = a(x, ξ)eλ

(
ec(x−·) − 1, η

)
, η ∈ �0. (3.22)

– Product of linear and exponential rates:

a(x, γ ) = 〈c1(x − ·), γ 〉e〈c2(x−·),γ 〉, (3.23)

where c1 and c2 are potentials as before. Then we have

a(x, η ∪ ξ) = a(x, η)e〈c2(x−·),ξ〉 + a(x, ξ)e〈c2(x−·),η〉. (3.24)

Next, by (2.22),
(
K−1a(x, ·))(η) =

∑

ζ⊂η

(−1)|η\ζ | ∑

y∈ζ

c1(x − y)e〈c2(x−·),ζ 〉

=
∑

y∈η

c1(x − y)
∑

ζ⊂η\y
(−1)|(η\y)\ζ |e〈c2(x−·),ζ∪y〉,

and taking into account (2.26),

=
∑

y∈η

c1(x − y)ec2(x−y)eλ

(
ec2(x−·) − 1, η\y). (3.25)

By (3.24) and (3.25), we finally obtain that in this case
(
K−1a(x, · ∪ ξ)

)
(η) = e〈c2(x−·),ζ 〉 ∑

y∈η

c1(x − y)ec2(x−y)eλ

(
ec2(x−·) − 1, η\y)

+a(x, ξ)eλ

(
ec2(x−·) − 1, η

)
, η ∈ �0. (3.26)

– Mixing of linear and exponential rates:

a(x, γ ) =
∑

y∈γ

c1(x − y)e〈c2(y−·),γ \y〉. (3.27)

We have

a(x, η ∪ ξ) =
∑

y∈η

c1(x − y)e〈c2(y−·),η\y〉e〈c2(y−·),ξ〉

+
∑

y∈ξ

c1(x − y)e〈c2(y−·),η〉e〈c2(y−·),ξ\y〉.
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Then, similarly to (3.26), we easily derive
(
K−1a(x, · ∪ ξ)

)
(η) =

∑

y∈η

c1(x − y)eλ

(
ec2(y−·) − 1, η\y)e〈c2(y−·),ξ〉

+
∑

y∈ξ

c1(x − y)eλ

(
ec2(y−·) − 1, η

)
e〈c2(y−·),ξ\y〉.

Using the similar arguments one can consider polynomial rates and their compositions with exponents as
well.

3.3 Semigroup evolutions in the space of quasi-observables

We proceed now to the construction of a semigroup in the space LC , C > 0, see (2.46), which has a generator,
given by L̂ , with a proper domain. To define such domain, let us set

D (η) :=
∑

x∈η

d (x, η\x) ≥ 0, η ∈ �0; (3.28)

D := {G ∈ LC | D (·)G ∈ LC } . (3.29)

Note that Bbs(�0) ⊂ D and Bbs(�0) is a dense set in LC . Therefore,D is also a dense set in LC . We will show
now that (L̂,D) given by (3.6), (3.29) generates C0-semigroup on LC if only ‘the full energy of death’, given
by (3.28), is big enough.

Theorem 3.7 Suppose that there exists a1 ≥ 1, a2 > 0 such that for all ξ ∈ �0 and a.a. x ∈ R
d

∑

x∈ξ

∫

�0

∣
∣K−1d (x, · ∪ ξ\x)∣∣ (η)C |η|dλ (η) ≤ a1D(ξ), (3.30)

∑

x∈ξ

∫

�0

∣
∣K−1b (x, · ∪ ξ\x)∣∣ (η)C |η|dλ (η) ≤ a2D(ξ). (3.31)

and, moreover,

a1 + a2
C

<
3

2
. (3.32)

Then (L̂,D) is the generator of a holomorphic semigroup T̂ (t) on LC .

Remark 3.8 Having in mind Remark 3.3 one can say that the idea of the proof is to show that the multiplication
part of the diagonal operator (3.9) will dominate on the rest part of the operator matrix

(
L̂n,m

)
provided the

conditions (3.30), (3.31) hold. Note also that, by (2.20), (2.18), (2.19), (3.28), the l.h.s of (3.30) is equal to

D(ξ) +
∑

x∈ξ

∫

�0\{∅}
∣
∣K−1d (x, · ∪ ξ\x)∣∣ (η)C |η|dλ (η) .

This is the reason to demand that a1 should be not less than 1.

Proof of Theorem 3.7 Let us consider the multiplication operator (L0,D) on LC given by

(L0G)(η) = −D (η)G(η), G ∈ D, η ∈ �0. (3.33)

We recall that a densely defined closed operators A onLC is called sectorial of angleω ∈ (0, π
2 ) if its resolvent

set ρ(A) contains the sector

Sect
(π

2
+ ω

)
:=

{
z ∈ C

∣∣
∣ | arg z| <

π

2
+ ω

}
\{0},

and for each ε ∈ (0;ω) there exists Mε ≥ 1 such that

||R(z, A)|| ≤ Mε

|z| (3.34)

123



Arab. J. Math. (2015) 4:255–300 273

for all z �= 0 with | arg z| ≤ π

2
+ ω − ε. Here and below we will use notation

R(z, A) := (z11 − A)−1, z ∈ ρ(A).

The set of all sectorial operators of angle ω ∈ (0, π
2 ) in LC we denote by HC (ω). Any A ∈ HC (ω) is a

generator of a bounded semigroup T (t)which is holomorphic in the sector | arg t | < ω (see, e.g. [19, Theorem
II.4.6]). One can prove the following lemma:

Lemma 3.9 The operator (L0,D) given by (3.33) is a generator of a contraction semigroup onLC .Moreover,
L0 ∈ HC (ω) for all ω ∈ (0, π

2 ) and (3.34) holds with Mε = 1
cosω

for all ε ∈ (0;ω).

Proof of Lemma 3.9 It is not difficult to show that the densely defined operator L0 is closed in LC . Let
0 < ω < π

2 be arbitrary and fixed. Clear, that for all z ∈ Sect
(

π
2 + ω

)

∣
∣D (η) + z

∣
∣ > 0, η ∈ �0.

Therefore, for any z ∈ Sect
(

π
2 + ω

)
the inverse operator R(z, L0) = (z11 − L0)

−1, the action of which is
given by

(
R(z, L0)G

)
(η) = 1

D (η) + z
G(η), (3.35)

is well defined on the whole space LC . Moreover,

|D(η) + z| =
√

(D(η) + Re z)2 + (Im z)2 ≥
{|z|, if Re z ≥ 0

|Im z|, if Re z < 0
,

and for any z ∈ Sect
(

π
2 + ω

)

|Im z| = |z|| sin arg z| ≥ |z|
∣∣
∣sin

(π

2
+ ω

)∣∣
∣ = |z| cosω.

As a result, for any z ∈ Sect
(

π
2 + ω

)

||R(z, L0)|| ≤ 1

|z| cosω
, (3.36)

that implies the second assertion. Note also that |D(η) + z| ≥ Re z for Re z > 0; hence,

||R(z, L0)|| ≤ 1

Re z
(3.37)

that proves the first statement by the classical Hille–Yosida theorem. ��
For any G ∈ Bbs(�0) we define

(L1G) (η) := (L̂G)(η) − (L0G)(η)

= −
∑

ξ�η

G(ξ)
∑

x∈ξ

(
K−1d(x, · ∪ ξ\x))(η\ξ)

+
∑

ξ⊂η

∫

Rd
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η\ξ)dx . (3.38)

Next Lemma shows that, under conditions (3.30), (3.31) above, the operator L1 is relatively bounded by
the operator L0.

Lemma 3.10 Let (3.30), (3.31) hold. Then (L1,D) is a well-defined operator in LC such that

‖L1R(z, L0)‖ ≤ a1 − 1 + a2
C

, Re z > 0 (3.39)

and
‖L1G‖ ≤

(
a1 − 1 + a2

C

)
‖L0G‖, G ∈ D. (3.40)
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Proof of Lemma 3.10 By Lemma 3.4, we have for any G ∈ LC , Re z > 0

∫

�0

∣
∣∣∣−

∑

ξ�η

1

z + D(ξ)
G(ξ)

∑

x∈ξ

(
K−1d(x, · ∪ ξ\x))(η\ξ)

∣
∣∣∣C

|η|dλ (η)

≤
∫

�0

∑

ξ�η

1

|z + D(ξ)| |G(ξ)|
∑

x∈ξ

∣∣K−1d(x, · ∪ ξ\x)∣∣(η\ξ)C |η|dλ (η)

=
∫

�0

1

|z + D(ξ)| |G(ξ)|
∑

x∈ξ

∫

�0

∣
∣K−1d(x, · ∪ ξ\x)∣∣(η)C |η|dλ (η)C |ξ |dλ (ξ)

−
∫

�0

1

|z + D(η)|D (η) |G(η)|C |η|dλ (η)

≤ (a1 − 1)
∫

�0

1

Re z + D(η)
D(η)|G(η)|C |η|dλ(η) ≤ (a1 − 1)‖G‖C ,

and
∫

�0

∣∣
∣∣
∑

ξ⊂η

∫

Rd

1

z + D(ξ ∪ x)
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η\ξ)dx

∣∣
∣∣C

|η|dλ (η)

≤
∫

�0

∫

�0

∫

Rd

1

|z + D(ξ ∪ x)| |G(ξ ∪ x)| ∣∣K−1b(x, · ∪ ξ)
∣∣ (η)dxC |η|C |ξ |dλ (ξ) dλ (η)

= 1

C

∫

�0

1

|z + D(ξ)| |G(ξ)|
∑

x∈ξ

∫

�0

∣
∣K−1b(x, · ∪ ξ\x)∣∣ (η)C |η|dλ (η)C |ξ |dλ (ξ)

≤ a2
C

∫

�0

1

Re z + D(ξ)
|G(ξ)| D(ξ)C |ξ |dλ (ξ) ≤ a2

C
‖G‖C .

Combining these inequalities we obtain (3.39). The same considerations yield

∫

�0

∣
∣∣∣−

∑

ξ�η

G(ξ)
∑

x∈ξ

(
K−1d(x, · ∪ ξ\x))(η\ξ)

∣
∣∣∣C

|η|dλ (η)

+
∫

�0

∣∣
∣∣
∑

ξ⊂η

∫

Rd
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η\ξ)dx

∣∣
∣∣C

|η|dλ (η)

≤
(
(a1 − 1) + a2

C

) ∫

�0

|G(η)| D(η)C |η|dλ (η) ,

that proves (3.40) as well.
And now we proceed to finish the proof of the Theorem 3.7. Let us set

θ := a1 + a2
C

− 1 ∈
(
0; 1

2

)
.

Then θ
1−θ

∈ (0; 1). Let ω ∈ (
0; π

2

)
be such that cosω < θ

1−θ
. Then, by the proof of Lemma 3.9, L0 ∈ HC (ω)

and ||R(z, L0)|| ≤ M
|z| for all z �= 0 with | arg z| ≤ π

2
+ ω, where M := 1

cosω
. Then

θ = 1

1 + 1−θ
θ

<
1

1 + 1
cosω

= 1

1 + M
.

Hence, by (3.40) and the proof of [19, Theorem III.2.10], we have that (L̂ = L0 + L1,D) is a generator of
holomorphic semigroup on LC . ��
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Remark 3.11 By (3.28), the estimates (3.30), (3.31) are satisfied if
∫

�0

∣∣K−1d (x, · ∪ ξ)
∣∣ (η)C |η|dλ (η) ≤ a1d (x, ξ) , (3.41)

∫

�0

∣
∣K−1b (x, · ∪ ξ)

∣
∣ (η)C |η|dλ (η) ≤ a2d (x, ξ). (3.42)

3.4 Evolutions in the space of correlation functions

In this Subsection we will use the semigroup T̂ (t) acting oh the space of quasi-observables for a construction
of solution to the evolution Eq. (2.41) on the space of correlation functions.

We denote dλC := C |·|dλ; and the dual space (LC )′ = (
L1(�0, dλC )

)′ = L∞(�0, dλC ). As was men-
tioned before the space (LC )′ is isometrically isomorphic to the Banach spaceKC considered in (2.44)–(2.45).
The isomorphism is given by the isometry RC

(LC )′ � k 	−→ RCk := k · C |·| ∈ KC . (3.43)

Recall, one may consider the duality between the Banach spaces LC and KC given by (2.39) with

|〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC .

Let
(
L̂ ′,Dom(L̂ ′)

)
be an operator in (LC )′ which is dual to the closed operator

(
L̂,D). We consider also its

image onKC under the isometry RC . Namely, let L̂∗ = RC L̂ ′RC−1 with the domain Dom(L̂∗) = RCDom(L̂ ′).
Similarly, one can consider the adjoint semigroup T̂ ′(t) in (LC )′ and its image T̂ ∗(t) in KC .

The space LC is not reflexive: hence, T̂ ∗(t) is not C0-semigroup in whole KC . By, e.g. [19, Subsection
II.2.5], the last semigroupwill be weak*-continuous, weak*-differentiable at 0 and L̂∗ will be weak*-generator
of T̂ ∗(t). Therefore, one has an evolution in the space of correlation functions. In fact, we have a solution to
the evolution Eq. (2.41), in a weak*-sense. This subsection is devoted to the study of a classical solution to this
equation. By, e.g. [19, Subsection II.2.6], the restriction T̂�(t) of the semigroup T̂ ∗(t) onto its invariant Banach
subspace Dom(L̂∗) (here and below all closures are in the norm of the space KC ) is a strongly continuous
semigroup. Moreover, its generator L̂� will be a part of L̂∗, namely

Dom(L̂�) =
{
k ∈ Dom(L̂∗)

∣∣
∣ L̂∗k ∈ Dom(L̂∗)

}
(3.44)

and L̂�k = L̂∗k for any k ∈ Dom(L̂�).

Proposition 3.12 Let (3.30), (3.31) be satisfied. Suppose that there exists A > 0, N ∈ N0, ν ≥ 1 such that
for ξ ∈ �0 and x /∈ ξ

d (x, ξ) ≤ A(1 + |ξ |)Nν|ξ |, (3.45)

Then for any α ∈ (
0; 1

ν

)

KαC ⊂ Dom(L̂∗). (3.46)

Proof In order to show (3.46) it is enough to verify that for any k ∈ KαC there exists k∗ ∈ KC such that for
any G ∈ Dom(L̂) 〈〈

L̂G, k
〉〉 = 〈〈

G, k∗〉〉 . (3.47)

By the same calculations as in the proof of Proposition 3.5, it is easy to see that (3.47) is valid for any k ∈ KαC
with k∗ = L̂∗k, where L̂∗ is given by (3.13), provided k∗ ∈ KC .

To prove the last inclusion, one can estimate, by (3.30), (3.31), (3.45) that

C−|η| ∣∣(L̂∗k)(η)
∣∣

≤ C−|η| ∑

x∈η

∫

�0

|k(ζ ∪ η)| ∣∣K−1d(x, · ∪ η\x)∣∣(ζ )dλ(ζ )
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+ C−|η| ∑

x∈η

∫

�0

|k(ζ ∪ (η\x))| ∣∣K−1b(x, · ∪ η\x)∣∣(ζ )dλ(ζ )

≤ ‖k‖KαC
α|η| ∑

x∈η

∫

�0

(αC)|ζ | ∣∣K−1d(x, · ∪ η\x)∣∣(ζ )dλ(ζ )

+ 1

αC
‖k‖KαC

α|η| ∑

x∈η

∫

�0

(αC)|ζ | ∣∣K−1b(x, · ∪ η\x)∣∣(ζ )dλ(ζ )

≤ ‖k‖KαC

(
a1 + a2

αC

)
α|η| ∑

x∈η

d (x, η\x)

≤ A ‖k‖KαC

(
a1 + a2

αC

)
α|η|(1 + |η|)N+1ν|η|−1.

Using elementary inequality

(1 + t)bat ≤ 1

a

(
b

−e ln a

)b

, b ≥ 1, a ∈ (0; 1) , t ≥ 0, (3.48)

we have for αν < 1

ess sup
η∈�0

C−|η| ∣∣(L̂∗k)(η)
∣∣ ≤ ‖k‖KαC

(
a1 + a2

αC

) A

αν2

(
N + 1

−e ln (αν)

)N+1

< ∞.

The statement is proved. ��
Lemma 3.13 Let (3.45) hold. We define for any α ∈ (0; 1)

Dα : = {G ∈ LαC | D (·)G ∈ LαC }.
Then for any α ∈ (0; 1

ν
)

D ⊂ LC ⊂ Dα ⊂ LαC (3.49)

Proof The first and last inclusions are obvious. To prove the second one, we use (3.45), (3.48) and obtain for
any G ∈ LC

∫

�0

D (η) |G (η)| (αC)|η| dλ (η) ≤
∫

�0

α|η| ∑

x∈η

A(1 + |η|)Nν|η|−1 |G (η)|C |η|dλ (η)

≤ const
∫

�0

|G (η)|C |η|dλ (η) < ∞.

The statement is proved. ��
Proposition 3.14 Let (3.30), (3.31), and (3.45) hold with

a1 + a2
αC

<
3

2
(3.50)

for some α ∈ (0; 1). Then (L̂,Dα) is a generator of a holomorphic semigroup T̂α (t) on LαC .

Proof The proof is similar to the proof of Theorem 3.7, taking into account that bounds (3.31), (3.30) imply
the same bounds for αC instead of C . Note also that (3.50) is stronger than (3.32). ��
Proposition 3.15 Let (3.30), (3.31), and (3.45) hold with

1 ≤ ν <
C

a2

(
3

2
− a1

)
. (3.51)

Then, for any α with
a2

C
( 3
2 − a1

) < α <
1

ν
, (3.52)

the set KαC is a T̂�(t)-invariant Banach subspace of KC . Moreover, the set KαC is T̂�(t)-invariant too.
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Proof First of all note that the condition on α implies (3.50). Next, we prove that T̂α (t)G = T̂ (t)G for
any G ∈ LC ⊂ LαC . Let L̂α = (L̂,Dα) be the operator in LαC . There exists ω > 0 such that (ω;+∞) ⊂
ρ(L̂)∩ρ(L̂α), see, e.g. [19, Section III.2]. For some fixed z ∈ (ω;+∞) we denote by R(z, L̂) = (

z11− L̂
)−1

the resolvent of (L̂,D) in LC and by R(z, L̂α) = (
z11 − L̂α

)−1 the resolvent of L̂α in LαC . Then for any
G ∈ LC we have R(z, L̂)G ∈ D ⊂ Dα and

R(z, L̂)G − R(z, L̂α)G = R(z, L̂α)
(
(z11 − L̂α) − (

z11 − L̂)
)
R(z, L̂)G = 0,

since L̂α = L̂ on D. As a result, T̂α (t)G = T̂ (t) g on LC .
Note that for any G ∈ LC ⊂ LαC and for any k ∈ KαC ⊂ KC we have T̂α(t)G ∈ LαC and

〈〈
T̂α(t)G, k

〉〉 = 〈〈
G, T̂ ∗

α (t)k
〉〉
,

where, by the same construction as before, T̂ ∗
α (t)k ∈ KαC . But G ∈ LC , k ∈ KC implies

〈〈
T̂α(t)G, k

〉〉 = 〈〈
T̂ (t)G, k

〉〉 = 〈〈
G, T̂ ∗(t)k

〉〉
.

Hence, T̂ ∗(t)k = T̂ ∗
α (t)k ∈ KαC that proves the statement due to continuity of the family T̂ ∗(t). ��

By, e.g. [19, Subsection II.2.3], one can consider the restriction T̂�α(t) of the semigroup T̂�(t) ontoKαC .
It will be strongly continuous semigroupwith the generator L̂�α which is a restriction of L̂� ontoKαC . Namely
cf. 3.44,

Dom(L̂�α) =
{
k ∈ KαC

∣
∣∣ L̂∗k ∈ KαC

}
, (3.53)

and L̂�αk = L̂�k = L̂∗k for any k ∈ KαC . In the other words, L̂�α is a part of L̂∗.
And now we may proceed to the main statement of this Subsection.

Theorem 3.16 Let (3.30), (3.31), (3.45), and (3.51) hold, and let α be chosen as in (3.52). Then for any
k0 ∈ KαC there exists a unique classical solution to (2.41) in the space KαC , and this solution is given by
kt = T̂�α(t)k0. Moreover, k0 ∈ KαC implies kt ∈ KαC .

Proof We recall that (L̂,D) is a densely defined closed operator on LC (as a generator of a C0-semigroup
T̂ (t)). Then, by, e.g. [79, Lemma 1.4.1], for the dual operator

(
L̂∗,Dom(L̂∗)we have that ρ(L̂∗) = ρ(L̂) and,

for any z ∈ ρ(L̂), R(z, L̂∗) = R(z, L̂)∗. In particular,
∥∥R(z, L̂∗)

∥∥ = ∥∥R(z, L̂)∗
∥∥ = ∥∥R(z, L̂)

∥∥. (3.54)

Next, if we denote by R(z, L̂)� the restriction of R(z, L̂)∗ onto R(z, L̂)∗-invariant space Dom(L̂∗) then, by,
e.g. [79, Theorem 1.4.2], ρ(L̂�) = ρ(L̂∗) and, for any z ∈ ρ(L̂∗) = ρ(L̂), R(z, L̂�) = R(z, L̂)�. Therefore,
by (3.54),

∥∥R(z, L̂�)
∥∥ ≤ ∥∥R(z, L̂)

∥∥.

Then, taking into account that by Theorem 3.7 the operator (L̂,D) is a generator of the holomorphic semi-
group T̂ (t), we immediately conclude that the same property has the semigroup T̂�(t) with the generator
(
L̂�,Dom(L̂�)

)
in the space Dom(L̂∗).

As a result, by, e.g. [70, Corollary 4.1.5], the initial value problem (2.41) in the Banach space Dom(L̂∗)

has a unique classical solution for any k0 ∈ Dom(L̂∗). In particular, it means that the solution kt = T̂�(t)k0 is

continuously differentiable in t w.r.t. the norm of Dom(L̂∗) that is the norm ‖ · ‖KC and also kt ∈ Dom(L̂�).
But by Proposition 3.15, the space KαC is T̂�(t)-invariant. Hence, if we consider now the initial value k0 ∈
KαC ⊂ Dom(L̂∗) we obtain with a necessity that kt = T̂�(t)k0 = T̂�α(t)k0 ∈ KαC . Therefore, kt ∈
KαC

⋂
Dom(L̂�) = Dom(L̂�α) (see again [19, Subsection II.2.3]) and, recall, kt is continuously differentiable

in t w.r.t. the norm ‖ · ‖KC that is the norm inKαC . This completes the proof of the first statement. The second
one follows directly now from Proposition 3.15. ��
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3.5 Examples of dynamics

We proceed now to describing the concrete birth-and-death dynamics which are important for different appli-
cation. We will consider the explicit conditions on parameters of systems which imply the general conditions
on rates b and d above. For simplicity of notations we denote the l.h.s. of (3.30) and (3.31) by Id(ξ) and Ib(ξ),
ξ ∈ �0, respectively.

Example 3.17 (Surgailis dynamics) Let the rates d and b are independent on configuration variable, namely

d(x, γ ) = m(x), b(x, γ ) = z(x), x ∈ R
d , γ ∈ �, (3.55)

where 0 < m, z ∈ L∞(Rd). Then, by (3.17) we obtain that

Id(ξ) = 〈m, ξ〉 = D(ξ), Ib(ξ) = 〈z, ξ〉, ξ ∈ �0.

Therefore, (3.30), (3.31), (3.32) hold if only

z(x) ≤ am(x), x ∈ R
d (3.56)

with any

0 < a <
C

2
. (3.57)

Clearly, in this case (3.45) holds with N = 0, ν = 1; therefore, the condition (3.52) is just

2a

C
< α < 1. (3.58)

The case of constant (in space) m and σ was considered in [23]. Similarly to that results, one can derive the
explicit expression for the solution to the initial value problem (2.41) considered point-wise in �0, namely

kt (η) = eλ(e
−tm, η)

∑

ξ⊂η

eλ

( z

m

(
etm − 1

)
, ξ
)
k0(η\ξ), η ∈ �0. (3.59)

Note that, using (3.59), it can be possible to show directly that the statement of Theorem 3.16 still holds if we
drop 2 in (3.57) and (3.58).

Example 3.18 (Glauber-type dynamics). Let L be given by (3.1) with

d(x, γ \x) = m(x) exp

⎧
⎨

⎩
s
∑

y∈γ \x
φ(x − y)

⎫
⎬

⎭
, x ∈ γ, γ ∈ �, (3.60)

b(x, γ ) = z(x) exp

⎧
⎨

⎩
(s − 1)

∑

y∈γ

φ(x − y)

⎫
⎬

⎭
, x ∈ R

d\γ, γ ∈ �, (3.61)

where φ : Rd\{0} → R+ is a pair potential, φ(−x) = φ(x), 0 < z,m ∈ L∞(Rd), and s ∈ [0; 1]. Note that
in the case m(x) ≡ 1, z(x) ≡ z > 0 and for any s ∈ [0; 1] the operator L is well defined and, moreover,
symmetric in the space L2(�, μ), where μ is a Gibbs measure, given by the pair potential φ and activity
parameter z (see, e.g. [55] and references therein). This gives possibility to study the corresponding semigroup
in L2(�, μ). If, additionally, s = 0, the corresponding dynamics was also studied in another Banach spaces,
see, e.g. [28,34,53]. Below we show that one of the main results of the paper stated in Theorem 3.16 can be
applied to the case of arbitrary s ∈ [0; 1] and non-constant m and z. Set

βτ :=
∫

Rd

∣
∣eτφ(x) − 1

∣
∣dx ∈ [0;∞], τ ∈ [−1; 1]. (3.62)

Let s be arbitrary and fixed. Suppose that βs < ∞, βs−1 < ∞. Then, by (3.60), (3.61), (3.22), and (2.28),

Id(ξ) =
∑

x∈ξ

d(x, ξ\x)eCβs = D(ξ)eCβs ,
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and, analogously, taking into account that φ ≥ 0,

Ib(ξ) =
∑

x∈ξ

b(x, ξ\x)eCβs−1 ≤
∑

x∈ξ

z(x)

m(x)
d(x, ξ\x)eCβs−1

Therefore, to apply Theorem 3.7 we should assume that there exists σ > 0 such that

z(x) ≤ σm(x), x ∈ R
d , (3.63)

and

eCβs + σ

C
eCβs−1 <

3

2
. (3.64)

In particular, for s = 0 we need
σ

C
eCβ−1 <

1

2
. (3.65)

Next, to have (3.45) and (3.51), we will distinguish two cases. For s = 0 we obtain (3.45) since m ∈ L∞(Rd).
In this case, ν = 1 that fulfills (3.51) as well. For s ∈ (0, 1], we should assume that

0 ≤ φ ∈ L∞(Rd). (3.66)

Then, by (3.60), ν = esφ̄ ≥ 1, where φ̄ := ‖φ‖L∞(Rd ). Therefore, to have (3.51), we need the following
improvement of (3.64):

eCβs + σ

C
esφ̄+Cβs−1 <

3

2
. (3.67)

Example 3.19 (Bolker–Dieckman–Law–Pacala (BDLP) model) This example describes a generalization of
the model of plant ecology (see [26] and references therein). Let L be given by (3.1) with

d(x, γ \x) = m(x) + �−(x)
∑

y∈γ \x
a−(x − y), x ∈ γ, γ ∈ �, (3.68)

b(x, γ ) = �+(x)
∑

y∈γ

a+(x − y), x ∈ R
d\γ, γ ∈ �, (3.69)

where 0 < m ∈ L∞(Rd), 0 ≤ �± ∈ L∞(Rd), 0 ≤ a± ∈ L1(Rd , dx) ∩ L∞(Rd , dx),
∫
Rd a±(x)dx = 1.

Then, by (3.17), (3.20), and (2.18)–(2.19),

Id(ξ) =
∑

x∈ξ

d(x, ξ\x) +
∑

x∈ξ

C�−(x), Ib(ξ) =
∑

x∈ξ

b(x, ξ\x) +
∑

x∈ξ

C�+(x).

Let us suppose, cf. [26], that there exists δ > 0 such that

(4 + δ)C�−(x) ≤ m(x), x ∈ R
d , (3.70)

(4 + δ)�+(x) ≤ m(x), x ∈ R
d , (3.71)

4�+(x)a+(x) ≤ C�−(x)a−(x), x ∈ R
d , (3.72)

Then

d(x, ξ) + C�−(x) ≤ d(x, ξ) + m(x)

4 + δ
≤
(
1 + 1

4 + δ

)
d(x, ξ),

b(x, ξ) + C�+(x) ≤ C

4
�−(x)

∑

y∈ξ

a−(x − y) + Cm(x)

4 + δ
<

C

4
d(x, ξ),

Hence, (3.30), (3.31) hold with

a1 = 1 + 1

4 + δ
, a2 = C

4
,

that fulfills (3.32). Next, under conditions (3.70), (3.72), we have

d(x, ξ) ≤ ‖m‖L∞(Rd ) + ‖�−‖L∞(Rd )‖a−‖L∞(Rd )|ξ |, ξ ∈ �0,

and hence (3.45) holds with ν = 1, which makes (3.51) obvious.
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Remark 3.20 It was shown in [26] that, for the case of constant m, �±, the condition like (3.70) is essential.
Namely, if m > 0 is arbitrary small the operator L̂ will not be even accretive in LC .

Example 3.21 (Contact model with establishment) Let L be given by (3.1) with d(x, γ ) = m(x) for all γ ∈ �
and

b(x, γ ) = �(x) exp

⎧
⎨

⎩

∑

y∈γ

φ(x − y)

⎫
⎬

⎭

∑

y∈γ

a(x − y), γ ∈ �, x ∈ R
d\γ. (3.73)

Here 0 < m ∈ L∞(Rd), 0 ≤ � ∈ L∞(Rd), 0 ≤ a ∈ L1(Rd) ∩ L∞(Rd),
∫
Rd a(x) dx = 1.

3.6 Stationary equation

In this subsection we study the question about stationary solutions to (2.41). For any s ≥ 0, we consider the
following subset of KC

K(s)
αC := {

k ∈ KαC
∣
∣ k(∅) = s

}
.

We define K̃ to be the closure of K(0)
αC in the norm of KC . It is clear that K̃ with the norm of KC is a Banach

space.

Proposition 3.22 Let (3.30), (3.31), and (3.45) be satisfied with

a1 + a2
C

< 2. (3.74)

Assume, additionally, that

d(x,∅) > 0, x ∈ R
d . (3.75)

Then for any α ∈ (0; 1
ν
) the stationary equation

L̂∗k = 0 (3.76)

has a unique solution kinv from K(1)
αC which is given by the expression

kinv = 1∗ + (11 − S)−1E . (3.77)

Here 1∗ denotes the function defined by 1∗(η) = 0|η|, η ∈ �0; the function E ∈ K(0)
αC is such that

E(η) = 11�(1) (η)
∑

x∈η

b(x,∅)

d(x,∅)
, η ∈ �0,

and S is a generalized Kirkwood–Salzburg operator on K̃, given by

(Sk) (η) = − 1

D (η)

∑

x∈η

∫

�0\{∅}
k(ζ ∪ η)(K−1d(x, · ∪ η\x))(ζ )dλ(ζ )

+ 1

D (η)

∑

x∈η

∫

�0

k(ζ ∪ (η\x))(K−1b(x, · ∪ η\x))(ζ )dλ(ζ ), (3.78)

for η �= ∅ and (Sk) (∅) = 0. In particular, if b(x,∅) = 0 for a.a. x ∈ R
d then this solution is such that

k(n)
inv = 0, n ≥ 1. (3.79)
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Remark 3.23 It is worth noting that (3.41), (3.42) imply (3.75).

Proof Suppose that (3.76) holds for some k ∈ K(1)
αC . Then

D (η) k(η) = −
∑

x∈η

∫

�0\{∅}
k(ζ ∪ η)

(
K−1d(x, · ∪ η\x))(ζ )dλ(ζ )

+
∑

x∈η

∫

�0

k(ζ ∪ (η\x))(K−1b(x, · ∪ η\x))(ζ )dλ(ζ ). (3.80)

The equality (3.80) is satisfied for any k ∈ K(1)
αC at the point η = ∅. Using the fact that D(∅) = 0 one may

rewrite (3.80) in terms of the function k̃ = k − 1∗ ∈ K(0)
αC , namely

D (η) k̃(η) = −
∑

x∈η

∫

�0\{∅}
k̃(ζ ∪ η)

(
K−1d(x, · ∪ η\x))(ζ )dλ(ζ )

+
∑

x∈η

∫

�0

k̃(ζ ∪ (η\x))(K−1b(x, · ∪ η\x))(ζ )dλ(ζ ).

+
∑

x∈η

0|η\x |b(x, η\x). (3.81)

As a result,

k̃(η) = (Sk̃)(η) + E(η), η ∈ �0.

Next, for η �= ∅
C−|η| |(Sk) (η)|

≤ C−|η|

D (η)

∑

x∈η

∫

�0\{∅}
|k(ζ ∪ η)| ∣∣(K−1d(x, · ∪ η\x))(ζ )

∣
∣ dλ(ζ )

+ C−|η|

D (η)

∑

x∈η

∫

�0

k(ζ ∪ (η\x)) ∣∣(K−1b(x, · ∪ η\x))(ζ )
∣∣ dλ(ζ )

≤ ‖k‖KC

D (η)

∑

x∈η

∫

�0\{∅}
C |ζ | ∣∣(K−1d(x, · ∪ η\x))(ζ )

∣∣ dλ(ζ )

+ ‖k‖KC

D (η)

1

C

∑

x∈η

∫

�0

C |ζ | ∣∣(K−1b(x, · ∪ η\x))(ζ )
∣∣ dλ(ζ )

≤ ‖k‖KC

D (η)
D (η)

(
a1 − 1 + a2

C

)
=
(
a1 − 1 + a2

C

)
‖k‖KC .

Hence,

‖S‖ = a1 + a2
C

− 1 < 1

in K̃ . This finishes the proof. ��
Remark 3.24 The name of the operator (3.78) is motivated by Example 3.18. Namely, if s = 0 then the
operator (3.78) has form

(Sk) (η) = 1

m|η|
∑

x∈η

eλ(e
−φ(x−·), η\x)

∫

�0

k(ζ ∪ (η\x))eλ(e
−φ(x−·) − 1, ζ )dλ(ζ ),

that is quite similar of the so-called Kirkwood–Salsburg operator known in mathematical physics (see, e.g.
[49,75]). For s = 0 condition (3.74) has form z

C e
Cβ−1 < 1. Under this condition, the stationary solution to

(3.76) is unique and coincides with the correlation function of the Gibbs measure, corresponding to potential
φ and activity z.
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Remark 3.25 It is worth pointing out that b(x,∅) = 0 in the case of Example 3.19. Therefore, if we suppose
[cf. (3.70), (3.72)] that 2�−C < m and 2�+a+(x) ≤ C�−a−(x), for x ∈ R

d , condition (3.74) will be satisfied.
However, the unique solution to (3.76) will be given by (3.79). In the next example we improve this statement.

Example 3.26 Let us consider the following natural modification of BDLP-model coming from Example 3.19:
let d be given by (3.68) and

b(x, γ ) = κ + �+ ∑

y∈γ

a+(x − y), x ∈ R
d\γ, γ ∈ �, (3.82)

where �+, a+ are as before and κ > 0. Then, under assumptions

2max
{
�−C; 2κ

C

}
< m (3.83)

and
2�+a+(x) ≤ C�−a−(x), x ∈ R

d , (3.84)

we obtain for some δ > 0
∫

�0

∣∣K−1d (x, · ∪ ξ)
∣∣ (η)C |η|dλ (η) = d(x, ξ) + C�− ≤

(
1 + 1

2 + δ

)
d(x, ξ)

∫

�0

∣
∣K−1b (x, · ∪ ξ)

∣
∣ (η)C |η|dλ (η) = b(x, ξ) + C�+

≤ κ + 1

2
C�− ∑

y∈ξ

a−(x − y) + m

4
C <

C

2
d(x, ξ).

The latter inequalities imply (3.74). In this case, E(η) = 11�(1) (η) κ
m .

Remark 3.27 If a+(x) = a−(x), x ∈ R
d and �+ = z�−, κ = zm for some z > 0 then b(x, γ ) = zd(x, γ )

and the Poisson measure πz with the intensity z will be symmetrizing measure for the operator L . In particular,
it will be invariant measure. This fact means that its correlation function kz(η) = z|η| is a solution to (3.76).
Conditions (3.83) and (3.84) in this case are equivalent to 4z < C and 2�−C < m. As a result, due to
uniqueness of such solution,

1∗(η) + z(11 − S)−111�(1) (η) = z|η|, η ∈ �0.

4 Approximative approach for the Glauber dynamics

In this section we consider an approximative approach for the construction of the Glauber-type dynamics
described in Example 3.18 for

s = 0, m(x) ≡ 1, z(x) ≡ z > 0.

Therefore, in such a case, (3.1) has the form

(LF)(γ ) :=
∑

x∈γ

[
F(γ \x) − F(γ )

]

+z
∫

Rd

[
F(γ ∪ x) − F(γ )

]
exp

{−Eφ(x, γ )
}
dx, γ ∈ �, (4.1)

with Eφ given by (2.11).
Let G ∈ Bbs(�0) then F = KG ∈ Fcyl(�). By (3.6), (3.17), (3.22), one has the following explicit form

for the mapping L̂ := K−1LK on Bbs(�0)

(L̂G)(η) = −|η|G(η)

+ z
∑

ξ⊂η

∫

Rd
e−Eφ(x,ξ)G(ξ ∪ x)eλ(e

−φ(x−·) − 1, η\ξ)dx, (4.2)
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where eλ is given by (2.25).
Let us denote, for any η ∈ �0,

(L0G)(η) := −|η|G(η); (4.3)

(L1G)(η) := z
∑

ξ⊂η

∫

Rd
e−Eφ(x,ξ)G(ξ ∪ x)eλ(e

−φ(x−·) − 1, η\ξ)dx . (4.4)

To simplify notation we continue to write Cφ for β−1. In contrast to (3.29), we will not work the maximal
domain of the operator L0, namely the following statement will be used

Proposition 4.1 The expression (4.2) defines a linear operator L̂ in LC with the dense domain L2C ⊂ LC .

Proof For any G ∈ L2C

‖L0G‖C =
∫

�0

|G(η)||η|C |η|dλ(η) <

∫

�0

|G(η)|2|η|C |η|dλ(η) < ∞
and, by Lemma 3.4,

‖L1G‖C
≤ z

∫

�0

∑

ξ⊂η

∫

Rd
e−Eφ(x,ξ) |G(ξ ∪ x)| eλ

(∣∣∣e−φ(x−·) − 1
∣
∣∣ , η\ξ

)
dxC |η|dλ (η)

= z
∫

�0

∫

�0

∫

Rd
e−Eφ(x,ξ) |G(ξ ∪ x)| eλ

(∣∣∣e−φ(x−·) − 1
∣∣∣ , η

)
dxC |η|C |ξ |dλ (ξ) dλ (η)

≤ z

C
exp

{
CCφ

} ∫

�0

|G (ξ)| |ξ |C |ξ |dλ (ξ) <
z

C
exp

{
CCφ

} ∫

�0

|G (ξ)| 2|ξ |C |ξ |dλ (ξ)

< ∞.

Embedding L2C ⊂ LC is dense since Bbs(�0) ⊂ L2C . ��

4.1 Description of approximation

In this section we will use the symbol K0 to denote the restriction of K onto functions on �0.
Let δ ∈ (0; 1) be arbitrary and fixed. Consider for any � ∈ Bb(R

d) the following linear mapping on
functions F ∈ K0

(
Bbs(�0)

) ⊂ Fcyl(�)

(
P�

δ F
)
(γ ) =

∑

η⊂γ

δ|η| (1 − δ)|γ \η| (��
δ (γ )

)−1

×
∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,γ )F ((γ \η) ∪ ω) dλ (ω) , γ ∈ �0, (4.5)

where

��
δ (γ ) =

∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,γ )dλ (ω). (4.6)

Clearly, P�
δ is a positive preserving mapping and

(
P�

δ 1
)
(γ ) =

∑

η⊂γ

δ|η| (1 − δ)|γ \η| = 1, γ ∈ �0.

Operator (4.5) is constructed as a transition operator of a Markov chain, which is a time discretization of a
continuous time process with the generator (4.1) and discretization parameter δ ∈ (0; 1). Roughly speaking,
according to the representation (4.5), the probability of transition γ → (γ \η) ∪ ω (which describes removing
of subconfiguration η ⊂ γ and birth of a new subconfiguration ω ∈ �(�)) after small time δ is equal to

(
��

δ (γ )
)−1

δ|η|(1 − δ)|γ \η|(zδ)|ω| ∏

y∈ω

e−Eφ(y,γ ).

We may rewrite (4.5) in another manner.
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Proposition 4.2 For any F ∈ Fcyl(�0) the following equality holds:

(
P�

δ F
)
(γ ) =

∑

ξ⊂γ

(1 − δ)|ξ |
∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,γ )

×(K−1
0 F) (ξ ∪ ω) dλ (ω). (4.7)

Proof Let G := K−1
0 F ∈ Bbs(�0). Since ��

δ doesn’t depend on η, for γ ∈ �0 we have

(
P�

δ F
)
(γ ) = (

��
δ (γ )

)−1
∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,γ )

×
∑

η⊂γ

δ|γ \η| (1 − δ)|η| F (η ∪ ω) dλ (ω). (4.8)

To rewrite (4.5), we have used also that any η ⊂ γ corresponds to a unique γ \η ⊂ γ . Applying the definition
of K0 to F = K0G we obtain

∑

η⊂γ

δ|γ \η| (1 − δ)|η| F (η ∪ ω) =
∑

η⊂γ

δ|γ \η| (1 − δ)|η| ∑

ζ⊂η

∑

β⊂ω

G (ζ ∪ β)

=
∑

ζ⊂γ

∑

β⊂ω

G (ζ ∪ β)
∑

η′⊂γ \ζ
δ|γ \(η′∪ζ )| (1 − δ)|η′∪ζ | , (4.9)

where after changing summation over η ⊂ γ and ζ ⊂ η we have used the fact that for any configuration η ⊂ γ
which contains fixed ζ ⊂ γ there exists a unique η′ ⊂ γ \ζ such that η = η′ ∪ ζ . But by the binomial formula

∑

η′⊂γ \ζ
δ|γ \(η′∪ζ )| (1 − δ)|η′∪ζ | = (1 − δ)|ζ | ∑

η′⊂γ \ζ
δ|(γ \ζ )\η′| (1 − δ)|η′|

= (1 − δ)|ζ |(δ + 1 − δ)|γ \ζ | = (1 − δ)|ζ |. (4.10)

Combining (4.8), (4.9), (4.10), we get

(
P�

δ F
)
(γ ) = (

��
δ (γ )

)−1
∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,γ )

×
∑

ζ⊂γ

∑

β⊂ω

G (ζ ∪ β) (1 − δ)|ζ |dλ (ω).

Next, Lemma 3.4 yields

(
P�

δ F
)
(γ ) = (

��
δ (γ )

)−1
∫

��

∫

��

(zδ)|ω∪β| ∏

y∈ω∪β

e−Eφ(y,γ )

×
∑

ζ⊂γ

G (ζ ∪ β) (1 − δ)|ζ |dλ (ω) dλ (β)

=
∫

��

(zδ)|β| ∏

y∈β

e−Eφ(y,γ )
∑

ζ⊂γ

G (ζ ∪ β) (1 − δ)|ζ |dλ (β),

which proves the statement. ��
In the next proposition we describe the image of P�

δ under the K0-transform.

Proposition 4.3 Let P̂�
δ = K−1

0 P�
δ K0. Then for any G ∈ Bbs(�0) the following equality holds:

(
P̂�

δ G
)
(η) =

∑

ξ⊂η

(1 − δ)|ξ |
∫

��

(zδ)|ω| G (ξ ∪ ω)

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y′∈η\ξ

(
e−Eφ(y′,ω) − 1

)
dλ (ω) , η ∈ �0. (4.11)
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Proof By (4.7) and the definition of K−1
0 , we have

(
P̂�

δ G
)
(η)

=
∑

ζ⊂η

(−1)|η\ζ | ∑

ξ⊂ζ

(1 − δ)|ξ |
∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,ζ )G (ξ ∪ ω) dλ (ω)

=
∑

ξ⊂η

(1 − δ)|ξ | ∑

ζ⊂η\ξ
(−1)|(η\ξ)\ζ |

∫

��

(zδ)|ω| ∏

y∈ω

e−Eφ(y,ζ∪ξ)G (ξ ∪ ω) dλ (ω).

By the definition of the relative energy
∏

y∈ω

e−Eφ(y,ζ∪ξ) =
∏

y∈ξ

e−Eφ(y,ω)
∏

y′∈ζ

e−Eφ(y′,ω).

The well-known equality (see, e.g. [36])

∑

ζ⊂η\ξ
(−1)|(η\ξ)\ζ | ∏

y′∈ζ

e−Eφ(y′,ω) =
(
K−1
0

∏

y′∈·
e−Eφ(y′,ω)

)
(η\ξ)

=
∏

y′∈η\ξ

(
e−Eφ(y′,ω) − 1

)

completes the proof. ��

4.2 Construction of the semigroup on LC

By analogy with (4.11), we consider the following linear mapping on measurable functions on �0 :
(
P̂δG

)
(η) :=

∑

ξ⊂η

(1 − δ)|ξ |
∫

�0

(zδ)|ω| G (ξ ∪ ω)

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y′∈η\ξ

(
e−Eφ(y′,ω) − 1

)
dλ (ω), η ∈ �0. (4.12)

Proposition 4.4 Let
zeCCφ ≤ C. (4.13)

Then P̂δ , given by (4.12), is a well-defined linear operator in LC , such that
∥∥P̂δ

∥∥ ≤ 1. (4.14)

Proof Since φ ≥ 0 we have

∥
∥P̂δG

∥
∥
C ≤

∫

�0

∑

ξ⊂η

(1 − δ)|ξ |
∫

�0

(zδ)|ω| |G (ξ ∪ ω)|

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y′∈η\ξ

∣∣
∣e−Eφ(y′,ω) − 1

∣∣
∣ dλ (ω)C |η|dλ (η)

=
∫

�0

∫

�0

(1 − δ)|ξ |
∫

�0

(zδ)|ω| |G (ξ ∪ ω)|

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y′∈η

∣
∣∣e−Eφ(y′,ω) − 1

∣
∣∣ dλ (ω)C |η|C |ξ |dλ (ξ) dλ (η)

=
∫

�0

∫

�0

(1 − δ)|ξ | (zδ)|ω| |G (ξ ∪ ω)|
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×
∏

y∈ξ

e−Eφ(y,ω) exp

{
C
∫

Rd

(
1 − e−Eφ(y′,ω)

)
dy′

}
dλ (ω)C |ξ |dλ (ξ) .

It is easy to see by the induction principle that for φ ≥ 0, ω ∈ �0, y /∈ ω

1 − e−Eφ(y,ω) = 1 −
∏

x∈ω

e−φ(x−y) ≤
∑

x∈ω

(
1 − e−φ(x−y)

)
. (4.15)

Then
∥∥P̂δG

∥∥
C ≤

∫

�0

∫

�0

(1 − δ)|ξ | (zδ)|ω| |G (ξ ∪ ω)|

× exp

{

C
∑

x∈ω

∫

Rd

(
1 − e−φ(x−y)

)
dy

}

dλ (ω)C |ξ |dλ (ξ)

=
∫

�0

∫

�0

(1 − δ)|ξ | (zδ)|ω| |G (ξ ∪ ω)| eCCφ |ω|C |ξ |dλ (ω) dλ (ξ)

=
∫

�0

[
(1 − δ)C + zδeCCφ

]|ω| |G (ω)| dλ (ω) ≤ ‖G‖C .

For the last inequality we have used that (4.13) implies (1 − δ)C + zδeCCφ ≤ C . Note that, for λ-a.a. η ∈ �0
(
P̂δG

)
(η) < ∞, (4.16)

and the statement is proved. ��
Proposition 4.5 Let the inequality (4.13) be fulfilled and define

L̂δ := 1

δ
(P̂δ − 11), δ ∈ (0; 1),

where 11 is the identity operator in LC . Then for any G ∈ L2C
∥∥(L̂δ − L̂)G

∥∥
C ≤ 3δ‖G‖2C . (4.17)

Proof Let us denote
(
P̂(0)

δ G
)
(η) =

∑

ξ⊂η

(1 − δ)|ξ | G (ξ) 0|η\ξ | = (1 − δ)|η| G (η) ; (4.18)

(
P̂(1)

δ G
)
(η) = zδ

∑

ξ⊂η

(1 − δ)|ξ |
∫

Rd
G (ξ ∪ x) (4.19)

×
∏

y∈ξ

e−φ(y−x)
∏

y∈η\ξ

(
e−φ(y−x) − 1

)
dx; (4.20)

and
P̂(≥2)

δ = P̂δ −
(
P̂(0)

δ + P̂(1)
δ

)
. (4.21)

Clearly

∥
∥(L̂δ − L̂)G

∥
∥
C =

∥∥
∥∥
1

δ

(
P̂δG − G

) − L̂G

∥∥
∥∥
C

≤
∥
∥∥
∥
1

δ

(
P̂(0)

δ G − G
)

− L0G

∥
∥∥
∥
C

+
∥
∥∥
∥
1

δ
P̂(1)

δ G − L1G

∥
∥∥
∥
C

+ 1

δ

∥∥
∥P̂(≥2)

δ G
∥∥
∥
C

. (4.22)

Now we estimate each of the terms in (4.22) separately. By (4.3) and (4.18), we have
∥∥
∥∥
1

δ

(
P̂(0)

δ G − G
)

− L0G

∥∥
∥∥
C

=
∫

�0

∣
∣∣
∣∣
(1 − δ)|η| − 1

δ
+ |η|

∣
∣∣
∣∣
|G (η)|C |η|dλ (η).
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But, for any |η| ≥ 2

∣∣
∣∣
∣
(1 − δ)|η| − 1

δ
+ |η|

∣∣
∣∣
∣
=
∣
∣∣∣
∣∣

|η|∑

k=2

(|η|
k

)
(−1)kδk−1

∣
∣∣∣
∣∣

= δ

∣∣
∣∣∣
∣

|η|∑

k=2

(|η|
k

)
(−1)kδk−2

∣∣
∣∣∣
∣
≤ δ

|η|∑

k=2

(|η|
k

)
< δ · 2|η|.

Therefore, ∥∥
∥∥
1

δ

(
P̂(0)

δ G − G
)

− L0G

∥∥
∥∥
C

≤ δ‖G‖2C . (4.23)

Next, by (4.4) and (4.20), one can write
∥
∥∥
∥
1

δ
P̂(1)

δ G − L1G

∥
∥∥
∥
C

= z
∫

�0

∣
∣∣
∣
∑

ξ⊂η

(
(1 − δ)|ξ | − 1

) ∫

Rd
G (ξ ∪ x)

∏

y∈ξ

e−φ(y−x)

×
∏

y∈η\ξ

(
e−φ(y−x) − 1

)
dx

∣
∣∣
∣C

|η|dλ (η)

≤ z
∫

�0

∫

�0

(
1 − (1 − δ)|ξ |)

∫

Rd
|G (ξ ∪ x)|

∏

y∈ξ

e−φ(y−x)

×
∏

y∈η

(
1 − e−φ(y−x)

)
dxC |ξ |C |η|dλ (ξ) dλ (η),

where we have used Lemma 3.4. Note that for any |ξ | ≥ 1

1 − (1 − δ)|ξ | = δ

|ξ |−1∑

k=0

(1 − δ)k ≤ δ |ξ |

Then, by (4.13) and (2.12), one may estimate
∥∥
∥∥
1

δ
P̂(1)

δ G − L1G

∥∥
∥∥
C

≤ zδ
∫

�0

|ξ |
∫

Rd
|G (ξ ∪ x)| dxC |ξ |eCCφdλ (ξ)

≤ zδ
∫

�0

|ξ | (|ξ | − 1) |G (ξ)|C |ξ |−1eCCφdλ (ξ) . (4.24)

Since n (n − 1) ≤ 2n , n ≥ 1 and by (4.13), the latter expression can be bounded by

δ

∫

�0

|G (ξ)| (2C)|ξ | λ (dξ).

Finally, Lemma 3.4, (4.15) and bound e−Eφ(y,ω) ≤ 1, imply (we set here �
(≥2)
0 := ⊔

n≥2 �(n))
∥
∥∥∥
1

δ
P̂(≥2)

δ G

∥
∥∥∥
C

≤ 1

δ

∫

�0

∑

ξ⊂η

(1 − δ)|ξ |
∫

�
(≥2)
0

(zδ)|ω| |G (ξ ∪ ω)|

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y∈η\ξ

(
1 − e−Eφ(y,ω)

)
dλ (ω)C |η|dλ (η)

≤ δ

∫

�0

∑

ξ⊂η

(1 − δ)|ξ |
∫

�
(≥2)
0

z|ω| |G (ξ ∪ ω)|

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y∈η\ξ

(
1 − e−Eφ(y,ω)

)
dλ (ω)C |η|dλ (η)
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≤ δ

∫

�0

∑

ξ⊂η

(1 − δ)|ξ |
∫

�0

z|ω| |G (ξ ∪ ω)|

×
∏

y∈ξ

e−Eφ(y,ω)
∏

y∈η\ξ

(
1 − e−Eφ(y,ω)

)
dλ (ω)C |η|dλ (η)

≤ δ

∫

�0

∫

�0

(1 − δ)|ξ | z|ω| |G (ξ ∪ ω)|

×
∫

�0

∏

y∈η

(
1 − e−Eφ(y,ω)

)
C |η|dλ (η) dλ (ω)C |ξ |dλ (ξ)

≤ δ

∫

�0

∫

�0

(1 − δ)|ξ | z|ω| |G (ξ ∪ ω)| eCCφ |ω|dλ (ω)C |ξ |dλ (ξ)

≤ δ

∫

�0

[
(1 − δ)C + zeCCφ

]|ω| |G (ω)| dλ (ω)

≤ δ

∫

�0

[(2 − δ)C]|ω| |G (ω)| dλ (ω) ≤ δ

∫

�0

|G (ω)| (2C)|ω| dλ (ω). (4.25)

Combining inequalities (4.23)–(4.25) we obtain the assertion of the proposition. ��
We will need the following results in the sequel:

Lemma 4.6 (cf. [20, Corollary 3.8]) Let A be a linear operator on a Banach space L with D (A) dense in L,
and let ||| · ||| be a norm on D (A) with respect to which D (A) is a Banach space. For n ∈ N let Tn be a linear
‖·‖-contraction on L such that Tn : D (A) → D (A), and define An = n (Tn − 1). Suppose there exist ω ≥ 0
and a sequence {εn} ⊂ (0;+∞) tending to zero such that for n ∈ N

‖(An − A) f ‖ ≤ εn||| f |||, f ∈ D (A) (4.26)

and ∣
∣
∣
∣
∣
∣Tn �D(A)

∣
∣
∣
∣
∣
∣ ≤ 1 + ω

n
. (4.27)

Then A is closable and the closure of A generates a strongly continuous contraction semigroup on L.

Lemma 4.7 (cf. [20, Theorem 6.5]) Let L , Ln, n ∈ N be Banach spaces, and pn : L → Ln be bounded linear
transformation, such that supn ‖pn‖ < ∞. For any n ∈ N, let Tn be a linear contraction on Ln, let εn > 0
be such that limn→∞ εn = 0, and put An = ε−1

n (Tn − 11). Let T (t) be a strongly continuous contraction
semigroup on L with generator A and let D be a core for A. Then the following are equivalent:

1. For each f ∈ L, T [t/εn]
n pn f → pnT (t) f in Ln for all t ≥ 0 uniformly on bounded intervals. Here and

below [ · ] mean the entire part of a real number.
2. For each f ∈ D, there exists fn ∈ Ln for each n ∈ N such that fn → pn f and An fn → pn A f in Ln.

And now we are able to show the existence of the semigroup on LC .

Theorem 4.8 Let
z ≤ min

{
Ce−CCφ ; 2Ce−2CCφ

}
. (4.28)

Then
(
L̂,L2C

)
from Proposition 4.1 is a closable linear operator in LC and its closure

(
L̂, D(L̂)

)
generates

a strongly continuous contraction semigroup T̂t on LC .

Proof We apply Lemma 4.6 for L = LC ,
(
A, D(A)

) = (
L̂,L2C

)
, ||| · ||| := ‖ · ‖2C ; Tn = P̂δ and An =

n (Tn − 1) = 1
δ
(P̂δ − 11) = L̂δ , where δ = 1

n , n ≥ 2.
Condition zeCCφ ≤ C , Proposition 4.4, and Proposition 4.5 provide that Tn , n ≥ 2 are linear ‖ · ‖C -

contractions and (4.26) holds with εn = 3
n = 3δ. On the other hand, in addition, Proposition 4.4 applied to the

constant 2C instead of C gives (4.27) for ω = 0 under condition ze2CCφ ≤ 2C . ��
Moreover, since we proved the existence of the semigroup T̂t on LC one can apply contractions P̂δ defined

above by (4.12) to approximate the semigroup T̂t .
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Corollary 4.9 Let (4.13) hold. Then for any G ∈ LC

(
P̂1

n

)[nt]
G → T̂tG, n → ∞

for all t ≥ 0 uniformly on bounded intervals.

Proof The statement is a direct consequence of Theorem 4.8, convergence (4.17), and Lemma 4.7 (if we set
Ln = L = LC , pn = 11, n ∈ N). ��

4.3 Finite-volume approximation of T̂t

Note that P̂δ defined by (4.12) is a formal point-wise limit of P̂�
δ as � ↑ R

d . We have shown in (4.16) that
this definition is correct. Corollary 4.9 claims additionally that the linear contractions P̂δ approximate the
semigroup T̂t , when δ ↓ 0. One may also show that mappings P̂�

δ have a similar property when � ↑ R
d ,

δ ↓ 0.
Let us fix a system {�n}n≥2, where �n ∈ Bb(R

d), �n ⊂ �n+1,
⋃

n �n = R
d . We set

Tn := P̂�n
1
n

.

Note that any Tn is a linear mapping on Bbs(�0). We consider also the system of Banach spaces of measurable
functions on �0

LC,n :=
{
G : �(�n) → R

∣∣
∣∣ ‖G‖C,n :=

∫

�(�n)

|G(η)|C |η|dλ(η) < ∞
}
.

Let pn : LC → LC,n be a cut-off mapping, namely for any G ∈ LC

(pnG)(η) = 11�(�n)(η)G(η).

Then, obviously, ‖pnG‖C,n ≤ ‖G‖C . Hence, pn : LC → LC,n is a linear bounded transformation with
‖pn‖ = 1.

Proposition 4.10 Let (4.13) hold. Then for any G ∈ LC

∥∥(Tn
)[nt]

pnG − pnT̂tG
∥∥
C,n → 0, n → ∞

for all t ≥ 0 uniformly on bounded intervals.

Proof The proof of the proposition is completed by showing that all conditions of Lemma 4.7 hold. Using
completely the same arguments as in the proof of Proposition 4.4 one gets that each Tn = P̂�n

1
n

is a linear

contraction on LC,n , n ≥ 2 (note that for any n ≥ 2, (2.12) implies
∫
�n

(
1− e−φ(x)

)
dx ≤ Cφ < ∞). Next, we

set An = n(Tn −11n)where 11n is a unit operator on LC,n and let us expand Tn in three parts analogously to the
proof of Proposition 4.5: Tn = T (0)

n + T (1)
n + T (≥2)

n . As a result, An = n(T (0)
n − 11n) + nT (1)

n + nT (≥2)
n . For

any G ∈ L2C we set Gn = pnG ∈ L2C,n ⊂ LC,n . To finish the proof we have to verify that for any G ∈ L2C

‖AnGn − pn L̂G‖C,n → 0, n → ∞. (4.29)

For any G ∈ L2C

‖AnGn − pnLG‖C,n ≤ ‖n(T (0)
n − 11n)Gn − pnL0G‖C,n

+‖nT (1)
n Gn − pnL1G‖C,n + ‖nT (≥2)

n Gn‖C,n . (4.30)

Note that pnL0G = L0Gn . Using the same arguments as in the proof of Proposition 4.5 we obtain

‖n(T (0)
n − 11n)Gn − pnL0G‖C,n + ‖nT (≥2)

n Gn‖C,n ≤ 2

n
‖G‖2C,n ≤ 2

n
‖G‖2C .
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Next,

‖nT (1)
n Gn − pnL1G‖C,n

≤ z
∫

��n

∑

ξ⊂η

∫

Rd

∣∣
∣∣
∣

(
1 − 1

n

)|ξ |
11�n (x) − 1

∣∣
∣∣
∣
|G (ξ ∪ x) |

×
∏

y∈ξ

e−φ(y−x)
∏

y∈η\ξ

(
1 − e−φ(y−x)

)
dxC |η|dλ (η)

≤ z
∫

�(�n)

∫

�(�n)

∫

Rd

[

1 −
(
1 − 1

n

)|ξ |
11�n (x)

]

|G (ξ ∪ x) |

×
∏

y∈η

(
1 − e−φ(y−x)

)
dxC |η∪ξ |dλ (η) dλ (ξ)

≤ C
∫

�(�n)

∫

Rd

[

1 −
(
1 − 1

n

)|ξ |
11�n (x)

]

|G (ξ ∪ x) |dxC |ξ |dλ (ξ),

where we have used (2.12) and (4.13). Using the same estimates as for (4.24) we may continue

≤ C
∫

�(�n)

∫

�n

[

1 −
(
1 − 1

n

)|ξ |]
|G (ξ ∪ x) |dxC |ξ |dλ (ξ)

+ C
∫

�(�n)

∫

�c
n

|G (ξ ∪ x) |dxC |ξ |dλ (ξ)

≤ 1

n
‖G‖2C,n + C

∫

�0

∫

�c
n

|G (ξ ∪ x) |dxC |ξ |dλ (ξ).

But by the Lebesgue dominated convergence theorem,

∫

�0

∫

�c
n

|G (ξ ∪ x) |dxC |ξ |dλ (ξ) → 0, n → ∞.

Indeed, 11�c
n
(x)|G (ξ ∪ x) | → 0 point-wisely and may be estimated on �0 × R

d by |G (ξ ∪ x) | which is
integrable:

C
∫

�0

∫

Rd
|G (ξ ∪ x) |dxC |ξ |dλ (ξ) =

∫

�0

|ξ ||G(ξ)|C |ξ |dλ (ξ) ≤ ‖G‖2C < ∞.

Therefore, by (4.30), the convergence (4.29) holds for any G ∈ L2C , which completes the proof. ��

4.4 Evolution of correlation functions

Under condition (4.28), we proceed now to the same arguments as in Subsect. 3.4. Namely, one can construct

the restriction T̂�(t) of the semigroup of T̂ ∗(t) onto the Banach space D(L̂∗) (recall that the closure is in
the norm of KC ). Note that the domain of the dual operator to (L̂,L2C ) might be bigger than the domain

considered in Subsect. 3.4. Nevertheless, T̂�(t) will be a C0-semigroup on D(L̂∗) and its generator L̂� will
be a part of L̂∗, namely (3.44) holds and L̂∗k = L̂�k for any k ∈ D(L̂�).

The next statement is a straightforward consequence of Proposition 3.12.

Proposition 4.11 For any α ∈ (0; 1) the following inclusions hold: KαC ⊂ D(L̂∗) ⊂ D(L̂∗) ⊂ KC .
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Then, by Proposition 3.5, we immediately obtain that, for k ∈ KαC ,

(L̂∗k)(η) = −|η|k(η)

+z
∑

x∈η

e−Eφ(x,η\x)
∫

�0

eλ(e
−φ(x−·) − 1, ξ)k((η\x) ∪ ξ) dλ(ξ). (4.31)

The next statement is an analog of Proposition 3.15.

Proposition 4.12 Suppose that (4.28) is satisfied. Furthermore, we additionally assume that

z < Ce−CCφ , if CCφ ≤ ln 2. (4.32)

Then there exists α0 = α0(z, φ,C) ∈ (0; 1) such that for any α ∈ (α0; 1) the set KαC is the T̂ ∗(t)-invariant
linear subspace of KC .

Proof Let us consider function f (x) := xe−x , x ≥ 0. It has the following properties: f is increasing on [0; 1]
from 0 to e−1 and it is asymptotically decreasing on [1;+∞) from e−1 to 0; f (x) < f (2x) for x ∈ (0, ln 2);
x = ln 2 is the only non-zero solution to f (x) = f (2x).

By assumption (4.28), zCφ ≤ min{CCφe−CCφ , 2CCφe−2CCφ }. Therefore, if CCφe−CCφ �= 2CCφe−2CCφ

then (4.28) with necessity implies

zCφ < e−1. (4.33)

This inequality remains also true ifCCφ = ln 2 because of (4.32). Under condition (4.33), the equation f (x) =
zCφ has exactly two roots, say, 0 < x1 < 1 < x2 < +∞. Then, (4.32) implies x1 < CCφ < 2CCφ ≤ x2.

If CCφ > 1 then we set α0 := max
{
1
2 ; 1

CCφ
; 1
C

}
< 1. This yields 2αCCφ > CCφ and αCCφ > 1 > x1.

If x1 < CCφ ≤ 1 then we set α0 := max
{
1
2 ; x1

CCφ
; 1
C

}
< 1 that gives 2αCCφ > CCφ and αCCφ > x1.

As a result,
x1 < αCCφ < CCφ < 2αCCφ < 2CCφ ≤ x2 (4.34)

and 1 < αC < C < 2αC < 2C . The last inequality shows that L2C ⊂ L2αC ⊂ LC ⊂ LαC . Moreover,
by (4.34), we may prove that the operator (L̂,L2αC ) is closable in LαC and its closure is a generator of a
contraction semigroup T̂α(t) on LαC . The proof is identical to the proofs above.

It is easy to see that T̂α(t)G = T̂ (t)G for any G ∈ LC . Indeed, from the construction of the semigroup
T̂ (t) and analogous construction for the semigroup T̂α(t), we have that there exists family of mappings P̂δ ,

δ > 0 independent of α and C , given by (4.12), such that P̂
[ t

δ

]

δ for any t ≥ 0 strongly converges to T̂ (t) and
T̂α(t) in LC and LαC , correspondingly, as δ → 0. Here and below [ · ] means the entire part of a number. Then
for any G ∈ LC ⊂ LαC we have that T̂ (t)G ∈ LC ⊂ LαC and T̂α(t)G ∈ LαC and

‖T̂ (t)G − T̂α(t)G‖αC ≤
∥
∥∥T̂ (t)G − P̂

[ t
δ

]

δ G
∥
∥∥

αC
+
∥
∥∥T̂α(t)G − P̂

[ t
δ

]

δ G
∥
∥∥

αC

≤
∥
∥∥T̂ (t)G − P̂

[ t
δ

]

δ G
∥
∥∥
C

+
∥
∥∥T̂α(t)G − P̂

[ t
δ

]

δ G
∥
∥∥

αC
→ 0,

as δ → 0. Therefore, T̂ (t)G = T̂α(t)G in LαC (recall that G ∈ LC ) that yields T̂ (t)G(η) = T̂α(t)G(η) for
λ-a.a. η ∈ �0 and, therefore, T̂ (t)G = T̂α(t)G in LC .

Note that for any G ∈ LC ⊂ LαC and for any k ∈ KαC ⊂ KC we have T̂α(t)G ∈ LαC and
〈〈
T̂α(t)G, k

〉〉 = 〈〈
G, T̂ ∗

α (t)k
〉〉
,

where, by construction, T̂ ∗
α (t)k ∈ KαC . But G ∈ LC , k ∈ KC implies

〈〈
T̂α(t)G, k

〉〉 = 〈〈
T̂ (t)G, k

〉〉 = 〈〈
G, T̂ ∗(t)k

〉〉
.

Hence, T̂ ∗(t)k = T̂ ∗
α (t)k ∈ KαC , k ∈ KαC that proves the statement. ��
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Remark 4.13 As a result, (4.28) implies that for any k0 ∈ D(L̂∗) the Cauchy problem in KC

⎧
⎨

⎩

∂

∂t
kt = L̂∗kt

kt
∣
∣
t=0 = k0

(4.35)

has a unique mild solution: kt = T̂ ∗(t)k0 = T̂�(t)k0 ∈ D(L̂∗). Moreover, k0 ∈ KαC implies kt ∈ KαC
provided (4.32) is satisfied.

Remark 4.14 The Cauchy problem (4.35) is well-posed in K̊C = D(L̂∗), i.e. for every k0 ∈ D(L̂�) there
exists a unique solution kt ∈ K̊C of (4.35).

Let (4.28) and (4.32) be satisfied and let α0 be chosen as in the proof of Proposition 4.12 and fixed. Suppose

that α ∈ (α0; 1). Then, Propositions 4.11 and 4.12 imply KαC ⊂ D(L̂∗) and the Banach subspace KαC is
T̂ ∗(t)- and, therefore, T̂�(t)-invariant due to the continuity of these operators.

Let now T̂�α(t) be the restriction of the strongly continuous semigroup T̂�(t) onto the closed linear
subspace KαC . By general result (see, e.g., [19]), T̂�α(t) is a strongly continuous semigroup on KαC with
generator L̂�α which is the restriction of the operator L̂�. Namely

D(L̂�α) =
{
k ∈ KαC

∣∣
∣ L̂∗k ∈ KαC

}
, (4.36)

and
L̂�αk = L̂�k = L̂∗k, k ∈ D(L̂�α) (4.37)

Since T̂ (t) is a contraction semigroup on LC , then, T̂ ′(t) is also a contraction semigroup on (LC )′; but
isomorphism (3.43) is isometrical; therefore, T̂ ∗(t) is a contraction semigroup onKC . As a result, its restriction
T̂�α(t) is a contraction semigroup on KαC . Note also, that by (4.36),

DαC :=
{
k ∈ KαC

∣
∣∣ L̂∗k ∈ KαC

}

is a core for L̂�α in KαC .
By (4.12), for any k ∈ KαC , G ∈ Bbs(�0) we have

∫

�0

(P̂δG) (η) k (η) dλ (η)

=
∫

�0

∑

ξ⊂η

(1 − δ)|ξ |
∫

�0

(zδ)|ω| G (ξ ∪ ω)
∏

y∈ξ

e−Eφ(y,ω)

×
∏

y∈η\ξ

(
e−Eφ(y,ω) − 1

)
dλ (ω) k (η) dλ (η)

=
∫

�0

∫

�0

(1 − δ)|ξ |
∫

�0

(zδ)|ω| G (ξ ∪ ω)
∏

y∈ξ

e−Eφ(y,ω)

×
∏

y∈η

(
e−Eφ(y,ω) − 1

)
dλ (ω) k (η ∪ ξ) dλ (ξ) dλ (η)

=
∫

�0

∫

�0

∑

ω⊂ξ

(1 − δ)|ξ\ω| (zδ)|ω| G (ξ)
∏

y∈ξ\ω
e−Eφ(y,ω)

×
∏

y∈η

(
e−Eφ(y,ω) − 1

)
k (η ∪ ξ\ω) dλ (ξ) dλ (η) ;

therefore,

(P̂∗
δ k) (η) =

∑

ω⊂η

(1 − δ)|η\ω| (zδ)|ω| ∏

y∈η\ω
e−Eφ(y,ω)
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×
∫

�0

∏

y∈ξ

(
e−Eφ(y,ω) − 1

)
k (ξ ∪ η\ω) dλ (ξ). (4.38)

Proposition 4.15 Suppose that (4.28) and (4.32) are fulfilled. Then, for any k ∈ DαC and α ∈ (α0, 1), where
α0 is chosen as in the proof of Proposition 4.12,

lim
δ→0

∥
∥∥
∥
1

δ
(P̂∗

δ − 11)k − L̂�αk

∥
∥∥
∥KC

= 0. (4.39)

Proof Let us recall (4.31) and define

(P̂∗,(0)
δ k) (η) = (1 − δ)(n)k(η);

(P̂∗,(1)
δ k) (η) = zδ

∑

x∈η

(1 − δ)|η|−1 eλ

(
e−φ(x−·), η\x

)

×
∫

�0

eλ

(
e−φ(x−·) − 1, ξ

)
k (ξ ∪ η\x) dλ (ξ)

and P̂∗,(≥2)
δ = P̂∗

δ − P̂∗,(0)
δ − P̂∗,(1)

δ .
We will use the following elementary inequality, for any n ∈ N ∪ {0}, δ ∈ (0; 1):

0 ≤ n − 1 − (1 − δ)n

δ
≤ δ

n(n − 1)

2
.

Then, for any k ∈ KαC and λ-a.a. η ∈ �0, η �= ∅

C−|η|
∣∣
∣∣
1

δ
(P̂∗,(0)

δ,ε − 11)k(η) + |η|k(η)

∣∣
∣∣

≤ ‖k‖KαCα|η|
∣
∣∣
∣|η| − 1 − (1 − δ)|η|

δ

∣
∣∣
∣ ≤ δ

2
‖k‖KαCα|η||η|(|η| − 1) (4.40)

and the function αx x(x −1) is bounded for x ≥ 1, α ∈ (0; 1). Next, for any k ∈ KαC and λ-a.a. η ∈ �0, η �= ∅

C−|η|
∣∣
∣∣
1

δ
P̂∗,(1)

δ k(η) − z
∑

x∈η

∫

�0

eλ

(
e−φ(x−·), η\x

)

× eλ

(
e−φ(x−·) − 1, ξ

)
k (ξ ∪ η\x) dλ(ξ)

∣∣
∣∣

≤ ‖k‖KαC

z

αC
α|η| ∑

x∈η

(
1 − (1 − δ)|η|−1)

∫

�0

eλ

(
αC

(
e−φ(x−·) − 1

)
, ξ
)
dλ (ξ)

≤ ‖k‖KαC

z

αC
α|η| ∑

x∈η

(
1 − (1 − δ)|η|−1) exp {αCCφ}

≤ ‖k‖KαC

z

αC
α|η|δ|η|(|η| − 1) exp {αCCφ}. (4.41)

which is small in δ uniformly by |η|. Now, using inequality
1 − e−Eφ(y,ω) = 1 −

∏

x∈ω

e−φ(x−y) ≤
∑

x∈ω

(
1 − e−φ(x−y)

)
,

we obtain

1

δ
C−|η| ∑

ω⊂η
|ω|≥2

(1 − δ)|η\ω| (zδ)|ω| eλ

(
e−Eφ(·,ω), η\ω

)

×
∫

�0

eλ

(∣∣∣e−Eφ(·,ω) − 1
∣
∣∣, ξ

)
|k(ξ ∪ η\ω)|dλ (ξ)
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= ‖k‖KαCα|η| 1
δ

∑

ω⊂η
|ω|≥2

(1 − δ)|η\ω|
(

zδ

αC
exp

{
αCCφ

})|ω|
;

recall that α > α0, therefore, z exp{αCCφ} ≤ αC , and one may continue

≤ ‖k‖KαCα|η| 1
δ

∑

ω⊂η
|ω|≥2

(1 − δ)|η\ω| δ|ω|

= ‖k‖KαC δα|η|
|η|∑

k=2

|η|!
k! (|η| − k)! (1 − δ)|η|−k δk−2

= ‖k‖KαC δα|η|
|η|−2∑

k=0

|η|!
(k + 2)! (|η| − k − 2)! (1 − δ)|η|−k−2 δk

= ‖k‖KαC δα|η| |η| (|η| − 1)
|η|−2∑

k=0

(|η| − 2)!
(k + 2)! (|η| − k − 2)! (1 − δ)|η|−2−k δk

≤ ‖k‖KαC δα|η| |η| (|η| − 1)
|η|−2∑

k=0

(|η| − 2)!
k! (|η| − k − 2)! (1 − δ)|η|−2−k δk

= ‖k‖KαC δα|η| |η| (|η| − 1) . (4.42)

Combining inequalities (4.40)–(4.42) we obtain (4.39). ��
As a result, we obtain an approximation for the semigroup.

Theorem 4.16 Let α0 be chosen as in the proof of the Proposition 4.12 and be fixed. Let α ∈ (α0; 1) and
k ∈ KαC be given. Then

(P̂∗
δ )[t/δ]k → T̂�α(t)k, δ → 0

in the space KαC with norm ‖ · ‖KC for all t ≥ 0 uniformly on bounded intervals.

Proof We may apply Proposition 4.15 to use Lemma 4.7 in the case Ln = L = LαC , pn = 11, fn = f = k,
εn = δ → 0, n ∈ N. ��

4.5 Positive definiteness

We consider a small modification of the notion of positive definite functions considered in Proposition 2.12.
Namely, we denote by L0

ls(�0) the set of all measurable functions on �0 which have a local support, i.e.
G ∈ L0

ls(�0) if there exists � ∈ Bb(R
d) such that G ��0\�(�)= 0. We will say that a measurable function

k : �0 → R is a positive defined function if, for any G ∈ L0
ls(�0) such that KG ≥ 0 and G ∈ LC for some

C > 1 the inequality (2.30) holds.
For a given C > 1, we set Lls

C = L0
ls(�0) ∩ LC . Since Bbs(�0) ⊂ Lls

C , for any C > 1, Proposition 2.12
(see also the second part of Remark 2.13) implies that if k is a positive definite function as above then there
exists a unique measure μ ∈ M1

fm(�) such that k = kμ be its correlation function in the sense of (2.24). Our
aim is to show that the evolution k 	→ T̂�(t)k preserves this property of the positive definiteness.

Theorem 4.17 Let (4.28) hold and k ∈ D(L̂∗) ⊂ KC be a positive definite function. Then kt := T̂�(t)k ∈
D(L̂∗) ⊂ KC will be a positive definite function for any t ≥ 0.
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Proof Let C > 0 be arbitrary and fixed. For any G ∈ Lls
C we have

∫

�0

G (η) kt (η) dλ (η) =
∫

�0

(T̂ (t)G) (η) k (η) dλ (η). (4.43)

By Proposition 4.10, under condition (4.28), we obtain that

lim
n→0

∫

�(�n)

∣
∣T [nt]

n 11�(�n)G (η) − 11�(�n)(η)(T̂ (t)G) (η)
∣
∣C |η|dλ (η) = 0,

where for n ≥ 2

Tn = P̂�n
1
n

and �n ↗ R
d . Note that, by the dominated convergence theorem,

∫

�0

(T̂ (t)G) (η) k (η) dλ (η) = lim
n→∞

∫

�0

11�(�n) (η) (T̂ (t)G) (η) k (η) dλ (η)

= lim
n→∞

∫

�(�n)

(T̂ (t)G) (η) k (η) dλ (η).

Next,
∣∣∣
∣

∫

�(�n)

(T̂ (t)G) (η) k (η) dλ (η) −
∫

�(�n)

T [nt]
n 11�(�n)G (η) k (η) dλ (η)

∣∣∣
∣

≤
∫

�(�n)

∣∣T [nt]
n 11�(�n)G (η) − 11�(�n)(η)(T̂ (t)G) (η)

∣∣ k (η) dλ (η)

≤ ‖k‖KC

∫

�(�n)

∣∣T [nt]
n 11�(�n)G (η) − 11�(�n)(η)(T̂ (t)G) (η)

∣∣C |η|dλ (η) → 0, n → ∞.

Therefore, ∫

�0

(T̂ (t)G) (η) k (η) dλ (η) = lim
n→∞

∫

�(�n)

T [nt]
n 11�(�n)G (η) k (η) dλ (η). (4.44)

Our aim is to show that for any G ∈ Lls
C the inequality KG ≥ 0 implies
∫

�0

G (η) kt (η) dλ (η) ≥ 0.

By (4.43) and (4.44), it is enough to show that for any m ∈ N and for any G ∈ Lls
C such that KG ≥ 0 the

following inequality holds:
∫

�0

11�(�n)T
m
n 11�(�n)G (η) k (η) dλ (η) ≥ 0, m ∈ N0. (4.45)

The inequality (4.45) is fulfilled if only
K11�(�n)T

m
n Gn ≥ 0, (4.46)

where Gn := 11�(�n)G. Note that

(
K11�(�n)T

m
n Gn

)
(γ ) =

∑

η�γ

11�(�n) (η)
(
Tm
n Gn

)
(η)

=
∑

η⊂γ�n

(
Tm
n Gn

)
(η) = (

KTm
n Gn

) (
γ�n

)
(4.47)

for any m ∈ N0. In particular,

(KGn) (γ ) = (
K11�(�n)G

)
(γ ) = (KG)

(
γ�n

) ≥ 0. (4.48)

123



296 Arab. J. Math. (2015) 4:255–300

Let us now consider any G̃ ∈ Lls
C [stress that G̃ is not necessary equal to 0 outside of �(�n)] and suppose

that
(
K G̃

)
(γ ) ≥ 0 for any γ ∈ �(�n). Then

(
KTnG̃

) (
γ�n

) = (
K P̂�n

1
n

G̃
) (

γ�n

) = (
P�n

1
n

K G̃
) (

γ�n

)

=
(
�

�n
1
n

(
γ�n

))−1 ∑

η⊂γ�n

(
1

n

)|η|(
1 − 1

n

)|γ \η|

×
∫

�(�n)

(
z

n

)|ω| ∏

y∈ω

e−Eφ(y,γ )
(
K G̃

)((
γ�n\η

) ∪ ω
)
dλ (ω) ≥ 0. (4.49)

By (4.48), setting G̃ = Gn ∈ Lls
C we obtain, because of (4.49), KTnGn ≥ 0. Next, setting G̃ = TnGn ∈ Lls

C
we obtain, by (4.49), KT 2

n Gn ≥ 0. Then, using an induction mechanism, we obtain that
(
KTm

n Gn
) (

γ�n

) ≥ 0, m ∈ N0,

that, by (4.46) and (4.47), yields (4.45). This completes the proof. ��

4.6 Ergodicity

Let k ∈ KαC be such that k(∅) = 0; then, by (4.38), (P̂∗
δ k) (∅) = 0. Class of all such functions we denote by

K0
α .

Proposition 4.18 Assume that there exists ν ∈ (0; 1) such that

z ≤ min
{
νCe−CCφ ; 2Ce−2CCφ

}
. (4.50)

Let, additionally,α ∈ (α0; 1), where α0 is chosen as in the proof of the Proposition 4.12. Then for any δ ∈ (0; 1)
the following estimate holds: ∥

∥∥P̂∗
δ �K0

α

∥
∥∥ ≤ 1 − (1 − ν)δ. (4.51)

Proof It is easily seen that for any k ∈ K0
α the following inequality holds:

|k (η)| ≤ 1|η|>0 ‖k‖KC
C |η|, λ−a.a. η ∈ �0.

Then, using (4.38), we have

C−|η| ∣∣(P̂∗
δ k) (η)

∣
∣

≤ C−|η| ∑

ω⊂η

(1 − δ)|η\ω| (zδ)|ω|
∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
|k (ξ ∪ η\ω)| dλ (ξ)

≤ ‖k‖KC

∑

ω⊂η

(1 − δ)|η\ω|
(
zδ

C

)|ω| ∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
C |ξ |11|ξ |+|η\ω|>0dλ (ξ)

= ‖k‖KC

∑

ω�η

(1 − δ)|η\ω|
(
zδ

C

)|ω| ∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
C |ξ |dλ (ξ)

+ ‖k‖KC

(
zδ

C

)|η| ∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
C |ξ |11|ξ |>0dλ (ξ)

= ‖k‖KC

∑

ω�η

(1 − δ)|η\ω|
(
zδ

C

)|ω| ∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
C |ξ |dλ (ξ)
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+ ‖k‖KC

(
zδ

C

)|η| ∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
C |ξ |dλ (ξ) − ‖k‖KC

(
zδ

C

)|η|

= ‖k‖KC

∑

ω⊂η

(1 − δ)|η\ω|
(
zδ

C

)|ω| ∫

�0

∏

y∈ξ

(
1 − e−Eφ(y,ω)

)
C |ξ |dλ (ξ)

− ‖k‖KC

(
zδ

C

)|η|

= ‖k‖KC

∑

ω⊂η

(1 − δ)|η\ω|
(
zδ

C

)|ω|
exp

{
C
∫

Rd

(
1 − e−Eφ(y,ω)

)
dy

}

− ‖k‖KC

(
zδ

C

)|η|

≤ ‖k‖KC

∑

ω⊂η

(1 − δ)|η\ω|
(
zδ

C

)|ω|
exp

{
CCβ |ω|} − ‖k‖KC

(
zδ

C

)|η|

≤ ‖k‖KC

∑

ω⊂η

(1 − δ)|η\ω| (νδ)|ω| − ‖k‖KC

(
zδ

C

)|η|

= ‖k‖KC

(

(1 − (1 − ν) δ)|η| −
(
zδ

C

)|η|)

= ‖k‖KC

(
1 − (1 − ν) δ − zδ

C

) |η|−1∑

j=0

(1 − (1 − ν) δ)|η|−1−| j |
(
zδ

C

) j

≤ ‖k‖KC

(
1 − (1 − ν) δ − zδ

C

) |η|−1∑

j=0

(
zδ

C

) j

= ‖k‖KC

(
1 − (1 − ν) δ − zδ

C

)
1 − ( zδ

C

)|η|

1 − zδ
C

≤ ‖k‖KC

(
1 − (1 − ν) δ − zδ

C

)
1

1 − zδ
C

= ‖k‖KC

(

1 − (1 − ν) δ

1 − zδ
C

)

≤ ‖k‖KC

(
1 − (1 − ν) δ

)
,

where we have used that, clearly, z < νC < C . The statement is proved. ��
Remark 4.19 Condition (4.50) is equivalent to (4.28) and (4.32).

As it was mentioned in Example 3.18, under condition (cf. (4.33))

zCφ < (2e)−1, (4.52)

there exists (see, e.g., [35] for details) a Gibbs measure μ on
(
�,B(�)

)
corresponding to the potential φ ≥ 0

and activity parameter z. We denote the corresponding correlation function by kμ. The measure μ is reversible
(symmetrizing) for the operator defined by (4.1) (see, e.g., [35,54]). Therefore, for any F ∈ K Bbs(�0)

∫

�

LF(γ )dμ(γ ) = 0. (4.53)

Theorem 4.20 Let (4.52) and (4.50) hold and let α ∈ (α0; 1), where α0 is chosen as in the proof of Proposi-
tion 4.12. Let k0 ∈ KαC , kt = T̂�α(t)k0. Then for any t ≥ 0

‖kt − kμ‖KC ≤ e−(1−ν)t‖k0 − kμ‖KC . (4.54)
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Proof First of all, let us note that for any α ∈ (α0; 1) the inequality (4.34) implies z ≤ αC exp{−αCCφ}.
Hence kμ(η) ≤ (αC)|η|, η ∈ �0. Therefore, kμ ∈ KαC ⊂ KαC ∩ D(L̂∗). By (4.53), for any G ∈ Bbs(�0)

we have 〈〈L̂G, kμ〉〉 = 0. It means that L̂∗kμ = 0. Therefore, L̂�αkμ = 0. As a result, T̂�α(t)kμ = kμ. Let
r0 = k0 − kμ ∈ KαC . Then r0 ∈ K0

a and

‖kt − kμ‖KC = ∥
∥T̂�α(t)r0

∥
∥KC

≤
∥
∥∥
(
P̂∗

δ

)[ t
δ

]

r0
∥
∥∥KC

+
∥
∥∥T̂�α(t)r0 − (

P̂∗
δ

)[ t
δ

]

r0
∥
∥∥KC

≤
∥∥
∥P̂∗

δ �K0
α

∥∥
∥

[ t
δ

]

· ‖r0‖KC +
∥∥
∥T̂�α(t)r0 − (

P̂∗
δ

)[ t
δ

]

r0
∥∥
∥KC

≤ (
1 − (1 − ν)δ

) t
δ
−1‖r0‖KC +

∥∥
∥T̂�α(t)r0 − (

P̂∗
δ

)[ t
δ

]

r0
∥∥
∥KC

,

since 0 < 1− (1− ν)δ < 1 and t
δ

<
[ t

δ

]+ 1. Taking the limit as δ ↓ 0 in the right hand side of this inequality
we obtain (4.54). ��
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