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Abstract
Background: Primary human tissues are an invaluable widely used tool for discovery of gene
expression patterns which characterize disease states. Tissue processing methods remain
unstandardized, leading to unanswered concerns of how to best store collected tissues and
maintain reproducibility between laboratories. We subdivided uterine myometrial tissue specimens
and stored split aliquots using the most common tissue processing methods (fresh, frozen,
RNALater) before comparing quantitative RNA expression profiles on the Affymetrix U133 human
expression array. Split samples and inclusion of duplicates within each processing group allowed us
to undertake a formal genome-wide analysis comparing the magnitude of result variation
contributed by sample source (different patients), processing protocol (fresh vs. frozen vs. 24 or
72 hours RNALater), and random background (duplicates). The dataset was randomly permuted
to define a baseline pattern of ANOVA test statistic values against which the observed results could
be interpreted.

Results: 14,639 of 22,283 genes were expressed in at least one sample. Patient subjects provided
the greatest sources of variation in the mixed model ANOVA, with replicates and processing
method the least. The magnitude of variation conferred by processing method (24 hours RNALater
vs 72 hours RNALater vs. fresh vs frozen) was similar to the variability seen within replicates.
Subset analysis of the test statistic according to gene functional class showed that the frequency of
"outlier" ANOVA results within each functional class is overall no greater than expected by chance.

Conclusions: Ambient storage of tissues for 24 or 72 hours in RNALater did not contribute any
systematic shift in quantitative RNA expression results relative to the alternatives of fresh or frozen
tissue. This nontoxic preservative enables decentralized tissue collection for expression array
analysis without a requirement for specialized equipment.
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Background
Many of the hopes for achieving clinical benefits of
genomic medicine will hinge on the ability to develop an
efficient specimen conduit from clinic to laboratory.
Quantitative gene expression studies have created unprec-
edented tissue collection and handling challenges. In par-
ticular, the rapid degeneration of RNA, and possible
perturbation of expression following excision place a high
premium on prompt stabilization of tissue samples
intended for expression analysis. This can be accom-
plished by sending a dedicated trained technologist outfit-
ted with the necessary specialized equipment, such as
liquid nitrogen, into the clinical environment. Alterna-
tively, clinicians can be enabled to process the specimens
directly in the course of patient care and send them in
some stable form by unrushed and routine means for cen-
tralized processing. The latter is greatly preferred when
patients are physically dispersed, and becomes essential in
a multi-institutional setting.

High throughput quantification of RNA expression in
solid tissues has become a commonplace modality for
genome-wide discovery of mechanisms of disease. Typi-
cally, groups of samples classified into comparison groups
are used as a training set for expression pattern discovery,
followed by validation in a fresh challenge set of anno-
tated cases. The likelihood of success is highly dependent
on the accuracy of classification within the training set,
and ability to control random variables introduced during
tissue processing and analytical measurement of RNA
abundance. Efforts to standardize RNA quantification
include sharing of information regarding probe design
and use [1], or centralized design and production of ana-
lytical reagents and platforms by commercial entities
using good manufacturing procedures (GMP).

Flash freezing, either by immersion in liquid nitrogen or
on dry ice, is the most common means of stabilizing tissue
samples intended for RNA analysis. Local access to the
necessary materials and expense of cold shipping and/or
storage limit these collection capabilities in most clinical
settings. An additional disadvantage of frozen storage is
that homogenization of frozen tissue must be accom-
plished rapidly to avoid the rapid RNA degeneration that
occurs during thawing of a previously frozen sample.

Room temperature immersion of fresh tissue samples in
aqueous sulfate salt solutions (such as ammonium sul-
fate) at controlled pH precipitates degenerative RNAses
[2] and other solubilized proteins, thereby preserving the
tissue with intact RNA [3]. Tissues preserved in this man-
ner are compatible with most RNA isolation protocols,
and may be archivally stored for extended periods at -
60°C. A commercial preparation of this preservative,
RNALater (Ambion), is increasingly being used by indi-

vidual investigators and cooperative groups [4] for collec-
tion of human tissues. There have been promising reports
of microarray-based RNA expression studies using
RNALater-preserved tissues [5-10]. Solid tissues stored for
a week in RNALater at room temperature give comparable
RNA yields, and specific gene RNA abundance as with fro-
zen tissue[8]. RNA yields are not affected substantially by
storage at room temperature compared to 4°C, for storage
intervals up to 3 months [11]. RNALater preserved tissues
and cell suspensions are suitable starting points for RNA
quantification by quantitative RT-PCR [11] and expres-
sion microarray hybridization [12]. One shortcoming of
the prior work is that the potential changes contributed by
RNALater use have not been precisely measured relative to
random processing effects.

We studied the effects of differences between storage con-
ditions on gene expression as measured by expression
array. Duplicate uterine myometrial tissue samples from
three women were processed under each of 4 fixed storage
conditions – fresh, frozen, 24 hours RNA-later and 72
hours RNA-later. The 24 labeled cRNA samples (Figure 1)
were hybridized to HG-U133A Affymetrix microarrays.
Then, for each microarray a data matrix was generated of
22,283 probe sets (genes) by quantitative expression lev-
els in each RNA sample, and the effect of subject source,
tissue processing, and replicates (Table 1) determined by
ANOVA. Subset analysis by gene functional class was then
performed to determine if storage condition has a specific
effect on particular groups of genes.

We found no systematic bias in measured quantitative
level of gene expression by processing method, indicating
that short term storage in RNALater is a valid alternative
to traditional frozen storage.

Results
Of the 22,283 genes, 14,639 did not have absolutely null
expression across all 24 samples. We fit the mixed model
ANOVA from their log values and recorded this F statistic.
The permutation distribution was used to assess the sig-
nificance of F statistics calculated for each gene in the
dataset. In this approach all 13,824 or (4!)3 possible ways
of permuting 4 pairs of replicate samples within each sub-
ject were considered. For each of these, the F statistics were
computed for each gene. To control the overall error rate,
the distributions of the maximum F statistics over the
genes were used. That is, for each gene, the p-value is the
proportion of permutations with the maximum F statistics
over all genes greater or equal to the observed value for a
particular gene. A test declaring as significant any genes
with p < 0.05 then guarantees that the chance of any false
positives being selected is < 5%. Similar analyses were per-
formed replacing the distribution of the maximum F sta-
tistic with the distribution of the F statistics at the 95th
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percentile and then at the 90th percentile. After closer
examination of the 387 genes in the 5% tail, we noted that
most were exhibiting expression values below 100 for all
24 samples. In fact, within a storage condition, 2 out of 3
patients exhibited null expression while the third patient
showed expression values other than null but less than
100 for at least one of their replicates. Therefore, as an
additional analysis, any expression values less than 100
were recoded as 100. Genes that showed expression levels
of 100 across all 24 samples, and therefore lacked variabil-
ity, were then removed from the analysis. This resulted in
7,853 genes for which there was at least one sample with
expression level greater than 100 across all 24 samples.

Patient subjects provided the greatest sources of variation
in the mixed model ANOVA, with replicates and process-
ing method the least (Figure 2). The magnitude of varia-

tion conferred by processing method (24 hours RNALater
vs 72 hours RNALater vs. fresh vs frozen) was similar to
the variability seen within replicates. This is strong evi-
dence that those individual expression profiles character-
istic of the source tissue (woman) are unlikely to be
obscured by the small amount of variation introduced by
the processing method chosen.

The distribution of ANOVA test statistics on those 7,853
genes where at least one sample of 24 had expression at a
level exceeding 100 is compared in Figure 3 to those seen
in the randomly permuted dataset. In the actual dataset,
the maximum observed F statistic was 25.52; the observed
F statistic at the 95th percentile was 3.51; and the
observed F statistic at the 90th percentile was 2.58. Corre-
sponding p-values were 0.94, 0.55 and 0.51, respectively.
The values of test statistics seen at the 95% level in a ran-
domly permuted dataset (Figure 3, thin solid line) are
greater than those of the observed dataset (Figure 3, thick
solid line). This indicates that the model variation con-
tributed by processing method is of the same magnitude
as that seen randomly.

Subset analysis of the test statistic according to gene func-
tional class (Table 2) showed that the frequency of "out-
lier" ANOVA results within each functional class is overall
no greater than expected by chance. Test statistic distribu-
tion was compiled by functional annotation for those
7853 genes which had at least one sample with detectable
expression above a level of 100. Nine separate

Experimental designFigure 1
Experimental design. Tissue aliquots from 3 women were aliquoted, in duplicate, into four storage groups before RNA iso-
lation and microarray hybridization. ANOVA design elements including fixed (storage group), random (woman, duplicate 
processing), and random interactive (woman × storage) effects as listed in Table 1.

Table 1: Variability Sources in ANOVA Model (See Figure 1). 
Mixed ANOVA Model:Xij = u + ai + Bj + Eij where Xij is the 
observation (LN intensity), ai is the tissue storage effect, Bj is the 
individual variability effect and Eij is the noise term.

Variability Source Type df

Tissue Storage Fixed 3
Woman, Individual Variation Random 2
Interaction (Woman × Storage) Random 6
Replication (RNA isolation, chip Processing) Random 12
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classification schemas containing a total of 127 functional
classes were studied. Probe sets were rank ordered by
decreasing ANOVA test statistic, and enrichment in the
nominal p = 0.05 tail (F>3.51, containing top 387 of 7853
expressed) plotted by functional class (circles) and
schema (box plot) (Figure 4).

Discussion
Storage of fresh whole human tissues for up to 72 hours
at room temperature in RNALater does not introduce
quantitative bias into RNA expression determinations
with the Affymetrix U133A array. Several differing stand-
ards justify this conclusion. First, by construction of a test
model (Figure 1) incorporating both random reproduci-
bility estimates (replicate determinations) and between-
sample differences it has been possible to demonstrate
that the magnitude of variation introduced by RNALater

processing is equivalent to that seen within routine repeat
specimens in a common processing group (Figure 2). Sec-
ond, the extent of result variation conferred by RNALater
processing is not statistically significant when measured
against the randomly permuted dataset (Figure 3). This is
an important element in evaluation of large datasets in
which small numbers of individual variables may ran-
domly demonstrate extreme values of the test statistic.
Lastly, there is no evidence that specific functional sub-
groups of genes have aberrant behavior in this regard (Fig-
ure 4).

Uterine myometrium was selected for these experiments
because its components (myocytes, fibroblasts, vascular
elements) are evenly intermingled throughout the myo-
metrial compartment, lending itself to physical subdivi-
sion into equivalent aliquots. This would not be possible

Sources of variation in the mixed ANOVA modelFigure 2
Sources of variation in the mixed ANOVA model. 
Distribution of Mean Squares Errors by variation source are 
plotted for those genes with at least one tissue showing 
expression at a level above LN(100) (7853 genes). Note that 
individual women emerge as the dominant source of varia-
tion. Variation contributed by tissue storage is of approxi-
mately the same magnitude as that seen between duplicate 
samples within the same storage group. Boxes encompass 
inner quartiles, horizontal line represents the median or the 
second quartile, and whiskers delimit 1.5 times the interquar-
tile range. Because of the very large number of data points, 
outliers were suppressed in this summary plot.

Distribution of actual test statistics vs. randomly permuted backgroundFigure 3
Distribution of actual test statistics vs. randomly per-
muted background. Distribution of ANOVA F-statistics 
from the model shown in Figure 1 were calculated for the 
observed (FStat Observed) and permuted datasets. The max-
imum, 95th percentile, and 90th percentile F-Statistics in the 
permuted dataset provide an index of the distribution of test 
results expected for a random sample. The values of test sta-
tistics seen at the 95% level in a randomly permuted dataset 
are greater than those of the observed dataset. Genes were 
included if at least one tissue showed expression above 
LN(100) (7853 genes).
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with more complex tissues in which differing cell types are
distributed asymmetrically within the specimen. Despite
the equivalency of subdivided fractions that underwent
varying storage treatments, it must be noted that this is a
hormonally responsive tissue whose expression patterns
would be expected to differ between individual women as
a function of monthly changes in circulating sex
hormones. We did not control for hormonal factors or
indication for hysterectomy (prolapse or fibroids) but
selected patients randomly. It comes as no surprise that
expression differences between women, irrespective of
processing method, emerged as the dominant source of
inter-sample variation. This was anticipated in construct-
ing the model, by assigning the subject source of speci-
mens as a random variable which could be measured
against the fixed processing effects. It is likely that if a
larger number of women had been included in the study,
the observed biologic variation attributable to subject
would have been even greater. Since our goal was to com-
pare magnitude of variation contributed by subjects to
that conferred by processing method, we achieved a bal-
anced design by having comparable degrees of freedom
for those two variables.

There are several critical procedural elements that must be
highlighted for successful preservation of solid tissues in
aqueous sulfate salt solutions such as RNALater. These
reagents enter the tissue through passive diffusion, a proc-
ess which follows simple physical principles. The distance
between the tissue surface, which is exposed to preserva-
tive, and the innermost regions of the fragment should be
minimized. We did this by cutting the tissues into 2 mm
thick slices, thereby reducing the diffusion distance to 1
mm or less. Clumping of multiple fragments into a mass
that excludes preservative may obviate the benefits of fine
division. This can be avoided either by gentle agitation or
placement in a sufficiently large container that individual
pieces are likely to disperse. Results reported here are for

tissues stored at room temperature (23–25°C). Storage
under cooler conditions (4°C) as recommend by the
manufacturer of RNALater were not directly evaluated in
this experiment because it was our intent to mimic storage
interval and conditions commonly encountered when
sending a specimen by express courier to a centralized
processing facility. Storage at temperatures substantially
higher than 25°C, especially before the preservative has
had an opportunity to penetrate the tissue, should be
avoided.

Conclusions
Split samples of fresh human tissue yield quantitatively
similar RNA expression profiles whether processed fresh,
frozen, or following 24–72 hour storage in RNALater. For-
mal statistical analysis shows patient source is the pre-
dominant source of variation between samples, with
processing method contributing a random level of
variation comparable to that seen in split duplicates (rep-
licates). Subset analysis by functional gene category did
not identify a specific class of genes which responded dif-
ferently by processing method.

Use of nontoxic ambient environment tissue preservatives
makes it practical to engage practicing clinicians directly
in decentralized sample collection for high throughput
expression analysis in a central location. Tissue handling
closely resembles that used by clinicians to prepare speci-
mens for routine pathology analysis. Upon receipt in a
centralized facility, the samples can either be immediately
homogenized or archived at -60°C.

Methods
Tissue handling and storage
Normal fresh uterine myometrial tissues were collected
randomly from three women undergoing hysterectomy
for benign uterine disease. For each hysterectomy, a single
4 to 8 gram tissue fragment was subdivided into eight

Table 2: Test statistic results by functional class within 9 annotation schema. Amongst 9 schema, a total of 127 functional classes 
("Classes") contained expressed genes ("Total Genes"), and of these, 102 classes had a sufficient number of expressed genes (>50, 
"Class>50") to enumerate ("Genes F>3.51") and calculate fractional representation ("%>3.51", also Figure 3) in the nominal p = 0.05 tail 
at a test statistic cutoff of 3.51. 7853 genes with expression in at least one tissue >LN(100) were included.

Code Schema Classes Class>50 TotalGenes Genes F>3.51 %>3.51

1 Biological Process (GO) 22 14 3591 197 5.5
2 Cellular Role (Proteome) 14 13 1775 92 5.2
3 Cellular Component (GO) 15 12 2845 154 5.4
4 Molecular Localization (Proteome) 9 10 1788 93 5.2
5 Organismal Role (Proteome) 17 12 1524 64 4.2
6 Biochemical Function (Proteome) 16 14 2727 150 5.5
7 Subcellular localization (Proteome) 8 7 2047 116 5.7
8 Molecular Function (GO) 21 15 4473 239 5.3
9 Pathways (GenMAPP) 6 5 756 33 4.4
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aliquots composed of thin slices measuring no more than
2 mm in thickness. Replicate aliquots were immediately
triaged into one of four storage conditions prior to
homogenization: 1)immediate homogenization; 2)flash
frozen in liquid nitrogen and storage for 48 hours at -
80°C; 3)24 hour immersion in RNALater at room temper-
ature with gentle agitation; or 4)72 hours immersion in
RNALater at room temperature with gentle agitation.

RNA isolation
Tissue was solubilized in Trizol reagent (Gibco BRL,
Grand Island, NY), and RNA isolated according to the
manufacturers instructions. In brief, the aqueous phase
was resolved by addition of chloroform, and RNA precip-
itated from the aqueous phase by addition of isopropyl
alcohol. Pelleted RNA was washed with 70% ethanol,

dried, and resuspended in water. Quality of total RNA was
assessed by running a non-denaturing 1% agarose tris-ace-
tate buffer which confirmed the integrity of 18S and 28S
ribosomal bands for all 24 total RNA preparations.

Microarray chip hybridization and data normalization
Double-stranded cDNA was generated from 8 µg total
RNA using the Superscript Choice System (Life Technolo-
gies) with T7-(dT)24 oligomer. cDNA was purified by
phenol/chloroform extraction and ethanol precipitation.
Biotin-labeled cRNA was prepared using the Enzo BioAr-
ray HighYield RNA Transcript labeling kit (Affymetrix).
Unincorporated NTPs were removed from the bioti-
nylated cRNA using an RNeasy kit (Qiagen). 10 µg of
quality, fragmented cRNA was hybridized to each Affyme-
trix HG-U133A arrays containing probe sets representing

Proportion of functional gene classes in which the test statistic falls within the nominal p < 0.05 tailFigure 4
Proportion of functional gene classes in which the test statistic falls within the nominal p < 0.05 tail. Nine publi-
cally available gene functional annotation schemas (listed in Table 2), each composed of multiple functional gene classes, were 
used to determine if specific functional subsets of expressed genes were more likely to show significant change in RNA detec-
tion between tissue treatments. Percentage of individual gene classes with test statistics above the nominal p = 0.05 level (F 
Statistic >3.51 in the dataset of 7853 expressed genes) are plotted on the Y axis for each of 9 classification schema (X axis). 
Results for functional classes of genes with a minimum of 50 available expressed genes are shown as individual data points (cir-
cles) the distribution of which is summarized for each schema by the superimposed notch plot. There are only two high out-
liers (arrows) amongst the 113 gene classes shown. These are a messenger RNA splicing factors in the Biological Process (GO) 
schema (Schema 1), and translation factor in the Pathways (GenMAPP) schema (Schema 9). This frequency of 2/113 outliers is 
no greater than expected by chance, (>5).
Page 6 of 7
(page number not for citation purposes)



BMC Genomics 2004, 5:88 http://www.biomedcentral.com/1471-2164/5/88
approximately 22,000 genes. Array hybridization, wash-
ing was done according to the manufacturer's protocol
(Affymetrix, GeneChip® Expression Analysis Technical
Manual) and all arrays were scanned under a low PMT
(Photo Multiplier Tube) of 570 nm. Global scaling to a
target value of 75 was applied to normalize all the arrays
so they were comparable (Affymetrix Microarray Analysis
Suite MAS5.0). The Affymetrix average-difference expres-
sion data and the P/A calls were used in the analysis.
Those probe sets determined to have no detectible signal
above background mismatch hybridization (Call of
"Absent") were assigned a nominal value of 1 to facilitate
future log transformations. Probesets having at least one
tissue with detectable expression (call of "present") and
an average difference above either 1 or 100 were selected
to define subsets of 14639 permissively or 7853 strin-
gently expressed genes, respectively. Further analysis was
performed using the natural log transformed data of these
probe subsets. Data files for all specimens processed are
deposited online at the Gene Expression Omnibus at the
National Center for Biotechnology Information [13].

Biostatistical analysis
For this two factor study, a mixed model analysis of vari-
ance (ANOVA)was used, regarding storage condition as a
fixed factor with four levels and subject as a random factor
with three levels. The analysis of variance calculations for
sums of squares in the mixed model ANOVA are identical
to those for the fixed ANOVA model. Similarly, the
degrees of freedom and mean squares are exactly the
same. The mixed ANOVA model departs from the fixed
ANOVA model only in the expected mean squares and the
consequence choice of the appropriate test statistic. The
mixed model also included a random storage by subject
interaction. Replicate samples enabled us to estimate the
replication error in the model. To test for the presence of
storage main effects for each gene we divided the mean
square for storage by the mean square for the interaction
effect between storage and subject [14]. The ANOVA test
statistic was calculated using C++.

Functional annotation of probesets on the U133A chip,
were downloaded from the Netaffxtm download center
[1]. The March, 2003 version matches individual
probesets with functional annotations (Table 2) from
public domain databases including: the Gene Microarray
Pathway Profiler, Gene Ontology Consortium, Proteome
BioKnowledge Library, and Kyoto Encyclopedia of Genes
and Chromosomes. Within each schema (comprised of
many functional classes of genes), each gene is assigned to
a primary functional class. Each probe set may be repre-
sented in several different schemas. Individual functional
classes with at least 50 probesets represented within the
U133A array were plotted by schema to show fractional
representation within the nominal 0.05 tail (Figure 4).

This provides a rapid and intuitive manner to identify
functional classes of genes biased towards high test statis-
tics in the ANOVA model.
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