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1 Introduction

The Skyrme model [1] is a model for pions in the low-energy effective theory of QCD. The

model is a four-dimensional non-linear sigma model whose target space is S3 ∼ SU(2),

and composed of the fourth order derivative term in addition to the canonical kinetic

term. The fourth order derivative term guarantees the stability of solitons of co-dimension

three, which are called Skyrmions. The Skyrmions are characterized by the homotopy

class π3
(
SU(2)

)
= Z and they are regarded as Baryons. The energy functional of the

Skyrme model has the Bogomol’nyi bound given by the topological charge associated with

the homotopy. This topological charge is identified with the Baryon number. However, no

analytic solutions that saturate the lower bound of the energy have been found so far.1

There have only been obtained the numerical solutions of Skyrmions, which indeed exceed

the energy bound. This reflects the fact that the original four dimensional Skyrme model

does not have the BPS property.

Finding proper solutions of Skyrmions is a long standing problem. There are several

directions to construct solutions. For example, the rational map ansatz provides a good

approximation to the Skyrmion solutions [5]. This includes solutions corresponding to

higher Baryon numbers. Although they can not saturate the energy bound, the rational

map solutions have close energies to the normalized Baryon charges. Alternatively, there is

another promising approach to Skyrmions known as the Atiyah-Manton construction [6].

Atiyah and Manton pointed out that the holonomy of the Yang-Mills instantons in the four-

dimensional Euclid space2 gives a well approximated static Skyrmion solutions. Although,

1This is not the case for Skyrme models in curved spaces. For example, see [2–4] and references therein.
2The case for the curved spaces was discussed in [7].
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the origin of this approximation is not transparent, a physical interpretation to the Atiyah-

Manton construction of Skyrmions was discussed in [8, 9].

Even though the Skyrmion solutions are well-approximated by instantons, they never

saturate the Bogomol’nyi bound of the energy. In order to understand the obscure con-

nection between the Yang-Mills instantons and Skyrmions, we need further penetrating

analysis. In this context, in [10], inspired by a holographic QCD model [11], it is pro-

posed a systematic derivation of the energy functional for the static Skyrme field from the

Yang-Mills action in four dimensions. In the derivation, the introduction of the tower of

mesons originated from the Kaluza-Klein-like expansion modes in higher dimensions makes

the Atiyah-Manton solution have closer energy to the bound [12]. Therefore, including the

higher expansion modes in the Atiyah-Manton solution leads to the better approximation

to the Skyrmions. Moreover, this relation is generalized to lower dimensions. For exam-

ple, an analogue of the Atiyah-Manton construction in two dimensions is proposed [13, 14]

where the sine-Gordon soliton solution in one dimensions is well-approximated by the CP 1-

lump — the two-dimensional instantons. These facts remarkably suggest that there is a

deep correspondence between instantons or solitons and Skyrmion-like objects in various

dimensions.

The instantons in four dimensions satisfy the self-duality equation F = ∗4F . Here

F is the field strength 2-form of the gauge field and ∗d is the Hodge dual operator in

d dimensions. A natural higher-dimensional generalization of instantons is a solution to

the self-duality equations in d = 4k dimensions F k = ∗4kF k where F k is the k wedge

products of F . The k = 1 case corresponds to the ordinary instantons in four-dimensions

while the k ≥ 2 cases are their generalization. The first non-trivial example is the k = 2

case, namely, the self-dual instantons in eight dimensions. This was studied so far from

various viewpoints [15, 16]. On the other hand, it is possible to consider higher-dimensional

generalizations of Skyrmions [17].

In this paper we study the relation between instantons and Skyrmions in higher di-

mensions. In particular, we focus on the eight-dimensional self-dual instantons that satisfy

F∧F = ∗8F∧F . The self-duality relation is obtained by the Bogomol’nyi completion of the

quartic Yang-Mills action in eight dimensions. We will derive the energy functional for the

static Skyrme field from the quartic Yang-Mills action by the reduction procedure devel-

oped by Sutcliffe [10]. The Derrick’s theorem indicates that the model admits static soliton

solutions which we call the eight-dimensional Skyrmions. We will find the numerical solu-

tion of the above mentioned Skyrmion. We will then calculate a field configuration through

the Atiyah-Manton construction applied to the eight-dimensional instanton and find that

this gives a good approximation to the numerical solution of the Skyrmion. Our results

strongly suggest that the instanton/Skyrmion correspondence holds even in 4k dimensions

and this relation is an universal property.

The organization of this paper is as follows. In section 2, we give a brief overview

of the prescription by Sutcliffe in four dimensions. We then derive the energy functional

for the static Skyrme field in eight dimensions from the quartic Yang-Mills action. In

section 3, we perform the numerical analysis to solve the equation of motion. We find a

spherically symmetric solution to the Skyrmions in eight dimensions. We then calculate
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the holonomy associated with the self-dual instanton in eight dimensions and construct the

Atiyah-Manton solution. We will show a good agreement between the numerical solution

and the Atiyah-Manton solution. Section 4 is an analysis of higher dimensional generaliza-

tions. Section 5 is devoted to the conclusion and discussions. The detail derivation of the

energy functional for the static Skyrme field with hedgehog ansatz in eight dimensions is

shown in appendix.

2 Eight-dimensional Skyrme model from quartic Yang-Mills theory

In this section we introduce a Skyrme model in eight dimensions following the formalism

developed by Sutcliffe [10]. Before going to the eight-dimensional analysis, we give an

overview of the derivation for the ordinary Skyrme model in four dimensions.

2.1 Overview of the Sutcliffe’s truncation in four dimensions

The four-dimensional energy functional for static fields3 of the Skyrme model is obtained

by a reduction of the usual quadratic Yang-Mills action in the four-dimensional Euclidean

space. The action is

S = − 1

2κg2

∫
Tr
[
∗4 F ∧ F

]
= − 1

4κg2

∫
d4xTr

[
FmnF

mn
]
. (2.1)

Here F = 1
2!Fmndx

m ∧ dxn, (m,n = 1, . . . , 4) is the gauge field strength 2-form. The

component is given by Fmn = ∂mAn − ∂nAm + [Am, An]. The gauge field Am is in the

adjoint representation of a gauge group G and it is expanded by the generators T a (a =

1, . . . dimG). Here G is the Lie algebra associated with G and κ is the normalization

constant for the generators Tr[T aT b] = κδab. Here g is the gauge coupling constant.

Making the action (2.1) be the completely square form results in the Bogomol’nyi-Prasad-

Sommerfield (BPS) self-duality equation F = ∗4F whose solutions are called instantons.

Since the Yang-Mills action (2.1) has the scale invariance, instanton solutions that saturate

the Bogomol’nyi bound have a size modulus.

It is proposed in [10] that a holography-inspired reduction of the four-dimensional

Yang-Mills action (2.1) provides the energy functional for the static Skyrme field. Following

the prescription in [10], we first decompose the four-dimensional Euclidean space into

the three-dimensional physical space and a “fictious” direction: xm = (xi, x4) where i =

1, . . . , 3. We then expand the four-dimensional gauge field Am(xi, x4) in the infinite line

along the x4-direction by a complete orthonormal basis with the square integrable function.

A suitable basis with the boundary condition Ai(x
i, x4) → 0 as x4 → ∞ is the Hermite

function ψn(z) = (−1)n√
n!2n
√
π
e

1
2
z2 dn

dzn e
−z2 . Then we have an expansion,

Am(xi, x4) =

∞∑
n=0

A(n)
m (xi)ψn(x4) , (2.2)

3We sometimes call this the three-dimensional action in Euclid space.
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where A(n)
m (xi) are expansion coefficients, which will be determined later. Next, we perform

the gauge transformation by which the component A4 is set to be zero. By this gauge

transformation, the components of the gauge field Ai is transformed as

Ai −→ ĝAiĝ
−1 + ĝ∂iĝ

−1, (2.3)

where the gauge parameter ĝ is given by

ĝ(xi, x4) = −P exp

[ ∫ x4

−∞
dξ A4(x

i, ξ)

]
. (2.4)

Here the symbol P stands for the path-ordering. The asymptotic behavior of the Hermite

function ψn(∞) = 0 and the boundary condition Ai(x
i,∞) = 0 determines the gauge field

Ai(x
i, x4) in the gauge A4 = 0. This is given by [10],

Ai(x
i, x4) = ui(x

i)ψ+(x4) +
∞∑
n=0

Wn
i (xi)ψn(x4) , (2.5)

where ψ+(z) = 1
2 + 1

2 erf(z/
√

2) and the error function is defined by erf(z) = 2√
π

∫ z
0 dξ e

−ξ2 .

The gauge field is decomposed into the “zero-mode” u(xi):

ui(x
i) = U∂iU

−1, U(xi) = ĝ(xi, x4 =∞) , (2.6)

and the infinite tower of the vector fields Wn
i (xi). The zero-mode u(xi) is identified with the

Skyrme field while the higher modes Wn
i (xi) can be interpreted as “vector mesons”. This

analysis is completely parallel to the Kaluza-Klein reduction in which a field is expanded

by the Fourier modes einx
4/2πR along the compact circle x4 ∼ x4 + 2πR. Note that the

expansion along an infinite line enable us to realize the Skyrme field U by the holonomy

of the gauge field:

U(xi) = −P exp

[ ∫ ∞
−∞

dx4A4(x
i, x4)

]
. (2.7)

Although it is possible to compute Wn
i , let us focus on the leading approximation, i.e. we

neglect all the vector meson modes and focus only on the Skyrme field U(xi). We call this

the Sutcliffe’s truncation. Then, in the gauge A4 = 0, we have the following decomposition

of the gauge field strength:

Fi4 = U∂iU
−1∂4ψ+(x4) = Ri

ψ0(x
4)

√
2π

1
4

,

Fij = [Ri, Rj ]ψ+(x4)
(
ψ+(x4)− 1

)
, (2.8)

where Ri = U∂iU
−1 is interpreted as the right current.

Now it is easy to show that the Sutcliffe’s truncation of the Yang-Mills action (2.1)

gives the energy functional for the static Skyrme field. Plugging the decomposition (2.8)

into the quadratic Yang-Mills action (2.1) and performing the integration over x4, then

we find

S =
1

κg2

∫
d3x

(
− c1

2
Tr[RiRi]−

c2
16

Tr[Ri, Rj ]
2

)
, (2.9)
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(a) The profile for 4d Skyrmion.
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(b) The energy density plot.

Figure 1. The numerical profile for f(r) and the plot for the energy density E(r).

where the numerical factors are calculated as c1 = 1
4
√
π
' 0.141, c2 = 2

∫∞
−∞ dx

4 ψ2
+(ψ+−

1)2 ' 0.198. These numerical factors can be set to c1 = c2 = 1 by the rescalings of the

length xi →
√
c2/c1x

i and the overall factor of the action S → 1√
c1c2

S. We therefore

consider the natural unit c1 = c2 = 1 and set κ = 1, g = 1 for simplicity. After the

rescaling, the action (2.9) becomes the energy functional for the static Skyrme field:

ESkyrme =

∫
d3x

(
− 1

2
Tr[RiRi]−

1

16
Tr[Ri, Rj ]

2

)
. (2.10)

The Bogomol’nyi completion of the energy functional (2.10) gives the energy bound

ESkyrme ≥ 12π2|B| where B = − 1
24π2

∫
d3x εijk Tr[RiRjRk] is the topological charge, name-

ly, the Baryon number. Here εijk is the Levi-Civita symbol. The equation of motion derived

from (2.10) is

∂i

(
Ri −

1

4
[Rj , [Rj , Ri]]

)
= 0 . (2.11)

No analytic solutions to this equation have been found but a spherically symmetric solution

is dealt with the following hedgehog ansatz:

U = exp
(
if(r)x̂iτi

)
. (2.12)

Here x̂i = xi

r , r2 = xixi and τ i are the Pauli matrices, namely, the quaternion basis. The

energy functional for this ansatz is evaluated to be

ESkyrme =

∫ ∞
0

dr

∫
S2

dΩ2E(r) = 2π

∫ ∞
0

dr

(
r2(∂rf)2 + 2 sin2f

(
1 + (∂rf)2

)
+

sin4f

r2

)
.

(2.13)

Here E(r) is the energy density and dΩ2 is the integral element of the two-dimensional

sphere. The boundary condition is given by f(0) = π, f(∞) = 0. The numerical study is

easily performed for this ansatz. The solution to the equation of motion (2.11) with the

ansatz (2.12) is found in figure 1. The solution in figure 1 has the Baryon number B = 1.
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We note that the energy functional (2.10) breaks the scale invariance presented in the

Yang-Mills action. A physical origin of this violation comes from the Sutcliffe’s trunca-

tion (2.8) where only the zero-mode (Skyrme field) is taken into account. Once we include

all the vector meson modes Wn
i , the scale invariance is expected to be recovered.

2.2 Eight-dimensional Skyrme model

Now we generalize the procedure in the previous subsection to eight dimensions. In eight

dimensions, the natural action whose BPS equation is the self-duality equation F ∧ F =

∗8(F ∧ F ) is that of the quartic Yang-Mills theory. The action is

Squartic =
α

κg2

∫
Tr
[
∗8 (F ∧ F ) ∧ (F ∧ F )

]
=

(
1

2!

)4 4

4!

α

κg2

∫
d8xTr

[
(FMNFPQ)2 − 4FMNFPQFMPFNQ + (FMNFMN )2

]
.

(2.14)

Here M,N, . . . = 1, . . . , 8 and the component of the gauge field strength 2-form F =
1
2!FMNdx

M ∧dxN is FMN = ∂MAN−∂NAM +[AM , AN ]. A constant α has mass dimension

[α] = −4 and g is the gauge coupling constant whose mass dimension is −2. In the

following, we set α/g2 = 96 and κ = 1 for simplicity. The gauge field AM is in the adjoint

representation of a Lie algebra associated with the gauge group G. We consider a gauge

group G which admits a non-trivial homotopy π7(G) = Z.4

The analysis is completely parallel to the four-dimensional case. We decompose the

directions xM = (xI , x8), (I = 1, . . . , 7) and expand the gauge field in terms of the Hermite

function ψn(x8). The Sutcliffe’s truncation provides the static Skyrme field in eight dimen-

sions through the relations (2.8). Plugging the expansion (2.8) into the quartic Yang-Mills

action (2.14) and performing the integration over the x8-direction, we obtain the energy

functional for the static Skyrme field:

ESkyrme =

∫
d7xTr

[
c2
(
[RI , RJ ][RI , RJ ]

)2
+ c2

(
[RI , RJ ][RK , RL]

)2
− 4c2[RI , RJ ][RK , RL][RI , RK ][RJ , RL]

+ 4c1
(
[RI , RJ ]

)2
R2
K + 4c1

(
[RI , RJ ]RK

)2 − 4c1[RI , RJ ]RK [RI , RK ]RJ

+ 8c1[RI , RJ ][RK , RI ]RJRK − 4c1[RI , RJ ]RI [RK , RJ ]RK
]
. (2.15)

Here RI = U∂IU
−1 is the right current and the Skyrme field is defined by the holonomy

U(xI) = −P exp

[ ∫ ∞
−∞

dx8A8(x
I , x8)

]
. (2.16)

4In order that instantons are classified by the integer topological charge, it is necessary that the homotopy

group contains at least one Z factor. For example, we can consider the gauge group SO(8) in that case we

have π7

(
SO(8)

)
= Z× Z.
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Therefore, the Skyrme field is a map U : R7 7→ G̃ where G̃ is a group manifold. The

numerical constants c1, c2 in (2.15) are calculated to be

c1 =

∫ ∞
−∞

dx8
1

2
√
π
ψ2
0ψ

2
+(ψ+ − 1)2 ' 0.00940 , c2 =

∫ ∞
−∞

dx8 ψ4
+(ψ+ − 1)4 ' 0.00308 .

(2.17)

As in the case of the four-dimensional Skyrme model, these numerical factors are scaled

away by the replacements xI →
√
c2/c1x

I , ESkyrme → 1√
c1c2

ESkyrme. We therefore set

c1 = c2 = 1. The quartic Yang-Mills action (2.14) has the scale invariance while the energy

functional (2.15) does not. Again, this is due the Sutcliffe’s truncation where only the

zero-mode is considered and the vector mesons are neglected.

The eight-dimensional Skyrme model (2.15) has similar properties with the four-

dimensional ones. For example, the energy functional (2.15) is invariant under the following

global transformation

U → OLUO
−1
R , OL, OR ∈ G̃ . (2.18)

This is a generalization of the chiral symmetry in four dimensions. One also finds that

the energy functional (2.15) consists of the terms with 6th and 8th derivatives. This is

compared with the 2nd and 4th derivative terms in the four-dimensional Skyrme model.

The Derrick’s theorem applied to the energy (2.15) indicates that there is a stable solitonic

solution to this model. We call this the eight-dimensional Skyrmions. The Bogomol’nyi

completion of the energy (2.15) is given by

ESkyrme = 4

∫
d7xTr

[(√
1

3!
εIJKLABCRIRJRK ±

√
4!R[LRARBRC]

)2

∓4εIJKLABCRIRJRKRLRARBRC

]
≥ 16

NC
|B| , (2.19)

where NC = 1/9600π4 is the normalization constant of the following topological charge:

B = NC

∫
d7xTr

[
εIJKLABCRIRJRKRLRARBRC

]
. (2.20)

Here εIJKLABC is the totally antisymmetric tensor. The topological charge (2.20) is the

natural generalization of the Baryon number B = − 1
24π2

∫
d3xTr[εijkRiRjRk] in the four-

dimensional Skyrme model.

3 Eight-dimensional Skyrmions from instantons

In this section, we examine a field configuration that extremizes the energy func-

tional (2.15), namely, the Skyrmion in eight dimensions. Assuming the hedgehog ansatz

for the Skyrme field U(x), we first derive the equation of motion from (2.15). We will find a

solution to the equation by the numerical analysis. We then construct a field configuration

from the eight-dimensional instantons through the Atiyah-Manton prescription. We com-

pare the two solutions and verify whether the Atiyah-Manton approximation works even

in eight dimensions.
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Skyrmions from numerical analysis. Following the standard scheme for a spheri-

cally symmetric solution to the four-dimensional Skyrme model, we consider the following

hedgehog ansatz:

U(x) = exp
(
f(r)x̂Ie†I

)
, (3.1)

where x̂I = xI

r , r2 = xIxI and f(r) is a real function. The basis eI , e
†
I is the higher

dimensional analogue of the pure imaginary quaternions in four dimensions. Note that we

do not employ the octonions as a higher dimensional generalisation of the quaternions. It is

well known that the octonions are never represented by matrices and the algebra based on

them loses the associativity [18]. The natural candidate for the basis in eight dimensions

is based on the Clifford algebra [19]. This is given by

eM = δM818 + δMIΓ
(−)
I , e†M = δM818 + δMIΓ

(+)
I , (M = 1, . . . , 8, I = 1, . . . , 7) ,

(3.2)

where Γ
(±)
I are 8 × 8 matrices that satisfy the relations {Γ(±)

I ,Γ
(±)
J } = −2δIJ18. The

matrices Γ
(±)
I are defined by Γ

(±)
I = 1

2(1 ± ω)ΓI . We choose the matrices Γ
(±)
I such that

they satisfy the relation Γ
(+)
I = −Γ

(−)
I . Here ΓI are given by the matrix representation of

the seven-dimensional complex Clifford algebra ΓI ∈ C`7(C) and ω = (−1)Γ1 · · ·Γ7 is a

chirality matrix. The basis is normalized as Tr[eMe
†
N ] = 8δMN and satisfies the following

relations

eMe
†
N + eNe

†
M = e†MeN + e†NeM = 2δMN18 ,

eMeN + eNeM = 2δM8eN + 2δN8eM − 2δMN18 ,

e†Me
†
N + e†Ne

†
M = 2δM8e

†
N + 2δN8e

†
M − 2δMN18 . (3.3)

Note that we have e†I = −eI in our construction. Therefore the hedgehog field configura-

tion (3.1) satisfies U †U = 18 and it belongs to U(8). The details of the Clifford algebra,

including the explicit matrix representations of the basis eM , e†M , are found in [19].

We now derive the equation of motion for the profile function f(r). Using the algebra

of the basis (3.3), we find that the hedgehog ansatz is expanded as

U(x) = cos f18 + sin fx̂Ie†I . (3.4)

This expression allows us to write down the right-current field:

RI = −r−1 sin2fx̂I18 + (−r−1 sin f cos f + ∂rf)x̂I x̂
† + r−1 sin f cos fe†I − r

−1 sin2fe†I x̂
†.

(3.5)

Here x̂ = x̂IeI , x̂
† = x̂Ie†I . It is straightforward to calculate each term in (2.15) by using the

above expression and the algebra associated with the basis (3.3). Although the derivation

is tedious, it needs a little bit of effort. The details are found in appendix. The energy

functional becomes,

ESkyrme =

∫ ∞
0
dr

∫
S6

dΩ6E(r)

= 24576π3
∫ ∞
0

dr

(
3r2 sin4f(∂rf)2 + 4 sin6f

(
4(∂rf)2 + 1

)
+ 12

sin8f

r2

)
, (3.6)

– 8 –
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(a) The profile for the 8d Skyrmion.
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(b) The energy density plot for the 8d Skyrmion.

Figure 2. The numerical profile for f(r) and the plot for the energy density E(r).

where the overall factor comes from the volume factor of the radial direction and algebras

containing eM , e
†
M (see appendix). Then, we derive the equation of motion for f(r) as

sin2f(3r2 + 16 sin2f)∂2rf + 6r sin2f∂rf

+3 sin 2f

[
(r2 + 8 sin2f)(∂rf)2 − 2 sin2f − 8

sin4f

r2

]
= 0 . (3.7)

The boundary condition for the profile function f(r) is

f(0) = π , f(∞) = 0 . (3.8)

Compared with the equation in four dimensions, the equation (3.7) looks highly non-

linear. Therefore it is not obvious whether the equation (3.7) has appropriate solutions that

are consistent with the boundary condition (3.8) or not. In order to clarify the existence

of the solution to the equation (3.7), we first perform the Taylor expansion of the profile

function at the origin: f(δr) =
∑∞

i=0 fi(δr)
i = f0 + f1δr + f2(δr)

2 + . . . . We then write

down the equations for the coefficients fi and look for fi order by order in (δr)i. For

the boundary condition (3.8), we find that the asymptotic behavior of the solution at the

origin is

f(δr) = π + f1δr −
(3c1 + 8c2f

2
1 )f31

9(3c1 + 16c2f21 )
(δr)3 +O

(
(δr)5

)
. (3.9)

Here f1 can be chosen as a shooting parameter in the numerical analysis. From this

observation, we conclude that we can numerically calculate a solution to the equation (3.7)

by appropriate methods of second ordinary differential equations with boundary conditions.

We stress that, if any shooting parameters are not found, then the equation does not have

appropriate solution with the boundary condition in general. The numerical result is

found in figure 2 where we have employed the functional Newton-Raphson method. The

behaviour of the profile function and the energy functional is quite similar to those in the

four-dimensional Skyrmion (see figure 1).

The Skyrme field is a map R7 7→ U(8). However, the boundary condition U(r) → 18

(r → ∞) implies that the base manifold is topologically S7. Therefore the solutions are
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characterized by the topological charge associated with the homotopy group π7
(
U(8)

)
= Z.

Indeed, the topological charge for the hedgehog ansatz (3.1) and the boundary condi-

tion (3.8) is evaluated to be

B = −9600π3NC

(
f(∞)− f(0)

)
= 1 . (3.10)

This is the single Skyrmion in eight dimensions.

Atiyah-Manton solution from instantons. We next make contact with the Skyrmion

from the eight-dimensional instantons. The Bogomol’nyi completion of the quartic Yang-

Mills action (2.14) is

Squartic =

∫
Tr
[(
F ∧ F ∓ ∗8(F ∧ F )

)2 ± F ∧ F ∧ F ∧ F ]
≥ ±

∫
Tr
[
F ∧ F ∧ F ∧ F

]
. (3.11)

Here we have defined

(F ∧ F ± ∗8F ∧ F )2 = (F ∧ F ± ∗8F ∧ F ) ∧ ∗8(F ∧ F ± ∗8F ∧ F ) . (3.12)

The action is bounded from below by the fourth Chern number k =
∫

Tr[F ∧ F ∧ F ∧ F ]

which defines the topological charge associated with instantons. The theory defined by

the action (3.11) has scale invariance. The Derrick’s theorem implies that the theory

admits static solitons, namely, instantons. The Bogomol’nyi bound is saturated when the

(anti-)self-duality equation

F ∧ F = ± ∗8 F ∧ F , (3.13)

is satisfied. This is a natural generalization of the (anti-)self-duality equation F = ± ∗4
F in four dimensions. In the following we choose the plus sign in (3.13). Solutions to

the equation (3.13) is known as the self-dual instantons in eight dimensions. They are

characterized by the homotopy group π7(G) = Z where G is a gauge group. Only the

one-instanton is known as an analytic solution in the past [15, 16].5 The one-instanton

solution is given by

AM =
1

4
∂N ln

(
1 +

λ2

‖x̃‖2

)
Σ
(−)
MN , (3.14)

where ‖x̃‖2 = (xM − aM )(xM − aM ) and λ, aM are the size and the position moduli of the

solution. For simplify, we set aM = 0. The matrix

Σ
(−)
MN = eMe

†
N − eNe

†
M (3.15)

is the generator of the SO(8) Lorentz group. This is the eight-dimensional analogue of the

’t Hooft instanton in four dimensions [20].

5We note that multi-instanton solutions to the self-duality equation (3.13) are discussed in the framework

of the ADHM construction [19].
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Figure 3. The energy profile for the Atiyah-Manton solution (3.18) as the function of the instanton

size λ.

Following Atiyah and Manton [6], we calculate the holonomy for the instanton solu-

tion (3.14). To this end, it is convenient to rewrite the solution (3.14) as

AM (xI , x8) =
1

2

(
1

λ2 + r2 + (x8)2
− 1

r2 + (x8)2

)
xNΣ

(−)
MN . (3.16)

Then one finds

A8 =

(
1

λ2 + r2 + (x8)2
− 1

r2 + (x8)2

)
xIe†I . (3.17)

Using this representation, we calculate the following holonomy for the one-instanton solu-

tion A8:

U(xI) = −P exp

∫ ∞
−∞

dx8A8(x
I , x8) = exp

[
π

(
1− r√

r2 + λ2

)
x̂Ie†I

]
. (3.18)

The result is the standard hedgehog form for the Skyrme field (3.1). This is why we have

employed the basis e†I in (3.1). Plugging the Atiyah-Manton solution (3.18) into the quartic

Yang-Mills action (2.14) results in the static energy E(λ) for the solution. The plot for

E(λ) is found in figure 3. As anticipated, the energy depends on the size of the instanton λ.

This is because the Sutcliffe’s truncation breaks the scale invariance in the quartic Yang-

Mills model. The size λ now lost its status of modulus. The true solution corresponds to

the extremum of E(λ). We find this happens at λ = 3.29095.

For this value of λ, we now compare the profile functions of the Atiyah-Manton and

the numerical solutions. The result is found in figure 4. We find that they agrees with high

accuracy. The plot for the energy density is also compared in figure 5. Again, we find a

good agreement between them. This result can be confirmed by evaluating the total energy

(see table 1). We therefore conclude that the Atiyah-Manton construction of Skyrmions

from instantons works well even in eight dimensions. We note that the eight-dimensional

Skyrmion is a non-BPS solution which is same as the four-dimensional one.
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Figure 4. The profile functions for the numerical and the Atiyah-Manton solutions.

numerical sol.

Atiyah-Manton
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3 /15

Figure 5. The profile functions for the energy density. The numerical versus the Atiyah-Manton

solutions.

Solution Numerical Atiyah-Manton BPS bound

Energy 1.51239× 16/Nc 1.51521× 16/Nc 16/Nc

Table 1. The total energy for the numerical, the Atiyah-Manton solutions and the BPS bound in

this model (2.19).

4 Higher dimensional generalization

In this section we make an analysis on the Atiyah-Manton construction in 4k dimensions.

It is worthwhile first to mention about the k = 3, namely, the twelve-dimensional case. In

twelve dimensions, the self-duality equation becomes F ∧ F ∧ F = ± ∗12 F ∧ F ∧ F . It is

an easy exercise to show that the one-instanton solution to this equation is given by (3.14)
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where the SO(8) generator Σ
(−)
µν is replaced by that of SO(12). We can construct the Atiyah-

Manton solution by calculating the holonomy associated with the instanton solution. We

can also find the Skyrme model in twelve dimensions and its Skyrmion solution along the

lines of the eight-dimensional case. The discussion is parallel to that in eight dimensions

presented in this paper. However, the explicit calculation of the Sutcliffe’s truncation in

twelve dimensions results in the energy functional for the Skyrme model with diverse (about

O(102)) terms. Analyzing all the terms is beyond the scope of this paper. We therefore

proceed to the general discussion in the following.

Now we move to the discussion in 4k dimensions. The 4k-dimensional generalization

of the quartic Yang-Mills action (2.14) is

SYM =
1

2

∫
R4k

Tr
[
(∗4kF k) ∧ (F k)

]
, (4.1)

where F k is the kth wedge products of the gauge field strength 2-form, F k = F ∧ · · · ∧ F .

The gauge field takes value in the adjoint representation of a gauge group G. We assume

that this gauge group has non-trivial homotopy π4k−1(G) = Z. It is straightforward to

perform the Bogomol’nyi completion of the action:

SYM =

∫
R4k

Tr
[
(F k ∓ ∗4kF k)2 ± F 4k

]
≥ ±

∫
R4k

Tr
[
F 4k

]
. (4.2)

The BPS equation becomes

F k = ± ∗4k F k. (4.3)

This is the (anti-)self-duality equation in 4k dimensions. The one-instanton solution to

this equation is explicitly wrote down by the ADHM construction of instantons in 4k

dimensions [21] which is the 4k-dimensional generalization of [19] in eight dimensions.

Again, the solutions are given as the form in (3.14) where the SO(8) generator is replaced

by those of SO(4k).

Next we perform the Sutcliffe’s truncation. The index structure of the Yang-Mills

Lagrangian is

(∗4kF k) ∧ F k =

1

(2k)!

(
1

2!

)2k
εM1···M2kN1···N2k

εM1···M2kP1···P2kFN1N2 · · ·FN2k−1N2kFP1P2
· · ·FP2k−1P2k

d4kx ,

(4.4)

where the overall factor comes from the normalization of the 2-form F = 1
2!FMNdx

M ∧dxN

and the definition of the Hodge dual operation. The procedure of the reduction is parallel

to the previous sections. We can reduce the gauge field along, say, the x4k-direction. Then,

the gauge field becomes

FI] = RI
ψ0(x

4k)
√

2π
1
4

, FIJ = [RI , RJ ]ψ+(x4k)
(
ψ+(x4k)− 1

)
,

(I, J, . . . = 1, . . . 4k − 1, ] = 4k) . (4.5)
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Here RI = U∂IU
† is the right current field constructed from the Skyrme field U(xI). Then,

the energy functional for the static field U(xI) in 4k dimensions has the following structure

ESkyrme = E4k(x) + E4k−2(x) , (4.6)

where En stands for terms that contain n-th derivatives. The energy (4.6) is compared

with that in the eight-dimensional Skyrme model. Again, the Derrick’s theorem implies

that there is a static soliton solution that extremizes the energy (4.6). This is nothing but

the Skyrmion in 4k dimensions. Finding the explicit solutions need the numerical analysis

in each dimension. We can also calculate the holonomy for the 1-instanton solution in 4k

dimensions and derive the static energy E(λ). Although we do not repeat the same calcu-

lations, the result of the original Atiyah-Manton construction in four dimensions and our

result in eight dimensions strongly suggest that this instanton/Skyrmion correspondence

does hold in 4k dimensions.

5 Conclusion and discussions

In this paper we studied the Atiyah-Manton construction of Skyrmions in eight dimen-

sions. Following the formalism developed in [10], we derive the static energy functional for

the Skyrme field from the quartic Yang-Mills action in eight dimensions. The Derrick’s

theorem indicates that there exist stable soliton solutions. The solutions are classified

by the topological charge B = NC

∫
d7x εIJKLABC Tr[RIRJRKRLRARBRC ] which is the

eight-dimensional generalization of the Baryon number. Assuming the spherically sym-

metric hedgehog ansatz, we derive the equation of motion for the Skyrme field. Although

the equation is quite nonlinear and complicated, we can perform the numerical analysis

to find solutions. We present the explicit numerical solution for the Skyrmion associated

with the topological charge B = 1. The profile function and the energy density of the

eight-dimensional Skyrmion look quite similar to those in four dimensions.

In the latter part of the paper, we study the relation between the eight-dimensional in-

stantons and the Skyrmions. This is a generalization of the Atiyah-Manton construction in

four-dimensions. Following the four-dimensional case, we constructed the Atiyah-Manton

solution for the Skyrmion from the one instanton solution found in [15, 16]. We then com-

pare the numerical solution and the Atiyah-Manton solution and find that there is a good

agreement between them. The profile function looks quite similar in these solutions. This

result dictates us that the correspondence between the instantons and the Skyrmions by

the Atiyah-Manton construction is an universal property in higher dimensions.

Indeed, we have confirmed that the Sutcliffe’s truncation of the higher dimensional

generalization of the quartic Yang-Mills action gives the energy functional E for the static

Skyrme field in 4k dimensions. The structure of E together with the Derrick’s theorem

implies that there are stable Skyrmion solutions in 4k dimensions. Since it is easy to

show that the one-instantons in 4k dimensions are given by the ’t Hooft type, we can

easily write down the Atiyah-Manton solution in each dimension. Although it is hard to

compute the explicit energy functional for the 4k-dimensional Skyrme model, we expect

the Atiyah-Manton solution provides a good approximation to the Skyrmions.
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Our study exhibits a deep relation between Yang-Mills instantons and Skyrmions.

Physical interpretations of the Atiyah-Manton construction in lower dimensions are studied

intensively [22–25]. Analogous relations among various solitons are expected in higher

dimensions. Meanwhile, supersymmetry play an important role to study the BPS nature of

classical solutions. Among other things, supersymmetric generalizations of Skyrme model

in four dimensions have been studied [26–31]. It is interesting to supersymmetrize the eight

dimensional Skyrme model presented in this paper.

There are various related studies. It is known that Skyrmions and monopoles have

similar structures through the rational map ansatz. One can expect that this relation

holds even in higher dimensions. For example, we know that only the numerical solutions

of monopoles in seven dimensions [32]. It is interesting to study the Nahm construction

of monopoles [33, 34] to find analytic solutions in seven dimensions. These expectations

may be based on the integrable structure of the self-duality equations. It is known that

the self-duality equation in four dimensions are reduced to integrable equations in lower

dimensions [35]. It is also interesting to study the integrable structure of the self-duality

equations in 4k dimensions and generalization of the Ward’s conjecture [36]. We will come

back to these issues in future studies.
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A Derivation of the eight-dimensional Skyrme model with the hedgehog

ansatz

For later convenience we reproduced the right current as

RI = −r−1 sin2fx̂I18 + (−r−1 sin f cos f + ∂rf)x̂I x̂
† + r−1 sin f cos fe†I − r

−1 sin2fe†I x̂
†.

(A.1)

Then we find

RIRI = −
(
(∂rf)2 + 6r−2 sin2f

)
18 . (A.2)

The commutator of the current RI is calculated to be

[RI , RJ ] = −r−2 sin2fΣ
(−)
IJ

+ 2(r−2 sin2f − r−1 sin f cos f∂rf)(x̂Ie
†
J − x̂Je

†
I)x̂† − 2r−1 sin2f∂rf(x̂Ie

†
J − x̂Je

†
I)

= −DΣ
(−)
IJ + EΘIJ x̂

† − FΘIJ , (A.3)

where we have defined D = r−2 sin2f , E = 2(r−2 sin2f − r−1 sin f cos f∂rf), F =

2r−1 sin2f∂rf and ΘIJ = x̂Ie
†
J−x̂Je

†
I . Here the matrices Σ

(−)
IJ and ΘIJ satisfy the following

relations

ΘIJ x̂
† = −x̂†ΘIJ , Σ

(−)
IJ ΘIJ = 4 · 6x̂†, ΘIJΣ

(−)
IJ = −4 · 6x̂†,

Θ2
IJ = −2 · 6 18 ,

(
Σ
(−)
IJ

)2
= −4 · 7 · 6 18 . (A.4)
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The squares of the commutator [RI , RJ ] is evaluated as

[RI , RJ ]2 = −24r−2 sin2f
(
5r−2 sin2f + 2(∂rf)2

)
18 . (A.5)

Using this result, we can calculate the first term in (2.15) as

(
[RI , RJ ]2

)2
= 16 · 62r−4 sin4f

(
25r−4 sin4f + 20r−2 sin2f(∂rf)2 + 4(∂rf)4

)
18 . (A.6)

Things get more involved when we calculate the second term. We expand the second term

in (2.15) as

(
[RI , RJ ][RK , RL]

)2
=

D4Σ
(−)
IJ Σ

(−)
KLΣ

(−)
IJ Σ

(−)
KL

−D3E
(

Σ
(−)
IJ Σ

(−)
KLΣ

(−)
IJ ΘKLx̂

†+Σ
(−)
IJ Σ

(−)
KLΘIJ x̂

†Σ
(−)
KL+Σ

(−)
IJ ΘKLx̂

†Σ
(−)
IJ Σ

(−)
KL+ΘIJ x̂

†Σ
(−)
KLΣ

(−)
IJ Σ

(−)
KL

)
+D3F

(
Σ

(−)
IJ Σ

(−)
KLΣ

(−)
IJ ΘKL + Σ

(−)
IJ Σ

(−)
KLΘIJΣ

(−)
KL + Σ

(−)
IJ ΘKLΣ

(−)
IJ Σ

(−)
KL + ΘIJΣ

(−)
KLΣ

(−)
IJ Σ

(−)
KL

)
+D2(E2 + F 2)

(
Σ

(−)
IJ Σ

(−)
KLΘIJΘKL + ΘIJΘKLΣ

(−)
IJ Σ

(−)
KL

)
+D2E2

(
Σ

(−)
IJ ΘKLx̂

†Σ
(−)
IJ ΘKLx̂

† + Σ
(−)
IJ ΘKLx̂

†ΘIJ x̂
†Σ

(−)
KL

+ ΘIJ x̂
†Σ

(−)
KLΣ

(−)
IJ ΘKLx̂

† + ΘIJ x̂
†Σ

(−)
KLΘIJ x̂

†Σ
(−)
KL

)
−D2EF

(
Σ

(−)
IJ ΘKLx̂

†Σ
(−)
IJ ΘKL+Σ

(−)
IJ ΘKLx̂

†ΘIJΣ
(−)
KL+ΘIJ x̂

†Σ
(−)
KLΣ

(−)
IJ ΘKL+ΘIJ x̂

†Σ
(−)
KLΘIJΣ

(−)
KL

+Σ
(−)
IJ ΘKLΣ

(−)
IJ ΘKLx̂

†+Σ
(−)
IJ ΘKLΘIJ x̂

†Σ
(−)
KL+ΘIJΣ

(−)
KLΣ

(−)
IJ ΘKLx̂

†+ΘIJΣ
(−)
KLΘIJ x̂

†Σ
(−)
KL

)
−DE(E2 + F 2)

(
Σ

(−)
IJ ΘKLx̂

†ΘIJΘKL + ΘIJ x̂
†Σ

(−)
KLΘIJΘKL

+ ΘIJΘKLΣ
(−)
IJ ΘKLx̂

† + ΘIJΘKLΘIJ x̂
†Σ

(−)
KL

)
+D2F 2

(
Σ

(−)
IJ ΘKLΣ

(−)
IJ ΘKL + Σ

(−)
IJ ΘKLΘIJΣ

(−)
KL + ΘIJΣ

(−)
KLΣ

(−)
IJ ΘKL + ΘIJΣ

(−)
KLΘIJΣ

(−)
KL

)
+DF (E2 + F 2)

(
Σ

(−)
IJ ΘKLΘIJΘKL + ΘIJΣ

(−)
KLΘIJΘKL

+ ΘIJΘKLΣ
(−)
IJ ΘKL + ΘIJΘKLΘIJΣ

(−)
KL

)
+ (E2 + F 2)2ΘIJΘKLΘIJΘKL . (A.7)

Here we have used the relation ΘIJ x̂
†ΘKLx̂

† = ΘIJΘKL and ΘIJ x̂
†ΘKL + ΘIJΘKLx̂

† = 0.

We stress that terms that contain the odd number of x̂ or x̂† vanish under the trace of the

matrices. Since we need the trace of (A.7) in the energy functional, we neglect these terms

and never calculate them in the following. Exploiting this fact, we are left with the terms
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that contain the even number of x̂:

D4 term: Σ
(−)
IJ Σ

(−)
KLΣ

(−)
IJ Σ

(−)
KL = 1344 18 ,

D3E term: Σ
(−)
IJ Σ

(−)
KLΣ

(−)
IJ ΘKLx̂

† + · · ·+ ΘIJ x̂
†Σ

(−)
KLΣ

(−)
IJ Σ

(−)
KL = 4 · 192 18 ,

D2(E2+F 2) term: Σ
(−)
IJ Σ

(−)
KLΘIJΘKL + ΘIJΘKLΣ

(−)
IJ Σ

(−)
KL = −2 · 384 18 ,

D2E2 term: Σ
(−)
IJ ΘKLx̂

†Σ
(−)
IJ ΘKLx̂

† + ΘIJ x̂
†Σ

(−)
KLΘIJ x̂

†Σ
(−)
KL = 2 · 96 18 ,

Σ
(−)
IJ ΘKLx̂

†ΘIJ x̂
†Σ

(−)
KL + ΘIJ x̂

†Σ
(−)
KLΣ

(−)
IJ ΘKLx̂

† = −2 · 384 18 ,

DE(E2+F 2) term: Σ
(−)
IJ ΘKLx̂

†ΘIJΘKL + · · ·+ ΘIJΘKLΘIJ x̂
†Σ

(−)
KL = −4 · 192 18 ,

D2F 2 term: Σ
(−)
IJ ΘKLΣ

(−)
IJ ΘKL + ΘIJΣ

(−)
KLΘIJΣ

(−)
KL = 2 · 864 18 ,

Σ
(−)
IJ ΘKLΘIJΣ

(−)
KL + ΘIJΣ

(−)
KLΣ

(−)
IJ ΘKL = −2 · 384 18 ,

(E2+F 2)2 term: ΘIJΘKLΘIJΘKL = −96 18 .

(A.8)

With this result at hand, we find that the second term in (2.15) becomes

Tr
(
[RI , RJ ][RK , Rl]

)2
= 1536r−4 sin4f

(
− 5r−4 sin4f + 20r−2 sin2f(∂rf)2 − 8(∂rf)4

)
.

(A.9)

We can calculate the other terms by same method. After the calculations, the results are

Tr
(
[RI , RJ ]2

)2
= 4608r−4 sin4f

(
25r−4 sin4f + 20r−2 sin2f(∂rf)2 + 4(∂rf)4

)
,

Tr
(
[RI , RJ ][RK , Rl]

)2
= 1536r−4 sin4f

(
−5r−4 sin4f + 20r−2 sin2f(∂rf)2 − 8(∂rf)4

)
,

Tr[RI , RJ ][RK , Rl][RI , RK ][RJ , Rl] = 768r−4 sin4f
(
−55r−4 sin4f − 80r−2 sin2f(∂rf)2 + 2(∂rf)4

)
,

Tr
(
[RI , RJ ]

)2
R2

K = 192r−2 sin2f
(
30r−4 sin4f + 17r−2 sin2f(∂rf)2 + 2(∂rf)4

)
,

Tr
(
[RI , RJ ]RK

)2
= 192r−2 sin2f

(
10r−4 sin4f + 13r−2 sin2f(∂rf)2 − 2(∂rf)4

)
,

Tr[RI , RJ ]RK [RI , RK ]RJ = 192r−2 sin2f
(
−25r−4 sin4f − 16r−2 sin2(∂rf)2 − (∂rf)4

)
,

Tr[RI , RJ ][RK , RI ]RJRK = 192r−2 sin2f
(
15r−4 sin4f + 14r−2 sin2f(∂rf)2 − (∂rf)4

)
,

Tr[RI , RJ ]RI [RK , RJ ]RK = 192r−2 sin2f
(
−25r−4 sin4f − 16r−2 sin2(∂rf)2 − (∂rf)4

)
.

(A.10)

Collecting everything altogether, we finally obtain

Tr
[
c2
(
[RI , RJ ][RI , RJ ]

)2
+c2

(
[RI , RJ ][RK , RL]

)2−4c2[RI , RJ ][RK , RL][RI , RK ][RJ , RL]

+4c1
(
[RI , RJ ]

)2
R2

K+4c1
(
[RI , RJ ]RK

)2−4c1[RI , RJ ]RK [RI , RK ]RJ

+8c1[RI , RJ ][RK , RI ]RJRK−4c1[RI , RJ ]RI [RK , RJ ]RK

]
=

23040
(

3c1r
−4 sin4f(∂rf)2 + 4r−6 sin6f

(
4c2(∂rf)2 + c1

)
+ 12c2r

−8 sin8f
)
.

(A.11)

Taking c1 = c2 = 1 and introducing the overall factor 16
15π

3r6, we obtain the energy

functional (3.6). Here we have taken into account the factor that comes from the six-

dimensional spherical integration: ∫
S6

dΩ6 =
16

15
π3r6, (A.12)
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where S6 is the six-dimensional spherical surface and dΩ6 is the integral element of the

six-dimensional sphere.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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