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Abstract A concise discussion of a 3 4 1-dimensional
derivative coupling model, in which a massive Dirac field
couples to the four-gradient of a massless scalar field, is
given in order to elucidate the role of different concepts
in quantum field theory like the regularization of quantum
fields as operator-valued distributions, correlation distribu-
tions, locality, causality, and field operator gauge transfor-
mations.

1 Introduction

Quantum field theory (QFT) is plagued by many concep-
tual problems. It has hitherto been impossible to prove the
existence of a non-trivial QFT in four space-time dimen-
sions. For example, it is notoriously difficult for perturbative
QFTs to establish convergence of expansions of the S-matrix
and related observable quantities. Despite this fact, perturba-
tive QFT has been very successful in predicting measurable
quantities in elementary particle physics. On the perturbative
level, infrared and ultraviolet divergences can be handled by
several mathematical tricks and tools. Whereas ultraviolet
divergences are rather related to the short distance behav-
ior of a QFT, integrals over infinite space-time result in some
sort of infrared difficulties when massless fields are involved,
depending on the approach that was chosen to formulate the
theory.

As a general remark, one may say that QFT on unquan-
tized space-time can be considered as some sort of operator-
valued distribution theory, which respects basic inputs com-
ing from symmetry considerations which normally include
the Poincaré symmetry group 73‘JTr as the semidirect product
of the abelian group of time-space translations 77 3 and the
restricted Lorentz group SO (1, 3), or, to be more precise,
the covering group 751 =T13xSL2,0)[1].

Even the definition of a particle in non-gravitating flat
space-time becomes a non-trivial task when charged particles
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coupling to massless gauge fields become involved. Based
on the classical analysis of Wigner on the unitary representa-
tions of the Poincaré group, a one-particle state is an element
of an irreducible representation space of the double cover
of the Poincaré group in a physical Hilbert space, i.e. some
irreducible representations should occur in the discrete spec-
trum of the mass-squared operator M? = P, P* of a QFT
describing particles [2]. However, objects like the electron
are accompanied by a long range field which leads an inde-
pendent life at infinite spatial distance, to give an intuitive
picture. It has been shown in [3] that a discrete eigenvalue
of M? is absent for states with an electric charge as a direct
consequence of Gauss’ law, and one finds that the Lorentz
symmetry is not implementable in a sector of states with non-
vanishing electric charge. Such problems are related to the
fact that the Poincaré symmetry is an overidealization related
to global considerations of infinite flat space-time, however,
physical measurements have a local character.

In this paper, we follow a shut-up and calculate approach,
in order to point out the fact that many aspects of QFT are
still poorly understood and to demonstrate the mathematical
apparatus which is treated very often on a fairly phenomeno-
logical level. The derivative coupling model, which serves
thereby as a trivial, but stunning example for this fact, will
be discussed in two different versions.

2 The classical derivative coupling model

As a starting point for the derivative coupling model dis-
cussed in this paper, one may consider the equations of
motion of the coupled Maxwell-Dirac system where a mas-
sive spin-1/2 field ¥ couples to a massless abelian spin-1
gauge field A, in the Feynman gauge,

(iypd" —m)y (x) = eA*(x)yu ¥ (x), ey
DAL (x) = ju(x) = eY () (x), @)

where, e.g., a coupling constant e < 0 would relate to a field
Y describing negatively charged objects like electrons as par-
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ticles and the positively charged positrons as anti-particles.
yY, ...,y are Dirac matrices fulfilling the standard anti-
commutation relations. Replacing A, by the four-gradient of
a massless, neutral scalar field ¢ [4] and, in order to clearly
distinguish the two theories from a notational point of view,
the electric coupling constant e by a coupling constant g leads
to the defining equations of the derivative coupling model

(iypd" —m)y (x) = g0 () yu (x), 3)
O (x) = 0% ju(x) = 0. “

These equations can be derived from the Lagrangian

- _ .
L=iyy" o,y —myy + Eauwa“w —gdtovry, ¥
=LY + L)+ Lint )

with
Lint = —g" oYy (©6)

In classical field theory, a solution of Egs. (3) and (4) is
readily found

Y (x) = e "8y (x), @)
with free fields ¢(x) and ¥ (x) satisfying

Oe(x) =0, (iyu0" —m)o(x) =0, ®)

since one has

(i " — m)y = iy, 9" (Yoe %) — myr
= iy, e PO Yy — my 4 g0 oy
= g oy 9

Leaving the classical level, it may be argued that the inter-
acting Dirac field is ‘dressed’ in some sense by excitations
of the massless bosonic field. However, since quantum fields
are operator-valued distributions, products or exponentials of
such objects are not defined in general and require a thorough
discussion. Field products are unavoidable for the construc-
tion of observables, since neither the Dirac field nor the vector
potential corresponds to observable quantities. Still, it seems
evident that the derivative coupling model is physically triv-
ial since the Dirac field couples to a pure gauge. The model
itself is invariant under gauge transformations,

Y (x) = e Wy x), @' (x) = g(x) + x(x), (10)

where again Uy (x) = 0, and a mass term for the scalar field
¢ could be included in the model, but this option will not be
considered in this paper.

@ Springer

3 Preliminaries and conventions
3.1 The free scalar field

In order to provide a well-defined setting for the forthcom-
ing discussion of the derivative coupling model on a quan-
tum field theoretical level, we discuss some basic properties
and definitions concerning the free, i.e. non-interacting scalar
field describing a neutral or charged spin-0 particle of mass
M in (3 4 1) space-time dimensions. Such a discussion may
appear as overkill, but it is not. Scalar bosonic fields may be
represented according to

)= () +eT(x)= L d3_k

OEe T = Gy | e
x [a(k)e_ikx+aT(k)e+ik"] (neutral), (11

(xX) = g. () + o (x) = L d3_k

$clX) =@ (X) T ¢, (X) = 2m)32 | Jax0

x [a(k)e—"karbT(k)e“’“] (charged),  (12)

where kx = kx* = k°x0 —k - x,kK° = E = Vk2 + M2 >
0, = denotes the positive and negative frequency parts of
the fields, and { ‘hermitian conjugation’. The non-vanishing
distributional commutator relations for the destruction and
creation field operators in the above Fourier decomposition
are

la(k),a’ (k)] = [b(k),b" (k')] =Dk — k), (13)

otherwise

la(k), a(k")) = [b(k), b(k')]
=[a'(k), a"(K)]=[b"(k), b (K')]=0 (14)

and

[a(k), b(k')] = [a(k), b' (k)]
= [a"(k), b(k')] = [a (k), b (k)] =0 (15)

holds. The destruction (or ‘annihilation’, or ‘absorption’)
operators act on the non-degenerate vacuum |0) according
to

a(k)|0) = b(k)|0) =0 forall k € R>. (16)

It is crucial to require the existence of a state |0) which is
annihilated by all the a(k) and b(k), since otherwise there
would be many inequivalent irreducible Hilbert space repre-
sentations of the algebraic relations given by Egs. (13)—(15),
and Eq. (16) selects the one in Fock space where the a(k)
and b(k) can be interpreted as destruction and the a™ (k) and
bT (k) as creation (or ‘emission’) operators.
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Single-particle wave functions in momentum space ¥ (k),
W, (k) are

W) = / Bk (Rya’ (1)]0),
(17)
|Wy) = / &K W (kK" (K)]0),

their scalar product becomes, from a formal calculation
exploiting the commutation relations above,

(W1 |¥2)
= / Brd3 k' Wy (k)* Wy (k') (0la(k)a’ (K")0)

= / Brd3 K Wy (k) Wy k) (0[[63) (k — k') + a' (K" )a(k)]0)
:/d3k¢1(k)*w2(k). (18)

This scalar product can be written in a manifestly covariant
form by using differently normalized creation and destruction
operators fulfilling

la(k), a" (K')]=[b(k), b" (K')]=2r)¥*2k") /28 (k — K').
(19)

3.2 Quantum fields as operator-valued distributions

It is crucial to note that ¢(x) and ¢.(x) are operator-valued
distributions, i.e. only smeared out fields like

9(g) = f d*x p(x)g(x), (20)

where g is a test function is some suitable test function space
T (R*), are operators in the quantum mechanical sense on
the Hilbert—Fock space of free particles, i.e. linear operators
defined on a dense subset of the Hilbert space which are not
necessarily bounded [5,6]. The same observation applies in
momentum space, i.e.

a'(g) = / d*ka’(k)g (k) 21)

creates a physical, i.e. normalizable Fock state, whereas
a’ (k)|0) is not a vector in Fock space, since no finite norm
can be assigned to such an object due to Eq. (13). In fact,
smearing field operators of a four-dimensional field theory
in three dimensions as anticipated in Eq. (17) does not work,
in general, in the case of interacting fields.

It is common usage in QFT in n space-time dimensions to
work with test functions which are elements of the Schwartz
space of rapidly decreasing functions S(R"). This space is
obtained by considering complex-valued p-times continu-
ously differentiable functions in C? (IR") equipped with the
norms

1f1lp = sup sup (1 +[|x|)?|D* f(x)l,

la|<p xeR”

1
x=@,...x"), |x|l=

> o2, (22)
i=1

with multi-indices @ = (a1, ...a,) € INjj and differential
operators

9! 9%

ax¥1 dx%n

D% =

, where |¢| =1+ -+, (23)

defining thereby complete normed function spaces
Sp(R") = {f € CPRM| Il < oo}. (24)

The Schwartz space S(IR") is then defined as the space of
infinitely differentiable functions of rapid decrease

SM®™) = [ Sp®™). (25)
p=0

By a meaningful definition, a series of test functions
{/1}72y € S(R") converges towards f = 0iff || f,][, vz
0 for all p € INg. A typical example for a test function in
S(R) is given by g(x) = e

The space of tempered distributions S'(R") is the set of
the continuous linear functionals on S(IR") according to

deS M"Y < d(f,) >0 forall (£,}°2, C S(R")

(26)

where f, "= 0. This definition of a tempered distribution
becomes more intuitive if one realizes that such an object
can be represented as the sum of derivatives of continuous
functions of polynomial growth,

d e SR") & d(f)

= Z /dxl--~dx"

0<|x|<selN

x(=DF, (b XD L X, (27)

where C(R") 3 |Fy(x)| < co(14]]x])7 @ for some j(a) €
IN and ¢, € R. Formally, derivatives can be shifted by partial
integration from test functions to distributions.

The true reason for using the Schwartz space in QFT
is its convenient property that the Fourier transform acts
on S(R") as a unitary, bijective mapping, i.e. the Fourier
transform of a smooth, rapidly decreasing function is again
smooth and rapidly decreasing. This allows one to define the
Fourier transform F of singular objects like the distributions
in S'(R"). d= F(d) is defined so that for all f € S(R")

F(d)(f) =d(f) =d(F(f) =d(f), (28)

@ Springer
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a definition which is often expressed by the purely formal
expression involving a change in the order of integration

d(f) = / dxd(x) f(x)
Rn
1 —ikx
= W/dx/dkd(k)e fx)
R*  Rr
= / dk d(k) f (k). (29)
]Rn

Equivalently we have

Ay = d(f) = dip). (30)

This way, the Fourier transform also becomes a linear
automorphism of &’

FEM®M) =SM"), F(S'@RM) =S'[RY. €1y}

Throughout this paper, the Fourier transform of a function
on four-dimensional space-time will be defined according to
the sign and symmetric normalization convention

/ d*x @ (x)el**

/ d4x q)(x)eikoxo—ikx’ (32)

R4

T @n)?

with kx = kyx# = kox® + kix! + kox? + kax3 = k%0 —
k'x! — k?x% — k3x3.

An important subspace of distributions in D(R") C
S(R™) is spanned by the distributions of compact support.
The dual space D'(R") of linear functionals on this space
is more general than S’(IR") and contains it. For the sake of
brevity, topological aspects of D(IR") and D’ (IR") will not be
discussed here. However, it is important to note that causality
in QFT is often expressed by a relation of the form

[01(g1), O2(g2)] =0 for supp(g1) ~ supp(g2), (33)

which expresses the fact that two local observables O and O,
depending as operator-valued distributions on test functions
g1, &2 € D(R") < S(R") commute whenever the com-
pact supports of the test functions are space-like separated,
i.e. when (x1 — x2)2 < 0 holds for all x; € supp(g;) and
x2 € supp(g2). One should note that the Fourier transforms
g1 and ¢» do not have a compact support for g;, g2 # 0.
The commutator, Eq. (33), may become an anti-commutator
when fermionic fields are involved. However, such fields are
elements of a field algebra and not of an algebra of observ-
ables, but they often serve as building blocks for the con-
struction of observables.

@ Springer

In Appendix A, a well-known but indispensable set of rela-
tions needed for the manipulation of distributions is given for
the reader who only has enjoyed a cursory formal introduc-
tion to the theory.

3.3 Correlation distributions

From the above algebraic relations represented by free fields
on a Fock space F one constructs the scalar Feynman prop-
agator as distributional time-ordered vacuum expectation
values

Ap(x —y) = =i {0IT (g ()9, (1)]0), (34)

where translational invariance implies

Ar(x) = =i (0IT (¢ (x)¢! (0)]0) (35)
or
Afp(x) = —i{0|T (¢(x)@(0)[0), (36)

for neutral fields. The wave equation holds in a distributional
sense,

O+ MHAF(x) = 0,0" + MHAF(x) = =8P (x), (37)

and one also defines the positive- and negative-frequency
Pauli-Jordan C-number distributions or, up to an imaginary
factor, “Wightman two-point functions’,

AE(x) = —i[pT (1), 9 (0)] = —ilpT (x), o] T(0)], (38)

A(x) = AT(x) + A7 (x) = —i[px), p(0)]
= —ipc(x), 9l ()], (39)

i.e.
AT (x) = —i(0lp~ (x)@T(0)|0),
A™(x) = +i(0lg~ (0™ (x)]0). (40)

The retarded propagator is given by A™'(x) = @ (x*)A(x),
a product of distributions which is well-defined due to the
harmless scaling behavior of A(x) at the origin x = 0.

Some important properties of the objects and their Fourier
transforms introduced so far are enlisted in the following:
A(x) vanishes for space-like arguments x with x> < 0, as
required by causality. One has

At (k) = G f d*x AT (x)el**
= T OS2 — M), (41)
2
AT(x) = =A"(—x), (42)
A(x) = At (x) = At (=), 43)
A(=x) = —A®). (44)
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Ar(x) = OxHAT ) — O(—xH A~ (x). (45)

O+ MHAEx) =0, (** - MHAEK) = 0. (46)

A = Ap+ AT, (47)
i d4k e—ikx

AT = | F e k00 (48)

O+ MHA™ (x) = =W (x). (49)

For M = 0 the scalar Feynman propagator in configuration
space is
d4 k e—ikx
Q2m)* k2 +i0
i 1 i 1
T 4n2x2—i0  4n? X2
where P denotes the principal value and § the one-dimen-

sional Dirac distribution, and the massless Pauli-Jordan dis-
tributions in configuration space are

A% (x) =

~ Lswy (50)
4ot

A%x) = — L sgn ()8 (). (51)
2
AE(x) = il_; 52)
0 = e F 0 — (
Since A™' (x) = O(xY)A(x), one has
AR (x) = —L(H)(xo)é(xz). (53)
2

A notational issue concerning the principal value in the
case of A(J)r is clarified by
1
(xY —i0)2 — x2

1
(0 —i0) — [x])((x0 —i0) + |x])
1 1 1 1
T2k x0 — x| —i0  2)x| x0 + |x| —i0
1
= P— +imsgn(x")§(x?) (54)
X
or
1 3 1 3 1
(x0—i0)2 —x2  x2-2i0x0—02  x2 —i0sgn(x0)
1
= P— +imsgn(x*)s (x?). (55)
X

3.4 Positivity

Calculating explicitly the commutator

[ge (x), soZ 0]

A3k
(27r)3 V2E «/2E

X [a(k )e—zkx_l_b’f(k )e-'rlkx’ aT(k)e-Hky + b(k)e_iky]

B &k dk
- @en?) V2 ) V2E
[8(3)(k/ _ k)e—ik’x+iky — O — k)e+ik/x—iky)]

1 /d k{ —ik(x=y) _ g+ik(x=y))

T @y
- (2;)3 / d*k sgn(k®)8 (k> — M?)e k=), (56)
where
sen(k")8(k* — M?) = sgn(k*)8 (k3 — k* — M?)
= S‘ETIEIST){«S(W E)+ G+ E))

(57)
has been used, one finds one of the results given above

Ak) = —%sgn(ko)(S(kz — M?). (58)

At the same time, at glimpse at the calculation above reveals

- / d4x A-‘r(x)eikx

= — O+ (K> — M?). (59)
2

Equation (58) simply expresses the fact that the scalar
fields considered so far live in a Hilbert space, equipped by
definition with a positive definite norm. Indeed, creating a
one-particle state by acting with a smeared field operator on
the vacuum

|®) = / d*x @ (x)p(x)]0) = / d*x @(x)pT (x)|0)  (60)
and calculating the norm gives, using Eq. (40),
(®|D) = i/d4x/d4x D) AT — x)P(x)
i
- (@m)°
« &)(—k/)*e_ik/x,A-"_(k”)e_ik”(x,_x) ci)(k)e—ikx
(61)

f d*k” %k’ d*k d*x’ d*x

where the non-vanishing test function and the positive-
frequency Pauli—Jordan distribution have been replaced their
corresponding Fourier transforms. Using the distributional
identity

f d*k et = 27)*8@ (x) (62)

is allowed here and leads to
(®|D) = i(27)? / d*k” d*K d*k

xD(—k)Y AT UKNDUh)SD k' + k)@ (k — k)

@ Springer
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= i(2m)* / d'K” Sk AT (K" )P (k")

=27 / d*k O (+k08 (k2 — M (k) *d(k) > 0,
(63)

i.e., the Heaviside- and §-distributions in Eq. (59) express the
fact that states created by bosonic scalar field operators have
positive norm.

We will see below that the derivative coupling model can
also be quantized by using fermionic scalar fields, i.e. ghosts,
which exhibit some properties invoking some conceptual dif-
ferences to the discussion above.

4 The derivative coupling model: bosonic version
4.1 General considerations

The transition from the classical derivative coupling model
according to Egs. (3) and (4) to a quantized version generates
a problem. The exponential

e—igp() — i (—igp(x))" (64)

n!
n=0

is not well-defined as an operator-valued distribution, since
already ¢ (x)@(x) is ill-defined. For example, a short calcu-
lation shows that (0]¢(x)@(x)|0) is a divergent expression
which has to be regularized. A way out of this situation is
offered by the normal ordering of field operators which cor-
responds to a recursive point-splitting regularization

Fe(x) = p(x), (65)
Do) = yliggc[fp(X)w(y) — {Olp(x)p(»)0)], (66)

)l’l—l

)" = yli_r)r;[: es So(y)

—(n = D{0lp(x)p(»)0) : p(x)" 2 :]. (67)

The normally ordered product : ¢(x)" : is an operator-
valued distributions, as well as the tensor product : ¢(x)" :
L) [T,

Literally, normal ordering products of free field operators
moves all destruction operators to the right, so that creation
operators are moved to the left. For example,

P®)e(y)
=@ @+ N M+t ()
=90 () M+ WeT () +et e ()
+o (MY~ (@) + 9~ (), 9T ()]
= ()e(y) : +H AT (x — y). (68)

Calculating the following vacuum expectation value
according to Wick’s theorem

@ Springer

(01 ()" 1 @(0)" :10) = i"n! AT ()", (69)
is a well-defined procedure, and the expressions

(—ig)" : p(x)" :’ (70)
n!

are well-defined composite field operators. But still, the sum

— o ig9 T (0) o —igp™ (¥)

o0 .
_ (—ig)" :p(x)":
ceTige(x) . of T FY
; n!

(71)

turns out to be ‘harmless’ only in 1 + 1 dimensions. For
the sake of completeness, some basic facts concerning the
derivative coupling model in two space-time dimensions as
discussed by Schroer [4] are provided in the following.

4.2 The derivative coupling model in two dimensions
In 1 + 1 dimensions, the neutral scalar field

p(x) = ¢ (x) + T (x)
1 dk!

~ Vo) v

leads to the two-dimensional positive frequency Pauli—
Jordan distribution

la(k)e ™ 4 af (kye T (72)

At (x —y) = =i (0lpx)e(y)|0)
— / 2k OU(O)S Uk — MP)e k=)
2w

__ i / %e—iku—w
2w ] 2%

s Ko(My = = 92 +iG0 — y90).
3

This integral diverges for M — 0, since the modified
Bessel function (or MacDonald function) behaves for 0 <
x < 1 like

Ko(x) ~ — 1n(§) —y, (74)

where y denotes the Euler—Mascheroni constant. Regulariz-
ing in the infrared according to

A*(rn) = - f I o k1) — 2ot (75)
2 2|kl|
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leadsto (0 < A < 1)
AT A) ~ —— In(— 22 +ix°0)
4

= L n(=x? +ix°0) + C

76
4 (76)
with & = eV .

On the restricted space of test functions
K= { f(x) e S| f d’x f(x) = 0} (77)

the massless field ¢ (x) is an operator-valued distribution, as
well as

A (x) = —— In(=x? + ix°0).

) = o 78)
Therefore, one has
] ceige(x) .. o Hige(y) . |0)
. i" 2\np A+ n ingJr (x—y)
=D @) AL = "= (79)
n=0 "

and

Oy ()P ()]0)
= (00 ()10 (»)10) (0] : 71890 12 1890 1 10)

- $% 245 0_y0
= ([0 (x) o (y)|0)e™ 37 MmO

1 82/477
(x—y)2+i(x" - y°)0> ’
(80)

= (0|1//0(X)¢o(y)|0)(_

where Vo denotes the free fermionic field in two space-time
dimensions. A straightforward calculation [4] also shows that
- 2 _
AL (k) = OIT (W ()P (I0) ~ (K —mHE />~ (@81
No meromorphic pole structure appears for g # 0, although
the S-matrix of the theory is trivial. For this reason, Schroer

coined the expression infraparticle for the states described
by the dressed field v (x).

4.3 Four-dimensional aspects

In 3 + 1 dimensions one has Aa’ (x) = #m, and
DT (x —y) = (0] : e 890 ;890 1 |0)
o] in
=Y SE@"Af & ="
n:
n=0
g2 AT (x—y) g’
= =X —_
P\ T 42 (0 — 102 — 22)
(82)

is a highly ultraviolet-divergent (still formal) expression as
can be anticipated from the singular behavior in configuration
space for x — 0. In fact, the exponential of a free scalar
field operator in four space-time dimensions is no longer an
operator-valued distribution defined on S (RY).

In conventional regularization theory, one would regular-
ize the exponential of a scalar field according to

e—isP() _y o387 AN O)g—igea(r) AZX . —ige(x)

. i s L
= lim :e i8PA() . — o—ig8P (Mg lgtPA(x)’

A—0 (83)

with a scalar field g, (x) with ultraviolet cutoff A generating
aregular two-point distribution AX (x). Thefield Yryp A (x) =
Yoe 1892 ) would not converge to a well-defined operator-
valued distribution in any sense. However, one can write for
the renormalized field with ultraviolet cutoff

i _ L 2At
Vren A (X) =2 78980 1y (x) = e 7287 28Dy (x)

= Z/_\l/zllfun,A(x)' (84)

In the limit A — o0, with ¥, as the unrenormalized formal
limit of ¥4, one has formally

V() = lim 2Py n = 27 P (), (85)
where
Z,P = emhe a0, (86)
Then

{Wren,a (X%, %), Yren g (X%, )} = Z7 (¥ Nap 8 (x — ),
(87)

i.e. the standard equal time anti-commutation relations can-
not be fulfilled by the renormalized fields since Z — oo,
but the renormalized field ., has well-defined correlation
functions. The distribution e¢” 2" =) cannot be restricted
to equal times, x° = y°, a non-canonical property which one
expects for interacting fields.

Still, perturbative terms like Aar (x)™ can be defined with-
out problems. In the following, the product in configuration
space A(‘; (x)? is investigated in detail in configuration as
well as in momentum space. Defining A;‘ (x) = (Aar (x))z,
one calculates

F(AF ) k)

— (21)2/d4xe+ikx (2])2/d4k/
T T

) AJ (kK)e / d*k"AG (ke M,

L (88)
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and using
/ dhx e EK DY = )P (k — k' — k) (89)

this implies

AT )
- (27)2 /d4k, d*x” A(J)r(k/)A(J)r(k”) SOk — k' — k")
T @n)? / d A (DA] (k= Ky
= _(2ﬂ)_4/d4k/ @(k/O)S(k/2)®(k0 _ k’o)ﬁ((k _ k/)z).

(90)

The integral Eq. (90) vanishes if k* ¢ V*, i.e. if k is not in
the closed forward light-cone

vVt = kk® > 0,k*> > 0}. 91)

In a Lorentz system where k = (ko > 0, 0), due to the first
©- and §-distribution in Eq. (90) one has E = |k'| = k{, and

8((k — k")) = 8((ko — k'0)* — E?) = 8(k} — 2koE), (92)

and therefore

317
A (k) = —(271)*4/ %@(ko — E)s(k3 — 2k°E)
o [ AT SKC/2 — (K)
= —em [ w1 Tk ew - W) =g
Ki=k2 1 0
= 4(2n)3®(k ). (93)
For arbitrary k it follows that
Af () = — O k%O (k?). (94)

42m)3

As a further step, the meaning of the expression A}¥ (x) =
(A(‘)|r (x))" is investigated in configuration space. Obviously,
AF(x) = (AF ()" ~ 1/x2" = 1/(x)" is very ‘singular’
in x-space. For n > 2 and x* # 0 one easily derives

1 dn(n — 1)
O = 95
((xO _ is)z _ xZ)n ((xO _ i£)2 _ x2)n+1 ( )
translating into
OAf(x) = —16imn(n — DA (x). (96)
In momentum space, this implies
—kK*Af (k) = —16in*n(n — DAY (k) 97)

@ Springer

or

2

AY )= ————
w1 () 16in2n(n — 1)

A k), (98)

and inductively it follows for n > 2 that

(_i)n(kZ)n—Z

A+ _ 0 2
Bn () = 4n=12m)2n=1(n — 1)!(n — 2)!®(k Y.
(99)
Hence, the Fourier transform of
DT (x —y) = (0] : e 71890 1 e 89 |0)
=3 @A @ - T (100)
o n!
sums up to
2
Dt (k) = @)% W (k) + 5—n®(k0)8(k2)
g 0 2
3y O*NOED) £
2
= 2@ ®) + -O*"sK?)
2
> 2(g%)" (k*)" 2 0@ (12
+’§2 @Am)2=1nl(n — 1)(n — 2)!®(k YO
(101)

This expression is, up to a normalization constant, the cor-
rect expression for Eq. (14) in [8], where the combinatorial
coefficients are stated incorrectly without a derivation.

In order to highlight the high-energy behavior of the above
expression we introduce the function

o n

X
d(x) = 102
) Zn!(n—l)!(n—Z)! (102
n=2
For x > 1, d(x) asymptotically behaves like
d(x) ~ ——x 33" (103)
2

The derivation of this result is given in Appendix B. lA)+(k)
grows faster than any polynomial on the momentum-space
forward light-cone. Therefore, D+ does not belong to the
Schwartz space of tempered distributions, since an integral
of the form

D) = / 'k D (R (k) (104)



Eur. Phys. J. C (2014) 74:2689

Page 9 of 20 2689

does not exist forall g, § € S(R*), despite the rapid decrease
of such functions. However, the integral Eq. (104) exists if g is
of compact support. Unfortunately, a non-vanishing Fourier
transform g (k) implies that g(x) does not have a compact
support in configuration space, which hampers the definition
of causality according to Eq. (33).

However, Jaffe [9] has shown that it is still possible to
construct a restricted space of test functions in configura-
tion space which contains test functions of compact support,
such that the principle of causality can be formulated and
the fields in the derivative coupling model can be considered
operator-valued distributions on the appropriately chosen test
function space; it is possible to find test functions with com-
pact support which have a Fourier transform decreasing so
fast that integral like the one in Eq. (104) exist. One finally
may conclude that even a physically trivial interaction may
enforce a formalism which goes beyond the well-behaved
setting of Schwartz distributions, which lies at the basis of
perturbatively renormalizable QFTs.

4.4 Operator field equations of motion

Equation (3) contains the product of two field operators.
A ‘subtraction’ or regularization is necessary to define the
equations of motion of the derivative coupling model. In
fact, normal ordering in the sense of a subtraction leads
to

(aﬂgayﬂw)reg(x)
=: 0, 0(x)yH Y (x) :
= lim [0y ¥ () = 0100y ¥ (1)[0)]
= Jim [+ dup(0) 5y Yoo~

—gd AT (x — y)y* : Po(x)e W . (105)

5 ‘Fermionic’ version of the derivative coupling model
5.1 Gauge charge operator for free fields

Before turning back to the derivative coupling model, some
remarks concerning the gauge structure of perturbative
quantum electrodynamics (QED) are in order. Consider-
ing the free massless neutral vector potential prominent in
QED obeying the wave equation DA (x) = 0 in Feynman
gauge, the Fourier representation reads (o = k* = |k| =

VK K3+ kD)

3
At (x) = (27-[)73/2/ % (a,u(k)efikx —i—a”’(k)Teikx),
(106)

and can be quantized in Lorentz-invariant form according to

[A*(x), A"()] = —igh"Ao(x — y). 107

The commutators of the absorption and emission parts alone
are

[A% (x), AL ()] = —ig"" Al (x — ),
[AR(x), AY(D] = —ig"" Ay (x — ).

In classical electrodynamics the vector potential can be
changed by a gauge transformation

(108)
(109)

A (x) = A" (x) + A 0*u(x), (110)
with u (x) again fulfilling the wave equation Ou(x) = 0 since
the transformed field A’#(x) still should satisfy the original
wave equation and the same commutation relations Eq. (107)
as A*(x). This is true if the gauge transformation Eq. (110)
is of the following form:

A (x) = e TPC AR (x)ehC, (111)
where Q is some operator in the Fock—Hilbert space the pho-
ton field lives in. Expanding Eq. (111) by means of the Lie
series

= A (x) — ir[Q, AF(x)] + 0P (112)

and a comparison with Eq. (110) leads to the condition

[0, A*(x)] =i 3" u(x). (113)

The operator Q will be called gauge charge because it
is the infinitesimal generator of the gauge transformation
defined by Eq. (110). Its importance relies on the fact that
the factor space given by the kernel and the closure of the
range of the gauge operator Fp, = Ker Q/RanQ is iso-
morphic to the subspace of physical photon states [10,11].
Before clarifying what this means, the following remarks are
in order.

Firstly, it is not clear at the present status of the discussion
whether the field introduced in Eq. (110) has to be consid-
ered as a classical C-number field or a quantum field. It will
turn out that it can be treated as a classical or a quantized
bosonic field in QED, however, for non-abelian gauge theo-
ries like quantum chromodynamics (QCD) the u-field nec-
essarily becomes a fermionic scalar field, also called a ghost
field. We will call the massless scalar field « a ghost field in
the following, irrespective of the fact whether it is quantized
or not, bosonic or fermionic.

Secondly, the commutator given in Eq. (107) generates a
problem for & = v = 0: g% has the wrong sign, making it
impossible to have time-like photon states with positive norm
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if one insists on the hermiticity of the A%-field component.
The positive frequency Pauli-Jordan distribution for time-
like photons would acquire the opposite sign as exhibited by
Eq. (59). The situation is remedied by defining a so-called
Krein structure [11,12] on the photonic Fock—Hilbert space.
Introducing a conjugation K

ao(k)X = —ap(k)', a;)K =a; k)", j=1,2,3,
(114)

so that A/If = A,, allows one to maintain the positive-
definiteness on the Fock—Hilbert space which is comprised
in the definition of a Hilbert space, however, the redefined
field

(e — a"tote™) = afs
w

3
Al(x) = (271)—3/2/%

(115)
which will be used from now on is no longer a hermitian

field. In accordance with the commutation relations Eq. (107)
holds

[a" k), a" (K)'] = §""6D (k — k),
[a"(k),a"(K')] = [a"(k)T,a" (k") = 0.

(116)
(117)

Fortunately, abandoning the hermiticity of the zeroth compo-
nent of the gauge potential does not invalidate the unitarity of
the S-matrix in QED on the physical subspace of transverse
photons [10].

The gauge transformation operator with the properties
required so far turns out to be

0= / P 9, A™ () g (). (118)

xp=const.

0 has the physical dimension of a scalar or vector field, an
energy, or an inverse length squared. It is sufficient for the
moment to consider u as a real C-number field. In any case
anticipated so far it can be shown that Q is a well-defined
operator on the Fock space. It is not important over which
space-like plane the integral in Eq. (118) is taken, since Q is
time independent:

Q = / d3x (—BgauAﬂu + BMA"agu)

xp=const.
= / Bx (= A A U+ 0, A" Au)y=0. (119)
Xxp=const.

This formal proof uses the wave equation and partial inte-
gration. Another way to understand the time independence
of the gauge charge is to define the gauge current

@ Springer

<>
jE=0,A"0"u, Q= /d3x i (120)
which is conserved
dujlt = 0, (3, A" u — 3"9,A"u) = 0. (121)

Besides the crucial property of the gauge charge expressed
by the commutator with A*

[0, A" (0)] = id"u(x), (122)
all higher commutators like
[0.[0.A*()]] =0 (123)

vanish for a bosonic or C-number ghost field u, but not for a
fermionic ghost field. Equation (122) can be derived by using
some distributional properties of the massless Pauli—Jordan
distribution

Ad(x) = — / d*k 8(k*)sgn(kg)e k. (124)
(2m)3

Using the identity

82 = 86 — k) = o (566" — Ikl) + 360 + kD).
0 2|k9

(125)

leads to

A% (x) = _i/d4k

0 T @) 240

x (8(k0 — lk|) — 8k + |k|)(—ik0)e_ik"

_ _ 1 3/d3k (efi(|k|x07kx)+efi(f|k\x07kx)>_
2(2m)
(126)

Restricting this result to x* = 0 implies
30A (0)0g = —2m) 3 / Sret™ = 53 (x). 127

In acompletely analogous way, one derives for the derivatives
of the Pauli—Jordan distribution restricted to the space-like
plane x* =0

BA ()09 =0, VA’ (x)|,0_9=0. (128)
Note that we always consider the well-defined differentiated

distribution first, which then gets restricted to a subset of its
support. The commutator is now given explicitly by
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[0.4,(0] = d¥x 9, A" (x) 3 u(x), Ay (y)

x0=y0
=—i / FPxat A% — ) O u(x). (129

x0=y0
Here, use was made of the freedom to choose any constant
value for xY. Setting xY = yO, such that x9 0 —0and
applying Egs. (127) and (128) in the sequel, one has for u = 0

[0, Ao(]=—i | dxofa’x—y) d ulx)

x0=y0
=i / x 8% (x — y)Fu(x) = idou(y)

x0=y0

(130)

due to the double time-like derivative of A vanishing on the
integration domain according to Eq. (128). The result for the
commutator of Q with the space-like components of A is
also obtained by using Eqs. (127) and (128) and by shifting
the gradient acting of the Pauli—Jordan distribution by partial
integration on the ghost field.

From the Lie series

e—i0 g1 tir0

i\ 22
=AM ’1—,[Q, AY] = 210,10, AM ) + -

= A" —iA[Q, AM] = A* + 2dMu, (131)

it follows that Q is indeed a generator of gauge transforma-
tions for a C-number ghost field u; it is a simple task to show
thatalso [Q, i0"u] = [Q, [Q, A*]] = 0 holds in the case of
a bosonic massless ghost field.

As a further step fermionic ghost fields are introduced.
u(x) is assumed to be a fermionic scalar field with mass
zero which has the following Fourier decomposition (w (k) =
|k1):

ux) = @2m)~ 3/2/ (cz(k)e_ikx +c;;-(k)eik"),

(132)

V2o (k

and in addition, a further scalar field shall be defined by

( e (lye™ s 4 c;<k)eka),
(133)

32
() = (2m)” f m

with absorption and emission operators c;, c,: obeying the
anti-commutation relations

{ej), cf (k")) = 8189 (k — k). (134)

Conventionally, the i-field is called an anti-ghost field. The
absorption and emission parts with the adjoint operators will
be indexed by £-signs below again. They satisfy the follow-
ing anti-commutation relations:

{u™ (), a* ()}

=Q7)73 / &k e =Y — At (x — y) (135)
2w (k) ’
{ut ), @~ ()}
—Qm)? / &k KO — i AT (x — y) (136)
2w (k) '
All other anti-commutators vanish. This implies
{u@x), u(y)} =iAx —y) (137)

and {u(x),u(y)} = 0. Still the nilpotent gauge charge Q
satisfying Eq. (113) is given by

def 3 g
0= /d x [0,AYdou — (390, A”)u] = /d x0,A" dou

(138)
where the integrals are taken over any plane x* = const.
Using the Leibnitz rule {AB, C} = A{B,C} — [A, C]B

for graded algebras for the present gauge charge for massless
spin-1 fields

1 <
0*=310.01=5 [ @A wiHouw. 0l
Xxp=const.
—% f d*x[0, A" (x), Q]gou(x) =0 (139)
xp=const.
together with the facts that {u(x), u(y)} = 0 and
[0,AY(x), Q] = —i0,0"u(x) =0 (140)

finally shows that Q is nilpotent.

On the ghost sector, the Krein structure is introduced by
Ky =clth), Ko =cim), (141)
so that u® = u is K -self-adjoint and X = —ii. Then Q is
densely defined on the Fock—Hilbert space and becomes K -
symmetric 0 C QX . Roughly speaking, the K-conjugation
is the natural generalization of the usual hermitian conjuga-
tion to the full (unphysical) Fock space F which contains
time-like and longitudinal photons as well as the fermionic
ghost states. Again, positivity on the Fock—Hilbert space can
only be maintained by the introduction of the Krein structure.
Enforcing K = { would necessitate the existence of negative
norm states in the ghost sector. The strategy preferred here
is based on a true Hilbert space approach.
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It is convenient to introduce bosonic operators which
destroy or create unphysical photon states which are a com-
bination of time-like and longitudinal states

bia = (aj£ap)/V2, aj=kjal/lk, (142)

satisfying ordinary commutation relations

[bi (), b ()] = 88 (k — k') (143)
Then, the gauge charge Q itself is given by

0=V2 / Erw@byk)cak) + b ()], (144)

The explicit form of the gauge charge reveals that it gen-
erates a transformation where unphysical photon states are
transformed into ghost states and vice versa. The transverse
physical photon states remain unaffected by a gauge trans-
formation.

A calculation using the decomposition of the anti-
commutator

(bl (k)e1 (), ] (k)by (K))
= b] (k) {c1 (k), c] (k))b1 (k') — [b] (k), ] (k)b (K')]ey (k)
= (b} (k)b (k) + | (k)1 (k)8 (k — k') (145)

shows that the anti-commutator

(0", 0) =2 [ kK] hopi

b5 (k)by (k) + ¢ (k)e (k) + c (k)ea (k)]
(146)

is essentially the number operator for unphysical particles
apart from the phase space factor w (k)2 = k>. Therefore, if a
state |®) in the Fock—Hilbert space satisfies (0T, 0}|1®) =0,
it contains physical transverse photon states only. Hence, the
physical Hilbert space is the kernel
Fohys = Ker(Q", Q). (147)
Additionally, since {QT, 0} = OTQ + QO is self-adjoint
and positive

(@(QT0 +00H®) = [|QW|* +[IQ7®|> = 0. (148)
This expression vanishes only iff Q® = QT® = 0, leading
to another characterization of the physical Hilbert space

Fonys = Ker 0 N Ker Q. (149)
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Ker Q is a subspace of F and orthogonal to the closure
Ran QT of the range of Q7 since for |®) € Ker Q one has

(QD|W) =0 = (P|QTW). (150)
In fact, F has the direct decomposition
F =Ker Q ® Ran QT = Ker Q*@RanQ. (151)

This can be proven by noticing that the domain Dom(Q")
is dense in F, so if (Y|QTW) = 0 for all ¥ € Dom(Q"),
then (QY|W) = 0, implying |QY) = O or |T) € Ker Q.
Using the nilpotency Q2 = 0 one sees from (QTW|Q®) =
(W|Q?®)0 = that Ran QT is orthogonal to Ran Q. Conse-
quently, F has the direct decomposition

F =Ran Q' @ Ran Q & Fphys. (152)
Indeed, if P and P, are projection operators on the first two
subspaces above, due to orthogonality one has PP, = 0 =
P, Py . Itfollows that the projection operator on the orthogonal
complement of P 7 is given by

1= (P14 P)=010-P) - P), (153)
which is the projection onto Ker Q N Ker Q, the physical
subspace. Obviously,

Ker Q = Fpnys @ Ran Q, (154)
accordingly
Fonys = Ker O/Ran Q. (155)

One may note that Ran Q = Dom( 0~ 1 is indeed not closed
since Q! is unbounded for a massless gauge field A*.

Returning to the defining property of Q as being the
infinitesimal generator of gauge transformations given by
Eq. (111) and Eq. (113), the notation
doF =[Q, F], (156)
if the (normally ordered) product of free fields F' contains
only bosonic fields and an even number of ghost fields, and
doF ={Q,F} = QF + FQ, (157)
if F contains an odd number of ghost fields, may be intro-
duced for practical reasons. Then d has all properties of an
anti-derivation, in particular the identity

{AB,C}=A{B,C} —[A,C]B (158)
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implies the product rule

do(F(x)G(y)) = (doF(x))G(y) + (=1)"" F(x)dpG(y),
(159)

where n F is the ghost number of F, i.e. the number of u’s in
F minus the number of u-fields. The gauge variations d¢ of
some free fields now are

dQA’L =i 0"u, dQAl:f: =i 0Muy, dou =0,
doii ={Q, i} = —id, A", doiiyx = —id, Al

(160)
(161)
The latter follows from the anti-commutation relation Eq.
(137). dg changes the ghost number by one, i.e. a bosonic

field goes over into a fermionic field and vice versa. Then the
nilpotency Q% = 0 implies for a bosonic field Fp

dpFp =1{0Q,1Q, Fpl}
= Q(QFp — FpQ) + (QFp — Fg0)Q =0, (162)

and for a Fermi field F

dyF =10.10. F}]
= Q(QFp+FpQ)— (QFp — Fp0)0 =0,

hence

(163)

dy =0 (164)
is also nilpotent. For such situations one can use notions from
homological algebra, for example, if
F =dgpG, (165)
the F' is called a coboundary [13]. The gauge variation dg
has some similarity with the BRST transformation in the
functional approach to QCD. However, the BRST transfor-
mation operates on interacting fields (mainly classical) and
the quantum gauge invariance which will be defined below
for free fields displays some technical differences compared
to BRST invariance [14].

To end this section, the operator gauge transformation
when working with fermionic ghosts shall be considered.
It is straightforward to see that the Lie series

. . iA A2
e MO AReTII0 — AM_F[Q’ AM]_E[Q’ [0, AH]]+---

(166)

terminates after the second-order term. Since

[Q,u(x)] = Qu(x) —u(x)0 ={0, u(x)} — 2u(x)Q
= —2u(x)Q,

(167)

one has

[Q,u(x)Q]=[Q,u(x)]Q +u(x)[Q, 0] =0, (168)

or, stated equivalently

[Q, u(x)Q] = Qu(x)Q — u(x)Q?
= Qu(x)Q +u(x)Q* ={Q,u(x)}Q = 0.
(169)

Consequently, the gauge transformation of the gauge poten-
tial is found to be given by

A (x) = A*(x) 4+ A" u(x) + ir20"u(x)Q

= A*(x) + *u(x)(h +ir2Q). (170)
Analogously, one finds for the ghost fields
w'(x) = u(x) +2irlu(x)Q, (171)

i (x) = i(x) + AQiii(x)Q — 9, A (x)) — ix29, A" (x) Q.
(172)

5.2 Definition of perturbative quantum gauge invariance

We take the next step towards full QED and couple photons
to electrons. In perturbative QED, the S-matrix is expanded
as a power series in the coupling constant e. At first order,
the interaction is described by the normally ordered product
of free fields

Hin () = —LEP(x) = —e : D@y W) : Au(x), (173)
where W is the electron field operator and e = —e > 0 the
elementary charge. The S-matrix is then usually given in the
literature by the formal expression (7" denotes time ordering)

0 \n
S=1+) %f d*xi. . d, T[Hin (1) - Hing ()]
n=1 ' R4n

o0
1
=1+ § — | d* .. &%, T (xa, . . x0), (174)
1n!
n=

where we have introduced the time-ordered products 7}, for
notational simplicity, and we have
Ti(x) = —iHint(x) = ie: W(x)yHW(x) : Ay (x). (175)
Expression (174) is plagued by infrared and ultraviolet diver-
gences. We leave this technical problem aside and we assume
that the 7,, are already regularized, well-defined operator-
valued distributions, which are symmetric in the space coor-
dinates (xi, ..., X,).

A precise definition of perturbative quantum gauge invari-
ance for QED, which works in a very analogous way for
QCD, can be derived by investigating how infinitesimal
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gauge transformations act on the higher orders of the per-
turbative S-matrix. One considers the (anti-)commutators

{Q,u} =0, {Q.u}=
[0, ¥]=0.

—id, A",
(176)

[0, A,] = id,u,
[0, V] =

The commutators of Q with the electron field are of course
trivial, since the operators act on different Fock space sectors.
Only the first and the last two commutators in Eq. (176) are
needed here, the others would become important in QCD.
Note, however, that ordinary commutation relations of the
electron field with Q or the ghost fields # and # can be
switched into anti-commutation relations by a Klein transfor-
mation (see [15] and references therein) without changing the
physical content of the theory. From Eq. (131) one knows that
the commutator of Q with an operator gives the first-order
variation of the operator subject to a gauge transformation.
Then, for the first-order interaction 7T

[0, T1(x)] = —e : W)y W(x) : Buu(x)
= idy(ie: W)y W) s ux) =id T} ().
(177)

Here, electron current conservation was used

9, WyHw :=0. (178)
Note that the free electron field is not affected by the gauge
transformation. The term
T{j] =ie: UyHWw :y, (179)
called the ‘Q-vertex’ or ‘gauge vertex’ of QED, can be used

in a generalized manner from the first-order equation (177)
to the nth-order:

[Q, Tu(x1, ... xn)] —lza;yT,,’j,(xl,... Xn)

= (sum of divergences), (180)

where Tn“/ ; 1s again a mathematically well-defined version of
the time-ordered product

=TT .- T () - T (),

(181)

T/ @)

thereby defining by Eq. (180) the condition of gauge invari-
ance in QED [16].

If one considers for a fixed x; all terms in 7,, with the
external field operator A, (x;)
Tu(xy, .. X)) Ap(xg) A

xp) =1 (xq, . (182)
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(the dots represent terms without A, (x;)), then gauge invari-
ance Eq. (180) requires

oL [t (xr - xp)u(x)] = 1 (1, - X) e (X)) (183)
or
it (x1, ... xn) =0, (184)

i.e. one obtains the Ward-Takahashi identities [17] for QED.
The Ward-Takahashi identities express the implications of
gauge invariance of QED, which is defined here on the oper-
ator level, by C-number identities for Green’s distributions.

The main property of gauge invariance of perturbative
QED can be stated as follows: there exists a symmetry trans-
formation generated by the gauge charge Q, which leaves the
S-matrix elements invariant, since the gauge transformation
only adds divergences in the analytic sense to the S-matrix
expansion which vanish after integration over the coordinates
X1, ...Xp.

The observation that QED is gauge invariant is interest-
ing on its own, but the true importance of gauge invariance
is the fact that it allows one to prove on a formal level the
unitarity of the S-matrix on the physical subspace ([16]. Due
to the presence of the skew-adjoint operator A in the first-
order coupling term Eq. (173) which defines the interaction
between fermions and gauge fields or the related presence of
unphysical ghost and longitudinal and time-like photon states
in QED formulated in a local and renormalizable gauge, the
S-matrix is not unitary on the full Fock space, but it is on
Fphys- An full algebraic proof shall not be given here, but
we emphasize that gauge invariance is the basic prerequi-
site which ensures unitarity, a fact which becomes plausible
when one assures oneself that a gauge transformation acts
only on the unphysical sector of a gauge theory. A detailed
discussion of this fact can be found in [11, 16, 18]. Ghosts are
introduced only as a formal but convenient tool, they ‘blow
up’ the Fock space and they do not interact with the electrons
and photons. In QCD, the situation is far more complicated
than in QED when non-perturbative aspects of the theory
have to be considered.

The perturbative expression Eq. (174) is problematic,
because the time-ordered products 7, are operator-valued
distributions after regularization, and they have to be smeared
out by test functions. In order to be more precise in the
mathematical sense, one has to introduce a test function
g0(x) € S(R*) normalized such that go(0) = 1 and replace
expression Eq. (174) by

S=1+ Z /d4x1 d Xn Ta(x1, ... x0)g0(x1) - .. 80(xn)-

n= 1

(185)
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Here, go acts as an infrared regulator, which switches off the
long range part of the interaction in theories where massless
fields are involved. E.g., in QED the emission of soft photons
is switched by go, and as long as the so-called adiabatic limit
go — 1 has not been performed, S-matrix elements remain
finite. One possibility to perform the adiabatic limit is by
scaling the switching function go(x), i.e. one replaces go(x)
by g(x) = go(ex) and performs the limit ¢ — 0, such that g
and the coupling strength everywhere approaches a constant
value. If the S-matrix is modified by a gauge transformation,
operators which are divergences are added to the nth-order
term 7,,. Such a contribution can be written as

/d4x1...d4xn
ey Xy e Xp)g(x1) g (xy) . g(xy)

= f/d4x1 ...d4xn
X7

x O (xy, ..., Xy Xn)8(x1) . 35 g (xp) ... g (Xn)-
(186)

In the adiabatic limit, the gradient 8;2’ g(x;) vanishes. Unfor-
tunately, this property of the scaling limit does not guarantee
that the whole term Eq. (186) vanishes. Introducing a switch-
ing function go is the natural infrared regularization in the
framework of operator-valued distributions, but it destroys
the Poincaré invariance of the theory and leads to a problem
to define the physical vacuum. Whereas this problem more
or less might be under control for QED, it is a serious prob-
lem expressed by the catchwords ‘infrared slavery’ for QCD.
The infrared problem is not really understood in QCD, and
all proofs of unitarity which exist in the literature have to be
taken with a grain of salt, because they avoid the discussion
of infrared problems somehow.

The fermionic derivative coupling model defined in the
following section emerges as a special limit when one con-
siders perturbative QED with a vanishing coupling constant
e, maintaining only an unphysical part of the interaction.

5.3 The model
Starting from the field equations again, keeping in mind that

one has to take care of the order of products in the case of
fermionic fields, one has

(iypdt —m)y(x) = gd' () yu v (x), (187)
e (x) =0, (188)
DA™ (x) = 0. (189)

The gauge field A*(x) is rather an additional spectator. The
coupling termin Eq. (187) emerges when considering a gauge
transformed version of the first-order coupling term in QED
given by Eq. (175) according to Eq. (170), in the limit where
e — 0but er? = g held fixed.

We define ¢(x) = —i Qu(x) with the help of the gauge
charge operator given in Eq. (144) and use the fermionic
scalar field with the properties displayed by Eqgs. (132)—(137).
An operator solution of the equation of motion above then
reads

¥ (x)

e~y (x)

[1 — gQu(x) + &> Qu(x) Qu(x) + - -+ 1o (x)
=[1 — gQu(x) — g2 Q*u(x)u(x) — - Wo(x)
= [1 — ige(x)]Yo(x).

Here we use the free fields A*(x) and ¥ (x) acting on the

Fock-Hilbert space introduced in the discussion of QED,
satisfying

(190)

OA¥(x) =0, (iy.d" —m)yo(x) =0, (191)
and ¢(x) satisfying the commutation relation
lo(x), e(M] = —[Qu(x), Qu(y)]

= —Qu(x) Qu(y) + Qu(y) Qu(x)

= Q% uu(y) = Q*u(yu(x) =0.  (192)
Since {Q,u} = 0, we have Qu = —u(Q. Additionally,
Q is nilpotent, Q%> = 0. u is an unphysical Fermi field,
u@ulx) =: ux)ulx) := — : u(x)u(x) := 0 and

: 0"u(x)u(x) := 0 hold and similar identities hold for ¢,
accordingly,

Yo(x) =[1+igp)][1 —igp(x)]o(x) =[1+igp(x)]¥ (x).
(193)

Inserting the operator solution Eq. (190) into Eq. (187) leads
to

(iypd" —m)y(x)

=iy 0" ([1 —ige()]Yo(x)) — my(x)
[1—ige@)][iy,d" Yo (x) —mipo(x)]+gd" @ (x) v o (x)
= gd" ()1 +igp()]yuy (x) = 83" p(x)yu ¥ (x).

(194)

The interaction term is unphysical and gauge invariant in
the sense that

[Q, Hint(x)] = —g[Q, : Y (x)y* ¥ (x) : dup(x)] = 0.
(195)

Hine is K-symmetric like X = (—iQu)X = iuk Q¥ =
—iQu = ¢.

The model presented above can be modified in the follow-
ing way. Let a(x) be a C-number field with a (0, x) € S(R3)

@ Springer
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satisfying the wave equation [Ja(x) = 0. Then one has the
Fourier decompositions

(ai(k)e—ikx +a+(k)e+ikx)’

d3k
a@@) = / V2213w (k)

(196)

Boa(x)zi/d3k w (k) (—a (K)e= ' 4 ¢ (k)e'Hk")
2073\ + ,

197)

again with kX = w(k) = |k| and kx = k°x° — kx and anal-
ogous Fourier representations hold for the operator-valued
distributions u#(x) and dou(x).

The definition of the operator

Q = / d3x a(x)gou(x)

xpo=const.

(198)

is time-independent; for xop = O one obtains
d3k

i w (k)
¢ / — | &k =
(2m)3 / ! V2o (k) 2

x [(a— (ke > + a+(k/)e*"k,x>

0=

X (—cz (k)e'™* + clf(k)e_ikx>
- (—a, (k)ek* 4 a+(k)e_ikx>

x (Q(k’)e”"x + cj(k’)e*”‘*)]
i

=3 / k[ ~a(~kpesth) — ay es )

+a_(—k)ca(k) — ay (k)ca (k)
+a_(k)e] (k) + ay (—k)cl (k)

t+a- (ke (o) = ar (~)c] (k) |

=i / Pk[—ay k)ea (k) + a_(k)c] (k). (199)

Again one has Q2 = %{Q, Q} = 0, therefore the model dis-
cussed above can be formulated with O instead of Q without
a quantized vector field A* when a* (k) = a (k) is invoked,
i.e. a(x) must be real. Then Q becomes K -symmetric, since

ok =i / Br[—a* (k)ea k) + @ (k)e] (k)] (200)

and the Krein correlator of the 1/-field remains trivial,

{01%0 ()P0 (1)10) = (Ol (x)¥rg (1)10) = (0% ()X ()10).
(201)

@ Springer

However, since

(0" 0)= / Ch(la-B)* + la+R) ), (202)
the original specification of the physical space according to
Eq. (147) is lost. It is left to the reader to couple the ghost
field u instead of ¢ to ¥ in the same way as a simple exercise.

The fermionic model is physically trivial, the formalism
rather involved, but at the same time we have one possi-
ble variant of the classical derivative coupling model which
served here for the introduction of the concepts related to the
operator gauge formalism. Non-renormalizable expressions
or non-tempered distributions nowhere appear, despite the
dimension of the coupling term.

6 Conclusions

The two models presented in this work are a tool to demon-
strate the fact that there are several ways to quantize a clas-
sical field theory. The models also clarify that the réle of the
fields is rather to implement the principle of causality, but the
type and number of the fields appearing in a theory is rather
unrelated to the physical spectrum of empirically observable
particles. The fields are coordinatizations of an underlying
physical theory and carriers of charges which finally serve to
extract the algebra of the observables.

From a distributional point of view, theories based on
point-like localized quantum fields may indicate that the
frame of Schwartz operator-valued distributions favored in
perturbative QFT is too narrow, but it remains unclear
whether a loss of the original concepts using tempered dis-
tributions can be avoided within a suitable formalism.
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Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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Appendix A: A distributive toolbox
A.1 Support

A distribution d € S’(IR") is called regular, if it can be rep-
resented by

d(f) = /dxd(X)f(X), (203)

Rn

where d(x) is a locally integrable function and f € S(R").
This close analogy between functions and distributions leads
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to the definition of the support of distributions. The support
of a function defined on R” is the closure of the set where
the function is non-zero,

supp(f) = {x € R"| f(x) # 0}. (204)

A point x belongs to the support of a distribution d iff
for every neighborhood U, of x a function f exists with
supp(f) C Ux and d(f) # 0.

A.2 Tensor product of distributions

Let dy € S'(R"), dy € S'(R™). Then a unique distribu-
tion & € S'(R"™™) exists such that for all fi(x) € S(R"),
f2(y) € S(R™)

h(f1(x) 2(0) = di(f1(x)da(f2(y)). (205)

h = d| ® d, is the tensor product of dy and d>. A simple
example is given by the product of Dirac distributions

sWx) =8(xHs(x?) ... 6(x"), x= ("%, x",
(206)

where

/ a3 8 () f(x) = £(0). (207)

R~?

The Fourier transform of the above distribution is given by

8™ (k) = 2m)™?,

/d"x eik1x1+...+ik"x” — (271')”8(”)(]()
]R/‘l

(208)

In close analogy, tensor products of free fields, e.g., the
products of two scalar fields on R* like @(x)@(y), are
again operator-valued distributions, in the present case on
R®. However, products like 6(x)8(x) (or ¢(x)@(x)) are ill-
defined, but they can be regularized (by normal ordering) in
order to have well-defined (operator-valued) distributions.

A.3 Principal values and regularization

Animportant distribution is P %, i.e. the principal value of the
singular function 1 /x € C(IR\0) interpreted as a distribution:

| 1 d
P—(f) = lim / FPAC R S
X £\0 X X dx

|x|>e

(209)

P }C is a regularization of the divergent expression )lc Without
regularization, 1/x is only defined on

So(R) ={f € SR)| f(0) =0}, (210)

where the singular behavior of 1/x at x = 0 gets absorbed.
P 1

¢ can be viewed as an extension of % to the whole

o(R)
test function space S(R) according to the Hahn—Banach the-
orem. One may also write

P%(f) - /dx @ = F=x) 211

X
0

A canonical regularization of the divergent, non-
regularized integral

f(x)
anah = [acds e12)
R
is possible by shifting the derivative
1 /
dije(f) = [ dx P—f'(). (213)
R
Equivalently, one may regularize
[ F0+ [0 ~2f0)
_ X))+ f(—x)—
(72, Preg =/dx = . 214)

0

A.4 Renormalization

In regularization procedures, a distribution declared by a
divergent expression becomes properly redefined within a
range of permissible solutions allowed by physical condi-
tions. Subsequent renormalizations within this range then
may be performed. It is often exploited that certain distribu-
tions exhibit a specific scaling behavior. E.g., the renormal-
ization
dij>—>dyj2+C- 8 (x) (215)
respects the scaling behavior (A > 0) of the distributiond, 2,
because

5'(f) = —f'(0) o / dx 8'(x) £ ()
R

- / dx 8(x) f'(x)

R

(216)

@ Springer
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scales as
, x'=Ax dx’ Tt ’
dx 8" (Ax) f(x) " = 75 (D) f(x/2)
R R
dx’ 1
= [ S W == O,
R
217
ie.
8’ (x) = 2728 (x) (218)
and
dy)2(Ax) = OX)reg = 2 72d) 2(x). (219)
A.5 Sokhotsky—Plemelj formula
The distributions
! P gy 8(x) (220)
= — T s
xki0 a1 TOW
are often constructed from a limiting procedure,
IO e = tim [ L9 g (221)
x +i0 e\0J x +ie
R R

One easily derives the distributive identities below by con-
sidering the logarithm in the complex plane, where log(z) =
log |z| + iArg(z),

d 1 d d
—1 10) = =—1 — (7O (—
ix og(x +i0) Tri0 - dr 0g(|x|)+dx(l7f (—=x))
1
=P— —ind(x). (222)
X
Differentiating » times leads to
d 1 1
dx x +ie  (x+ie)?’
o1 2 1
dx2x+ie  (x+i€)d T dx"x +ie
=y —2 (223)
B (x +ieyntl’
therefore
1 l
=P — (= Egin 224
o = P ) 5% (224)

where 87 (x) denotes the n-fold derivative of §(x) here, not
the n-dimensional Dirac distribution often used in the paper.

@ Springer

A.6 An important remark

A multiplication of tempered distributions which is commu-
tative and associative cannot be defined in general. One has

(xS(x))Pl _orl o # 8(x) <xpl) =5(x). (225)
X X X

Unfortunately, distribution theory is linear. This is the origin
of ultraviolet divergences in perturbative QFT. The problem
may be illustrated by an analogy where one considers the
Heaviside-®- and Dirac-§-distributions in one-dimensional
‘configuration space’. The product of these two distributions,
®(x)8(x), is obviously ill-defined; however, the distribu-
tional Fourier transforms

V2R F(8}(k) = N 27é(k) = /dxa(x)e*f"x =1, (226)

R

V270 (k) = lim / dx © (x)e Tk¥—ex
6\0
R

—ikx—ex | i
- (227)

ie

= lim
N0k —

0

exist and one may attempt to calculate the ill-defined prod-
uct in ‘momentum space’, which formally goes over into a
convolution,

V27 F{O8} (k)
= / dx e O (x)8(x)

8(/{”) +ik” x

R
=/dxe_’k" e — QK )etikx /
R JT \/

(228)

Since [, dx el WHK'=h)x — 27 5(k" 4+ k” — k), one obtains

@f{@S}(k)=/dk AU (k— k)—__/ d"’

R
(229)

The obvious problem in x-space leads to a ‘logarithmic UV
divergence’ in k-space. A concise description of the scaling
properties of distributions, related to the wide-spread notion
of power counting and the superficial degree of divergence
of Feynman integrals, is crucial for the correct treatment of
singular products of distributions in perturbative QFT. There,
the rdle of the Heaviside ®-distribution is taken over by the
time-ordering operator. The well-known textbook expression
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for the perturbative S-matrix given by

+00
g Z _l) / dry .. / dt, T[Hin(t1) - . . Hin(ty)]
_ Z —l> / . / A T[Hin (x1) . Hin (),
R4
(230)

where the interaction Hamiltonian Hin(¢) is given by the
interaction Hamiltonian density Hin(x) via

Hin($) = [ &5 Hin), @31)
is problematic in the UV regime (and in the infrared regime,
when massless fields are involved). A time-ordered expres-
sion a la

T Hine(x1) - . . Hine(x5)]
= Y 0@} —xm,).

Perm. IT1
XHim()C[‘[l) .

00, — )

Hint (an )

is formal (i.e., ill-defined), since the operator-valued distri-
bution products of the Hipy are simply too singular to be
multiplied by ®-distributions.

(232)

Appendix B: Asymptotic behavior of d(x)

The symbol ~ will be used in the following for asymptotic
approximations, i.e. f(x) ~ ®(x) if f(x)/P(x) tends to
unity for R 3 x — 400 according to Landau [19]. Then f
is asymptotic to @, or ® is an asymptotic approximationto f.

From the well-known identities for (double or odd) facto-
rials

@Cn)! = Cm!'2n — DY, 2!t =2"n! (233)

and

@2n -l = > F(n—i—l) = 4 (n—l>! (234)

JT 2 JT 2

one readily obtains from

(n — l)' A (235)
2) T

the asymptotic approximation

2n)! ~ \2/2; (lj/!);. (236)

Using Stirling’s formula, this result can be generalized to
35 3n
Bn)! ~ \/271(3n)<—)
e
333n n-3
e ()] -
e

2nn

\/_3311( ‘)3

(237)
Accordingly, d(x) in Eq. (102) can be approximated by
ST Z (n'>3

G g .
~— X
7 £~ (3n)!
n=0

o0

d(x) = Z o
n n

(238)

or

3 n? n
d(x) ~ £ Z %(3;&/3)3 (239)

A straightforward but rather tedious calculation shows that

o 2

n 3n
2 G

n=0

= iy(y + e — RIS (y + 1) cos
27 27

—V3(y — 1)sin<‘/2§y)].

Note that the sine term contains an additional factor \/5,
which is missing in the cosine term. Keeping only the dom-
inant term, one has asymptotically

(240)

© 2 32
Yooy e, (241)
Bn)! 27
n=0
and setting y = 3x!/3 leads to the desired result:
\/g (3)61/3)2 13 1 1/3
d Vo 3x — 2/3 3x . 242
(x) T TR —2n\/§x e (242)
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