
RESEARCH ARTICLE Open Access

Shifting patterns of genomic variation in
the somatic evolution of papillary thyroid
carcinoma
Jill C. Rubinstein1,2, Taylor C. Brown1,2, Emily R. Christison-Lagay2, Yawei Zhang3, John W. Kunstman1,2,
C. Christofer Juhlin1,2,7, Carol Nelson-Williams4, Gerald Goh4,8, Courtney E. Quinn2, Glenda G. Callender2,
Robert Udelsman2, Richard P. Lifton4,5, Reju Korah1,2 and Tobias Carling1,2,6*

Abstract

Background: Cancer is increasingly understood to arise in the context of dynamically evolving genomes with
continuously generated variants subject to selective pressures. Diverse mutations have been identified in papillary
thyroid carcinoma (PTC), but unifying theories underlying genomic change are lacking. Applying a framework of
somatic evolution, we sought to broaden understanding of the PTC genome through identification of global trends
that help explain risk of tumorigenesis.

Methods: Exome sequencing was performed on 53 PTC and matched adjacent non-tumor thyroid tissues (ANT).
Single nucleotide substitution (SNS) signatures from each sample pair were divided into three subsets based on
their presence in tumor, non-tumor thyroid, or both. Nine matched blood samples were sequenced and SNS
signatures intersected with these three subsets. The intersected genomic signatures were used to define branch-
points in the evolution of the tumor genome, distinguishing variants present in the tissues’ common ancestor cells
from those unique to each tissue type and therefore acquired after genomic divergence of the tumor, non-tumor,
and blood samples.

Results: Single nucleotide substitutions shared by the tumor and the non-tumor thyroid were dominated by C-to-T
transitions, whereas those unique to either tissue type were enriched for C-to-A transversions encoding non-
synonymous, predicted-deleterious variants. On average, SNSs of matched blood samples were 81 % identical to
those shared by tumor and non-tumor thyroid, but only 12.5 % identical to those unique to either tissue. Older age
and BRAF mutation were associated with increased SNS burden.

Conclusions: The current study demonstrates novel patterns of genomic change in PTC, supporting a theory of
somatic evolution in which the zygote’s germline genome undergoes continuous remodeling to produce
progressively differentiated, tissue-specific signatures. Late somatic events in thyroid tissue demonstrate shifted
mutational spectra compared to earlier polymorphisms. These late events are enriched for predicted-deleterious
variants, suggesting a mechanism of genomic instability in PTC tumorigenesis.
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Background
Papillary Thyroid Carcinoma (PTC) is the most common
type of thyroid cancer, accounting for more than 75 % of
all thyroid malignancies. The incidence of PTC is in-
creasing more rapidly than any other cancer [1]. Previ-
ous studies have noted that PTC carries a low overall
burden of genomic insult relative to anaplastic thyroid
cancer and other malignancies [2, 3]. Several mutually
exclusive, recurrent genomic events have been identified,
including BRAF and RAS mutations and RET- and
NTRK1- gene fusions which are found in up to 70 % of
tumors [4, 5]. Mutations in the phosphoinositide 3-
kinase (PI3K) pathway genes PTEN, PIK3CA, and AKT1
have been reported at lower frequencies as well as alter-
ations in the EIF1AX, PPM1D, and CHEK2 genes [2, 6, 7].
This increasingly comprehensive catalog of recurrent
genomic events allows for more specific tumor sub-
classification and may provide clues to molecular mecha-
nisms driving tumorigenesis. Despite such a diversity of
genomic alterations, PTC does not demonstrate great clin-
ical heterogeneity, suggesting that a unifying concept of
the genomic contribution to malignant transformation
continues to be elusive. In an evolutionary view of cancer,
tumorigenesis can be seen in terms of genomic instability
causing stochastic accumulation of variants. Those ac-
quired variants providing a selective advantage at the cel-
lular level will be propagated, resulting in stepwise
accumulation of diverse genomic alterations, and ultim-
ately tumors with highly individualized genotypes [8].
The availability of genome-wide data at single-nucleotide

resolution has spurred interest in the somatic evolution
model, with clonal expansions of cells arising in the con-
text of continuous variant generation and natural selection
[9–12]. A recent study correlating tissue-specific cancer
risk with the number of stem cell divisions highlighted the
importance of the accumulation of stochastic change in-
troduced during successive cycles of DNA replication
[13]. Takeda et al. used a mouse model to investigate het-
erogeneity resulting from an evolving genome, searching
for drivers appearing early in tumors’ phylogenetic trees,
thereby making them more widely distributed within the
tumors [14]. Sequencing of distinct regions within individ-
ual lung tumors demonstrated spatial separation of
drivers, showing evolutionary divergence of clones with
concomitant shifts in mutational spectra [15]. An accom-
panying study found that primary lung tumors with larger
fractions of sub-clonal mutations have increased likeli-
hood of relapse [16]. Finally, studying myeloproliferative
neoplasms, Ortmann et al. demonstrated that the order in
which mutations occur during clonal evolution plays a
critical role in tumor behavior [17].
The growing number of studies exploring an evolu-

tionary model of cancer provides a framework to explain
the sequential acquisition of tumor behaviors (eg. evasion

of immune surveillance, metastatic ability, resistance to
therapy) and highlights some of the challenges faced in
attempting to design tailored therapies [11, 12, 14]. Unlike
highly aggressive tumors which demonstrate rapid growth
and require multiple chemotherapeutic (and frequently
surgical) interventions, PTC’s indolent nature and rela-
tively low mutational burden makes it an ideal candidate
for the study of the sequential acquisitions of genomic
variations.
This study explores the hypothesis that a rudimentary

phylogenetic tree can be constructed for each tumor by
exploring three subsets of single nucleotide substitutions
(SNS): those present in tumor alone, those present in
adjacent non-tumor tissue alone, or those present in
both and therefore presumed to reflect the germline or
variants accrued early in embryogenesis. Paired blood
samples from a subset of patients were also examined to
strengthen the hypothesis that SNS signatures of mul-
tiple tissues from a single patient, while sharing a great
deal of homology derived from their common germline,
also demonstrate tissue specific patterns of genomic
variation. A more critical examination of the SNSs in
each group yields insight into the topography of the
PTC mutational signature.

Methods
Patient information and tissue samples
DNA from 53 fresh-frozen papillary thyroid tumors and
paired non-tumor thyroid tissues resected between 2000
and 2011, for which sufficient quantities of tissue were
available, were identified in the local biobank. Diagnosis
was confirmed by a pathologist and TNM stages were
determined using World Health Organization criteria.
DNA was extracted using AllPrep DNA Mini Kit and
following the protocol provided by the manufacturer
(Qiagen, MD, USA). DNA from nine available matched
blood samples was extracted using QIAamp DNA Mini
Kit per manufacturer protocol (Qiagen, MD, USA). Pa-
tient demographic information is listed in Additional file 1:
Table S1.

Exome sequencing
Genomic DNA from fresh-frozen matched pairs of tumor,
corresponding adjacent non-tumor thyroid tissue, and
blood samples was sequenced at the Yale Center for
Genome Analysis following an internal protocol using
NimbleGen v2.0 exome capture reagent (Roche) and se-
quenced through Illumina HiSeq 2000, 75 base-paired end
reads. Reads were subsequently mapped to reference gen-
ome hg19 using ELANDv2, single nucleotide variants
assigned a quality score (QS) using SAMtools, filtered
with bcfTools varFilter using default parameters. Se-
quencing yielded and average of 95 million and 198
million reads per lane, for non-tumor and tumor tissue,
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respectively. 20x coverage was achieved for 92 % of non-
tumor bases and 95 % of tumor sample bases. A minimum
of 8x coverage was required for inclusion and standard
quality score cut-offs werre employed. Samples were then
annotated using ANNOVAR (www.openbioinformatics.
org/annovar) and filtered to remove variants present in
dbSNP, build 129 [18]. Additional filters were included for
alternate analyses, including dbSNP build 135, and the
1000 Genomes SNP filter. Additionally, 53 race-matched
samples that had undergone exome sequencing on the
Illumina platform were chosen at random from the 1000
Genomes project and processed identically [19]. Compu-
tational prediction of the likelihood that each SNS would
result in a deleterious change to the protein product was
performed using 5 independent algorithms (PolyPhen-2,
MutationTaster, SIFT, radialSvm, lr) as implemented in
the ANNOVAR package.
SNS signatures from each PTC were intersected with

those from their matched ANT to define subsets of
SNSs shared between the tissues (Common subset), and
those present in one tissue-type but not the other
(Unique-to-PTC, Unique-to-ANT). The nine matched
blood samples were intersected with each corresponding
PTC/ANT subset individually. ConsensusPathDB [20, 21]
pathway enrichment analysis was performed for each
subset using all genes containing at least one non-
synonymous, stopgain, or stoploss variant. MAPK path-
way genes were downloaded from the KEGG database
(www.genome.jp/kegg/kegg1.html). RET-PTC fusions were
detected with RT-PCR. RNA was isolated using AllPrep
DNA/RNA/Protein Mini Kit, cDNA created with iScript
cDNA Synthesis Kit, and PCR amplification performed
(primers: RET/PTC1 forward primer 5-ATT GTC ATC
TCG CCG TTC-3 (H4 domain), RET/PTC1 reverse pri-
mer 5-TGC TTC AGG ACG TTG AAC-3, RET/PTC3
forward primer 5-TGGAGA AGA GAG GCT GTA TC-3
(RFG domain), RET/PTC3 reverse primer 5- CGT TGC
CTT GAC TTT TC-3). RET/PTC translocations were
identified as 306 and 268 base pair amplicons for RET/
PTC1 and RET/PTC3, respectively. TERT promoters
underwent Sanger sequencing at the Keck DNA Se-
quencing Facility. All in house computational analyses
utilized the R Project for Statistical Computing with
statistical testing via Welch two sample t-test and
ANOVA.

Results and discussion
Study cohort and sequencing summary
The study cohort included 53 PTC patients with a mean
age at the time of surgery of 48.9 years (range 16-97)
and a female to male ratio of 2.5 (see Additional file 1:
Table S1 for demographic and clinical characteristics).
Exome sequencing of genomic DNA from 53 matched
PTCs and matched adjacent non-tumor thyroid samples

(ANTs) yielded a mean 198- and 95-fold coverage, re-
spectively, with greater than 8x coverage in over 96 % of
bases. Tumor purity ranged from 41.1 to 69.5 %.
Analysis of the 53 PTC specimens confirmed the pres-

ence of previously identified recurrent alterations, in-
cluding BRAF (41.5 %), TERT (5.7 %), and RET-PTC
fusions (3.8 %). PTCs with BRAF mutations had greater
SNS counts than those without (mean 6996 vs. 5976, p <
0.001). Additionally, patients older than 45 years of age
had more SNSs than those under forty-five (mean 6705
vs. 6014, p < 0.01). There was no significant difference in
SNS count on the basis of gender, stage, or histological
subtype (Additional file 1: Table S1).

Intersected SNS signatures define late somatic changes
Global SNS signatures for each paired PTC and ANT
are shown in Fig. 1. Across the cohort, between 57 and
88 % of PTC SNSs also exist in the paired ANT. This
shared portion (designated hereafter as the Common
subset) represents SNSs present in the sample pair’s
most recent common cellular ancestor, i.e. those present
in the patient’s true germline (the zygote), together with
those accrued during embryogenesis and thyroid differ-
entiation, up to the point of divergence of the malignant
from the non-malignant thyrocytes. The areas on either
flank in the plot are SNSs accrued by the malignant and
non-malignant sub-clones following divergence (desig-
nated hereafter as the Unique-to-PTC and Unique-to-
ANT subsets).
The accumulation of SNSs throughout the lifetime of

the thyroid gland should be driven in large part by sto-
chastic change introduced during sequential cycles of
DNA replication and cell division within a greater
framework mutational susceptibility [8]. Each thyroid
gland (as well as every other tissue type) is therefore ex-
pected to follow a unique evolutionary pathway, with
SNSs accrued at varying points in differentiation, result-
ing in large degrees of heterogeneity among tumors. Cal-
culating the degree of SNS overlap of each PTC/ANT
sample pair with every other sample confirms that on
average only 28.0 % of each Common subset’s and
30.6 % of each blood sample’s SNSs are shared with an-
other sample. Those SNSs Unique-to-PTC or Unique-
to-ANT share only 6.0 % and 4.9 % of SNSs, respectively
(Fig. 2a). For the nine patients with available blood sam-
ples, there was significantly greater overlap between the
matched Common subset and blood SNSs than between
the Unique-to-ANT or Unique-to-PTC subsets and the
blood (mean 80.9 % vs. 10.8 % and 14.3 %, respectively;
p < 0.0001), strengthening the argument that the Com-
mon subset SNSs consist mainly of germline variants
plus those accrued earlier in embryogenesis, prior to
divergence of hematopoietic from thyrocyte lineages
(Fig. 2b).
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Shifting mutational spectra increase risk for deleterious
change
SNSs are divided into transitions (those exchanging a
purine for purine or pyrimidine for pyrimidine) and
transversions (those exchanging a purine for pyrimidine
or pyrimidine for purine). Transitions are less likely than
transversions to result in non-synonymous change in the
final amino acid sequence and are more prevalent than
transversions, partly due to frequent spontaneous de-
amination of 5-methylcytosine to thymine [22, 23].
Comparison of transition:transversion ratios (Tr:Tv)
demonstrates that the Common subset consistently has
the highest ratio, with a mean 3.4- and 3.2-fold increase
over the Unique-to-ANT and Unique-to-PTC subsets,

respectively (Additional file 2: Figure S1). Fig. 3 demon-
strates the distribution of each transition and transversion
for the Unique-to-ANT, Common, and Unique-to-PTC
subsets as well as the matched blood samples and an inde-
pendent cohort of blood samples from the 1000 Genomes
Project. Those evolutionarily older SNSs (the Common
subset) are dominated by C-to-T transitions, while those
accrued after divergence of the thyroid-specific subsets
(Unique-to-ANT and Unique-to-PTC) demonstrate a dra-
matic shift toward C-to-A transversions (p < 0.0001), sug-
gesting that evolutionary forces at work on the genome of
thyroid progenitor cells in the course of organogenesis dif-
fer from those seen later in the course of the gland’s devel-
opment and during natural thyrocyte turnover. To ensure

Fig. 1 Single Nucleotide Substitution Signatures. Pairwise comparison of each PTC with its matched ANT defines three subsets of SNSs, those
unique to the PTC (right), those unique to the ANT (left), and the Common subset (middle). PTCs share between 57 and 88 % (mean 76 %) of
their SNSs with the background ANT in which they arise. BRAF-mutated PTCs and patients over 45 years of age have a greater number of SNSs.
(M =Male, F = Female; A = African American, C = Caucasian, H = Hispanic, O = Other; TN refers to the AJCC TNM staging system)
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that the observed trend was not introduced through a fil-
tering bias, the analysis was repeated with varying levels of
SNS filtering. The shift in mutational spectra per-
sisted regardless of the level of filtering (Additional
file 3: Figure S2).
There are 64 possible codons in the triplet human

genetic code, but only 20 amino acids and 3 stop codons
to be encoded. This redundancy is the mechanism
through which some SNSs result in synonymous changes,
whereas others lead to a change in the amino acid se-
quence. The frequency with which potential synonymous
and non-synonymous changes occur differs among the
different possible SNSs. For example, 34.4 % of all poten-
tial C-to-T SNSs in the genetic code result in synonymous
changes, compared to only 19.8 % of all potential C-to-A

substitutions (Additional file 4: Figure S3). As therefore
expected, the observed shift in PTC mutational spectra at
different points in the evolution of its genome is associ-
ated with increased non-synonymous change in both the
Unique-to-ANT and Unique-to-PTC subsets (p < 0.0001)
(Additional file 5: Figure S4). Computational assessment
of the likelihood that these changes will impact protein
function demonstrated increased numbers of predicted-
deleterious variants in the Unique-to-ANT and Unique-
to-PTC subsets relative to the Common subset, the blood
samples, and the 1000 Genomes cohort (p < 0.0001) (Fig. 4,
Additional file 6: Figure S5) [24]. Interestingly, both
the malignant (Unique-to-PTC) and the non-malignant
(Unique-to-ANT) subsets share this increased propensity
to accumulate predicted-deleterious changes, suggesting

Fig. 2 a Inter-sample heterogeneity. SNS signatures demonstrate a mean overlap of 28 % and 30.6 % between any two samples in the Common
subset and blood samples. The low outliers in each of these groups represent samples from African-American patients. The Unique-to-ANT and
Unique-to-PTC subsets have an even larger degree of diversity, sharing a mean of only 6.0 % and 4.9 % of their SNSs. b Comparison of each
sample with its matched blood demonstrates that the majority of Common subset SNSs (mean 80.9 %) are also found in the blood samples. The
Unique-to-ANT and Unique-to-PTC subsets share only 10.8 % and 14.3 % of SNSs with their matched blood

Fig. 3 Mutational spectra. The SNS signatures of the Common subsets and the blood samples demonstrate a dominance of C-to-T transitions
across the cohort. Those SNSs that are specific to the thyroid gland, the Unique-to-ANT and the Unique-to-PTC Subsets, demonstrate a significant
shift toward C-to-A transversions
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that: 1) the global shift in mutational pattern is character-
istic of the thyroid genome and does not reflect an evolu-
tionary pressure introduced by the tumor; and 2) thyroid
tissue appears more tolerant of mutation-prone SNSs at a
more divergent point in its phylogenetic tree than earlier
in its development.

MAPK pathway genes demonstrate accumulation of
non-synonymous variants
To identify potential functional impacts of the observed
shift in mutational spectra, pathway-based enrichment
analysis was performed on the sets of genes containing
non-synonymous SNSs in the Unique-to-ANT, Com-
mon, and Unique-to-PTC subsets. Although their FDR-
corrected q-values did not reach statistical significance,
four pathways with p-values < 0.01 were related to
MAPK (Additional file 7: Table S2). Specific examination
of MAPK pathway genes in the primary sequencing data
revealed several recurrently altered genes in the cohort
[25, 26]. Many of the MAPK SNSs appeared in the
Common subset, signifying their presence prior to diver-
gence of malignant from non-malignant clones (Fig. 5,
Additional file 8: Table S3). Thirty-eight samples (70.4 %)
contained a MAP3K4 variant, seventeen of which oc-
curred in the Common subset. This is in contrast to the

twenty-three BRAF variants, all of which were in the
Unique-to-PTC subset. Interestingly, each BRAF-mutated
sample harbored non-synonymous MAPK pathway
SNSs in the Common subset, frequently in MAP3K4,
CACNA1B, and PAK2. This observation raises the ques-
tion as to whether BRAF mutation represents a damaging
second hit to an already vulnerable pathway. On average,
each sample carried 5.9, 5.7, and 3.4 non-synonymous
SNSs among MAPK pathway genes in the Unique-to-
ANT, Common, and Unique-to-PTC subsets, respect-
ively. Taken together, these findings suggest that
non-synonymous SNSs in the MAPK pathway are fre-
quent events, and that a subset of genes within the path-
way is preferentially altered in the thyroid of PTC
patients.

Conclusions
The genome is a dynamic entity, constantly accruing
changes that are subject to selective forces from diverse
micro-environments. The true germline should be
thought of as that present in the zygote, with subsequent
cell divisions introducing change via imperfect DNA
replication. Cells following variable differentiation path-
ways will therefore share a set of variants that derives
from their most recent common ancestor cell. The

Fig. 4 Predicted impact of SNS on protein function. Based upon computational prediction with PolyPhen-2, the observed shift toward increased
numbers of C-to-A transversions is accompanied by an increased likelihood of accruing damaging variants in both the Unique-to-PTC and Unique-to-
ANT Subsets (p < 0.0001)
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accumulated evidence for this evolutionary framework is
substantial and application of its principles will be
critical in advancing understanding of the genome in
health and disease. The current study, comparing thy-
roid tumor tissue, non-tumor thyroid tissue, and blood
from single individuals demonstrates a great deal of het-
erogeneity within the genomic variants characterizing
any given patient’s tissue types and provides further sup-
port for the somatic evolution model. These findings
have potentially far-reaching implications regarding the
common practice of using blood as the non-tumor con-
trol in attempting to identify tumor-specific mutations.
The degree of diversity introduced through somatic evo-
lution at every branch-point in differentiation results in
vast tissue-specific variability, helping to explain a high
incidence of false positives among proposed tumor
driver candidates.
Previous analysis of mutational spectra in multiple

tumor types demonstrated a predominance of C-to-T
transitions in thyroid cancer [27]. Taken in their entirety,
the current PTC cohort confirms this mutational pattern
but demonstrates an evolutionary time-line wherein later
changes are dominated by an alternative, potentially
damaging, signature. This variation in SNS type at differ-
ent points in thyroid development suggests that al-
though individual SNSs may occur stochastically, there
exist unifying forces likely informed by the micro-
environment of differentiated thyroid as a whole or in
subsections of the gland. For instance, binding of tri-
iodothyronine to thyroid hormone receptor B in cell cul-
ture and in mice has been shown to increase levels of
reactive oxygen species (ROS). ROS generated via normal

aerobic metabolism, inflammation, and exposure to ioniz-
ing radiation are also known to cause DNA damage, pref-
erentially at guanine residues resulting in 8-oxoguanine
(8-oxoG) and thymine glycol [28]. Indeed, thyrocytes are
uniquely sensitive to ionizing radiation, an established risk
factor for PTC [1]. Chromosomal regions with high 8-
oxoG density co-localize with high rates of single nucleo-
tide polymorphism [29–31]. Furthermore, it has long been
known that 8-oxoG pairs with adenine, resulting in C-to-
A transversions [32]. Accumulation of 8-oxoG occurs in
Mth1/Ogg1/Muthy triple knockout mice which develop
various types of tumors that are heavily enriched for
C-to-A transversions [33]. This series of observations
provides a plausible mechanism through which the
micro-environment of the thyroid could cause the ob-
served shift in mutational spectra. Interestingly, multi-
focality is present in 15-25 % of patients, with tumor
foci that seem to occur independently [34]. This clin-
ical observation is consistent with the evolutionary
model of PTC, in which independent multifocal tu-
mors may arise in the background of genetic predis-
position acquired during thyroidogenesis.
The current study represents a first step toward eluci-

dating broader organizing principles that may underlie
the individual genomic events previously associated with
subsets of PTCs. The observed global shift in genomic
variants causes increased likelihood of deleterious change
to the encoded proteins in both malignant and non-
malignant portions of the thyroid, leading to the postula-
tion that stochastic factors (exact SNS location, order in
which variants occur, micro-environment at the time of
inception) may influence the potential for any given

Fig. 5 Non-synonymous SNSs in the MAPK Pathway. A number of recurrently altered genes are identified throughout the cohort, particularly
MAP3K4, CACNA1B, and PAK2. Each of the BRAF-mutated samples contains at least one non-synonymous SNS in an additional MAPK pathway
gene in the Common Subset (gene and sample IDs provided in Additional file 7: Table S2)
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change to represent a true tumor driver. Further interro-
gation of the PTC genome should focus on identifying
variants that cause evolutionary branch-points, as well as
on elucidating the order of variant accrual. Such could be
achieved through multiple sampling of individual PTCs,
repeat sampling at various time-points, and via computa-
tional modeling, all integrated with longitudinal clinical
data. Experience in multiple cancer types has shown that
therapies targeting single tumor drivers will almost inevit-
ably result in the selection and propagation of clones
driven by alternative pathways. By coupling an expanded
knowledge of the global trends underlying genomic evolu-
tion with a comprehensive catalog of driver variants
placed in their evolutionary context, one could instead en-
vision a therapeutic strategy aimed at modulating a dy-
namic system in order to minimize progression and focus
on chronic management.

Additional files

Additional file 1: Table S1. Shows Patient Demographic and Clinical
Information. (XLSX 12 kb)

Additional file 2: Figure S1. Shows the Transition-to-Transversion
ratios. The Common Subset demonstrates a higher Tr:Tv than both the
Unique-to-ANT and Unique-to-PTC subsets. (TIFF 1993 kb)

Additional file 3: Figure S2. Shows the mutational spectra using
alternate SNS filtering methods demonstrate that the shift in predominant
SNS from C-to-T to C-to-A persists regardless of the level of SNS filtering: a)
unfiltered; b) filtered to remove variants contained in dbSNP, build 135; and
c) filtered to remove both dbSNP build 135 and 1000 Genomes variants.
(TIF 115 kb)

Additional file 4: Figure S3. Describes mutations at the level of the
Genetic Code. Plotting the functional consequence of each base change
upon translation of the sixty-four triplet codons in the genetic code
shows that 34.4 % of potential C-to-T transitions result in synonymous
change compared to only 19.8 % of C-to-A transversions. (TIFF 1550 kb)

Additional file 5: Figure S4. Demonstrates the functional consequence
of each SNS. Relative to the Common subset and the 1000 Genomes
cohort, the increased frequency of C-to-A transversions in the Unique-to-
PTC and Unique-to-ANT subsets show an accompanying increase in the
frequency of non-synonymous change (p < 0.0001). (TIFF 2025 kb)

Additional file 6: Figure S5. Demonstrates predicted impact of SNS on
protein function. Based upon computational prediction with MutationTaster,
RadialSVM, SIFT, LR. The observed shift toward increased numbers of C-to-A
transversions is accompanied by an increased likelihood of accruing
damaging variants in both the Unique-to-PTC and Unique-to-ANT Subsets
across multiple algorithms (all p-values < 0.0001). (TIFF 3828 kb)

Additional file 7: Table S2. Shows ConsensusPathDB Pathway analysis.
(XLSX 23 kb)

Additional file 8: Table S3. Shows Single Nucleotide Substitutions in
the MAPK Pathway. (XLSX 43 kb)
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