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1 Introduction

Recently, supersymmetric field theories on curved backgrounds have regained considerable

attention, in particular for the application of localization techniques in the computation

of indices, partition functions and Wilson loops, see e.g. [1–5]. A systematic approach

to the study of rigid supersymmetry in four-dimensional curved space has been initiated

in [6] and further developed in [7–11]. Holographic applications of these theories have been

studied in [12, 13] by embedding the curved space at the boundary of an asymptotically

AdS space. A similar analysis of supersymmetric theories has been performed for curved

five-dimensional spaces in [14, 15] and in [16] for three-manifolds. The construction of

these curved theories is based on the existence of an underlying off-shell supergravity in

which the full off-shell supergravity multiplet is set to classical background values. The
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consistency of this limit requires the existence of solutions of the corresponding Killing

spinor equations which in turn poses non-trivial constraints on the background fields.1

In the present paper we will focus on rigid supersymmetric theories in six-dimensional

Riemannian spin manifolds. We will study the coupling of off-shell Yang-Mills (YM) mul-

tiplets to a number of uncharged on-shell tensor multiplets. Such couplings have been

constructed in 6D flat space-time of Minkowski signature [18]. In view of the applications

mentioned above, we shall extend this model to curved background and in Euclidean signa-

ture. One way to construct these theories is to start from the Euclidean version of off-shell

supergravity coupled to YM and tensor multiplets, and then take the rigid limit in which

the fields in the supergravity multiplet are frozen in a manner consistent with supersym-

metry. In particular, the vanishing of the fermionic fields in this multiplet would yield the

Killing spinor equations. However, while the N = (1, 0) off-shell supergravity theory in 6D

with Minkowskian signature is well known [19, 20], thanks to the superconformal tensor

calculus methods [19], the general couplings to Yang-Mills and multi-tensor multiplets is

still missing. Extra complications may arise in the passage to Euclidean signature. This

suggests an alternative approach in which we begin by formulating the Euclidean version

of the Killing spinor equations with suitable background fields. We distinguish two cases

depending on whether these equations descend from an off-shell theory with (θ 6= 0) or

without (θ = 0) R-symmetry gauging. In the former case, additional Killing spinor equa-

tions have to be imposed. Next, we translate the model of [18] to Euclidean signature

and then elevate the supersymmetry parameter to be Killing. Performing a Noether pro-

cedure which takes this into account then produces the full dependence of the couplings

on the nontrivial background fields. Following this approach we construct the non-trivial

supersymmetric tensor/vector couplings on a curved background.

Next, we systematically analyse the Killing spinor equations in six-dimensional Rie-

mannian spin manifolds M6 using G-structures and we derive the constraints for the ex-

istence of non-trivial solutions. We reformulate these constraints as a set of conditions

on the geometry. The necessary and sufficient conditions for minimal supersymmetry are

given in equations (5.27), (5.35) below as constraints on an SU(3) structure. In particular

for a theory whose background descends from a supergravity with R-symmetry gauging

(θ 6= 0), these constraints require M6 to be hermitian, strong Kähler with torsion, but not

necessarily conformally balanced. For θ = 0 on the other hand, the manifold M6 is not

necessarily hermitian; we also show that it cannot be (strictly) nearly Kähler.

In either case there is a crucial difference with the structures arising in supersymmet-

ric heterotic compactifications: The Killing spinor equations (2.1), (2.3) below are of the

same form as those for the vanishing of the gravitino and dilatino variation in the het-

erotic theory, provided we set the background field E◦
m to zero. For θ 6= 0, this would

impose the additional condition that the manifold should be conformally balanced, which

is indeed a necessary condition in supersymmetric heterotic compactifications. However

as already mentioned for the rigid supersymmetric theories considered here the confor-

1A recent approach for the construction of theories starting from an on-shell formulation of supergravity

has been discussed in [17].
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mally balanced condition need not be imposed. Indeed as we will see in the following, a

rigid (1,1)-supersymmetric theory can be defined on the round S
3 × S

3 which is hermi-

tian, strong Kähler with torsion but not conformally balanced. For θ = 0, the manifolds

need not to be hermitian, while hermiticity is a necessary condition in supersymmetric

heterotic compactifications.

As a special case of our formalism we obtain pure super Yang-Mills (SYM) on a Calabi-

Yau threefold M6 by setting to zero all background fields except for the metric. Applying

the localization procedure then yields the result that the SYM path integral localizes on

stable holomorphic bundles on M6.

The rest of the paper is organized as follows: In section 2, we present the Killing

spinor equations obtained from off-shell supergravity in the superconformal tensor calculus.

In section 3, we construct the Lagrangian and supersymmetry transformation rules for

Yang-Mills theory on curved Riemannian manifolds M6 with background fields admitting

solutions to the Killing spinor equations. Section 4 extends the construction to include a

number of tensor multiplets interacting by Chern-Simons couplings with the vector fields.

In section 5 we analyse the constraints to be satisfied by the background fields in order

to admit non-trivial solutions. We reformulate the conditions for minimal supersymmetry

as a set of necessary and sufficient conditions on a suitable SU(3) structure. Moreover,

we examine the conditions for (1,1) and (1,2) extended supersymmetry. The formalism is

illustrated with a number of examples, including Calabi-Yau (CY) threefolds, the round

S
3 × S

3 and T 2 bundles over noncompact K3’s. In section 6 we apply the localization

procedure to SYM theory defined on a CY M6 and show that the path integral localizes

on stable holomorphic bundles over M6.

2 Killing spinor equations I

Our starting point is the off-shell formulation of six-dimensional supergravity obtained

from superconformal tensor calculus with the dilaton Weyl multiplet coupled to a linear

multiplet after particular gauge fixing [19–21]. The resulting bosonic fields including the

space-time metric will constitute the background fields in the rigidly supersymmetric field

theories to be constructed in this paper. As discussed in the introduction, when deriv-

ing rigid supersymmetric theories from supergravity one has to impose the vanishing of

the supersymmetry variation of all fermionic fields from the supergravity multiplet. This

defines the Killing spinor and poses constraints on the bosonic background fields. In our

conventions (cf. appendix A) and switching from Minkowsi to Euclidean signature, the

Killing spinor equations imposing the vanishing of the gravitino fields’ variation, read

Dmǫ+
1

8
H◦

mkl γ
kl ǫ = 0 ,

Dmζ̃ −
1

8
ζ̃γklH◦

mkl = 0 , (2.1)

with covariant spinor derivatives

Dmǫ ≡ ∂mǫ+
1

4
ω◦
m

ab γab ǫ+ V ◦
m ǫ , (2.2)
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etc., a background vector field V ◦
m, and a closed three-form H◦

mnk = 3∂[kB
◦
mn] . In passing

from Minkowski to Euclidean signature, we have replaced the symplectic Majorana-Weyl

spinors by complex Weyl spinors ǫ, ζ, of positive chirality, thus reducing the manifest R-

symmetry from Sp(1) to U(1). In particular, unlike in Minkowski signature, the spinors ǫ

and ζ are no longer related by complex conjugation. If the Killing spinor equations (2.1)

descend from a supergravity theory in which the R-symmetry is gauged, there are additional

Killing spinor equations to be taken into account. Namely, imposing the vanishing of the

remaining fermion variations in that case furthermore implies

γmǫ ∂mL
◦ − 1

6
L◦H◦

mnk γ
mnkǫ+

1

2
E◦

mγ
mǫ = 0 ,

ζ̃γm ∂mL
◦ +

1

6
L◦H◦

mnk ζ̃γ
mnk − 1

2
E◦

mζ̃γ
m = 0 , (2.3)

where L◦ denotes the background dilaton and E◦
m is the Hodge dual of the background

five-form field strength2

E◦m =
1

24
εmn1...n5 ∂n1

E◦
n2...n5

. (2.4)

In the following we will construct rigidly supersymmetric field theories on backgrounds that

allow for non-trivial solutions of the Killing spinor equations (2.1), (2.3). In slight abuse of

standard notation, we will refer to a background as N = (p, q) supersymmetric when equa-

tions (2.1), (2.3) admit p independent solutions ǫ and q independent solutions ζ̃.3 Flat space

with vanishing background fields would thus correspond to N = (4, 4). Note the unlike

the analogous structures in four dimensions [6, 22] the Killing spinor equations (2.1), (2.3)

for ǫ and ζ̃ are entirely decoupled. For the study of minimal supersymmetry we can thus

consistently set ζ̃ = 0.

While we will give a full-fledged analysis of the Killing spinor equations in section 5

below, let us finish this section by deriving a few immediate consequences for backgrounds

that are at least N = (1, 1) supersymmetric. Straightforward computation gives rise to

the relations

∇mξn = −1

2
H◦

mnk ξ
k , ∇mξpqr =

3

2
H◦

mn[pξqr]
n , (2.5)

for the Killing spinor bilinears

ξm ≡ − ζ̃γmǫ , ξmnk ≡ − ζ̃γmnkǫ . (2.6)

In particular, the first equation shows that ξm is a Killing vector of the background metric.

Furthermore, integrability of the Killing spinor equations (2.1) yields

0 =
1

8
R◦

mn
abγabǫ+

1

2
V ◦
mnǫ+

1

8
γkl ǫ∇[mH

◦
n]kl −

1

16
H◦

mp
kH◦

nqk γ
pq ǫ ,

0 =
1

8
R◦

mn
ab ζ̃γab +

1

2
V ◦
mnζ̃ +

1

8
ζ̃γkl ∇[mH

◦
n]kl −

1

16
H◦

mp
kH◦

nqk ζ̃γ
pq . (2.7)

2Since we are in curved background geometry, the completely antisymmetric εmnklpq is understood to

be defined as a tensor, i.e. it carries an implicit factor of
√
g◦

−1
.

3 This notation is not to be confused with the standard notion of chirality in Minkowski space, since

here ǫ and ζ are of the same chirality.
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Contracting both equations with γn and summing them up implies

ξnkl ∇mH
◦
nkl = −3

2
H◦

mnpH
◦
kl
p ξnkl − 12V ◦

mn ξ
n . (2.8)

Together with (2.5) we obtain

∂m ξH = −2V ◦
mn ξ

n , for ξH ≡ 1

6
ξnklH◦

nkl , (2.9)

and anticipating the result of the full analysis that the background field strength V ◦
mn van-

ishes (cf. equation (5.15) below), shows that the scalar combination ξH is in fact constant.

3 Vector multiplets

We will now construct rigidly supersymmetric gauge theories on a background that admits

non-trivial solutions of the Killing spinor equations (2.1), (2.3). The resulting couplings

are motivated by the coupling [21] of a single off-shell vector multiplet to the off-shell

supergravity after integrating out the auxiliary fields. However, since the spinor proper-

ties, in particular their R-symmetry representation content change with the passage from

Minkowski to Euclidean space, we will perform the full construction from scratch.

Consider a set of vector multiplets {Ar
m, λ

r, νr} , labeled by an index r, described by

a Lagrangian

Lvec = −1

4
Fmn

rFmnr − 2ν̃rγmDmλ
r + θr E◦mAr

m

+
i

16
εmnklpq B◦

mn Fkl
r Fpq

r +
1

12
ν̃rγmnkH◦

mnk λ
r . (3.1)

Here, Fmn
r ≡ 2∂[mAn]

r − fst
rAm

sAn
t is the standard Yang-Mills field strength with struc-

ture constants fst
r, and the spinor covariant derivatives are defined as in (2.2). B◦

mn is the

background two-form potential, the background field E◦m has been defined in (2.4) and

satisfies ∇mE
◦m = 0. The θr denote a set of coupling constants which single out one of the

vector fields and descend from an R-symmetry gauging of the underlying supergravity [21].

Accordingly, their gauge invariance requires an abelian factor within the Yang-Mills gauge

group. (For θr = 0 on the other hand there is no restriction on the gauge group.) Again,

the spinors λr and νr are not related by complex conjugation, such that the variation of the

vector fields and the Lagrangian are in fact complex, as usual in Euclidean supersymmetry,

cf. [23–25], see also the discussion in section 6.

It is straightforward to check that the Lagrangian (3.1) is invariant under the super-

symmetry transformations rules

δAm
r = ν̃rγmǫ− ζ̃γmλ

r ,

δλr =
1

4
γmnǫ Fmn

r − θrL◦ ǫ ,

δν̃r = −1

4
ζ̃γmn Fmn

r + θrL◦ ζ̃ , (3.2)
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provided the supersymmetry parameters satisfy the Killing spinor equations (2.1), (2.3).

The latter equations are only required in case the θr are non-vanishing. For θr = 0, the

only condition on the supersymmetry parameters are equations (2.1). Let us note that

variation of the gauge connection in the Dirac term a priori gives rise to a quartic fermion

term in the variation of (3.1)

δ4L ∝ frst (ν̃
rγmλt) (ν̃sγmǫ) . (3.3)

Fierzing in λt) (ν̃s shows that

frst (ν̃
rγmλt) (ν̃sγmǫ) = frst (ν̃

sγkλt)(ν̃rγkǫ) , (3.4)

upon using that γmγklnγm = 0. By virtue of antisymmetry of the structure constants, also

the quartic variation (3.3) thus vanishes.

It is instructive to work out the N = (1, 1) algebra of supersymmetry transforma-

tions (3.2) which takes the form4

[δζ̃ , δǫ]Am
r = LξA

r
m +Dm(−ξnAr

n) ,

[δζ̃ , δǫ]λ
r = Lξλ

r +
1

2
ξH λr ,

[δζ̃ , δǫ] ν̃
r = Lξ ν̃

r − 1

2
ξH ν̃r , (3.5)

with parameters ξn and ξH defined in (2.6) and (2.9), respectively, and defining the standard

Lie derivative on spinor fields

Lξχ
I ≡ ξm∇mχ

I +
1

4
(∇mξn) γ

mn χI = ξm∇mχ
I − 1

8
ξkH◦

kmnγ
mn χI . (3.6)

Interestingly, we find that the algebra closes not only into the standard translations and

gauge transformation but also into a global U(1) acting on the fermions with parameter

ξH that is constant due to (2.9).5

To summarize, the Lagrangian (3.1) defines non-abelian gauge theory on a curved

Euclidean background with supersymmetry parameters defined as solutions of the Killing

spinor equations (2.1), (2.3).

4 Tensor multiplets

We will now generalize the construction of the previous section to also include tensor mul-

tiplets. To this end, we will first derive the field equations for a set of free tensor multiplets

4Part of these and the following calculations have been facilitated by use of the computer algebra system

Cadabra [26, 27].
5As we will see in the following the full analysis of the Killing spinor equations shows that the constant

ξH vanishes in the case of backgrounds for which E◦

m = 0, but is generically non-vanishing. However, as

the Lagrangian (3.1) possesses the global U(1) appearing under closure on the r.h.s. of (3.5), the form of

the algebra in any case is consistent, whether or not ξH is zero.
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on curved background and then proceed to introduce interactions with the vector mul-

tiplets. Since supersymmetry is expected to impose self-duality equations for the tensor

fields that do not allow for a standard Lagrangian description, we will perform the entire

construction on the level of the field equations. Moreover, since there is no off-shell formu-

lation for self-dual tensor fields in six dimensions, their couplings on a curved background

cannot directly be read off from an underlying supergravity but have to be constructed

from scratch.

Let us consider n tensor multiplets {φI , BI
mn, χ

I , ψ̃I}, labelled by an index I, with

supersymmetry transformations

δφI = ψ̃Iǫ+ ζ̃χI ,

δBmn
I = ψ̃I γmn ǫ− ζ̃γmnχ

I ,

δχI =
1

2
γmǫ ∂mφ

I +
1

24
γmnkǫ

(
Hmnk

I −H◦
mnk φ

I
)
,

δψ̃I = −1

2
ζ̃γm ∂mφ

I +
1

24
ζ̃γmnk

(
Hmnk

I −H◦
mnk φ

I
)
. (4.1)

where

Hmnk
I ≡ 3∂[mBnk]

I , (4.2)

denotes the abelian tensor field strength which decomposes into its selfdual and anti-selfdual

part according to

H±
mnk ≡ 1

2

(
Hmnk ±

i

3!
εpqrmnkH

pqr

)
. (4.3)

Closure of the supersymmetry algebra on the tensor fields gives rise to the self-duality

equation

(Hmnk
I)(+) − φI(H◦

mnk)
(+) = 0 , (4.4)

relating the tensor field strength to the background three-form. Under the supersymmetry

transformations (4.1), the self-duality equation transforms into the fermionic field equations

0 = Dmψ̃
Iγm +

1

24
ψ̃IγmnkH◦

mnk ,

0 = γmDmχ
I − 1

24
H◦

mnk γ
mnk χI , (4.5)

provided the supersymmetry parameters ǫ, ζ̃ satisfy the Killing spinor equations (2.1). In

turn, these equations under supersymmetry transform into the scalar field equation

0 = ∇µ∂µφ
I +

1

6
(H◦ ·HI (−))− 1

12
(H◦ ·H◦)φI , (4.6)

where again (2.1) is required. For consistency, we may check the N = (1, 1) algebra of

supersymmetry transformations (4.1) which close into

[δζ̃ , δǫ]φ
I = Lξφ

I ,

[δζ̃ , δǫ]Bmn
I = LξBmn

I + 2 ∂[mΛn]
I ,

[δζ̃ , δǫ]χ
I = Lξχ

I +
1

2
ξH χI , (4.7)
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with the same translation and U(1) parameters ξm, ξH , as in (3.5), and the additional

tensor gauge parameter Λm
I ≡ −ξnBnm

I + ξmφ
I .

Finally, we may couple the system of tensor multiplets to the non-abelian vector fields

introduced in the previous section by introducing Chern-Simons interactions of the form

Hmnk
I → Hmnk

I ≡ 3∂[mBnk]
I + 6 dIrsA[m

r∂nAk]
s − 2fpq

sdIrsA[m
rAn

pAk]
q , (4.8)

parametrized by a constant gauge invariant tensor dIrs = dI(rs). For simple gauge groups,

this implies that dIrs = dIδrs is expressed in terms of the Cartan-Killing form δrs. The

modified tensor field strength Hmnk
I satisfies

∂[mHnkl]
I =

3

2
dIrsF[mn

rFkl]
s ,

δHmnk
I = 3 ∂[m

(
δBnk]

I − 2An
r δAk]

s dIrs
)
+ 6 dIrsF[mn

r δAk]
s . (4.9)

In presence of dIrs the supersymmetry transformation rules (4.1) change to

δBmn
I = ψ̃I γmn ǫ− ζ̃γmnχ

I + 2dIrsA[m
r δAn]

s ,

δχI =
1

2
γmǫ ∂mφ

I +
1

24
γmnkǫ

(
Hmnk

I −H◦
mnk φ

I
)

+
1

2
dIrsγ

µλ
(
ν̃γµǫ− ζ̃γµλ

)
, (4.10)

and similar for ψ̃ , which again can be verified by checking closure of the algebra. The field

equations change into

0 = (Hmnk
I)(+) − φI(H◦

mnk)
(+) + dIrsν̃

rγmnkλ
s ,

0 = γmDmχ
I − 1

24
H◦

mnk γ
mnk χI − 1

2
dIrsF

r
mnγ

mnλs − 2 dIrs θ
rL◦λs ,

0 = ∇µ∂µφ
I +

1

6
(H◦ ·HI (−))− 1

12
(H◦ ·H◦)φI

+ 4 dIrs

(
1

8
Fmn

rFmn s + ν̃rγm∂mλ
s + θrθs(L◦)2

)
, (4.11)

and can be checked to vary into each other under supersymmetry, provided the supersym-

metry parameters ǫ, ζ̃ satisfy the Killing spinor equations (2.1), (2.3). This generalizes the

field equations found in flat space [18] for a tensor/vector system interacting by Chern-

Simons couplings to curved background. In deriving this result, we had to use the gaugino

field equation coming from (3.1). I.e. unlike in flat space where the YM sector can be kept

off-shell in the presence of Chern-Simons couplings [18], the non-vanishing background field

H◦
mnk relates the dynamics of the vector and tensor sector.

It would be interesting to further generalize the interactions by allowing for minimal

couplings between vector and tensor fields with the latter charged under a non-abelian

gauge group. The corresponding supersymmetric system in flat space has been constructed

in [28, 29] and allows for an action modulo the standard subtleties concerning self-dual
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three-forms. Replacing the constant supersymmetry parameters of that system by solutions

to the Killing spinor equations (2.1) should lead to a deformed version of these tensor/vector

interactions on curved space. It would also be interesting to analyze if the curved space

models can be generalized to include couplings to hypermultiplets, by applying the same

procedure to the flat space models of [30, 31].

5 Killing spinor equations II

So far, we have derived the couplings and field equations for vector and tensor multiplets

on a curved background under the assumption that the supersymmetry parameters satisfy

the Killing spinor equations (2.1), (2.3). In this section, we will analyze these Killing spinor

equations and derive the resulting constraints for the background fields, in particular the

background geometry. We obtain the necessary and sufficient conditions for the background

geometry in order to admit at least one Killing spinor, i.e. for the theory to have (1,0)

supersymmetry. In subsections 5.2, 5.3 we derive stronger conditions for the existence of

several supercharges. As this section deals exclusively with the background structure we

will for notational simplification omit the superscript ‘◦’ which so far has distinguished

the background structures from the matter fields. I.e. (for this section only) we pass to

H◦ → H, L◦ → L, etc.

5.1 (1,0) supersymmetry

The Killing spinor equation (2.1) can be thought of as a parallel-transport equation, ∇′ǫ =
0, with respect to a metric-compatible connection ∇′ with torsion given by the background

three-form H. Therefore the holonomy of ∇′ (in the spinor representation) is a subgroup of

G, the stabiliser group of ǫ, and M6 admits a G-structure [32]. Since ǫ transforms in the 4

of the structure group Spin(6) ∼= SU(4) of the Riemannian spin manifold M6, the stabiliser

is G = SU(3) as can be seen by the decomposition 4 → 3⊕1 under SU(4) → SU(3). Hence

M6 must admit an SU(3) structure.

The topological condition for an oriented Riemannian six-dimensional manifold M6 to

admit an SU(3) structure is that it should be spin (see e.g. [33]). Since in the present pa-

per we are assuming that M6 is spin, there is no additional topological condition imposed

by the existence of an SU(3) structure on M6. However, as we will see in the following,

supersymmetry imposes additional geometrical conditions in the form of constraints on

the torsion classes of the SU(3) structure. In order to systematically analyze these con-

straints we will now reformulate the SU(3) structure in terms of certain globally defined

forms on M6.

From equation (2.1) it can easily be seen that either ǫ vanishes identically, or it is

nowhere-vanishing. Assuming that ǫ is not identically zero, let us parametrize:

ǫ = eAη , (5.1)

where η is a unimodular Weyl spinor of positive chirality,

η†η = 1 , (5.2)
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and A is a function on the six-dimensional manifold. For the purposes of this section we

will assume that η is a commuting spinor: we have the freedom to make this choice since

the Killing spinor equations are linear in ǫ.

The existence of the unimodular spinor η allows us to define the bilinears

iJmn := η†γmnη

Ωmnp := η̃γmnpη ,
(5.3)

where our spinor conventions are explained in detail in appendix A. In particular, it follows

from the properties of Weyl spinors in six Euclidian dimensions that J is a real two-form

and Ω is a complex three-form which is imaginary self-dual.

Using the Fierz identities it can further be shown that Jm
n (where we have raised one

index with the metric) defines an almost complex structure:

Jm
nJn

p = −δmp , (5.4)

with respect to which Ω is (3, 0):

(Π+)m
nΩnpq = Ωmpq; (Π−)m

nΩnpq = 0 , (5.5)

where

(Π±)m
n :=

1

2
(δm

n ∓ iJm
n) , (5.6)

are the projection operators onto the (1,0) and (0,1) parts. Moreover, it can be seen that

Ω ∧ J = 0

Ω ∧ Ω∗ =
4i

3
J3 . (5.7)

The globally defined forms J , Ω subject to the above conditions can be seen to specify an

SU(3) structure on M6 [34].

The intrinsic torsion parametrizes the failure of the spinor η to be covariantly constant.

In the case of an SU(3)-structure manifold M6, the intrinsic torsion decomposes into five

modules (torsion classes) W1, . . . ,W5:

∇mη =
1

2

(
W

(1,0)
4m +W5m − c.c

)
η

+
1

16
(4W1gmn − 2W p

4Ωpmn + 4iW2mn − iW3mpqΩ
pq

n) γ
nηc , (5.8)

where W1 is a complex scalar, W2 is a complex (1,1)-traceless form, W3 is a real traceless

(2, 1) + (1, 2) form, W4 is a real one-form and W5 is a (1,0) form. In terms of SU(3)

representations,

W1 ∼ 1⊕ 1; W2 ∼ 8⊕ 8; W3 ∼ 6⊕ 6̄; W4 ∼ 3⊕ 3̄; W5 ∼ 3 . (5.9)

Equivalently these torsion classes appear in the SU(3) decomposition of the exterior

derivatives of J , Ω. Explicitly we have,

dJ =
3

2
Im(W ∗

1Ω) +W4 ∧ J +W3 ,

dΩ =W1J ∧ J +W2 ∧ J +Ω ∧W ∗
5 . (5.10)
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Intuitively, the intrinsic torsion characterizes the geometry of M6 and parameterizes the

failure of the manifold to be of special holonomy – which can also be thought of as the

failure of the closure of J , Ω.

As a final ingredient before we proceed to the analysis of the Killing spinor equations,

we will need the decomposition of the background three-form H from (2.1) with respect to

the reduced structure group SU(3). Explicitly we have

Hmnp =
1

48
ΩmnpH

(0) +

(
H̃(2,1)

mnp +
3

4
H

(1,0)
[m Jnp]

)
+ c.c. , (5.11)

where the normalization above has been chosen so that

H(0) = Ω∗mnpHmnp ,

H(1,0)
m = (Π+)m

sHsnpJ
np . (5.12)

In terms of SU(3) representations we have,

H(0) ∼ 1; H(1,0) ∼ 3; H(0,1) ∼ 3̄; H̃(2,1) ∼ 6; H̃(1,2) ∼ 6̄ . (5.13)

Plugging (5.8), (5.11) into the Killing spinor equation (2.1) using (B.2) can be seen to

impose the following constraints on the torsion classes:

W2 = 0 ,

2W
(1,0)
4 +W5 = 0 . (5.14)

Moreover it follows that the background vector field is exact,

dA+ V = 0 , (5.15)

and the irreducible components of H are determined in terms of the torsion classes. Ex-

plicitly, in form notation:

H(0) = −12W ∗
1 ,

H(1,0) = −4iW
(1,0)
4 ,

H̃(1,2) = iW
(1,2)
3 . (5.16)

5.1.1 θ
r 6= 0

For the remaining analysis, it will make a crucial difference whether the parameters θr in

the Lagrangian (3.1) are vanishing or not. Only in the latter case do we have to impose

the Killing spinor equations (2.3) on the supersymmetry parameters. This leads to further

restrictions on the background geometry, to be discussed in this section. The case θr = 0

is examined separately in section 5.1.2.

Without loss of generality, we may assume in this section the background field L to be

non-vanishing. Otherwise, it is straightforward to see that the Killing spinor equation (2.3)

implies that also Em = 0 (taking into account that Em is real). For the Lagrangian (3.1)
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and the supersymmetry transformation rules (3.2), this amounts to setting θr = 0, and

brings us back to the situation discussed in the next section. With the field L non-zero, the

second Killing spinor equation (2.3) implies that the scalar component of H must vanish:

H(0) = 0 . (5.17)

As a consequence of the above and (5.16) there is now an additional constraint on the

torsion classes:

W1 = 0 . (5.18)

Taking the above into account, it follows that the H field is given in terms of the torsions

classes:

H = −i
[
(W

(2,1)
3 −W

(1,2)
3 ) + J ∧ (W

(1,0)
4 −W

(0,1)
4 )

]
. (5.19)

By introducing explicit holomorphic coordinates, eq. (5.19) can be rewritten as

H = −i(∂J − ∂̄J) , (5.20)

where d = ∂ + ∂̄ and we have noted that

(dJ)(2,1) = ∂J ; (dJ)(1,2) = ∂̄J . (5.21)

It follows that the closure of H can be written equivalently as:

∂∂̄J = 0 . (5.22)

eq. (5.19) can also be written as:

⋆ H =W3 −W4 ∧ J , (5.23)

where we have used

εm1...m6 = −15J[m1m2
Jm3m4Jm5m6] . (5.24)

If W4 is exact (which need not be true in general), W4 = dφ, the manifold is called

conformally balanced. In that case (5.23) can be written as:

⋆ H = e2φd
(
e−2φJ

)
. (5.25)

Finally the background field Em is given by:

Em = −4LW4m − 2∂mL , (5.26)

where in addition ∇mEm = 0 has to be imposed, cf. eq. (2.4).

To summarize: the combined Killing spinor equations (2.1), (2.3), the closure of the

background three-form and the co-closure of the background one-form imply the following

geometric constraints on M6:

W1 =W2 = 0 ,

W4 +ReW5 = 0 ,

∂∂̄J = 0

∇m (∂mL+ 2LW4m) = 0 .

(5.27)
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Given an SU(3)-structure manifold obeying (5.27) there is no obstruction to speci-

fying the profiles for the background fields V , H, E so that the remaining condi-

tions (5.15), (5.19), (5.26) are satisfied. In this sense conditions (5.27) are necessary and

sufficient for the theory to possess rigid supersymmetry.

Conditions (5.27) have the following geometric interpretation: The vanishing of W1,

W2 is equivalent to the condition that the almost complex structure is integrable, i.e.

the condition that M6 is hermitian.6 The second line of (5.27) can be rephrased as the

statement of proportionality between the Lee forms LΩ and LJ of Ω and J respectively.

More explicitly the Lee forms are defined by:

LJ = JydJ

LΩ = Re (ΩydΩ∗) ,
(5.29)

where ϕyω denotes the contraction of the p-form ϕ into the (p+ q)-form ω,

ϕyω =
1

p!q!
ϕm1...mpωm1...mpn1...nqdx

n1 ∧ · · · ∧ dxnq . (5.30)

On the other hand, taking (5.10) into account, it follows that

W4 =
1

2
JydJ ; ReW5 =

1

8
Re (ΩydΩ∗) , (5.31)

hence the second line of (5.27) can be rewritten in terms of the Lee forms as:

LJ +
1

4
LΩ = 0 . (5.32)

The third line of (5.27) is the condition that the Hermitian manifold M6 is strong Kähler

with torsion (SKT). One immediate consequence of the SKT condition is that M6 cannot

be special hermitian [35].7

The first two lines of (5.27) also appear as necessary conditions for supersymmetric

heterotic compactifications [37–39]. This is not surprising given the fact that the Killing

spinor equations (2.1), (2.3) are of the same form as those for the vanishing of the gravitino

and dilatino variation in the heterotic theory, provided we set the background fields V , E

to zero and we identify L = e−2φ, where φ is the dilaton. Crucially, however, this would

impose the additional condition that the torsion classW4 is exact: W4 = dφ as follows from

eq. (5.26); in particular the manifold is constrained to be conformally balanced. We stress

again that for the rigid supersymmetric theories considered here the conformally balanced

condition need not be imposed.

6A manifold equipped with a Riemannian metric gmn and an almost complex structure Jm
n is called

almost hermitian if the almost complex structure is an orthogonal transformation with respect to the metric:

Jm
pJn

qgpq = gmn . (5.28)

If moreover the almost complex structure is integrable, the manifold is called hermitian.
7A special hermitian six-manifold is a manifold which is both half-flat (and therefore can be lifted

to a seven-dimensional manifold of G2 holonomy [36]) and hermitian. Equivalently, a special hermitian

six-manifold is a manifold which admits an SU(3) structure whose only non-zero torsion class is W3.
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5.1.2 θ
r = 0

With all parameters θr vanishing, the background fields L and Em completely decouple form

the Lagrangian (3.1) and supersymmmetry transformation rules (3.2) and equations (2.3)

do no longer have to be imposed on the supersymmetry parameters. As a result, the

constraints on the background geometry are relaxed w.r.t. the last section and in particular

the torsion class W1 is no longer zero, cf. (5.18). Equations (5.19), (5.23) for the H field

now get modified to:

H = −1

2
Re (W1Ω

∗)− i
[
(W

(2,1)
3 −W

(1,2)
3 ) + J ∧ (W

(1,0)
4 −W

(0,1)
4 )

]
, (5.33)

and:

⋆ H =
1

2
Im (W1Ω

∗) +W3 −W4 ∧ J . (5.34)

Finally, the necessary and sufficient conditions can be summarized as

W2 = 0 ,

W4 +ReW5 = 0 ,

d [Re (W1Ω
∗) + 2 ⋆ (W3 −W4 ∧ J)] = 0 .

(5.35)

The fact that now W1 is not necessarily zero implies that the almost complex structure

is not integrable in general and the manifold M6 is not necessarily hermitian. This is a

major difference from the L 6= 0 case discussed above. The second line above has the same

interpretation as in section 5.1.1 as the proportianality between the Lee forms of J and Ω.

The last line in (5.35) is the condition of closure of H; for W1 = 0 it reduces to the third

line in (5.27).

As we will now show, the system (5.35) does not admit as solution any (strictly)

nearly Kähler manifold. Nearly Kähler manifolds are SU(3)-structure manifolds whose

only nonvanishing torsion class is W1. Equivalently, they can be defined as six-dimensional

manifolds admitting a Killing spinor, ∇mη = 1
4W1γmη

c, cf. eq. (5.8), so that they are

Einstein, Rmn = 5
4 |W1|2gmn, and the metric cone over M6 is a G2-holonomy manifold [40].

In the case of a nearly Kähler M6 it can immediately be seen from eqs. (5.10) that W1 is

constant. Performing a constant phase redefinition of Ω we can take W1 = iw, with w a

real constant. Eqs. (5.10) then reduce to:

dJ = −3

2
wReΩ , dImΩ = wJ ∧ J , (5.36)

while dReΩ = 0 follows from the above. Moreover the background field H is given by

H = −1

2
wImΩ , (5.37)

and it is not closed, unless w = 0 and M6 is a Calabi-Yau.

5.2 (1,1) supersymmetry

In the case of vanishing θr, we have seen that the Killing spinor equations (2.3) do no longer

have to be imposed. The remaining equations (2.1) are related by simple transposition,
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i.e. any solution ǫ of the first equation in (2.1) defines a solution to the second equation by

setting ζ ≡ ǫ. In our notation, this means that the resulting theory in fact is N = (1, 1)

supersymmetric rather than just N = (1, 0).8

In contrast, for non-vanishing θr, imposing (1,1) supersymmetry in general imposes

further constraints on the background geometry, to be discussed in the rest of this section.

In this case, we have to look for necessary and sufficient conditions so that the Killing spinor

eqs. (2.1), (2.3) are obeyed for a pair of not identically vanishing spinors ǫ, ζ. We have

already seen that (1,0) supersymmetry imposes that the background gauge field is exact,

cf. eq. (5.15). Hence we may gauge away V by a suitable redefinition of the dynamical

fermions of the theory. Setting V = 0 in (5.15) then implies that A is constant. In this

section we will take A = 0 without loss of generality so that, cf. eq. (5.1),

ǫ = η . (5.38)

One immediate consequence of the Killing spinor equations (2.3) is that by taking ζ = cη,

where c is a constant, the theory is (1,1) supersymmetric if and only if

Em = 0 , (5.39)

in addition to the conditions derived in section 5.1.1. Combined with (5.26), eq. (5.39)

implies the exactness of the W4 torsion class

W4 = dφ , (5.40)

where we have set L = e−2φ. Hence the manifold is constrained to be conformally balanced.

As a consequence it also follows that the scalar ξH defined in (2.9) vanishes.

More generally, any (commuting) spinor ζ of positive chirality can be written as:

ζ = cη + γmKmη
c , (5.41)

where K is a (1,0)-form.9 It can then be seen taking the formulæ of appendix B into

account that the Killing spinor equations are equivalent to the following set of conditions:

c = 0 or Em = 0

KydL = 0

∇(mKn) = 0

dK +KyH = 0

1

4

(
E(1,0) − 2∂L

)
∧K − iLKyW

(2,1)
3 = 0 ,

(5.42)

in addition to the conditions derived in section 5.1.1. Note that the penultimate line above

implies that the Lie derivative of the background three-form field vanishes, LKH = 0; the

8Note that even when ǫ, ζ are not linearly independent, they still have different action on the fields,

cf. (3.2). The supersymmetry thus is (1,1) and not (1,0) or (0,1), which would correspond to one of the two

spinor parameters being zero.
9With a slight abuse of notation, we will use the same symbol for the form and the vector obtained from

it by raising the index with the metric.
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second line can also be written as LKL = 0; the third line is equivalent to K being Killing.

It also follows from the above that the norm of K is constant, ∂m|K|2 = 0. Hence for

K 6= 0 the triplet (K, J,Ω) defines on M6 an SU(2) structure.

Normalizing |K|2 = 2 the SU(2) structure can be given equivalently as the triplet

(K, j, ω), where [39, 41]:

ω = − i

2
K∗

yΩ , (5.43)

is a complex (2,0) form and

j = J − i

2
K ∧K∗ , (5.44)

is a real (1,1) form obeying the compatibility conditions

ω ∧ j = 0 , ω ∧ ω∗ = 2j ∧ j . (5.45)

If desired, the last line in (5.42) may be expressed in terms of SU(2) torsion classes.

Note again that choosing Em = 0 in the first line of (5.42) implies that the manifold

is conformally balanced and the scalar ξH defined in (2.9) vanishes.

5.3 (1,2) supersymmetry

Imposing Em = 0 and consequently the conformally balanced condition W4 = dφ,

eqs. (5.42) leave the constant c unconstrained. The spinor ζ in (5.41) can then be written

as ζ = cη + c′η′ where η′ = 1√
2|K| γ

mKmη
c is a unimodular spinor orthogonal to η and

c′ =
√
2|K| . Therefore, ζ is parameterized by two independent parameters c and c′, hence

the theory is (at least) (1,2)-supersymmetric. In that case it can be seen that the equations

in (5.42) reduce to:

∂K = 0 ,

LKφ = 0 ,

∇(mKn) = 0 ,

d
(
e−2φK ∧ J

)
= 0 ,

(5.46)

where we have set L = e−2φ. In deriving the equations above we have used eq. (B.4) and

have taken into account that

W
(2,1)
3 = ∂J − J ∧ ∂φ , (5.47)

which follows from (5.10) and the exactness of W4.

5.4 Examples

There are many examples of six-dimensional manifolds obeying the necessary and sufficient

conditions (5.27), (5.35). One obvious class is that of Calabi-Yau manifolds; in this case

all torsion classes vanish. A compact non-Ricci-flat, non-conformally-balanced example

with (1,1) supersymmetry is that of the round S
3 × S

3. We will also provide non-compact

examples based on the Iwasawa manifold (with (1,1) supersymmetry), as well as certain T2

bundles over non-compact K3’s (with (1,2) supersymmetry). As we will see, however, our
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rigid-supersymmetric theory cannot be defined on the round six-sphere, at least for θr 6= 0.

The latter conclusion is in accordance with the representation-theoretic classification of

Euclidean supersymmetries [42], as pointed out recently in [17]. Note however that the

classification of [42] only considers “space-times” whose isometries are simple Lie groups.

In particular it does not cover the cases without any isometries, such as e.g. Calabi-Yau

manifolds.

The round S
3 × S

3. This example is based on an SU(3) structure given in [43]. We

identify S
3 × S

3 with the group manifold SU(2)×SU(2). The orthonormal frame is given

by the SU(2)-invariant one-forms ea, fa, a = 1, 2, 3, satisying

dea =
1

2
εabce

b ∧ ec dfa =
1

2
εabcf

b ∧ f c . (5.48)

The SU(3) structure is given by:

J = e1 ∧ e2 − e4 ∧ e5 + e3 ∧ e6

Ω = (e1 + ie2) ∧ (e4 − ie5) ∧ (e3 + ie6) ,
(5.49)

so that a basis of (1,0)-forms is given by (e1 + ie2), (e4 − ie5), (e3 + ie6). The metric

associated with the structure (5.49) is that of the round S
3 × S

3:

ds2 =
3∑

a=1

(ea ⊗ ea + fa ⊗ fa) . (5.50)

Moreover we obtain W1, W2 = 0 (hence M6 is hermitian), and

W3 =
1

2
(e1 ∧ e2 + f1 ∧ f2) ∧ (f3 − e3)

W4 = −ReW5 =
1

2
(e3 + f3)

W5 = e
3πi
4
e3 + if3√

2
,

(5.51)

as can be seen by computing dJ , dΩ taking (5.48) into account and comparing with

eq. (5.10). The H-field can be computed from (5.19) and (5.51):

H = −(e1 ∧ e2 ∧ e3 + f1 ∧ f2 ∧ f3) , (5.52)

which is closed, dH = 0 (equivalently ∂∂̄J = 0, hence M6 is strong Kähler with tor-

sion). Furthermore, setting L = 0, Em = 0, the round S
3 × S

3 satisfies the necessary and

sufficient conditions (5.35) and thus provides a consistent background for a rigid (1,1)-

supersymmetric theory. Note in particular that this example is not conformally balanced:

indeed it follows from (5.51) that W4 is not closed and therefore not exact.
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The noncompact Iwasawa manifold. The Iwasawa manifold can be viewed as a com-

pact quotient G/Γ where G is the three-dimensional complex Heisenberg group defined as

G =








1 z1 −z3
0 1 z2

0 0 1


 , z1, z2, z3 ∈ C




, (5.53)

with group product given by ordinary matrix multiplication, and Γ acts as

Γ :



z1

z2

z3


 −→ M ·



z1

z2

z3


+m , (5.54)

where

m =



m1

m2

m3


 ∈ Z

3 ⊕ iZ3 , M =




1 0 0

0 1 0

0 −m2 1


 . (5.55)

By ‘noncompact Iwasawa’ we mean the group manifold G (which is homeomorphic to C
3),

i.e. before taking the Γ quotient.

The left invariant forms on G are given by dz1, dz2, dz3 + z1dz2. We can choose the

orthonormal frame of one-forms ea, a = 1, . . . , 6 so that

e1 + ie2 = dz1 , e3 + ie4 = dz2 , e5 + ie6 = dz3 + z1dz2 . (5.56)

It follows that:

dea = 0 , a = 1, . . . 4

de5 = e1 ∧ e3 − e2 ∧ e4

de6 = e1 ∧ e4 + e2 ∧ e3 .
(5.57)

The SU(3) structure is given by

J = e2φ
(
e1 ∧ e2 + e3 ∧ e4

)
+ e5 ∧ e6

Ω = e2φ(e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) ,
(5.58)

so that the G left-invariant forms given above are (1,0); φ is a function of z1, z2 but does

not depend on z3. The metric associated with (5.57) reads

ds2 =
4∑

a=1

e2φ (ea ⊗ ea) +
6∑

a=5

ea ⊗ ea . (5.59)

We obtain W1, W2 = 0, and

W3 = e1 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e6 − e1 ∧ e4 ∧ e5 − e2 ∧ e3 ∧ e5

+
1

2
dφ ∧

[
e2φ

(
e1 ∧ e2 + e3 ∧ e4

)
− e5 ∧ e6

]

W4 = −ReW5 = dφ ,

(5.60)

– 18 –



J
H
E
P
0
3
(
2
0
1
3
)
1
3
7

as can be seen by computing dJ , dΩ taking (5.57) into account and comparing with

eq. (5.10). Moreover, the H-field can be computed from (5.19) and (5.51):

H = −e2 ∧ e4 ∧ e5 + e1 ∧ e3 ∧ e5 + e2 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e6 − ⋆
(
dφ ∧ e5 ∧ e6

)
. (5.61)

Imposing closure, dH = 0, is equivalent to

2∑

i=1

∂

∂zi
∂

∂z̄i
e2φ + 1 = 0 , (5.62)

which can only be satisfied for the noncompact Iwasawa.

This example is conformally balanced since W4 is exact. Hence by setting the back-

ground field Em to zero the noncompact Iwasawa satisfies the necessary and sufficient con-

ditions (5.27) and moreover we obtain a (1,1)-supersymmetric theory. Note that although

the vector dual to the (1,0)-form K = e5+ ie6 is Killing (corresponding to isometries along

the z3 direction), K is not ∂-closed: ∂K = dz1 ∧ dz2. Hence the conditions (5.46) for (1,2)

supersymmetry are not satisfied.

T2 bundles over noncompact K3. This example is based on the work of [44] (see

also [45]). In that reference it was shown that six-dimensional manifolds with SU(3) struc-

ture can be constructed as T2 fibrations over K3 surfaces. The metric on the total space

is given by

ds2 = e2φds2(K3) + (dx+ α)2 + (dy + β)2 , (5.63)

where ds2(K3) is the Ricci-flat metric on K3, φ is a function on K3, and α, β are local

one-forms on K3 which satisfy dα = ωP , dβ = ωQ with

[ωP ]

2π
,
[ωQ]

2π
∈ H2(K3,Z) ∩H1,1(K3) . (5.64)

The complex SU(3) structure on the total space is given by

J = e2φj + (dx+ α) ∧ (dy + β)

Ω = e2φω ∧ [(dx+ α) + i(dy + β)] ,
(5.65)

where ω, j are the holomorphic (2, 0) form, the Kähler form on the K3 base10 respectively.

In particular ω, j are both closed. Moreover we will assume that ωP , ωQ are anti self-dual

⋆ωP,Q = −ωP,Q, so that11

ωP ∧ j = ωQ ∧ j = 0 . (5.67)

10If the map π : M6 7→ M6/T
2 ≃ K3 defines the fibration, we can extend ω, j, α, β from K3 to the total

space M6 by using π∗.
11Consider the decomposition

H2(M4,R) = H+(M4,R)⊕H−(M4,R) , (5.66)

into self-dual and anti self-dual two-forms. For M4 a compact K3 surface, H+(M4,R) is three-dimensional

and is generated by Reω, Imω and j; H−(M4,R) is the 19-dimensional vector space of real (1,1)-forms

which are orthogonal to j in the sense of (5.67).
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By computing dJ , dΩ and comparing with (5.10) it can then be seen that the torsion

classes are given by

W3 =
1

2
dφ ∧

[
eφj − (dx+ α) ∧ (dy + β)

]
− (dx+ α) ∧ ωQ + (dy + β) ∧ ωP

W4 = −ReW5 = dφ .

(5.68)

From the above and (5.23) we find that the H field is given by

⋆ H = −ωP ∧ (dy + β) + ωQ ∧ (dx+ α) + dφ ∧ (dx+ α) ∧ (dy + β) . (5.69)

The closure of H can then be seen to be equivalent to

∇2
K3e

2φ + |ωP |2 + |ωQ|2 = 0 , (5.70)

where ∇2
K3 is the (unwarped) Laplacian on K3, and we have defined |ω|2 = ω∗

mnω
mn/2.

Similarly to the previous example, the above equation can only be solved for noncom-

pact K3’s.

Since W4 is exact we can set the background field Em to zero, hence this example

satisfies the necessary and sufficient conditions (5.27) and possesses (1,1) supersymmetry.

Moreover let us define the one form K by

K = dz + (α+ iβ) , (5.71)

where z = x+iy, which is (1,0) with respect to the complex structure associated with (5.65).

Clearly the vector dual to K is Killing for the metric in (5.63). Furthermore LKφ = 0 since

φ only depends on the coordinates of K3 and not on the T2 coordinate z. We also have

dK = ωP + iωQ ∈ H1,1(K3), hence ∂K = (dK)2,0 = 0. Finally from (5.65) we find

d
(
e−2φK ∧ J

)
= d (K ∧ j) = (ωP + iωQ) ∧ j = 0 .

Therefore all the conditions in (5.46) are satisfied and we obtain a rigid (1,2)-super-

symmetric theory.

The round sphere S
6. Whether or not the six-dimensional sphere admits a complex

structure is still an open question. It is known however that the six-dimensional sphere

does not admit an orthogonal complex structure, i.e. one that obeys eq. (5.28) with re-

spect to the standard ‘round’ metric [46]. In other words the round sphere S
6 is not a

hermitian manifold. This implies that S
6 violates the first of the necessary and sufficient

conditions in (5.27) therefore our rigid-supersymmetric theory cannot be defined on S
6, at

least for θr 6= 0.

6 Euclidian 6D SYM and localization

In this section we shall set the parameters θr and all other background fields to zero,

L◦ = B◦ = V ◦ = E◦ = θr = 0 , (6.1)
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except for the metric of the curved six-dimensional spaceM6. Then the analysis of section 5

implies that all torsion classes vanish andM6 is a Calabi-Yau threefold.12 Equivalently, this

can be seen by the fact that imposing (6.1), the first Killing spinor equation (2.1) reduces

to the condition that the spinor ǫ is covariantly constant, while eq. (2.3) is automatically

satisfied. Moreover, as follows from the analysis of section 5.2, this example possesses (1,1)

supersymmetry since θr = 0. The upshot is that Euclidean rigid (1,1)-supersymmetric

nonabelian YM theory can be consistently defined on CY threefolds.

6.1 Localization

In order to apply the localization procedure, the theory must be invariant under the action

of a fermionic operator Q which is nilpotent, Q2 = 0 (or more generally squares to a

symmetry of the theory). Deforming the action by a Q-exact term,

S −→ S +
1

e2
Q · U , (6.2)

leaves invariant the expectation values of Q-closed operators. Hence we may take the limit

of zero coupling constant, e2 → 0, upon which the theory localizes to the set Σ of critical

points of Q · U [47]. In this limit the path integral can be performed by restricting S to

Σ and computing a one-loop determinant describing the fluctuations normal to Σ. This

procedure has been carried out in detail in e.g. [2] for the case of SYM on the round S
4.

The action (3.1) is only invariant on-shell.13 In order to construct the fermionic op-

erator Q of the previous paragraph we introduce auxiliary scalar bosonic fields Kr. The

operator Q is then defined by its action on the fields:

Q ·Am
r = ν̃rγmη ,

Q · λr =
1

4
γmnη Fmn

r − 1

2
Krη

Q ·K = η̃γmDmν
r , (6.3)

where η is a commuting unimodular Weyl spinor, as in section 5, which is covariantly

constant:

∇mη = 0 . (6.4)

Note that by virtue of the fact that η is commuting Q defined in (6.3) is indeed fermionic,

i.e. transforms commuting to anticommuting fields and vice-versa.

It can be checked that the operator Q defined in (6.3) is nilpotent off-shell, i.e. Q2 = 0

on all fields without using the equations of motion. Furthermore it can be checked that Q

leaves the following Lagrangian invariant up to a total derivative:

Loff =
1

4
Fmn

rFmnr − 2ν̃rγmDm λ
r +

1

2
KrKr , (6.5)

12We will use the term ‘Calabi-Yau threefold’ to refer to any six-dimensional manifold whose holonomy

is a subset of SU(3), including T6 and T2×K3.
13A SYM action with extended off-shell supersymmetry was constructed in [48] (see also [49]).
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where Loff reduces to pure on-shell SYM upon eliminating the auxiliary fields by their

equations of motion. Explicitly we have:

Q · Loff = ∇m [(η̃γmνr)Kr] . (6.6)

The sign difference between the F 2 term in (3.1) and that in (6.5) above comes from the

fact that the spinor parameter η in (6.3) is commuting whereas ǫ in (3.2) is anticommuting.

From (6.5) we see that for convergence of the path integral the fields Ar
m, Kr should

be real. On the other hand the Q-transformations of Ar
m, Kr given in (6.3) are complex.

This does not affect the localization argument [2]: the action should be thought of as an

analytic functional in the space of complexified fields, with the path integral understood

as integration over the real subspace thereof.

We now deform the Lagrangian by a Q-exact term:

Loff −→ Loff +
1

e2
Q · U , (6.7)

where U is given by

U = λ†Q · λ . (6.8)

A straightforward computation using (6.3) then gives

Q · U = (Q · λr)† (Q · λr)

=
1

8

(
Fmn

rFmn r − 1

4
εm1...m6Fm1m2

rFm3m4
rJm5m6

)
+

1

4
KrKr ,

(6.9)

where we have taken the definition (5.3) into account. Note that since we are in the case

where M6 is a CY threefold and the spinor η is covariantly constant, Jmn is a Kähler form

and Jm
n is a complex structure.

According to the localization procedure, the theory will localize, in the e2 → 0 limit,

to the set Σ of critical points of Q · U . To determine Σ we note that the right-hand side

of (6.9) can be expressed as a sum of squares:

Q · U =
1

16

(
Fmn r − 1

4
εmnm1...m4Fm1m2

rJm3m4 −
1

2
JmnFpq

rJpq

)2

+
1

4
(Kr)2 , (6.10)

where we have taken into account (5.4) and the identity:

εmnm1...m4Jm1m2Jm3m4 = −8Jmn , (6.11)

which can be proven e.g. by fierzing, taking into account the definition (5.3) of J as a

spinor bilinear.

To bring (6.10) to a more familiar form, it is useful to project on the (2,0), (0,2)

and (1,1) parts (with respect to the complex structure Jm
n) using the projectors defined

in (5.6). Explicitly we expand:

Fmn
r = F (2,0) r

mn + F (0,2) r
mn + F̃ (1,1) r

mn +
1

6
F r
0 Jmn , (6.12)
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where

F r
0 = Fmn

rJmn

F (2,0) r
mn =

(
Π+

)
m

p
(
Π+

)
n
qFpq

r

F (0,2) r
mn =

(
Π−)

m
p
(
Π−)

n
qFpq

r =
(
F (2,0) r
mn

)∗

F̃ (1,1) r
mn = 2

(
Π+

)
[m

p
(
Π−)

n]
qFpq

r − 1

6
F r
0 Jmn ,

(6.13)

so that F̃
(1,1) r
mn is (1,1) and traceless: F̃

(1,1) r
mn Jmn = 0. With these definitions, eq. (6.10)

can be rewritten as14

Q · U =
1

2

∣∣∣F (2,0) r
mn

∣∣∣
2
+

1

16
(F r

0 )
2 +

1

4
(Kr)2 . (6.15)

Hence the set of critical points of Q · U is given by:

F (2,0) r
mn = F (0,2) r

mn = 0 ,

F r
0 = 0 ,

Kr = 0 ,

(6.16)

while the (1,1)-traceless component of the field strength remains unconstrained. These

equations are of course familiar from heterotic compactifications on Calabi-Yau manifolds:

The first line of (6.16) defines a holomorphic gauge bundle over M6; the second line is the

Donaldson-Uhlenbeck-Yau equation defining a stable bundle.

In conclusion: the path integral of the SYM theory (6.5) defined on a CY threefold M6

localizes on stable holomorphic bundles over M6. Note however that we have restricted our

discussion to essentially classical considerations. A quantum-mechanical treatment taking

into account the path-integral measure will not be attempted here.

7 Conclusions

In this paper, we have analyzed the conditions for rigid supersymmetry in six dimensions

and translated them as a set of necessary and sufficient conditions on the geometry of the

six-dimensional manifold. In particular, the background three-form flux H◦
kmn is given in

terms of the torsion classes. Given the existence of Killing spinors on these background

structures, we have constructed the explicit Lagrangians and field equations for the in-

teractions of non-abelian vector- and tensor-multiplets on curved space. We have worked

out a number of explicit examples, including CY threefolds, the round S
3 × S

3, as well as

14More generally, for complex auxiliary fields Kr we find

Q · U =
1

2

∣

∣

∣
F (2,0) r
mn

∣

∣

∣

2

+
1

4

(

ImKr − 1

2
F r
0

)2

+
1

4
(ReKr)2 . (6.14)

As we have already mentioned, for convergence of the euclidean path integral we must take the auxiliary

fields to be real.
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noncompact examples based on the Iwasawa manifold and T 2 bundles over noncompact

K3’s. Finally, we have applied the localization procedure to pure SYM theory defined on a

CY threefold M6 and shown that the path integral localizes on stable holomorphic bundles

over M6.

A number of interesting questions remains to be further analyzed. We have fully ana-

lyzed the conditions for rigid backgrounds allowing for the minimal amount of supersymme-

tries, i.e. N = (1, 0) and N = (1, 1) in our notation, and briefly discussed the consequences

of N = (1, 2). The existence of more Killing spinors will impose further constraints on the

background fields and geometry, just as in the four-dimensional case [6]. With increasing

number of supercharges, the structure of the supersymmetry algebra becomes more and

more constraining. Let us note that the algebra displayed in (3.5), and (4.7), is soft in the

sense that the closure involves dependence on fields, including the background ones. Tak-

ing the flat space limit in which the dynamical fields and the background 2-form potential

vanishes, yields the rigid superalgebra

{Q̃α, Qβ} = (Cγµ)αβPµ , (7.1)

which is the Euclidean Poincaré superalgebra in 6D [50]. If we set only the dynamical fields

equal to zero, the interpretation of the resulting superalgebra depends on the details of the

background fields, such as the Killing spinors and and isometries they may support. In this

case, a superalgebra in lower dimensions which also contains internal symmetry generators

may be expected. In particular, the analogs of the Poincaré, AdS and conformal super-

algebras for space-times in arbitrary dimensions and signatures have been systematically

constructed in [51].

Another interesting open question concerns possible anomalies of our model. In

Minkowski space-time and with all background fields set to zero, the model reduces to that

of [18]. In that model there are gauge anomalies due to the coupling of gauge fields to chi-

ral fermions. For certain gauge groups these anomalies can be cancelled by Green-Schwarz

mechanism involving the addition of a one-loop counterterm of the form ~B∧F ∧F . Super-
symmetrization of the model in the presence of this counterterm [52] leads to ~-corrections

to the Yang-Mills field equation, which however is anomalous, as its divergence does not

vanish, as expected. This also implies an anomaly term in the closure of the superalgebra.

Nonetheless, as shown in [52], introducing a constant α′ in front of the YM interactions in

the tensor multiplet field equations, and then interchanging the role of α′ with ~ leads to a

dual model such that (a) it is anomaly free upon treating the resulting ~-terms as one-loop

counterterm corrections, and (b) the tensor multiplet equations are free, while they arise

as source in the field equations of the Yang-Mills multiplet. While the Euclideanization of

6D space-time is not expected to upset these results, the consequences of retaining non-

trivial background fields from the context of the anomalies are not clear, and remains an

interesting open problem. Nonetheless, a direct application of the Noether procedure in

the dual formulation that uses the Killing spinor equations is expected to yield a formu-

lation of these models in curved background. It is also worth noting that the tensor-YM

system à la [18] as well as its dual formulation, both in 6D Minkowski spacetime, were also

– 24 –



J
H
E
P
0
3
(
2
0
1
3
)
1
3
7

obtained from different global limits of the (on-shell) heterotic supergravity compactified

on K3, [53].

It should be straightforward to extend the localization results presented here to non-

Calabi-Yau manifolds. This would entail modifying the analysis of section 6 to include non-

vanishing background fields besides the metric. We should stress however that our treat-

ment of localization was essentailly limited to classical considerations. A fully quantum-

mechanical treatment should include the consideration of the path-integral measure and

potential anomalies.
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A 6D conventions

In this section we list some useful relations and explain in more detail our spinor conventions

for general even-dimensional Euclidean spaces of dimension 2k.

The charge conjugation matrix obeys:

CTr = (−)
1
2
k(k+1)C ; C∗ = (−)

1
2
k(k+1)C−1 ; γTrm = (−)kC−1γmC . (A.1)

The complex conjugate ηc of a spinor η is given by:

ηc := Cη∗ , (A.2)

form which it follows that:

(ηc)c = (−)
1
2
k(k+1)η . (A.3)

Covariantly-transforming spinor bilinears must be of the form (ψ̃γm1...mpχ), where in any

dimension we define:

ψ̃ := ψTrC−1 . (A.4)

One can also show the following useful identity:

γ∗m1...mp
= (−)kpC−1γm1...mpC . (A.5)

The case of six-dimensional Euclidean space is obtained by specializing to k = 3. The

chirality matrix is given by

γm1...m6 = −i εm1...m6 γ
7 . (A.6)

Since the chiral irreducible representation of Spin(6) is complex, a Weyl spinor η and its

complex conjugate ηc have opposite chirality. We also have:

η̃c = η† . (A.7)
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Moreover we find:

(ψ̃±γm1...m2l
χ±) = 0 = (ψ̃±γm1...m2l+1

χ∓) , (A.8)

where the subscript ± denotes the chirality. Another useful relation is:

(ψ̃γm1...mpχ) = σ(−)
1
2
p(p+1)(χ̃γm1...mpψ) , (A.9)

where σ = +1, σ = −1 for commuting, anticommuting spinors χ, ψ. As for the spinor

fields encountered in our models, the supersymmetry parameters (ǫ, ζ̃) and the gauginos

(λ, ν̃) have chirality + whereas the tensorinos (χ, ψ̃) have chirality −.

B SU(3)-structure identities

Here we summarize several relations which are useful in analyzing the Killing spinor equa-

tions. We follow ref. [54] which the reader may consult for further details.

0 = (Π+)m
nγnη

c

γmnη = iJmnη +
1

2
Ωmnpγ

pηc

γmnpη
c = −3iJ[mnγp]η

c − Ω∗
mnpη . (B.1)

The above together with tensor decomposition (5.11) give

γmnpHmnpη = H(0)∗ηc + 3iH
(0,1)
t γtη

Hmpqγ
pqη =

(
H(0)∗gmt + 3Ωt

pqH̃(1,2)
mpq − 3i

2
Ωmt

pH(0,1)
p

)
γtηc + 6i(H(1,0)

m +H(0,1)
m )η

Hpqrγ
pqrγmη = 3Ωt

pqH̃(1,2)
mpq γ

tηc + 6iH(1,0)
m . (B.2)

In the above we have taken into account the identity

Ω[t
pqH̃

(1,2)
m]pq = 0 , (B.3)

which can easily be shown by direct calculation.

The following identity is useful in deriving the formulæ in section 5.3:

(V yW ) ∧ J = iV ∧W , (B.4)

where V is an arbitrary (1,0)-form and W is any three-form obeying W ∧ J = 0.
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[53] M. Duff, J.T. Liu, H. Lü and C. Pope, Gauge dyonic strings and their global limit,

Nucl. Phys. B 529 (1998) 137 [hep-th/9711089] [INSPIRE].

[54] D. Lüst and D. Tsimpis, Supersymmetric AdS4 compactifications of IIA supergravity,

JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.69.086002
http://arxiv.org/abs/hep-th/0302158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0302158
http://dx.doi.org/10.1088/1126-6708/2005/08/056
http://arxiv.org/abs/hep-th/0506160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506160
http://dx.doi.org/10.1016/0550-3213(78)90218-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B135,149
http://arxiv.org/abs/math/0205012
http://inspirehep.net/search?p=find+EPRINT+math/0205012
http://dx.doi.org/10.1007/s00220-004-1167-7
http://arxiv.org/abs/hep-th/0212307
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212307
http://dx.doi.org/10.1088/1126-6708/1999/08/023
http://arxiv.org/abs/hep-th/9908088
http://inspirehep.net/search?p=find+EPRINT+hep-th/9908088
http://dx.doi.org/10.1007/BF01223371
http://inspirehep.net/search?p=find+J+CMPHA,117,353
http://dx.doi.org/10.1016/0370-2693(93)91791-K
http://arxiv.org/abs/hep-th/9308128
http://inspirehep.net/search?p=find+EPRINT+hep-th/9308128
http://dx.doi.org/10.1007/JHEP01(2013)162
http://arxiv.org/abs/1209.4320
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4320
http://dx.doi.org/10.1016/S0393-0440(01)00023-7
http://arxiv.org/abs/hep-th/0010124
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010124
http://dx.doi.org/10.1016/S0370-2693(98)01086-7
http://arxiv.org/abs/hep-th/9806050
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806050
http://dx.doi.org/10.1016/S0550-3213(98)00367-8
http://arxiv.org/abs/hep-th/9711089
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711089
http://dx.doi.org/10.1088/1126-6708/2005/02/027
http://arxiv.org/abs/hep-th/0412250
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412250

	Introduction
	Killing spinor equations I
	Vector multiplets
	Tensor multiplets
	Killing spinor equations II
	(1,0) supersymmetry
	theta**r != 0
	theta**r =0

	(1,1) supersymmetry
	(1,2) supersymmetry
	Examples

	Euclidian 6D SYM and localization
	Localization

	Conclusions
	6D conventions
	SU(3)-structure identities

