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Abstract

Background: Molecular clock methodologies allow for the estimation of divergence times across a variety of
organisms; this can be particularly useful for groups lacking robust fossil histories, such as microbial eukaryotes with
few distinguishing morphological traits. Here we have used a Bayesian molecular clock method under three distinct
clock models to estimate divergence times within oomycetes, a group of fungal-like eukaryotes that are ubiquitous in
the environment and include a number of devastating pathogenic species. The earliest fossil evidence for oomycetes
comes from the Lower Devonian (~400 Ma), however the taxonomic affinities of these fossils are unclear.

Results: Complete genome sequences were used to identify orthologous proteins among oomycetes, diatoms,
and a brown alga, with a focus on conserved regulators of gene expression such as DNA and histone modifiers
and transcription factors. Our molecular clock estimates place the origin of oomycetes by at least the mid-Paleozoic
(~430-400 Ma), with the divergence between two major lineages, the peronosporaleans and saprolegnialeans, in the
early Mesozoic (~225-190 Ma). Divergence times estimated under the three clock models were similar, although only
the strict and random local clock models produced reliable estimates for most parameters.

Conclusions: Our molecular timescale suggests that modern pathogenic oomycetes diverged well after the origin of
their respective hosts, indicating that environmental conditions or perhaps horizontal gene transfer events, rather than
host availability, may have driven lineage diversification. Our findings also suggest that the last common ancestor of
oomycetes possessed a full complement of eukaryotic regulatory proteins, including those involved in histone
modification, RNA interference, and tRNA and rRNA methylation; interestingly no match to canonical DNA
methyltransferases could be identified in the oomycete genomes studied here.
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Background

Eukaryotic diversity is primarily microbial, with multicellu-
larity restricted to a few distinct lineages (plants, animals,
fungi, and some algae). While the Proterozoic fossil record
contains an abundance of organic-walled, often ornamen-
ted, microfossils interpreted as eukaryotes, evidence for the
origins and diversification of specific lineages of microbial
eukaryotes is rare, especially for those groups with few
diagnostic morphological characters [1]. Molecular clock
methods therefore provide the only avenue for elucidating
the evolutionary history of some lineages. With the recog-
nition that a single rate (“strict”) molecular clock as
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originally proposed by Zuckerkandl and Pauling [2,3] was
often inadequate in light of rate variation among organ-
isms, early studies suggested the use of local clocks or the
removal of lineages that violated the assumption of rate
homogeneity (reviewed in [4]). The continued develop-
ment of molecular clock methodologies over the past two
decades has allowed for the estimation of divergence times
under more complex models of rate variation. Initial
“relaxed clock” methods, such as non-parametric rate
smoothing [5] and penalized likelihood [6], allowed rates
to vary but sought to minimize large differences between
parent and descendent branches. Additionally, Bayesian
relaxed clock methods allow rates to vary among lineages
but assume autocorrelation by drawing the rate of a
descendent branch from a distribution whose mean is
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determined by the rate of the parent branch [7,8]; other
Bayesian methods relax this assumption of autocorrelation
for the co-estimation of phylogeny and divergence times
[9]. Most recently, a random local clock model approach
has been proposed which allows rate changes to occur
along any branch in a phylogeny; this method allows users
to directly test various local clock scenarios against a strict
clock model of no rate changes [10].

In addition to improved modeling of rate variation,
newer molecular clock methods are also able to better
incorporate calibration uncertainty into the estimation
of divergence times. Early methods treated fossil calibra-
tions as fixed points (from which rates were derived);
newer methods utilize probability distributions to better re-
flect the paleontological uncertainty of a fossil’s phylogen-
etic position in relation to modern organisms [11,12], as
well as variance around the numerical age of geologic for-
mations. However, some authors have already shown that
modeling fossil probability distributions under different as-
sumptions can have significant impacts on divergence time
estimation [13], illustrating that rate calibration is still an
important source of potential error in molecular clock
studies.

In this study we have focused on the fungal-like oomy-
cetes (Peronosporomycetes sensu [14]), a group of het-
erotrophic eukaryotes closely related to diatoms, brown
algae, and other stramenopiles [15]. A close relationship
among stramenopiles, alveolates, and several photosyn-
thetic eukaryotes with red algal-derived plastids was previ-
ously suggested as the supergroup Chromalveolata [16].
However molecular studies have supported a grouping of
stramenopiles and alveolates with the non-photosynthetic
rhizarians (“SAR” sensu [17]), excluding other photosyn-
thetic lineages; the recently revised eukaryote classification
has now formalized the Sar supergroup [18]. Many oomy-
cetes are saprotrophic in aquatic and terrestrial ecosys-
tems, however several devastating pathogens are known,
such as Phytophthora infestans, the causal agent of late
blight in solanaceous plant hosts [19]. Some orders are
primarily pathogenic, such as the Peronosporales and
Albuginales, while others are composed of both patho-
genic and saprotrophic members, such as the Pythiales,
Saprolegniales, Leptomitales, and Rhipidiales [20]. Several
basal lineages, such as the Eurychasmales and Haliphthor-
ales, are known primarily as pathogens of marine algae
and crustaceans, leading some to suggest that the oomy-
cetes may be “hard-wired” for pathogenic lifestyles [15].

The earliest robust fossil evidence of oomycetes comes
from the Lower Devonian (Pragian, ~408 Ma) Rhynie
Chert [21]. Thick-walled, ornamented structures inter-
preted as oogonium-antheridium complexes [22], as well
as thin-walled polyoosporous oogonia [23], are well pre-
served in association with degraded plant debris and
cyanobacteria-dominated microbial mats. More recent
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oomycete fossils occur in the Carboniferous, where evi-
dence for endophytic [24] and perhaps parasitic [25,26]
interactions with plant hosts is more compelling. Add-
itionally, the fossil species Combresomyces cornifer ori-
ginally described from Lower Carboniferous chert in
central France [27] has also been identified in Middle
Triassic silicified peat from Antarctica [28], providing an
intriguing example of geographic range and morpho-
logical stasis over roughly 90 million years of oomycete
evolution [29].

This is the first study to estimate divergence times
within the oomycetes using molecular clock methods.
Previous studies have typically included a single repre-
sentative within a larger study of eukaryotic evolution
[30-32], or have used oomycetes to root the analysis
[33,34]. As there is little a priori information on the
tempo of evolution within oomycetes, here we estimate
divergence times under three distinct molecular clock
models: a single-rate strict clock, a relaxed clock with
uncorrelated rates modeled under a lognormal distribu-
tion (UCLD), and a random local clock model. The
availability of several complete genome sequences for
oomycetes, diatoms, and a brown alga allowed us to
carefully curate a dataset of 40 orthologs for divergence
time estimation; we chose to focus on known regulators
of eukaryotic gene expression to investigate their pres-
ence and level of conservation within pathogenic oomy-
cetes. While the performance of the three models
differed, the estimated divergence times suggested that
oomycetes diverged from other stramenopiles by at least
the mid-Paleozoic, and that two major lineages, the per-
onosporaleans and saprolegnialeans, diverged in the
early Mesozoic, approximately 200 Ma after the first ap-
pearance of oomycetes in the fossil record.

Results

Regulators of gene expression in oomycetes

Complete genome sequences from eighteen species were
examined (Table 1). A total of 70 genes involved in the
regulation of gene expression were examined for hom-
ology in Phytophthora infestans (Table 2); homologs of
two genes (Drosha-like; TFIIH, Ssl1 subunit) could not
be identified in P. infestans but were present in other
oomycetes. In general, oomycetes possess a full comple-
ment of canonical transcription factors and genes in-
volved in chromatin modification, including multiple
histone acetyltransferases, deacetylases, and methyltrans-
ferases (Table 2). Proteins known to be involved in post-
transcriptional gene silencing [35] were identified in our
search, including homologs of Argonaut, Dicer, RNA-
dependent RNA polymerase, double-stranded RNA bind-
ing proteins, and an RNaselll-domain containing protein
(Table 2). A recent study has shown that these genes are
expressed and functional in P. infestans [36]. However,



Matari and Blair BMC Evolutionary Biology 2014, 14:101

http://www.biomedcentral.com/1471-2148/14/101

Table 1 Species with complete genome sequences included in this study
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Species Strain/version Genome source Reference

Achlya hypogyna ATCC48635 unpublished data (unpublished)
Albugo laibachii Nc14 NCBI BLAST (http://blast.ncbi.nlm.nih.gov) [37]
Ectocarpus siliculosus Ec32 BOGAS (http://bioinformatics.psb.ugent.be) [38]

Fragilariopsis cylindrus CCMP1102 v1.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) (unpublished)
Hyaloperonospora arabidopsis Emoy2 v8.3.2 Virginia Bioinformatics Institute (http://www.vbi.vt.edu) [39]
Phaeodactylum tricornutum CCAP1055/1 v2.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) [40]
Phytophthora capsici LT1534 v11.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) [41]

Phytophthora cinnamomi v1.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) (unpublished)
Phytophthora infestans T30-4 Broad Institute (http://www.broadinstitute.org) [42]

Phytophthora parasitica INRA-310 Broad Institute (http://www.broadinstitute.org) (unpublished)
Phytophthora ramorum Pr-102 v1.1 DOE-Joint Genome Institute (http://www.jgi.doe.gov) [43]
Phytophthora sojae P6497 v3.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) [43]

Pseudo-nitzschia multiseries CLN-47 v1.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) (unpublished)
Pythium ultimum BR144 v4.0 Pythium Genome Database (http://pythium.plantbiology.msu.edu) [44]
Saprolegnia parasitica (CBS223.65 Broad Institute (http://www.broadinstitute.org) [45]
Tetrahymena thermophila SB210 v2008 Tetrahymena Genome Database (http:/ciliate.org) [46]
Thalassiosira pseudonana CCMP1335 v3.0 DOE-Joint Genome Institute (http://www.jgi.doe.gov) [47]

Thraustotheca clavata ATCC34112 unpublished data (unpublished)

unlike the previous study, we were able to identify a sec-
ond Dicer-like homolog in the genomes of other oomy-
cetes that is absent in P. infestans; these sequences
showed more similarity to human and Drosophila Drosha
proteins than to other Dicer homologs (data not shown).
Two distinct groups of Argonaut proteins were identified
in the oomycetes, as well as two types of double-stranded
RNA binding proteins (Table 2). While no homologs
to canonical eukaryotic DNA methyltransferases could
be identified, a homolog of DNA methyltransferase 1-
associated protein was present in all the genomes analyzed
here. Several genes involved in RNA methylation were
also found (Table 2).

Divergence time analyses

Robust orthology relationships could be determined for
52 out of the initial 70 datasets; 40 of these datasets con-
tained minimal missing data and were used to estimate
divergence times (see Additional file 1 for a list of genes
included in the analysis). Calibration priors were mod-
eled with a gamma distribution in order to assign higher
probabilities to divergence times somewhat older than
the hard bound (offset value); initial tests with lognormal
priors produced very similar divergence times (data not
shown). Five independent analyses of 50 million genera-
tions each were run under each of the three models,
with the random local clock model being the most com-
putationally intensive. Strict clock and UCLD analyses run
on an iMac (10.8.5) desktop with a 2.7 GHz Intel core i5
processor took approximately seven days. Random local

clock analyses run on a Linux (Mintl4) desktop with a
3.3 GHz Xeon quad core processor took approximately
30 days. Posterior distributions on parameters were identi-
cal across all five runs under the strict clock model. Par-
ameter distributions were consistent and overlapping for
all five runs under the UCLD model with only one run de-
viating for the estimate of the root height (700 Ma versus
approximately 500 Ma in the other four runs), however all
runs showed weak evidence of convergence even after 50
million generations. One run under the random local
clock model failed to converge; of the four successful runs,
parameter distributions were consistent and overlapping
with only one run deviating for the rate estimate (1.76 x
1072 versus 1.88 x 107 for the other three runs). Log and
tree files for two of the five runs with the highest effective
sample size (ESS) for the likelihood parameter were then
combined; under the strict clock model, all five runs per-
formed equally, so the first two runs were combined. Ana-
lyses run without data (Prior Only) resulted in time
estimates that were markedly different from those ob-
tained with the full dataset for the majority of nodes
(Table 3), suggesting that our divergence time estimates
were driven by the data themselves and not by settings on
the calibration priors. Divergence times among oomycete
lineages were consistent among all three models (Table 3),
however estimates under the UCLD model may have been
influenced by poor mixing as several parameters showed
ESS values less than 200 (Tables 3 and 4). The resulting
timetree suggests an origin for oomycetes in the mid-
Paleozoic, with a divergence between two major lineages,
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Table 2 Conserved regulators of gene expression evaluated for divergence time analysis
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Gene Domains? Reference®
Chromatin modification
Anti-silencing factor Asf1 asf1 PITG_17091
Brahma-like HAS, SNF2 N-terminal, Helicase conserved C-terminal, Bromodomain PITG_19037
Chromodomain-containing protein (A) 2x Chromo, SNF2 N-terminal, Helicase conserved C-terminal PITG_15837
Chromodomain-containing protein (B) [PDZ, QLQ], 2x Chromo, SNF2 N-terminal, Helicase conserved C-terminal, PITG_10083
PHD-finger, PHD-like (zf-HC5HC2H_2)
Chromodomain-containing protein (C) PHD-finger, 2x Chromo, SNF2 N-terminal, Helicase conserved C-terminal PITG_00140
Chromodomain-containing protein (D) [Chromo], Bromodomain, PHD, Chromo, [PDZ], SNF2 N-terminal, PITG_03401
Helicase conserved C-terminal, PHD, [PHD], PHD-like (zf-HC5HC2H), PHD
CXXC zinc finger containing protein [SNF2 N-terminal], 2x CXXC zinc finger, [FHA] PITG_03547
DNA methyltransferase 1-associated protein [DNA methyltransferase 1-associated protein] PITG_15785
ESAT-like histone acetyltransferase Tudor-knot RNA binding, MOZ/SAS PITG_01456
GCNS5-like histone acetyltransferase GNAT Acetyltransferase, Bromodomain PITG_20197
HAT1-like histone acetyltransferase HAT1 N-terminus, [GNAT Acetyltransferase] PITG_00186
KAT11 domain histone acetyltransferase (A) TAZ zinc finger, Bromodomain, [PHD], KAT11, ZZ zinc finger, TAZ PITG_07302
zinc finger
KAT11 domain histone acetyltransferase (B) [TAZ, TAZ], Bromodomain, [DUF902], [PHD], KAT11, [ZZ, TAZ] PITG_06533
KAT11 domain histone acetyltransferase (C) Bromodomain, [PHD], KAT11 PITG_18027
KAT11 domain histone acetyltransferase (D) Bromodomain, KAT11 PITG_08587
Histone deacetylase HDA1 histone deacetylase PITG_01897
Histone deacetylase HDA2 [ankyrin repeats], histone deacetylase PITG_08237
Histone deacetylase HDA4 histone deacetylase PITG_05176
Histone deacetylase HDAS histone deacetylase PITG_15415
Histone deacetylase HDA6 histone deacetylase PITG_21309
Histone deacetylase HDA7 histone deacetylase PITG_12962
Histone deacetylase HDA8 histone deacetylase PITG_01911
Histone deacetylase HDA9 histone deacetylase PITG_04499
DOT1-like histone methyltransferase DOT1 PITG_00145

Histone-lysine N-methyltransferase

Protein methyltransferase w/bicoid

SLIDE domain-containing protein (A)

SLIDE domain-containing protein (B)
SSRP1 subunit, FACT complex

RNA Methylation

FtsJ-like rRNA Methyltransferase (A)
FtsJ-like rRNA Methyltransferase (B)
FtsJ-like rRNA Methyltransferase (C)
Spb1-like rRNA Methyltransferase
Guanosine 2'0 tRNA methyltransferase

N2,N2-dimethylguanosine tRNA
methyltransferase

MnmA-like tRNA 2'-thiouridylase
RNA Silencing
Argonaute (A)

Bromodomain, PHD-like zinc-binding (zf-HC5HC2H),
F/Y-rich N-terminus, SET

Methyltransferase, bicoid-interacting protein 3

DUF1898, SNF2 N-terminal, Helicase conserved C-terminal, SLIDE,
[myb-like DNA-binding], HMG box

SNF2 N-terminal, Helicase conserved C-terminal, [HAND], SLIDE

Structure-specific recognition protein, Histone chaperone Rttp106-like

FtsJ-like methyltransferase

FtsJ-like methyltransferase

FtsJ-like methyltransferase

FtsJ-like methyltransferase, DUF3381, Spb1 C-terminal domain

CCCH zinc finger, U11-48 K CHHC zinc finger, TRM13 methyltransferase
N2,N2-dimethylguanosine tRNA methyltransferase (TRM)

tRNA methyltransferase

DUF1785, PAZ, Piwi

PITG_20502, PITG_04185

PITG_14915
PITG_02286

PITG_17273
PITG_14260

PITG_09405
PITG_06848
PITG_16337
PITG_00663
PITG_04858
PITG_10166

PITG_08823

PITG_04470, PITG_04471
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Table 2 Conserved regulators of gene expression evaluated for divergence time analysis (Continued)
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Argonaute (B)

Dicer-like

Drosha-like

dsRNA-binding protein
dsRNA-binding protein w/ Bin3
Rnaselll domain protein

RNA-dependant RNA polymerase

Transcription factors
Histone-like CBF/NF-Y
Histone-like CBF/NF-Y w/HMG
Med17 subunit of Mediator complex
p15 transcriptional coactivator
TFIB

TFIID, TATA-binding protein (A)
TFIID, TATA-binding protein (B)
TFIID, TATA-binding protein (C)
TFID, TAF1 subunit

TFIID, TAF2 subunit

TFID, TAFS5 subunit

TFIID, TAF6 subunit

TFIID, TAF8 subunit

TFID, TAF9 subunit

TFIID, TAF10 subunit

TFIID, TAF12 subunit

TFID, TAF14 subunit

TFIIE, alpha subunit

TFIIF, alpha subunit

TFIIF, beta subunit

TFIIH, Rad3 subunit

TFIIH, SsIT subunit

TFIIH, Tfb1 subunit

TFIIH, Tfb2 subunit

TFIIH, Tfb4 subunit

TFIIB, Brf1-like subunit

DUF1785, PAZ, Piwi

PITG_01400, PITG_01443,

PITG_01444
[DEAD/H box helicase], dsRNA binding, 2x Rnase Ill domains PITG_09292
2x Rnase Il domains, [dsRNA binding] Psojae_300435
dsRNA binding PITG_12183
[methyltransferase], dsRNA binding, Bicoid-interacting 3 PITG_03262
Rnase Il domain, [dsRNA binding] PITG_08831
DEAD/H box helicase, Helicase conserved C-terminal, RdRP domain, PITG_10457
[NTP transferase]
CBF/NF-Y [CENP-S associated centromere protein X] PITG_00914
HMG, CBF/NF-Y PITG_19530
Med17 PITG_03899
2x PC4 PITG_07058
TFIIB zinc-binding, 2x TFIIB PITG_14596
2x TBP PITG_07312
2x TBP, [DUF3378] PITG_12304
TBP, [2x DUF3378], TBP PITG_06201
DUF3591, Bromodomain PITG_02547
Peptidase M1, [HEAT repeat] PITG_18882, PITG_14044
TFIID 90 kDa, 5x WD domain PITG_16023
TAF, DUF1546, [HEAT repeat] PITG_03978
Bromodomain (histone-like fold), TAF8 C-terminal PITG_18355
TFID 31 kDa PITG_04860
TFID 23-30 kDa PITG_07637, PITG_14668
TFIID 20 kDa PITG_00683
YEATS PITG_01229
TFlIEalpha PITG_08403
TFlIFalpha PITG_02327
TFlIFbeta PITG_10081
DEAD 2, DUF1227, Helicase C-terminal PITG_15696
Ssl1-like, TFIH c1-like Psojae_345458
[TFIIH p62 N-terminal], BSD PITG_03523
Tfb2 PITG_15486
Tfb4 PITG_00220
TFIIB zinc-binding, 2x TFIIB, Brf1-like TBP-binding PITG_16669

“Domains in brackets indicate missing or non-significant matches in some species.
bReference sequences from P. infestans T30-4 (PITG) or P. sojae P6497 v3.0.

the peronosporaleans and saprolegnialeans, in the early
Mesozoic (Figure 1). A complete list of divergence times
with 95% confidence intervals for each node under each
model is presented in Additional file 2.

Discussion

Models for estimating divergence times under a molecular
clock have become more complex over the past two de-
cades. In this study we have used three distinct models, a

single-rate strict clock, a UCLD relaxed clock, and a ran-
dom local clock, to estimate divergence times among the
fungal-like oomycetes. Analyses run under the strict clock
model performed robustly, with all parameters showing
evidence of thorough sampling (ESS >>1000) and chain
convergence. Because we had no a priori expectation of
rate homogeneity among oomycetes or between oomy-
cetes and ochrophytes, we also estimated divergence times
under “relaxed” clock models. Both the UCLD and
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Table 3 Median divergence times (in Ma) for select nodes estimated under the three molecular clock models

Strict clock UCLD relaxed clock Random local clock
Node® Prior only Full dataset Prior only Full dataset Prior only Full dataset

a 171.2 26.6 1715 26.7* 170.6 234%
b 2719 1399 2719 119.8% 2714 134.6
C 167.5 67.0 167.0 71.6% 167.1 75.1

d 363.6 197.2 3637 191.0% 363.1 2144
e 83.1 180.1 83.0 97.5% 83.0 1394
f 1838 3644 183.7 191.0 1838 3341
g 4474 447 4474 424.8 4476 4156
h 526.6 5453 527.04 475.0% 527.1 5339

“node as shown in Figure 1. Asterisks (*) indicate ESS values < 200. A complete list of divergence times with 95% confidence intervals is presented in Additional

file 2.

random local clock models indicated moderate to high
levels of rate variation among lineages (as shown by the
coefficient of variation parameter, Table 4), suggesting
that a strict clock model was not appropriate for our
dataset regardless of performance of the MCMC. In
addition, an analysis of Bayes factors suggested that the
two relaxed clock methods were a better fit for the data
(In Bayes factor in favor of relaxed clock models over
strict clock >100). Rates estimated under the UCLD
model appeared to be strongly influenced by the cali-
bration priors, leading to rates 1.5 to 3.5 times higher
in the ochrophyte lineages than in the oomycetes (data
not shown). However, UCLD analyses failed to con-
verge even after 50 million generations, thus limiting
our ability to interpret parameter and divergence time
estimates. Only a few parameters showed signs of poor
mixing in the random local clock analyses (ESS < 200),
but in general there was good evidence of chain conver-
gence under this model, with the trade-off of long com-
putational times.

Despite differences in performance among the three
clock models, divergence time estimates among oomy-
cetes were strikingly consistent (Table 3 and Additional
file 2), and all models estimated a mid-Paleozoic origin

for oomycetes (Figure 1). Our estimate for the diver-
gence of oomycetes from other stramenopiles is some-
what consistent with results from a study of ochrophyte
evolution using small subunit ribosomal DNA data [34],
but is considerably younger than estimates generated
from broader studies of eukaryote evolution [31,32].
However, it seems likely that the times recovered here
for the divergence between oomycetes and ochrophytes,
as well as the root node, may be underestimated, for sev-
eral reasons. A recent simulation study of relaxed clock
models showed that the deepest nodes in a tree tend to
be underestimated when shallow calibrations are used
[48], which reflects our reliance on diatom calibrations
to estimate divergences throughout the tree. Also, the
posterior distributions recovered for the ingroup (node g
in Figure 1) and root (node h) time estimates overlapped
with their respective prior distributions, and were tightly
constrained by the lower limit of 408 Ma imposed by
the priors (data not shown). In addition, the long branch
connecting the origin of oomycetes (node g) to the di-
vergence between the peronosporaleans and saprolegnia-
leans (node d), as well as the long branch in the
calibration taxa (between nodes e and f), may have influ-
enced rate estimates under the UCLD and random local

Table 4 Mean posterior values for select parameters estimated under the three molecular clock models

Strict clock UCLD relaxed clock Random local clock
Parameter Prior only Full dataset Prior only Full dataset Prior only Full dataset
Likelihood n/a —359159.81 n/a —358847.49 n/a —358852.83
Posterior n/a —359328.94 n/a —358975.87 n/a —359061.08
Yule.birthrate 0.0052 0.0062 0.0052 0.0074 0.0052 0.0065
Clockrate 0.9990 0.0018 n/a n/a 0.9970 0.0019
ucld.mean n/a n/a 0.1000 0.0024* n/a n/a
ucld.stdev n/a n/a 0.0999 0.5550% n/a n/a
CoefficientOfVariation n/a n/a 0.0979 0.5370* 0.1230 0.2380*
RateChangeCount n/a n/a n/a n/a 0.6950 8.7050

Asterisks (*) indicate ESS < 200. n/a - not applicable.
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Phytophthora infestans
Phytophthora parasitica
Phytophthora capsici
Phytophthora sojae
Phytophthora cinnamomi
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Figure 1 Timetree of oomycete evolution. Divergence times shown were estimated under the random local clock model. Vertical dashed lines

clock models. As a result, divergence times estimated for
these nodes were sensitive to the model, particularly the
ochrophyte estimates under the UCLD clock (Table 3
and Additional file 2); however, given the poor perform-
ance of the UCLD analysis, it is difficult to assess the re-
liability of these estimates. Additional sequence data
from basal oomycetes such as Eurychasma dicksonii [49]
and Haliphthoros sp. [50], as well as from more ochro-
phyte calibration taxa, will help break up these long
branches and led to more reliable rate estimates. The
oldest accepted oomycete fossils come from the Lower
Devonian Rhynie Chert, which is thought to have been a
non-marine hot spring environment [21,22]. Phylogen-
etic evidence suggests that the earliest diverging oomy-
cetes were likely marine [15,20], therefore the origin of
this group may have occurred some time prior to the ap-
pearance of fossils in non-marine environments.

Fossil evidence of oomycetes also occurs throughout
the Carboniferous, particularly in association with lyco-
phytes (reviewed in [21]). While previous authors have
suggested affinities with certain taxonomic groups (e.g.,
[25,26]), the divergence times estimated here indicate
that modern peronosporalean and saprolegnialean line-
ages originated much later, in the mid to late Mesozoic
(Figure 1). Modern saprolegnialeans, such as Saprolegnia
parasitica, are commonly associated with freshwater en-
vironments, and can be devastating pathogens of fish,
amphibians, crustaceans, and insects [45]; saprotrophic

species, such as Thraustotheca clavata, are also known
from this group. In contrast, modern peronosporaleans
are predominately terrestrial and many are significant
plant pathogens. Two species included in our analysis,
Hpyaloperonospora arabidopsidis [39] and Albugo laiba-
chii [37], are obligate biotrophs who are fully dependent
on their host (Arabidopsis). Phytophthora species cause
disease on a wide variety of plants, and significant effort
has been undertaken to understand their mechanisms of
virulence and host specificity (reviewed in [51]). While it
is undesirable to extrapolate as to the likely hosts for
early diverging lineages, it does seem reasonable to sug-
gest that host availability was not a constraining factor
in oomycete diversification. Particularly for the modern
plant pathogenic oomycetes, both fossil and molecular
clock evidence suggests that the major lineages of angio-
sperms had diversified by the mid-Cretaceous [52], prior
to our estimates for divergences among the peronospor-
aleans. The evolution of pathogenic lifestyles, therefore,
may have been in response to certain environmental
changes, or may have been facilitated by the horizontal
transfer of pathogenicity-related genes from true Fungi
[53-55] or from bacteria [45,56], as has been suggested
previously.

In this study, we chose to focus on conserved regula-
tors of eukaryotic gene expression to examine their pres-
ence and level of conservation in pathogenic oomycetes.
Mechanisms of gene expression regulation are highly
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conserved across eukaryotes and were most likely
present in the last common ancestor, including epigen-
etic and RNA-based processes for transcriptional and
post-transcriptional gene silencing [57-59]. Although we
have not conducted an exhaustive survey here, our re-
sults suggest that the common ancestor of oomycetes
possessed a full complement of regulatory proteins, in-
cluding those involved in histone modification, RNA
interference, and tRNA and rRNA methylation. Surpris-
ingly, no orthologs of canonical DNA methyltransferases
could be identified in the genomes of oomycetes. A sin-
gle putative DNA methylase is present in the genome of
Pythium ultimum (T014901), but no orthologs could be
detected in the other oomycete genomes. Gene silencing
studies in Phytophthora infestans have failed to detect
evidence of cytosine methylation [60,61], however recent
work in P. sojae does suggest the presence of methylated
DNA [62]. DNA methyltransferases also appear to be
absent from the Ectocarpus genome [38], as well as from
the model eukaryotes Saccharomyces cerevisiae and Cae-
norhabditis elegans [63], however several are known
from diatoms [64,65]. Further study is therefore needed
to confirm the presence and mechanism of DNA methy-
lation in oomycetes.

Conclusions

This is the first study to estimate divergence times
among the fungal-like oomycetes. The consistency of
our time estimates under three distinct molecular clock
models suggests that the resulting timetree likely re-
covers the main divergences among lineages, which oc-
curred in the mid to late Mesozoic. Our estimates for
the origin of oomycetes and the divergence of strameno-
piles from other eukaryotes may have been underesti-
mated due to the limited fossil information available for
the taxa included in this study. Additional information
from the oomycete fossil record, especially from the di-
verse Cretaceous assemblages, as well as new sequence
data from basal oomycete lineages and other under-
sampled eukaryotes [66], may help future molecular
clock studies better estimate evolutionary rates.

Methods

Data mining

Reference sequences for canonical eukaryotic transcrip-
tion factors and proteins involved in post-transcriptional
gene silencing, DNA and RNA methylation, and chroma-
tin modification were obtained from the Gene Database
at NCBI (http://www.ncbi.nlm.nih.gov/gene) for human,
Drosophila, Saccharomyces, and/or Arabidopsis. The refer-
ence protein sequences were then used to search for ho-
mologs in the genome of Phytophthora infestans T30-4
[42]. Additional reference sequences were also obtained
from a study of gene silencing in P. infestans [36]. Both
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the eukaryotic reference sequences and the putative
P. infestans homologs were used to search the available
genomes of oomycetes, diatoms, and a brown alga (Table 1);
outgroup sequences were obtained from Tetrahymena
thermophila when available. All potential homologs of
equivalent BLAST e-values within each genome were
included for orthology assessment.

Dataset assembly

Protein domains were determined for all potential ho-
mologs using Pfam [67]. Sequences that did not contain
the appropriate domains for proper protein function
were removed from each dataset except in cases where
the protein sequence appeared truncated due to genome
misannotation, particularly for Hyaloperonospora arabi-
dopsidis. Each dataset was aligned under default settings
in ClustalX v2 [68], and preliminary neighbor-joining
phylogenies were generated under a Poisson correction
with pairwise deletion of alignment gaps in MEGA v5
[69]. Sequences within each dataset were considered
orthologous if they shared protein domains and their
phylogeny reflected known species relationships. In data-
sets with species-specific paralogs, one sequence was ar-
bitrarily chosen to represent the ortholog for divergence
time estimation. In cases where orthology was ambigu-
ous or no homolog could be identified, the sequence
was coded as missing data. A complete list of protein ac-
cession numbers per gene for each genome is available
in Additional file 1.

Divergence time analysis

Protein datasets with robust orthology were used to co-
estimate phylogeny and divergence times using Bayesian
inference in BEAST v1.7.5 [70]. Initial runs of 10 million
generations were used under each clock model to evalu-
ate settings on priors and to generate a user tree for sub-
sequent analyses. For the final analyses, each protein
dataset was treated as a separate partition under a
WAG substitution model; a Yule speciation process was
assumed with a uniform distribution on the birthrate
(0—100; initial value 0.01). For the strict clock analyses,
the rate parameter (clock.rate) was modeled with an ex-
ponential prior distribution (mean 1.0, initial value
0.01). For the UCLD relaxed clock model, an exponen-
tial prior distribution (mean 0.1, initial value 0.01) was
used for the mean rate (ucld.mean) and standard deviation
(ucld.stdev). Several parameters control the rate and num-
ber of rate changes under the random local clock model; a
Poisson distribution (mean 0.693) was used as the prior
for the number of local clocks (rateChanges), an exponen-
tial prior distribution (mean 1.0, initial value 0.001) was
used for the relative rates among local clocks (localclocks.
relativerates), and an exponential prior distribution (mean
1.0, initital value 0.01) was used for the rate (clock rate).
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Five independent analyses were run for 50 million genera-
tions each, under all three clock models; log and tree files
from the two runs with the highest parameter ESS values
per model were combined (after removing burn-in from
each run) using LogCombiner v1.7.5. Tracer v1.5 [71] was
used to evaluate convergence, estimate the appropriate
burn-in for each run, and calculate Bayes factors for
model comparisons. Analyses were also repeated without
data (priors only) to determine the impact of calibration
settings on the resulting divergence time estimates; three
independent runs of 50 million generations each were per-
formed under each clock model. Trees were visualized in
FigTree v1.4 [72].

Fossil evidence from diatoms and oomycetes was used
to calibrate the molecular clock analyses; all calibrations
were modeled with a gamma prior distribution (shape
2.0) with the offset value set as the uppermost boundary
of the time interval (stage) containing the relevant fossil.
The value for the scale parameter was set so that the age
at the 95% quantile was roughly equivalent to the lower-
most boundary on the geologic epoch containing the
relevant fossil. Appropriate geological times were ob-
tained from the International Commission on Stratig-
raphy chronostratigraphic chart, January 2013 version
(http://stratigraphy.org). Fossil evidence from the Late
Cretaceous (Campanian) pennate diatoms [73] provided
a minimum age of 72.1 Ma on the divergence between
Thalassiosira and Phaeodactylum (5-95% quantiles =
74—100 Ma). Early Jurassic (Toarcian) diatom fossils [74]
provided a minimum age of 174 Ma on the divergence
between diatoms and Ectocarpus (5-95% quantiles =
176-202 Ma). The Rhynie chert oomycete fossils [21]
were used to define a minimum divergence time of
408 Ma between oomycetes and ochrophytes (5-95%
quantiles = 418-550 Ma). A wide uniform prior distribu-
tion (408—1750 Ma; initial value 635 Ma) was used for the
root age as there are few robust estimates on the diver-
gence between alveolates and stramenopiles. Beast XML-
formatted data files have been deposited in Dryad [75].
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