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Abstract Intracellular biochemical networks fluctuate dynamically due to various internal
and external sources of fluctuation. Dissecting the fluctuation into biologically relevant com-
ponents is important for understanding how a cell controls and harnesses noise and how
information is transferred over apparently noisy intracellular networks. While substantial
theoretical and experimental advancement on the decomposition of fluctuation was achieved
for feedforward networks without any loop, we still lack a theoretical basis that can consis-
tently extend such advancement to feedback networks. The main obstacle that hampers is
the circulative propagation of fluctuation by feedback loops. In order to define the relevant
quantity for the impact of feedback loops for fluctuation, disentanglement of the causally
interlocked influences between the components is required. In addition, we also lack an
approach that enables us to infer non-perturbatively the influence of the feedback to fluctu-
ation in the same way as the dual reporter system does in the feedforward networks. In this
work, we address these problems by extending the work on the fluctuation decomposition and
the dual reporter system. For a single-loop feedback networkwith two components, we define
feedback loop gain as the feedback efficiency that is consistent with the fluctuation decompo-
sition for feedforward networks. Then, we clarify the relation of the feedback efficiency with
the fluctuation propagation in an open-looped FF network. Finally, by extending the dual
reporter system, we propose a conjugate feedback and feedforward system for estimating the
feedback efficiency non-perturbatively only from the statistics of the system.
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1 Introduction

1.1 Dissecting Fluctuation in Biochemical Networks

Biochemical molecules in a cell fluctuate dynamically because of the stochastic nature of
intracellular reactions, fluctuation of the environment, and the spontaneous dynamics of
intracellular networks [18,33,41]. Some part of the fluctuation is noise that impairs or disturbs
robust operation of the intracellular networks. The other part, however, conveys information
on complex dynamics of various factors inside and outside of the cell [20,32]. Dissecting
fluctuation into distinct components with different biological roles and meanings is crucial
for understanding the mechanisms how a cell controls and harnesses the noise and how
information is transferred over apparently noisy intracellular networks [5,9].

The intracellular fluctuation is generated from the intracellular reactions or comes from
the environment, and then propagates within the intracellular networks. The fluctuation of
individualmolecular specieswithin the networks is therefore a consequence of the propagated
fluctuation from the different sources. Decomposition of the fluctuation into the contributions
from the sources is an indispensable step for understanding their biological roles and rele-
vance. When fluctuation propagates from one component to another unidirectionally without
circulation, the fluctuation of the downstream can be decomposed into two contributions. One
is the intrinsic part that originates within the pathway between the components. The other is
the extrinsic part that propagates from the upstream component. Such decomposition can eas-
ily be extended for the network with cascading or branching structures in which no feedback
exists. This fact drove the intensive anatomical analysis of the intracellular fluctuation.

1.2 Decomposition of Sources of Fluctuation

In order to dissect fluctuation into different components, two major strategies have been
developed. One is to use the dependency of each component on different kinetic parameters
of the network. By employing theoretical predictions on such dependency, we can estimate
the relative contributions of different components from single-cell experiments with pertur-
bations. Possible decompositions of the fluctuationwere investigated theoretically for various
networks such as single gene expression [3,27,28], signal transduction pathways [42,48],
and cascading reactions [46]. Some of them were experimentally tested [3,27,29].

The other strategy is the dual reporter system in which we simultaneously measure a target
molecule with its replica obtained by synthetically duplicating the target. From the statistics
of the target and the replica, i.e, mean, variance, and covariance, we can discriminate the
intrinsic and extrinsic contributions to the fluctuation because the former is independent
between the target and the replica whereas the latter is common to them. The idea of this
strategy was proposed and developed in [28,44], and verified experimentally for different
organisms [11,24,34]. Its applicability and generality were further extended [4,6,16,17,36].
Now these strategies play the fundamental role for designing single-cell experiments and for
deriving information on the anatomy of fluctuation from experimental observations [8,15,
30,35,38,45].

1.3 Feedback Regulation and Its Efficiency

Evenwith the theoretical and the experimental advancement in decomposingfluctuation,most
of works focused on the feedforward (FF) networks in which no feedback and circulation
exists. As commonly known in the control theory [7,40], feedback (FB) loops substantially
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affect fluctuation of a network by either suppressing or amplifying it. Actually, the suppres-
sion of fluctuation in a single gene expression with a FB loop was experimentally tested in
[2] earlier than the decomposition of fluctuation. While the qualitative and the quantitative
impacts of the FB loops were investigated both theoretically and experimentally since then
[1,22,25,26,36,43,47], we still lack a theoretical basis that can consistently integrate such
knowledge with that on the fluctuation decomposition developed for FF networks.

The main problem that hampers the integration is the circulation of fluctuation in FB net-
works. Because fluctuation generated at a molecular component propagates the network back
to itself, we need to disentangle the causally interlocked influence between the components
in order to define the relevant quantity for the impact of the FB loops. From the experi-
mental point of view, in addition, quantification of the impact of FB loops by perturbative
experiments is not perfectly reliable because artificial blocking of the FB loops inevitably
accompanies the change not only in fluctuation but also in the average level of the molecular
components involved in the loops. It is quite demanding and almost impossible for most
cases to inhibit the loops by keeping the average level unchanged. We still lack an approach
that enables us to infer the influence of the FB non-perturbatively as the dual reporter system
does for FF networks.

1.4 Outline of this Work

In this work, we address these problems by extending the work on the fluctuation decompo-
sition [28,42] and the dual reporter system [11,44]. By using a single-loop FB network with
two components and its linear noise approximation (LNA) [10,19,47], we firstly provide a
definition of the FB loop gain as FB efficiency that is consistent with the fluctuation decompo-
sition in [28,42]. This extension relies on an interpretation of the fluctuation decomposition
as source-by-source decomposition that is different from the variance decomposition pro-
posed in the previous work [4,6,16,17]. Then, we clarify the relation of the FB efficiency
with the fluctuation propagation in a corresponding open-looped FF network. Finally, by
extending the dual reporter system, we propose a conjugate FB and FF system for estimating
the feedback efficiency only from the statistics of the system non-perturbatively. We also
give a fluctuation relation among the statistics that may be used to check the validity of the
LNA for a given network.

The rest of this paper is organized as follows. In Sect. 2, we review the decomposition of
fluctuation for a simple FF system derived in [28,42] by using the LNA. In Sect. 3, we extend
the result shown in Sect. 2 to a FB network by deriving a source-by source decomposition of
the fluctuation with feedback. Using this source decomposition, we define the FB loop gains
that quantify the impacts of the FB to the fluctuation. In Sect. 4, we give a quantitative relation
of the loop gains in the FB network with the fluctuation propagation in a corresponding
open-looped FF network. In Sect. 5, we propose a conjugate FF and FB network as a natural
extension of the dual reporter system. We clarify that the loop gains can be estimated only
from the statistics, i.e., mean, variances, and covariances, of the conjugate network. We also
show that a fluctuation relation holds among the statistics, which generalizes the relation
used in the dual reporter system. In Sect. 6, we discuss a link of the conjugate network with
the casual conditioning and the directed information, and finally give future directions of our
work.
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2 Fluctuation Decomposition and Propagation in a Small Biochemical
Network

In this section, we summarize the result for the decomposition of fluctuation obtained in
[28,42] by using the LNA, and also its relation with the dual reporter system employed
in [11,24,34] to quantify the intrinsic and extrinsic contributions from the experimental
measurements.

2.1 Stochastic Chemical Reaction and Its Linear Noise Approximation

Let us consider a chemical reaction network consisting of N different molecular species and
M different reactions. We assume that the stochastic dynamics of the network is modeled by
the following chemical master equation:

dP(t, n)

dt
=

M∑

k=1

[ak(n − sk)P(t, n − sk) − ak(n)P(t, n)] , (1)

where n = (n1, . . . , nN )T ∈ N
N≥0 is the numbers of the molecular species, P(t, n) is the

probability that the number of molecular species is n at t , and ak(n) ∈ R
M≥0 and sk ∈ N

N

are the propensity function and the stoichiometric vector of the kth reaction, respectively
[12,14,19]. The propensity function, ak , characterizes the probability of occurrence of the
kth reaction when the number of the molecular species is n, and the stoichiometric vector
defines the change in the number of the molecular species when the kth reaction occurs.

In general, it is almost impossible to directly solve Eq. (1) both analytically and numeri-
cally because it is a high-dimensional or infinite-dimensional differential equation. To obtain
insights for the dynamics of the reaction network, several approximations have been intro-
duced [12,19]. Among others, the first-order approximation is the deterministic reaction
equation that is described for the given propensity functions and the stoichiometric vector as

d�u(t)

dt
= Sa(�u(t)), (2)

where � is the system size, u ∈ R
n≥0 is the concentration of n as u = n/�, a(n) : =

(a1(n)), . . . , aM (n))T, and S : = (s1, . . . , sM ) is the stoichiometric matrix. Equation (2)
was successfully applied for chemical reaction networks with large system size where the
fluctuation of the concentration of the molecular species can be neglected. When the system
size is not sufficiently large, however, Eq. (2) is not appropriate for analyzing dynamics
and fluctuation of the network. The LNA is a kind of the second-order approximation of
the Eq. (1) that characterizes the fluctuation around a fixed point, n̄, of Eq. (2) that satisfies
Sa(n̄) = 0. The stationary fluctuation of the network around n̄ is then obtained by solving
the following Lyapunov equation [10,19,47]

(K (n̄)�) + (K (n̄)�)T + D(n̄) = 0, (3)

where

K∗, j (n) : = ∂Sa(n)

∂n j
, Di, j (n) : =

∑

k

si,ks j,kak(n), (4)

and� is the covariance matrix of n. When the propensity function a(n) is affine with respect
to n, the dynamics of �u(t) determined by Eq. (2) is identical to that of the first cumulant
of n, i.e., the average of n, as
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d 〈n〉
dt

= Sa(〈n〉), (5)

where 〈n〉 : = ∑
n nP(t, n). In addition, the second cumulant, i.e., the covariance matrix,

follows the Lyapunov equation as

d�

dt
= (K (〈n〉)�) + (K (〈n〉)�)T + D(〈n〉). (6)

Therefore, if the propensity function a(n) is affine, the stationary fluctuation of n is exactly
described by Eq. (3). For a non-affine a(n), Eqs. (5) and (6) can also be regarded as an
approximation of the full cumulant equations by the cumulant closure [12] under which we
ignore the influence of the second and the higher order cumulants to Eq. (5), and that of the
third and the higher order ones to Eq. (6).1 Even though the propensity function a(n) is not
affine, Eq. (3) (or Eq. (6)) can produce a good approximation of the fluctuation, provided that
the fixed point, n̄, is a good approximation of the average, 〈n〉, and that the local dynamics
around the fixed point is approximated enough by its linearization. In addition, compared
with other approximations, the LNA enables us to obtain an analytic representation of the
fluctuation because Eq. (3) is a linear algebraic equation with respect to �. Owing to this
property, theLNAand its variations played the crucial role to reveal the analytic representation
of the fluctuation decomposition in biochemical reaction networks [21,28,47]. As in these
previous works, we employ the LNA to obtain an analytic representation for the feedback
efficiency.

2.2 Decomposition of Fluctuation

Starting from the LNA, Paulsson derived an analytic result on how noise is determined in a FF
network with two components (Fig. 1a) [28]. Here, we briefly summarize the result derived in
[28]. Let n1 = x and n2 = y for notational simplicity, and consider the FF reaction network
(Fig. 1a) with the following propensity function and stoichiometric matrix,

a(x, y) = (a+
x (x), a−

x (x), a+
y (x, y), a−

y (x, y))T , S =
(+1 −1 0 0

0 0 +1 −1

)
. (7)

Because a±
x depends only on x , x regulates y unidirectionally. Then, for a fixed point (x̄, ȳ)

of Eq. (2), that satisfies

a+
x (x̄) = a−

x (x̄), a+
y (x̄, ȳ) = a−

y (x̄, ȳ), (8)

K and D in Eq. (3) becomes

K =
(−dx 0
kyx −dy

)
=

( −Hxx/τx 0
− ȳ

x̄ Hyx/τy −Hyy/τy

)
, D =

(
2āx 0
0 2āy

)
, (9)

where āx : = a+
x (x̄) = a−

x (x̄), āy = a+
y (x̄, ȳ) = a−

y (x̄, ȳ), and Hi, j : = ∂ ln a−
i /a+

i
∂ ln j

∣∣∣∣
(x̄,ȳ)

for

i, j ∈ {x, y}. τx : = x̄/āx and τy : = ȳ/āy are the effective life-time of x and y, respectively.
dx and dy are the minus of the diagonal terms of K and represent the effective degradation
rates of x and y. kyx is the off-diagonal term of K that represents the interaction from x to y.
Hi j is the susceptibility of the i th component to the perturbation of the j th one. Except this
section, we mainly use ds and ks as the representation of the parameters rather than Hs and

1 We prefer this interpretation of the Lyapunov equation because the LNA has been applied for various
intracellular networks whose system size is not sufficiently large.
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Fig. 1 a The structure of the two-component FF network. Interpretations of this network as single-gene
expression [11,23,27,28], two-gene regulation [47], and signal transduction [48] are shown. b The structure
of the dual reporter system [4,11,17,28,44]. cA schematic diagram of the FF network for two-gene regulation.
d A schematic diagram of the dual reporter network for the two-gene regulation

τ s introduced in [28].2 By solving Eq. (3) analytically, the following fluctuation-dissipation
relation was derived in [28]:

σ 2
x

x̄2
= 1

x̄ Hxx︸ ︷︷ ︸
(I )

,
σ 2
y

ȳ2
= 1

ȳHyy︸ ︷︷ ︸
(I I )

+

(i i i)︷ ︸︸ ︷(
Hyx/τy

Hyy/τy

)2

(i i)︷ ︸︸ ︷
Hyy/τy

Hyy/τy + Hxx/τx

(i)︷︸︸︷
σ 2
x

x̄2
︸ ︷︷ ︸

(I I I )

. (10)

This representation measures the intensity of the fluctuation by the coefficient of varia-
tion (CV),3 and describes how the fluctuation generates and propagates within the network.
(I ) is the intrinsic fluctuation of x that originates from the stochastic birth and death of
x . 1/x̄ reflects the Poissonian nature of the stochastic birth and death, and 1/Hxx is the
effect of auto-regulatory FB. Similarly, (I I ) is the intrinsic fluctuation of y that origi-
nates from the stochastic birth and death of y. (I I I ), on the other hand, accounts for the
extrinsic contributions to the fluctuation of y due to the fluctuation of x . The term (I I I )
is further decomposed into (i), (i i), and (i i i). (i) is the fluctuation of x , and therefore,
identical to (I ). (i i) and (i i i) determine the efficiency of the propagation of the fluc-
tuation from x to y, which are the time-averaging and sensitivity of the pathway from
x to y, respectively. This representation captures the important difference of the intrin-
sic and the extrinsic fluctation such that the intrinsic one, the term (I I ), can be always
reduced by increasing the average of ȳ whereas the extrinsic one, the term (I I I ), can-
not.4

2 Because we can obtain a notationally simpler result.
3 CV is defined by the ratio of the standard deviation to the mean as σx/ 〈x〉.
4 For example, when the average of ȳ is increased by increasing the translation rate, the term does not decrease.
Note that the term (III) can also decrease when, e.g., the average of ȳ is increased by reducing the degradation
rate of y.
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While Eq. (10) provides an useful interpretation on how the fluctuation propagates in the
FF network, it is not appropriate for the extension to the FB network because the contribution
of x to the fluctuation of y is described by the CV of x as the term (i). Because the fluctuation
of x and y depend mutually if we have a FB between x and y, we need to characterize the
fluctuation of y without directly using the fluctuation of x . To this end, we adopt the variances
and covariances as the measure of the fluctuation and use the following decomposition of the
fluctuation for the FF network:

σ 2
x =

(i i)︷︸︸︷
Gx,x

(i)︷︸︸︷
x̄︸ ︷︷ ︸

(I )

, σ 2
y =

(i i)︷︸︸︷
Gyy

(i)︷︸︸︷
ȳ

︸ ︷︷ ︸
(I I )

+
(i i i)︷︸︸︷
Gyx

(i i)︷︸︸︷
Gx,x

(i)︷︸︸︷
x̄

︸ ︷︷ ︸
(I I I )

, (11)

where we define Gxx , Gyy , and Gyx as

Gxx : = 1

Hxx
, Gyy : = 1

Hyy
, Gyx : = k2yx

(dx + dy)dy
. (12)

The terms (I ), (I I ), and (I I I ) in Eq. (11) correspond to those in Eq. (10). The interpretation
of the terms within (I ), (I I ), and (I I I ) is, however, different. In Eq. (11), the terms (i)
are interpreted as the fluctuation purely generated by the birth and death reactions of x and
y by neglecting any contribution of the auto-FBs. Because the simple birth and death of a
molecular species without any regulation follow the Poissonian statistics, the intensity of the
fluctuation is equal to the means of the species. Thus, x̄ ≈ 〈x〉 and ȳ ≈ 〈y〉 in the terms (i)
represent the generation of the fluctuation by the birth and death of x and y, respectively.
The fluctuation generated is then amplified or suppressed by the auto-regulatory FBs. Gxx

and Gyy in the terms (i i) account for this influence, and are denoted as auto-FB gains in
this work. Finally, Gyx in the term (i i i) quantifies the efficiency of the propagation of the
fluctuation from x to y. We denote Gyx as path gain from x to y. If we use the notation in
Eq. (10), Gyx is described as

Gyx =
(
ȳHyx/τy

x̄ Hyy/τy

)2 Hyy/τy

Hyy/τy + Hxx/τx
. (13)

The decomposition of the fluctuation of y into (I I ) and (I I I ) is consistent between Eqs. (10)
and (11) while the further decompositions within (I I ) and (I I I ) are different.

We can systematically obtain the decomposition into (I I ) and (I I I ) as in Eq. (11) by
solving the Lyapunov equation, Eq. (3), with āx and āy being replaced with 0, respectively.
Because āx and āy represent the noise sources associated with each variable, we call our
decomposition as source-by-source decomposition or more simply as source decomposition
[47].5 At the same time, it was also revealed in [4,6,16,17] that the decomposition into (I I )
and (I I I ) is identical to the variance decomposition formula in statistics as

σ 2
y = Vy[y(t)] = EX [Vy[y(t)|X (t)]]

︸ ︷︷ ︸
(I I )

+VX [Ey[y(t)|X (t)]]
︸ ︷︷ ︸

(I I I )

, (14)

whereX (t) : = {x(τ ); τ ∈ [0, t]} is the history of x(t), andE andV are the expectation and the
variance, respectively.6 While the source decomposition and the variance decomposition are

5 See also Appendix 1 for more detailed discussion.
6 The correspondence of Eqs. (14) with (10) or (11) is valid only when σ 2

y is decomposed under the condi-
tioning with respect to the history of x(t), X (t), rather than the instantaneous state of x(t) at t . Note that the
variance decomposition is general enough to hold not only for FF but also FB networks.
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different in general, they coincide in this special case of the simple FF network. Because the
variance decomposition formula holds generally even for a non-stationary situation without
using the linearization by the Lyapunov equation, the variance decomposition, Eq. (14), has
wider applicability than the source decomposition, Eqs. (10) and (11), as a decomposition
formula.7 Nonetheless, the source decomposition has advantages as a decomposition formula
when we extend the decompositions to FB networks as discussed in the next section.

2.3 Dual Reporter System

The decomposition, Eqs. (10) or (11), guides us how to evaluate the intrinsic and the extrinsic
fluctuation in y experimentally. When we can externally control the mean of y without
affecting the term (I I I ), we can estimate the relative contributions of (I I ) and (I I I ) as the
intrinsic and the extrinsic fluctuation by plotting σ 2

y as a function of the mean of y. When
x and y correspond to mRNA and protein in the single gene expression, the translation rate
works as such a control parameter [23]. This approach was intensively employed to estimate
the efficiency of the fluctuation propagation in various intracellular networks [3,27,29].

Another way to quantify the intrinsic and the extrinsic fluctuation is the dual reporter
system adopted in [11,24,34] whose network structure is shown in Fig. 1b.8 In the dual
reporter system, a replica of y is attached to the downstream of x as in Fig. 1b where y′
denotes the molecular species of the replica. The replica y′ must have the same kinetics as y,
and must be measured simultaneously with y. If y is a protein whose expression is regulated
by another protein x as in Fig. 1c, then y′ can be synthetically constructed by duplicating
the gene of y and attaching fluorescent probes with different colors to y and y′ as in Fig. 1d
[11]. Under the LNA, the covariance between y and y′ can be described as

σy,y′ = GyxGxx x̄ . (15)

Thus, by using only the statistics of the dual reporter system, the intrinsic and the extrinsic
components in y can be estimated as

σ 2
y = Gyy ȳ︸ ︷︷ ︸

(I I )

+ σy,y′
︸︷︷︸
(I I I )

, (16)

where it is unnecessary to control any kinetic parameters externally. In the variance decom-
position (Eq. (14)), the term (I I I ) is V[E[y(t)|X (t)]]. As shown in [4], this correspondence
between V[E[y(t)|X (t)]] and σy,y′ for the dual reporter system is more generally derived as

σy,y′ = E[y(t)y′(t)] − E[y(t)]E[y′(t)],
= E[E[y(t)y′(t)|X (t)]] − E[E[y(t)|X (t)]]E[E[y′(t)|X (t)]],
= E[E[y(t)|X (t)]E[y′(t)|X (t)]] − E[E[y(t)|X (t)]]E[E[y′(t)|X (t)]], (17)

= V[E[y(t)|X (t)]],

where we used E[y(t)] = E[y′(t)] and E[y(t)y′(t)|X (t)] = E[y(t)|X (t)]E[y′(t)|X (t)] if
y(t) and y′(t) are conditionally independent given the history, X (t). As discussed in [4], the

7 Because of its definition, the source decomposition is valid at least when the fluctuation of the system is
well approximated by the stationary solution of the Lyapunov equation.
8 The dual reporter system is also called a conjugate reporter system [4,6].
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term (I I ) is also directly estimated by calculating E[d2⊥] := 1
2E[(y(t) − y′(t))2] because

E[d2⊥] := 1

2
E[(y(t) − y′(t))2] = σ 2

y + σ 2
y′

2
− σy(t),y′(t) = σ 2

y − σy(t),y′(t)

= Gyy ȳ, (18)

where we used σ 2
y = σ 2

y′ . The dual reporter system and general variance decomposition were
investigated more intensively in [4,6,16].

3 Feedback Loop Gain in a Small Biochemical Network

Whilewe had substantial progress in the decomposition of the fluctuation and its experimental
measurement for the FF networks in the last decade, its extension to FB networks is yet to
be achieved. In this section, we extend the source decomposition of the fluctuation for the
simple FF network (Eq. (11)) to the corresponding FB network depicted in Fig. 2a . As in
Eq. (9), K and D in the Lyapunov equation (Eq. (3)) for the FB network can be described as

K =
(−dx kxy
kyx −dy

)
=

(
−Hxx/τx − x̄

ȳ Hxy/τx

− ȳ
x̄ Hyx/τy −Hyy/τy

)
, D =

(
2āx 0
0 2āy

)
. (19)

By defining the path gain from y back to x as

Gxy : = k2xy
dx (dx + dy)

, (20)

we can derive the source decomposition of the fluctuation of x and y as

σ 2
x = 1 − Ly

1 − Lx − Ly

(I )︷ ︸︸ ︷
Gxx x̄ + 1

1 − Lx − Ly

(I V )︷ ︸︸ ︷
GxyGyy ȳ,

σ 2
y = 1 − Lx

1 − Lx − Ly
Gyy ȳ︸ ︷︷ ︸
(I I )

+ 1

1 − Lx − Ly
GyxGxx x̄︸ ︷︷ ︸

(I I I )

, (21)

where we define

Lx : = kxykyx
dx (dx + dy)

, Ly : = kxykyx
(dx + dy)dy

. (22)

If the FB from y to x does not exist, i.e., kxy = 0, then Lx = Ly = Gxy = 0 and Eq. (21)
is reduced to Eq. (11). Thus, Lx and Ly account for the effect of the FB. Lx and Ly are
denoted as FB loop gains in this work. Eq. (21) clearly demonstrates that the representation
in Eq. (10) does not work with the FB because σ 2

y cannot be described with σ 2
x any longer.

In contrast, we can interpret the terms in Eq. (21) consistently with those in Eq. (11) because
all the terms, (I ), (I I ) and (I I I ), are unchanged in Eq. (21). The new term, (I V ), in the
expression for σ 2

x appears to account for the propagation of the fluctuation generated by the
birth and death events of y back to x .9

Equations (21) and (22) indicate how the FB affects the fluctuation of x and y. First, the
fluctuation is suppressed when Lx and Ly are negative whereas it is amplified when they

9 We can also extend this result for a FB network with more than two components. See Appendix 2 for the
detail.
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Fig. 2 a The structure of the
two-component FB network. b A
schematic diagram of the FB
network for two-gene regulation
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Y X

are positive. When dx and dy are positive,10 the sign of Lx and Ly are determined only by
the sign of kxykyx . Thus, the FB loop is negative when x regulates y positively and y does
x negatively or vise versa. This is consistent with the normal definition of the sign of a FB
loop. Second, the efficiency of the FB depends on the source of the fluctuation. For example,
when Lx 
 Ly , e.g., the time-scale of x is much faster than y as dx � dy , then Eq. (21) can
be approximated as

σ 2
x =

(I )︷ ︸︸ ︷
Gxx x̄ + 1

1 − Ly

(I V )︷ ︸︸ ︷
GxyGyy ȳ, σ 2

y = 1

1 − Ly

⎡

⎢⎣Gyy ȳ︸ ︷︷ ︸
(I I )

+ GyxGxx x̄︸ ︷︷ ︸
(I I I )

⎤

⎥⎦ .

Thus, the FB does not work on the term (I ) that is the part of fluctuation of x whose origin
is the birth and death events of x itself. This result reflects the fact that the slow FB from
x to itself via y cannot affect the fast component of the fluctuation of x .11 Finally, when
Lx and Ly satisfy 1 − Lx − Ly = 1 − kxykyx/dxdy = 0, the fluctuation of both x and
y diverges due to the FB. Since this condition means that the determinant of K becomes
0 and K is the Jacobian matrix of Eq. (2), the fluctuation of x and y diverges due to the
destabilization of the fixed point, n̄, by the FB. The Lyapunov equation is no longer valid
around an unstable fixed point, and thereby, the source decomposition cannot be applied to
such a situation.12

In contrast to the FF network, the source decomposition for the FB network differs from
the variance decomposition becauseE[V[y(t)|X (t)]] in Eq. (14) is obtained for the stationary
state as

E[V[y(t)|X (t)]] = 2
dxdy
k2xy

⎡

⎣−1 +
√

1 + k2xy
dxdy

Gyy ȳ

Gxx x̄

⎤

⎦Gxx x̄ ≤ Gyy ȳ. (23)

The derivation is shown inAppendix 3, andE[V[y(t)|X (t)]] is reduced toE[V[y(t)|X (t)]] =
Gyy ȳ as in the term (II) of Eq. (11) when there is no feedback from y to x as kxy = 0.13

While the variance decomposition is defined quite generally, it may not reflect the way how
the fluctuation of the target is determined in the system. This fact is demonstrated clearly

10 For biologically relevant situations, dx and dy are positive because they can be regarded as the effective
degradation rates.
11 Note that the term (I I I ) is affected by the FB even though its origin is the fast birth and death events of x .
This can be explained as follows. In general, the path gain from x to y, Gyx , becomes very small compared
to the others when x has much faster time scale than y as dx � dy . Thus, the term (I I I ) becomes quite small
and little fluctuation propagates from x to y because of the averaging effect of the slow dynamics of y. (I I I )
represents, therefore, the slow component in the fluctuation of the birth and death of x that has the comparative
timescale as that of y. This is why the slow FB can affect the term (I I I ).
12 Note that the numerators in Eq. (21), 1−Lx and 1−Ly , cannot be 0 under the condition that 1−Lx−Ly > 0
because Lx and Ly have the same sign.
13 See also Appendix 4.
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Fig. 3 a The structure of the the opened FF network obtained by replicating y in the FB network. b A
schematic diagram of the network in a for gene regulation. c The structure of the the opened FF network
obtained by replicating x in the FB network. d A schematic diagram of the network in c for gene regulation

by noting that E[V[y(t)|X (t)]] is independent of kyx . Even without feedback from x to y
as kyx = 0, the variance of y(t) can be decomposed into two terms via the history of X (t)
because we can infer the behavior of y(t) from the history of X (t) by reversing the causal
relation from x(t) to y(t)byBayes’ theorem.Because the causal relation is reversed byBayes’
theorem, the interpretation of each decomposed component by the variance decomposition
does not reflect the regulatory relation between x(t) and y(t). This property of the variance
decomposition by history should be noted for its application to FB networks. In contrast, even
for the FB network, the source decomposition can provide a consistent decomposition that
reflects the way how the fluctuation is determined by regulatory relations within the system.
We should emphasize, however, that the source decomposition requires the stationarity and
the linearization of the system by the Lyapunov equation that are not necessary for the
variance decomposition.14

4 Relation Between Fluctuation Propagation and Feedback Gain

As shown in Sect. 3, Lx and Ly are quantitatively related to the efficiency of the FB. Because
Lx L y = GxyGyx holds, the loop gains are also linked to the propagation of the fluctuation
from x to y and from y back to x . However, the meaning of the individual gains, Lx and Ly ,
is still ambiguous.

To clarify the relation between the loop gains and the propagation of fluctuation, we
consider a three-component FF network shown in Fig. 3a, b that are obtained by opening
the FB network in Fig. 2a. In the network shown in Fig. 3a, x is regulated not by y but by
its replica, y′. We assume that y′ is not driven by x and that y does not drive x . Thereby,
y′ → x → y forms a FF network. K and D in Eq. (3) for this network become

14 Both variance and source decompositions are insufficient to address feedback structures perfectly.
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K =
⎛

⎝
−dy′ 0 0
kxy′ −dx 0
0 kyx −dy

⎞

⎠, D = diag
(
2āy′ 2āx 2āy

)
. (24)

Because y′ is the replica of y, we assume that all the kinetic parameters of y′ are equal to
those of y as kxy′ = kxy , dy′ = dy , and āy′ = āy .

By solving Eq. (3), we can obtain the following decomposition of the fluctuation of y as

σ 2
x =

(I )︷ ︸︸ ︷
Gxx x̄ +

(I V )︷ ︸︸ ︷
Gxy′Gy′y′ ȳ′,

σ 2
y = Gyy ȳ︸ ︷︷ ︸

(I I )

+ GyxGxx x̄︸ ︷︷ ︸
(I I I )

+ [
Gyy′ + Gyxy′

]
Gy′y′ ȳ′

︸ ︷︷ ︸
(V )

, (25)

where

Gxy′ = Gxy, Gyxy′ : = GyxGxy′ = GyxGxy = Lx L y, Gyy′ : = L2
y/2. (26)

This decomposition of σ 2
y can also be related to the generalized variance decomposition [4]

as

σ 2
y = E[V[y(t)|{X (t),Y ′(t)}]]︸ ︷︷ ︸

(I I )

+E[V[E[y(t)|{X (t),Y ′(t)}]|Y ′(t)]]︸ ︷︷ ︸
(I I I )

+V[E[y(t)|Y ′(t)]]︸ ︷︷ ︸
(V )

.

(27)

The derivation is shown in Appendix 5. The term (I V ) for x is similar to the propagation
of the fluctuation from y to x in the FB network, but it represents the propagation of the
fluctuation from the replica y′ in this opened FF network. The new term (V ) accounts for
the propagation of the fluctuation from y′ down to y. The gain of this propagation has two
terms, Gyxy′ and Gyy′ . The first term, Gyxy′ , is the total gain of the propagation from y′ to
x and from x to y′ because Gyxy′ = GyxGxy′ holds. In order to see the meaning of the term
Gyy′ , we need to rearrange Eq. (25) as

σ 2
y = Gyy ȳ + Gyxσ

2
x + Gyy′Gy′y′ ȳ′. (28)

This representation clarifies that Gyy′ describes the propagation of the fluctuation from y′ to
y that cannot be reflected to the fluctuation of the intermediate component, x . In addition, by
solving Eq. (3), we can see that the gain Gyy′ is directly related to the covariance between y
and y′ as

σy′,y =
√
Gyy′ ȳ′ = Ly

2
ȳ′. (29)

This implies that we have at least two types of propagation of the fluctuation. One described
by Gyxy′ is that the fluctuation of the upstream, i.e., y′, is absorbed by the intermediate
component, i.e., x , and then the absorbed fluctuation propagates to the downstream, i.e., y.
This component does not convey the information of the upstream because that does not affect
the covariance between the upstream and the downstream. The other type described by Gyy′
is that the fluctuation of the upstream propagates to the downstream without affecting the
intermediate component. This fluctuation conveys the information on the upstream to the
downstream because it is directly linked to their covariance. The fact that Ly is related to
the latter indicates that the FB efficiency is directly linked to the information transfer in the
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opened loop from y′ to y. By considering another opened loop network where the replica of
x is introduced as in Fig. 3c, we can obtain the following result:

σ 2
y =

(I I )︷ ︸︸ ︷
Gyy ȳ +

(I I I )︷ ︸︸ ︷
Gyx ′Gx ′x ′ x̄ ′,

σ 2
x = Gxx x̄︸ ︷︷ ︸

(I )

+GxyGyy ȳ︸ ︷︷ ︸
(I V )

+ [
Gxx ′ + Gxyx ′

]
Gx ′x ′ x̄ ′

︸ ︷︷ ︸
(V I )

, (30)

where Gxx ′ : = L2
x/2, and we also have

σx ′,x = √
Gxx ′ x̄ ′ = Lx

2
x̄ ′. (31)

By combining Eqs. (29) and (31), we can estimate the loop gains, Lx and Ly , by only
measuring the averages and covariances of the opened networks as follows:

Lx

2
= σx ′,x

x̄ ′ ,
Ly

2
= σy′,y

ȳ′ . (32)

While this strategy sounds eligible theoretically, it accompanies an experimental difficulty
in constructing the opened networks. In the opened network, the replica, e.g., y′, must be
designed so that it is free from the regulation of x by keeping all the other properties and
kinetic parameters the same as those of y. For example, if x and y are regulatory proteins
and if they regulate each other as transcription factors as in Fig. 2b, the replica, y′, must not
be regulated by x but its expression rate must be equal to the average expression rate of y
under the regulation of x as in Fig. 3b. This requires fine-tuning of the expression rate of
y′ by modifying the DNA sequences relevant for the rate. In order to conduct this tuning,
we have to measure several kinetic parameters of the original FB networks that undermines
the advantage of the opened network such that measurements of the kinetic parameters are
unnecessary to estimate Lx and Ly via Eq. (32).

5 Estimation of Feedback Loop Gain by a Conjugate FB and FF Network

As a more promising strategy for the measurement of the loop gains, we propose a conjugate
FB and FF network that is an extension of the dual reporter system for the estimation of the
intrinsic and the extrinsic components. In the conjugate network, we couple the original FB
network with a replica that is opened as in Fig. 4a. x and y are the same as the original FB
network. The replica, y′, is regulated by x as y is but does not regulate x back. Thus, x and
the replica y′ form an FF network. If x and y are regulatory proteins as in Fig. 2b, the replica
y′ can be engineered by duplicating the gene y with its promoter site, and by modifying
the coding region of the replica so that y′ looses the affinity for binding to the regulatory
region of x as in Fig. 4b. This modification is much easier than that required for designing
the opened network in Fig. 3.

Next, we show how to use this conjugate network to measure the loop gains. For this
network, K and D in Eq. (3) become

K =
⎛

⎝
−dx kxy 0
kyx −dy 0
ky′x 0 −dy′

⎞

⎠ , D =
⎛

⎝
2āx 0 0
0 2āy 0
0 0 2āy′

⎞

⎠ . (33)
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Fig. 4 a The structure of the conjugate FB and FF network obtained by replicating y in the FB network. b A
schematic diagram of the network in a for gene regulation. c The structure of the conjugate FB and FF network
obtained by replicating x in the FB network. d A schematic diagram of the network in c for gene regulation

Because the replica y′ affects neither x nor y, the fluctuation of x and that of y are the same
as those of the FB network in Eq. (21). The variance of the replica y′ can be decomposed as

σ 2
y′ =

(I I )︷ ︸︸ ︷
Gy′y′ ȳ′ + (1 − Ly) + (1 + Ly′)

(1 − Lx − Ly)(1 − Ly′)

(I I I )︷ ︸︸ ︷
Gy′xGxx x̄

+ 1

(1 − Lx − Ly)(1 − Ly′)
(Gy′y + Gy′xy)Gyy ȳ︸ ︷︷ ︸

(V )

, (34)

where

Ly′ = Ly

2
, Gy′y′ = Gyy, Gy′x = Gyx , Gy′y = Gyy′ , Gy′xy = GyxGxy . (35)

Rearranging this equation leads to

σ 2
y′ = σ 2

y − Ly

1 − Ly/2
Gyy ȳ. (36)

In addition, we have the following expression for the covariance between y and y′ as

σy,y′ = 1

(1 − Lx − Ly)
GyxGxx x̄ + (1 + Lx )Ly′

(1 − Lx − Ly)(1 − Ly′)
Gyy ȳ,

= σ 2
y − 1

1 − Ly/2
Gyy ȳ. (37)

A similar result can be obtained by replicating x as in Fig. 4c, d.
By using these relations, we have

Lx =

(a)︷ ︸︸ ︷
σ 2
x ′ − σ 2

x

σx,x ′ − σ 2
x

=

(b)︷ ︸︸ ︷
1

1/2 + Gxx/(Fx − Fx ′)
=

(c)︷ ︸︸ ︷

2

(
1 − Gxx

Fx − Fx,x ′

)
,

Ly = σ 2
y′ − σ 2

y

σy,y′ − σ 2
y︸ ︷︷ ︸

(a)

= 1

1/2 + Gyy/(Fy − Fy′)
︸ ︷︷ ︸

(b)

= 2

(
1 − Gyy

Fy − Fy,y′

)

︸ ︷︷ ︸
(c)

, (38)
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where Fx : = σ 2
x / 〈x〉, Fy : = σ 2

y / 〈y〉, Fx,x ′ : = σx,x ′/ 〈x〉, and Fy,y′ : = σy,y′/ 〈y〉 are
the Fano factors of x and y and normalized covariances. This result indicates that we have
multiple ways, (a), (b), and (c), to estimate Lx and Ly from the statistics of the conjugate
network. In addition, we also have a fluctuation relation that holds between the statistics as

Fx + Fx ′ − 2Fx,x ′ = 2Gxx , Fy + Fy′ − 2Fy,y′ = 2Gyy, (39)

which is the generalization of Eq. (16) for the dual reporter system. Because x̄
(
Fy + Fy′ − 2

Fy,y′
) = σ 2

y + σ 2
y′ − 2σy,y′ = E[(y(t) − y′(t))2], we also obtain

E[d2⊥] := 1

2
E[(y(t) − y′(t))2] = Gyy ȳ. (40)

Note that this result is the same as Eq. (18) for the dual reporter system even though a FB
exists in the conjugate FB and FF system.

5.1 Verification of the Relations by Numerical Simulation

We verify Eqs. (38) and (39) by using numerical simulation. For the simulation, we use a
conjugate network of gene regulation in which the replicas of both x and y are involved to
measure Lx and Ly , simultaneously as in Fig. 5a. For the variable n = (x, y, x ′, y′)T, the
stoichiometric matrix and the propensity function are

S =

⎛

⎜⎜⎝

1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

⎞

⎟⎟⎠ , a(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (y)
−dx x
g(x)
−dy y
f (y)

−dx x ′
g(x)

−dy y′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

The simulation is conducted by the Gillespie’s next reaction algorithm [13]. First, we test a

linear negative feedback regulation defined by f (y) : = max
[
f0[1 − y

Ky
], 0

]
, and g(x) : =

max
[
g0

x
Kx

, 0
]
under which the LNA holds exactly as long as its trajectory has sufficiently

small probability to reach the boundaries of x = 0 and y = 0. In Fig. 5b, the distributions
of p(x, y), p(x, y′), and p(x ′, y) are plotted for different parameter values of Kx . The FB
is strong for small Kx whereas it is weak for large Kx . (Lx , Ly) estimated by Eq. (38) for
the parameter values are plotted in Fig. 5d. The three estimators, (a), (b), and (c) in Eq. (38),
are used for comparison. For this simulation, all the estimators work well, but they have
slightly larger variability in Lx compared with that in Ly for large values of |Lx | and |Ly |.
In addition, when |Lx | and |Ly | are very small, i.e. much less than 1, the estimators show
relatively larger variability and bias, suggesting that the estimation of veryweak FB efficiency
requires more sampling. For the same parameter values, we also test Eq. (39) in Fig. 5e. Both
Fx + Fx ′ −2Fx,x ′ and Fy + Fy′ −2Fy,y′ localize near 2 irrespective of the parameter values.
As Figs. 5d, e demonstrate, the estimators obtained from the simulations agree with the
analytical values of (Lx , Ly), and the fluctuation relation also holds very robustly.

In order to test how nonlinearity affects the estimation, we also investigated a non-linear
negative feedback regulation defined by f (y) : = f0

1
1+(y/Ky)

ny , and g(x) : = g0
(x/Kx )

nx

1+(x/Kx )nx
.

We change the Hill coefficients, nx and ny , by keeping the fixed point unchanged as in
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Fig. 5 a A schematic diagram of the conjugate FB and FF network used for the numerical simulation. b The
distributions of p(x, y) , p(x, y′), and p(x ′, y) sampled from the simulation for different parameter values of
Kx . The other parameters are f0 = g0 = 400, Ky = 100, and dx = dy = 1. The blue, red, and green dots are
the distributions of p(x, y) , p(x, y′), and p(x ′, y), respectively. Solid and dashed lines are the nullclines of
Eq. (2) defined as dx/dt = 0 and dy/dt = 0 . c The distributions of p(y, y′) sampled from the simulation for
different parameter values of Kx . The other parameters are the same as in b. The black dashing line is y′ = y.
d (Lx , Ly) estimated with the relations, a, b, and c, in Eq. (38) from the numerical simulation. The parameter
values used were the same as in b. For each estimation, the means and the covariances required in Eq. (38)
were calculated from 9 × 104 samplings. For each parameter value, we calculated the estimates ten times to
see their variation. Black markers show the analytically obtained values of (Lx , Ly) for each parameter value.
e A plot of the estimates of Fx + Fx ′ − 2Fx,x ′ and Fy + Fy′ − 2Fy,y′ derived in Eq. (39). The parameter
values used were the same as those in d (Color figure online)

Fig. 6a. Compared with the linear case, the variability of the estimators is almost similar
even though the feedback regulation is nonlinear (Fig. 6b). In addition, the estimators show
a good agreement with the analytical value except for very large value of |Lx | and |Ly |.
This suggests that Eq. (38) works as good estimators when the trajectories of the system
are localized sufficiently near the fixed point as in Fig. 6a. For the very large value of |Lx |
and |Ly | where |n| = 27/2, all the estimators are slightly biased towards smaller values, and
the estimator (b) in Eq. (38) has larger variance than the others. In addition, similarly to the
linear case, the estimators require larger sampling when |Lx | and |Ly | are much less than
1. Even with the nonlinear regulation, the fluctuation relation holds robustly as shown in
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Fig. 6 a The distributions of p(x, y) , p(x, y′), and p(x ′, y) sampled from the simulation for different
parameter values of nx and ny where nx = ny = |n|. The other parameters are f0 = g0 = 300, Kx = Ky =
150, and dx = dy = 1. The blue, red, and green dots are the distributions of p(x, y) , p(x, y′), and p(x ′, y),
respectively. Solid and dashed curves are the nullclines of Eq. (2) defined as dx/dt = 0 and dy/dt = 0.
b (Lx , Ly) estimated with the relations, a, b, and c, in Eq. (38) from the numerical simulation. The same
parameter values were used as in a. For each estimation, the means and the covariances required in Eq. (38)
were calculated from 9 × 104 samplings. For each parameter value, we calculated the estimates ten times to
see their variation. Black markers show the analytically obtained values of (Lx , Ly) for each parameter value.
c A plot of the estimates of Fx + Fx ′ − 2Fx,x ′ and Fy + Fy′ − 2Fy,y′ shown in Eq. (39). The parameter
values used were the same as those in b (Color figure online)

Fig. 6c, which is consistent with the good agreement of the estimators of Lx and Ly with
their analytical values as in Fig. 6b.

All these results indicate that the estimators obtained in Eq. (38) can be used to estimate
the FB efficiency as long as the efficiency is moderate and the trajectories of the system are
localized near the fixed point.

6 Discussion

In this work, we extended the fluctuation decomposition obtained for FF networks to FB
networks. In this extension, the FB loop gains are naturally derived as themeasure to quantify
the efficiency of the FB. By considering the opened FF network obtained by opening the loop
of the FB network, the relation between the loop gains and the fluctuation propagation in the
FF network was clarified. In addition, we proposed the conjugate FB and FF network as a
methodology to quantify the loop gains by showing that the loop gains are estimated only
from the statistics of the conjugate network. By using numerical simulation, we demonstrated
that the loop gains can actually be estimated by the conjugate network while we need more
investigation on the bias and variance of the estimators. Furthermore, the fluctuation relation
that holds in the conjugate networkwas also verified.We think that ourworkgives a theoretical
basis for the conjugate network as a scheme for experimental estimation of the FB loop gains.

The conjugate network is much easier to apply for estimating FB efficiency than pertur-
bative approach. The procedures to measure the FB efficiency is summarized as follows. For
a FB network with two components, x and y,
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1. duplicate them to obtain their replicas, x ′ and y′, by genetic engineering as in Fig. 5a;
2. modify the replicas, x ′ and y′, so that they cannot regulate back y and x , respectively;
3. measure the expression levels of x and x ′ or y and y′ simultaneously by single-cell

measurements;15

4. calculate the variances and covariances of x , x ′, y, and y′ from the data;
5. estimate the loop gains by using their estimators, (a), (b), and (c) in Eq. (38);
6. calculate the fluctuation relation, Eq. (39), in order to check the validity of the source

decomposition.

This procedure may be applied to a network with more than two components whose slow
dynamics is well characterized by two components among them. It is an open problem to
extend the conjugate FB and FF network for more than two components.

As for such extension of the efficiency of FB and its quantification by the conjugate
network, the generality of the source decomposition and the FB loop gain should be clarified.
In the case of the FF network, the fluctuation decomposition proposed initially by using the
LNAwas successfully generalized as the variance decomposition formula with respect to the
conditioning of the history of the upstream fluctuation [4,17]. In the case of the FB network,
similarly, the source decomposition and the FB loop gains were obtained and defined via the
LNA that requires stationarity and linearization of the network. However, its generalization
for non-stationary and nonlinear situation is not straightforward because of the circulative
flow of the fluctuation. As we demonstrated, the variance decomposition also cannot provide
appropriate information on the FB efficiency. The problem is that the normal conditioning
by history in the variance decomposition does not account for the causal relation between
the components. The previous work on the relation between the fluctuation decomposition
and the information transfer for the FF network [4] suggests that the information-theoretic
investigation may provides a clue to generalize the FB loop gains. As a candidate for such
information measure, we illustrate a connection of the conjugate FB and FF network with the
directed information andKramer’s causal conditioning.Let us consider the joint probability of
the histories of x(t) and y(t),P[X (t),Y(t)]. From the definition of the conditional probability,
we can decompose this joint probability as

P[X (t),Y(t)] = P[X (t)|Y(t)]P[Y(t)] = P[Y(t)|X (t)]P[X (t)]. (42)

However, when x(t) and y(t) are causally interacting, we can decompose the joint probability
differently as

P[X (t),Y(t)] =
[

t∏

i=1

P[xi |Xi−1,Yi−1]
][

t∏

i=1

P[yi |Xi ,Yi−1]
]

(43)

= Py||x [Y(t)||X (t)] × Px ||y[X (t)||Y(t − 1)], (44)

where Py||x [Y(t)||X (t)] and Px ||y[X (t)||Y(t −1)] are the Kramer’s causal conditional prob-
abilities [31]. If no FB exists from y back to x , then this decomposition is reduced to

P[X (t),Y(t)] = Py||x [Y(t)||X (t)] × P[X (t)]. (45)

The directed information from y to x is defined as

I[Y(t) → X (t)] : =
〈
ln

P[X (t),Y(t)]
Py||x [Y(t)||X (t)]P[X (t)]

〉

P[X (t),Y(t)]
, (46)

15 The measurement should not necessarily be time-lapse as long as it is conducted at the stationary state.

123



Feedback Regulation and Its Efficiency in Biochemical Networks 1443

where the joint probability of X (t) and Y(t) is compared with the distribution, Py||x [Y(t)
||X (t)] × P[X (t)] [31]. Thus, I[Y(t) → X (t)] is zero when no FB exists from y to x , and
measures the directional flow of information from y back to x . In the conjugate network, the
replica y′ is driven only by x . Thus, the joint probability between X (t) and Y ′(t) becomes

P[X (t),Y ′(t)] = Py||x [Y ′(t)||X (t)]P[X (t)]. (47)

Thereby, in principle16 the directed information can be calculated by obtaining the joint dis-
tributions, P[X (t),Y(t)] and P[X (t),Y ′(t)], of the conjugate network. This relation of the
conjugate network with the directed information strongly suggests that the directed infor-
mation and the causal decomposition are related to the loop gains. Resolving this problem
will lead to more fundamental understanding of the FB in biochemical networks because
the directed information is found fundamental in various problems such as the information
transmission with FB [49], gambling with causal side information [31], population dynamics
with environmental sensing [37], and the information thermodynamics with FB [39]. This
problem will be addressed in our future work.

Acknowledgments We thankYoshihiroMorishita, Ryota Tomioka, YuichiWakamoto, andYuki Sughiyama
for discussion. This research is supported partially by Platform for Dynamic Approaches to Living System
fromMEXT, Japan, theAihara InnovativeMathematicalModelling Project, JSPS through the FIRST Program,
CSTP, Japan, the JST CREST program, the Specially Promoted Project of the Toyota Physical and Chemical
Research Institute, and the JST PRESTO program.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Variance and Source Decompositions as the Spacial Cases of
the Orthogonal Decomposition

Th variance decomposition is known as a version of orthogonal decomposition of random
variables. For two randomvariables,U1 andU2, ifU1 andU2 are orthogonal asCOV[U1U2] =
0, then V[U1 + U2] = V[U1] + V[U2] holds. For any two random variables, Z1 and Z2,
we can decompose Z1 as Z1 − E[Z1] = (E[Z1|Z2] − E[Z1]) + (Z1 − E[Z1|Z2]). Because
E[(E[Z1|Z2] − E[Z1])] = 0, E[(Z1 − E[Z1|Z2])] = 0, and E[(E[Z1|Z2] − E[Z1])(Z1 −
E[Z1|Z2])] = 0, we have V[Z1 − E[Z1]] = V[E[Z1|Z2] − E[Z1]] + V[Z1 − E[Z1|Z2])].
By choosing Z1 = y(t) and Z2 = X (t), we obtain the variance decomposition as Eq. (14).

The source decomposition can also be regarded as a kind of orthogonal decomposition.
Let us assume for simplicity that D(n̄) is diagonal such that each reaction induces fluctuation
onto only one molecular specie.17 The variances � obtained as the stationary solution of the
Lyapunov equation Eq. (3) can be identified with the variances of the stationary solution of
the following linear stochastic differential equations:

dξi (t) =
∑

j

Ki j (n̄)ξ jdt + √
D(n̄)i idWi (t), i ∈ {1, . . . , N } (48)

16 In practice, measuring the joint probability of histories is almost impossible.
17 This assumption can be weakened such that D(n̄) is diagonalizable by linear transformation as discussed
in [47].
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where Wi (t) and Wj (t) are independent white Gaussian processes for i �= j . Because of the
linearity of the equation, ξi (t) can be decomposed as ξi (t) = ξi,1(t) + · · · + ξi,N (t) where
ξi,h(t) are defined as

dξi,h(t) =
∑

j

Ki j (n̄)ξ j,hdt + δi,h
√
D(n̄)i idWi (t), i ∈ {1, . . . , N }, (49)

where δi,h is the Kronecker delta. Because ξ∗,h(t) : = {ξ1,h(t), . . . , ξN ,h(t)}T is driven only
by Wh(t), ξi,h(t) accounts for the fluctuation of the i th component due to the fluctuation
originating from the stochastic birth and death reactions of the hth component. Because
K (n̄) is not diagonal for most applications, the effect of noise Wh(t) injected only to the hth
component of ξ∗,h(t) propagates to the other components. Thus, ξi,h is stochastic in general
for all i . Because Wh(t) and Wh′(t) are independent for h �= h′, ξi,h(t) and ξi,h′(t) are also
mutually independent and orthogonal as COV[ξi,h(t), ξi,h′(t)] = 0. Thus, the variance of
ξi can be decomposed as V[ξi (t)] = ∑

h V[ξi,h(t)]. In addition, by definition, ξi,h(t) can be
described as ξi,h(t) = E[ξi (t)|Wh(t)] where Wh(t) is the histories of Wh(t). Thus, we have
a representation of the source decomposition as

V[ξi (t)] =
∑

h

V[E[ξi (t)|Wh(t)], (50)

where the variance of ξi is decomposed into the contributions from different noise sources.18

As clearly shown, the source decomposition strongly relies on the linearity of the Lyapunov
equation. Its extension to nonlinear situation is still an open problem.

Appendix 2: Source Decomposition of a FB Network with Three
Components

We consider a FB network with three components, x , y, and z that forms a loop x → y →
z → x . For this FB network, K and D in the Lyapunov equation (Eq. (3)) can be described
as

K =
⎛

⎝
−dx 0 kxz
kyx −dy 0
0 kzy −dz

⎞

⎠ =
⎛

⎜⎝
−Hxx/τx 0 − x̄

z̄ Hxz/τz

− ȳ
x̄ Hyx/τy −Hyy/τy 0

0 − z̄
ȳ Hzy/τz −Hzz/τz

⎞

⎟⎠ , (51)

D =
⎛

⎝
2āx 0 0
0 2āy 0
0 0 2āz

⎞

⎠ . (52)

We can obtain the following source decomposition for the variance of z:

σ 2
z = 1 − Lx − Ly − Lxyz

1 − Lx − Ly − Lz − Lxyz − Lmix
Gzz z̄, (53)

+ 1 − Lx

1 − Lx − Ly − Lz − Lxyz − Lmix
GzyGyy ȳ (54)

+ 1

1 − Lx − Ly − Lz − Lxyz − Lmix
[Gz−x + Gzyx ]Gxx x̄ (55)

18 Note that the decomposition is also possible when D is not diagonal. Please refer to [47] for more detailed
discussion.
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where we define the path gains as

Gxx : = 1/Hxx , Gyy : = 1/Hyy, Gzz : = 1/Hzz

Gyx : = k2yx
dy(dx + dy)

, Gzy : = k2zy
dz(dy + dz)

, Gxz : = k2xz
dx (dx + dz)

,

Gzyx : = GzyGyx , Gz−x : = GzyGyx
dy

(dx + dz)
,

and the loop gains as

Lx : = kxzkzykyx
dx (dx + dy)(dx + dz)

Ly : = kxzkzykyx
(dx + dy)dy(dy + dz)

Lz : = kxzkzykyx
(dx + dz)(dy + dz)dz

, Lxyz = kxzkzykyx
(dx + dy)(dy + dz)(dz + dx )

,

Lmix : = GxzGzyGyx = Lx L y Lz

Lxyz

Because Lmix can be obtained from the other loop gains, we effectively have four loop gains
in this network.

Appendix 3: Variance Decomposition of the FB Network with Two
Components

We derive the variance decomposition for the FB network with two components via the
linearization by Lyapunov equation. Let us represent the solution of the Lyapunov equation
with the corresponding linear stochastic differential equation as Eq. (48). ξx (t) and ξy(t) are
the fluctuation of x and y around their averages. For notational simplicity below, we identify
ξx (t) and ξy(t) with x(t) and y(t) because their difference are constants. We discretize
Eq. (48) for x(t) and y(t) by conditional propabilities as

P(yt+	t |xt , yt ) ≈ PG(yt+	t ; (1 − dy	t)yt + kyx xt	t, Dy	t),

P(xt+	t |xt , yt+	t ) ≈ PG(xt+	t ; (1 − dx	t)xt + kxy yt	t, Dx	t), (56)

where PG(x;μ, σ 2) is the Gaussian distribution for x whosemean and variance areμ and σ 2.
Let Xt be the discretized history of x(t) as Xt : = {. . . , x0, . . . , xt−	t , xt }. The conditional
probability P(yt |Xt ) satisfies the following sequential Bayes theorem:

P(yt+	t |Xt+	t ) =
P(xt+	t |xt , yt+	t )

∑

yt

P(yt+	t |xt , yt )P(yt |Xt )

∑

yt+	t

P(xt+	t |xt , yt+	t )
∑

yt

P(yt+	t |xt , yt )P(yt |Xt )
, (57)

Because the stationary solution of the linear stochastic differential equation is Gaussian,
P(yt |Xt ) can be parametrized as P(yt |Xt ) = PG(yt ;μy(t),�y(t)). By inserting this and
Eq. (56) into Eq. (57) and by taking the limit of 	t → 0, we obtain stochastic differential
equations as
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dμy(t) = (kyx x(t) − dyμy(t))dt + kxy
Dx

�y(t)
[
dx(t) − (kxyμy(t) − dx x(t))dt

]
, (58)

d�y(t) =
[
−2dy�y(t) − k2xy�

2
y(t)

Dx
+ Dy

]
dt. (59)

This is a version of Kalman-Bucy filter with feedback. Because �y(t) depends only on
parameters, its positive stationary solution becomes

�̄y = 2
dxdy
k2xy

⎡

⎣−1 +
√

1 + k2xy
dxdy

Gyy ȳ

Gxx x̄

⎤

⎦Gxx x̄ ≤ Gyy ȳ. (60)

where we use Dx = 2āx = 2dxGxx x̄ and Dy = 2āy = 2dyGyy ȳ, and the inequality is
obtained from Eq. (59). Because �y(t) = V[yt |Xt ], we obtain

E[V[yt |Xt ]] = 2
dxdy
k2xy

⎡

⎣−1 +
√

1 + k2xy
dxdy

Gyy ȳ

Gxx x̄

⎤

⎦Gxx x̄ . (61)

for the stationary state. It should be noted that Eq. (61) is independent of kyx that characterizes
the feedback strength from x to y. Similarly, we also obtain

E[V[xt |Yt ]] = 2
dxdy
k2yx

⎡

⎣−1 +
√

1 + k2yx
dxdy

Gxx x̄

Gyy ȳ

⎤

⎦Gyy ȳ. (62)

Appendix 4: Variance Decomposition of the FF Network with Two
Components

We verify that our analytic derivation of the variance decomposition for the FB network
include the decomposition of the FF network as a special case. For kxy = 0, i.e., there is no
feedback from y to x , we can reduce Eqs (58) and (59) as

dμy(t) = (kyx x(t) − dyμy(t))dt (63)

d�y(t) = [−2dy�y(t) + Dy
]
dt. (64)

Thus, we have

E[yt |Xt ] = μy(t) = e−dy t
[
y(0) + kyx

∫ t

0
x(t ′)dt ′

]
, (65)

V[yt |Xt ] = �y(t) = Gyy ȳ
[
1 − e−2dy t

]
. (66)

From this, we can recover the variance decomposition for the stationary state as

V[E[yt |Xt ]] = k2yx
(dx + dy)dy

Gxx x̄, (67)

E[V[yt |Xt ]] = Gyy ȳ (68)
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Appendix 5: Generalized Variance Decomposition of a FF Network with
Three Components

For the FF network depicted in Fig. 3a, the generalized variance decomposition of σ 2
y [4] can

also be described as

σ 2
y = E[V[y(t)|{X (t),Y ′(t)}]]︸ ︷︷ ︸

(I I )

+E[V[E[y(t)|{X (t),Y ′(t)}]|Y ′(t)]]︸ ︷︷ ︸
(I I I )

+V[E[y(t)|Y ′(t)]]︸ ︷︷ ︸
(V )

.

(69)

We show here that the terms (II), (III) and (V) are the same as those in the source decomposi-
tion shown in Eq. (25).We derive the correspondence under the assumption of the stationarity
and linearization of the network dynamics because the source decomposition requires these
assumptions.

Because of the cascading relation, y′ → x → y, E[V[y(t)|{X (t),Y ′(t)}]] is simplified
as E[V[y(t)|{X (t),Y ′(t)}]] = E[V[y(t)|{X (t)}]]. From Eq. (66) obtained for the two com-
ponents FF network, we can see that V[y(t)|{X (t)}] = Gyy ȳ for the stationary condition
irrespective of the dynamics of x(t). Thus, we have E[V[y(t)|{X (t)}]] = Gyy ȳ, which is the
same as the term (II) in Eq. (25).

Because y′ is the upstream of the cascade, its fluctuation is determined only by Wy′(t) in
the linearized stochastic differential equation, Eq. (48), as

dξy′(t) = Ky′y′(n̄)ξy′dt +
√
D(n̄)y′dWy′(t), (70)

where we identified the indices i = {1, 2, 3} in Eq. (48) with i = {y′, x, y} for readability. If
we are given a realization ofWy′(t), then the history of ξy′(t), 
y′(t) : = {ξy′(t ′)|t ′ ∈ [0, t]},
is obtained deterministically as the function of Wy′(t) by solving this equation. Thus, we
have V[E[y(t)|Y ′(t)]] = V[E[y(t)|
y′(t)]] = V[E[ξy(t)|Wy′(t)]]. Because this is the term
of source decomposition shown in Eq. (50), V[E[y(t)|Y ′(t)]] corresponds to the term (V) in
Eq. (25). Note that the explicit representation of the terms in Eq. (69) was also obtained in
[4].
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