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Abstract Non-specific immunotherapy has been for a

long time a standard treatment option for patients with

metastatic renal cell carcinoma but was redeemed by spe-

cific targeted molecular therapies, namely the VEGF and

mTOR inhibitors. After moving treatment for mRCC to

specific molecular agents with a well-defined mode of

action, immunotherapy still needs this further development

to increase its accuracy. Nowadays, an evolution from a

rather non-specific cytokine treatment to sophisticated

targeted approaches in specific immunotherapy led to a

re-launch of immunotherapy in clinical studies. Recent

steps in the development of immunotherapy strategies are

discussed in this review with a special focus on peptide

vaccination which aims at a tumor targeting by specific T

lymphocytes. In addition, different combinatory strategies

with immunomodulating agents like cyclophosphamide or

sunitinib are outlined, and the effects of immune check-

point modulators as anti-CTLA-4 or PD-1 antibodies are

discussed.
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Introduction

The observation of rare spontaneous tumor regressions in

RCC has led to the early assumption that RCC is an

immunogenic tumor [1]. Additionally, RCC tumors

express higher levels of HLA class I and class II mol-

ecules compared to non-tumoral tissue [2, 3]. RCC tissue

is frequently infiltrated by immune cells especially

functional T lymphocytes [4, 5]. Therefore, strategies

which harness the adaptive immune system were early

considered as promising therapeutic options. Non-specific

immunotherapy with the cytokines interleukin-2 (IL-2)

and/or interferon-alpha (IFN-a) has been largely used in

the past 25 years with the result of a notable clinical

benefit (disease stabilization or remission) reported in up

to one-third of treated patients. Long-term complete

responders (CRs) are rare, but regularly observed [8].

However, median survival is only marginally enhanced,

so non-specific immunotherapy is rarely used nowadays

[6, 7]. In high-dose IL-2-treated patients, retrospective

analyses proposed both high carbonic anhydrase IX and

a pathologic risk classification based on extent of the

alveolar morphology to forecast CR [8, 9]. These fea-

tures were prospectively evaluated in the SELECT trial,

but the predictive value of these putative biomarkers was

not confirmed. Additionally, increased frequencies of

regulatory T cells (Treg) and decreased frequencies of

circulating myeloid and plasmacytoid dendritic cells have

been reported in cytokine-treated mRCC patients and

may partly explain the limitations of such therapy

[10, 11].
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Targeted therapy

While enthusiasm for non-specific immunotherapies damp-

ened, the discovery of the Von-Hippel–Lindau (VHL) gene

and of its related molecular pathways and mechanisms built

the basis for the era of ‘‘targeted’’ therapy [12]. Since 2005,

different tyrosine kinase (TK) inhibitors targeting the VEGF

receptor and mammalian target of rapamycin (mTOR)

inhibitors have been successively introduced in the clinical

routine for the treatment of mRCC patients [13]. Both

median progression-free (PFS) and overall survival (OS) are

substantially prolonged with these new substances, exceed-

ing significantly the results obtained during the cytokine era.

However, a profound prolongation of survival leading to

long-term survivors has not been described so far. In addi-

tion, the prolongation of OS is compromised by drug-

induced side effects which lead to dose interruption in up to

38 % of the patients [12, 14]. Due to this limited improve-

ment of TK or mTOR inhibitors in the long-term, new

therapy options are required to further improve patients’

cancer-specific survival (CSS).

Interestingly, it was observed that targeted agents do not

only inhibit angiogenesis and tumor cell proliferation, but

also show immunomodulatory effects directing the immune

system to a stronger anti-tumor response [15]. For instance,

sunitinib-treated mRCC patients show decreased frequen-

cies of Tregs and myeloid-derived suppressor cells (MDSCs)

in the peripheral blood [16, 17]. At the same time, sunitinib

may shift T-helper cells toward a Th1-type response [16]. In

contrast, sorafenib has immunosuppressive effects with a

reduced induction of antigen-specific T cells in vitro and in

immunized mice [15, 18]. Additionally, mTOR antagonists

inhibit the calcineurin-dependent activation of the IL-2 gene

transcription in response to T-cell receptor activation [19].

Therefore, combining the compatible targeted agents with

immune therapy appears like a promising therapeutic option,

especially if the non-specific immune stimulation can be

redirected toward a more specific, efficient and durable

adaptive immunity against tumor cells.

Specific immunotherapy

Cytokine therapy with IL-2 and IFN-a non-specifically

activates the immune system. This immune therapy does

not present a very well-defined mode of action and does not

induce a specific T-cell response directed toward known

tumor-associated antigens (TAAs). Because of that, spe-

cific biomarkers or assays for immune monitoring of

tumor-directed T cells cannot be available to monitor

response to therapy. More importantly, due to its non-

specific nature, the efficacy of such immunotherapy is

limited, while the adverse events are substantial. It would

be therefore highly desirable to activate effector T lym-

phocytes, especially cytotoxic CD8? T cells, against

tumoral, but not healthy tissues while inducing a long-

lasting memory response against cancer cells. This can

only be efficiently achieved by directing these T cells

toward target structures specifically expressed or overex-

pressed in tumor cells.

Tumor-associated antigens

It is well known that TAAs expressed by tumor cells can be

very specifically recognized by the T-cell receptor (TCR)

of cytotoxic CD8? T lymphocytes. TCRs can bind spe-

cifically to short peptides of typically 8–10 amino acids in

length derived from intracellular proteins and presented by

human leukocyte antigen (HLA) molecules on the cell

surface. Cell antigen processing leads to the display of such

HLA-restricted peptides derived from TAAs, also known

as tumor-associated peptides (TUMAPs). For generating

TUMAPs, two main steps are necessary: First, the cleavage

of the protein within the tumor cell by specific proteases

must generate the peptide itself or a slightly longer pre-

cursor, and second, this peptide must contain a so-called

HLA peptide motif for loading into the groove of the rel-

evant HLA class I allele (Fig. 1a) [20]. Therefore, such

HLA–peptide complexes represent suitable targets against

which the host’s immune system can be activated in order

to eliminate tumor cells.

In cancer vaccination, the choice of targeted TAAs is

therefore crucial. The tumor specificity of cancer germ-

line antigens (CTAs) is due to the fact that they are

expressed in male germ cells and trophoblastic tissues,

but not in other normal adult tissues except some tumor

types. The cancer germ-line antigen MAGE-1 was the

first TAA identified as a target of human CD8? T cells

and proved the concept of specific tumor recognition in

patients [21]. Overexpressed antigens are those present in

benign tissue, but at a significantly higher level on tumor

cells. In RCC, carbonic anhydrase IX (CA IX) and

Apolipoprotein L1 are such TAAs and appear particularly

interesting since the presence of the T-cell epitopes

derived from such TAAs has been confirmed in tumor

tissue by analytical methods [22]. Another class of anti-

gens results from mutated proteins. These are especially

interesting for specific immunotherapy, since they are

unique and solely expressed by the tumor cells. Mutation

in the tumor protein sequence enables either a peptide to

bind to HLA while the ‘‘wild-type’’ sequence does not or

the new amino acid sequence induces a highly ‘‘mutation-

specific’’ T-cell response. The great advantage of such

mutated antigens lies in their true tumor specificity,

potentially no triggering of peripheral tolerance and their

frequent occurrence in driver genes decreasing the risk of
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immune escape due to the loss of expression [23].

Moreover, it can be assumed that specific T cells have not

been subjected to T-cell deletion during thymus devel-

opment and do not have been subjected to central toler-

ance. However, the uniqueness of TAA mutations may

also be seen as a disadvantage, since they must be

identified in each individual mRCC patient. However,

recent technological progresses are paving the way to a

fully individualized immunotherapy approach in the

foreseeable future.
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Autologous tumor immunotherapy

Based on the knowledge that the immune system, for

example, the cytotoxic CD8? T cells, can be specifically

directed against TAAs, different vaccines consisting of

professional antigen-presenting cells [i.e., dendritic cells

(DCs)] loaded with either allogeneic or autologous tumor-

derived lysates or RNA with or without alongside admin-

istration of IL-2 were tested [24, 25].

The autologous tumor cell lysate vaccine Reniale�

(Liponova, Hanover, Germany) was evaluated in the

adjuvant setting in high-risk RCC after nephrectomy. Five-

year PFS was significantly improved as compared to

observation (77.4 vs. 67.8 %), but the vaccine was not

approved by the EMA for various reasons, including issues

in trial methodology [26, 27]. Another adjuvant phase III

trial assessed the efficacy of Vitespen, an autologous

tumor-derived heat shock protein Gp96 preparation

(Oncophage�. Antigenics Inc., Lexington, MA), and failed

to reach the primary endpoint of PFS prolongation, despite

some indication of activity in retrospectively defined sub-

groups [28].

Adoptive T-cell transfer represents another, consider-

ably successful strategy in tumor immunotherapy. It is

known that often tumor-infiltrating lymphocytes (TIL) are

present within the RCC tumor tissue [4]. The presence of

TILs suggests that the patient’s immune system has been

activated to fight the tumor. Adoptive T-cell transfer of

in vitro selected and/or expanded anti-tumor T cells is an

approach to provoke a graft versus host reaction. The

transplanted T cells attack the tumor which will be rec-

ognized, for example, as foreign tissue. Results of this

approach are limited in RCC with no improvement of OS

in phase I/II studies [29]. The genetic reprogramming of T

cells has demonstrated promising preclinical data [30].

Immune biomarkers

Tumor-based approaches such as those mentioned above

are characterized by the use of a complex mixture of

undefined proteins, potentially including many undefined

TAAs presented by several HLA alleles. Such vaccines

have the intrinsic limitation that the TAAs that are pro-

cessed and then displayed on the surface of the APCs are

different in the individual patients and therefore it is

unknown against which TAA-specific T cells might be

activated. Consequently, due to the unknown TAAs,

monitoring of vaccine immunogenicity is inherently diffi-

cult and mostly incomplete. This is disappointing, since

measurement of T cells or even antibodies is of critical

importance to assess the effects of the vaccine on the

immune system, to compare the efficacy of various clinical

approaches and, hopefully in the near future, to predict

therapy efficacy. To achieve these ambitious aims, in vitro

immunomonitoring should be robust, reproducible and

sensitive; however, up to now, no particular assay has been

designed as being the gold standard to be applied. The

Immunoguiding Program of the Association for Immuno-

therapy of Cancer (CIP/CIMT) is an international network

working on the harmonization of the methods applied for

in vitro monitoring of T cells among the community [31].

This and further initiatives should help to compare vaccine

strategies and to accelerate progresses in the field [32, 33].

Meanwhile, several studies indeed demonstrate a correla-

tion between vaccine immunogenicity measured in the

blood and clinical benefit [34, 35].

Single antigen-based tumor vaccines

Some more recent approaches have used defined single

TAA. In the TROVAX renal immunotherapy survival trial

(TRIST), a modified vaccinia Ankara vector engineered to

deliver the tumor antigen 5T4 (MVA-5T4; TroVaxTM,

Oxford BioMedica, Oxford, UK) was evaluated in a phase

III study in combination with sunitinib, plus interleukin-2

or interferon-a. However, the primary endpoint of OS was

not reached (median 20.1 vs. 19.2 months; TROVAX vs.

placebo) [36]. One potential reason maybe that immune

evasion by target down modulation which is more likely

with a single antigen is being targeted [37].

Multi-antigen peptide-based vaccination

Vaccination of RCC patients with synthetic peptides rep-

resenting TAA-derived T-cell epitopes, that is, TUMAPs,

presents several advantages: First, the manufacturing of

synthetic peptides is relatively easy and cost-effective and

they are very stable allowing long-term storage. Second, as

shown by multiple vaccination trials in various cancer

types so far, they are safe [34, 38]. Moreover, in vitro

immunomonitoring of TUMAP-specific T cells is possible

since the target structures recognized by the T cells are

well defined. And fourth, the mixture of several peptides of

different TAAs virtually allows covering a broad range of

antigens with the result of a decreased risk of an immu-

nological tumor escape.

Peptides can be either loaded ex vivo onto patient’s

autologous DCs which will then be given back to the patient,

or injected directly by intradermic or subcutaneous admin-

istration, where the peptides will be taken up by skin-resident

DCs [25]. In theses approaches, optimal DCs activation and

migration to the regional lymph node is crucial and can be

supported by the administration of immunological adjuvants

and/or immunomodulators (Fig. 1b).

A recent vaccine development following this principle

for mRCC is IMA901, which consists of nine TUMAPs
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restricted by HLA-A*02 and one pan-HLA-DR-binding

class II peptide. In two multicenter phase I and II trials,

IMA901 was tested for safety, immunogenicity and T-cell

response in association with a clinical benefit [34]. In the

first phase I trial, 16 patients progressed, 11 had stable

disease and 1 showed a partial response out of 28 patients

enrolled after 3-month follow-up. None of the patients

evaluable for the safety analysis experienced a drug-related

severe adverse event. Among the 27 immune-evaluable

patients those who responded to several TAAs, at least two

were more likely to experience a clinical benefit. Addi-

tionally, low blood levels of regulatory T cells (CD4?

Foxp3? Tregs) before the start of therapy were correlated to

a multiple T-cell response after vaccination [34].

A total of 68 patients of the phase II study had pro-

gressive disease after at least one previous cytokine and/or

TKI pretreatment. Patients were randomized 1:1 to receive

IMA901± a low-dose cyclophosphamide (Cy) pretreat-

ment with the aim to reduce levels of Tregs and boost the

immunological benefit of the vaccine. The rate of immune

responders (64 %) was similar to that of the first trial, with

26 % of patients responding to more than one TAA.

Although Cy did not improve the rate of immune

responders, Cy-pretreated patients showed a prolonged

median OS of 23.5 months (vs. 14.8 months without Cy).

In a subgroup analysis of immune- and non-responders

with or without the addition of Cy, only patients who

exhibited an immune response to the vaccine showed a

benefit from Cy pretreatment. This indicates that Cy has no

single-agent activity but rather acts as an immunomodu-

lator of the vaccine [34]. In this study, OS positively cor-

related with the number of induced T-cell responses.

Nevertheless, the mechanisms to induce a multi-T-cell

response could not be fully determined as the Cy approach

did not increase peripheral immune responses.

This work is the first to demonstrate a clear association

between an induced anti-TUMAP T-cell response and a

clinical benefit measured as prolonged OS in mRCC.

Moreover, it illustrates that a careful immunomonitoring

can constitute a rational basis to modify therapies for

improving patient’s benefit.

Hurdles in peptide vaccination

Currently, there are several challenges in peptide vacci-

nation: Which TAA should be targeted and in which format

(long vs. short peptides, induction of CD8? or CD4?

T-cell epitopes)? How can an efficient T-cell response in

terms of dosage, route of administration and choice of

adjuvants/immunomodulators be induced? And how can

this response be sustained over time, for example, by the

vaccination schedule?

HLA restriction

A possible disadvantage of peptides is their HLA restric-

tion limiting the eligibility of patients in clinical trials.

However, with the advancement of formulation technolo-

gies, the next generation of peptide vaccines will be

composed of peptides restricted to a number of the most

common HLA alleles allowing coverage of greater than

90 % of the patient population. Currently, more and more

non-HLA-A*02 TUMAPs are identified and tested in RCC

for their immunologic response [39, 40]. Moreover, new

technologies of next-generation sequencing coupled with

improvements in mass spectrometry will allow the identi-

fication of the entire HLA ligandome, including mutation-

derived sequences in individual patients in the near future.

This will allow the use of TUMAPs derived from mutated

tumor proteins which seems to be very robust in their

presentation on the tumor cell surface [23].

Choice of the immunomodulators/adjuvants

The adjuvant’s role is to enhance the immunogenicity of

the administered vaccine and can be differentiated from

systemic immunomodulators as the adjuvants are locally

and temporally restricted co-administered with the TUM-

APs [23]. For instance, skin-resident DCs shall be boosted

in their antigen loading and presentation, activation, and

migration to the draining lymph node. Locally co-admin-

istered Montanide and GM-CSF are commonly used to

trigger these processes, but only few studies have directly

compared these substances. In addition, the reported effects

of the widely used GM-CSF are contradictory as it might

enhance T-cell response, but was also shown to lower it if

used at high systemic doses [23, 41, 42]. Currently, trig-

gering through Toll-like receptors (TLRs) is a favored

option, and we also observed that TLR7 stimulation by

imiquimod seems to increase clinical response rate in

prostate carcinoma peptide vaccination [38].

Immunological checkpoints and combination strategies

with immunotherapy

The tumor microenvironment has developed a plethora of

strategies to impair T-cell activation and silence activated

T cells, which also prevent an effective immune response

after vaccination [43, 44]. Tumor-driven immune sup-

pression includes the downregulation of HLA molecules

and/or TAA, which leads to a decreased immunogenicity or

the induction of suppressive cytokines like IL-10 or TGF-b
[43]. In addition, these factors can recruit Tregs, MDSCs or

tumor-associated M2 macrophages, which in turn again act

in an immunosuppressive manner [45, 46]. Therefore,
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agents called immunomodulators or checkpoint inhibitors,

which counteract tumor-induced immunosuppression, may

raise the efficacy of immunotherapy. Several checkpoints

controlling T-cell activation are well known, and clinical

application of inhibitors has already shown remarkable

success in cancer treatment (Fig. 1c).

One costimulatory cascade essential for efficient

T-cell activation is elicited by the binding of CD80 and

CD86 on the DC to CD28 on the T cell which is

inhibited if CD80/86 binds to the inhibitory molecule

cytotoxic T-lymphocyte antigen 4 (CTLA-4) expressed

on activated T cells (Fig. 1c). The antibodies treme-

limumab and ipilimumab are directed against CTLA-4

and thereby re-activate effector T cells. Currently, ipi-

limumab is only approved as monotherapy for the

treatment for metastatic melanoma [47]. In a phase II

trial of mRCC patients, it was shown to induce a partial

response in 5 of 40 patients [48].

Another immune escape mechanism uses the PD-1

receptor. Tumor cells can express PD ligand-1 to silence

T-cell activation. A humanized anti-PD-1 antibody has

already shown promising effects in a phase I study

including mRCC patients and is currently evaluated in

further studies in mRCC [49, 50].

LAG-3 (CD223) is expressed on activated T cells and is

involved in the downregulation of antigen-induced TCR

activation, negatively regulating T-cell function and

homeostasis. As a soluble recombinant humanized form

(IMP321, sLAG-3-Ig), it activates APCs through MHC

class II signaling [51]. In a phase I mRCC trial, IMP321

induced a sustained CD8? T-cell activation and increased

the percentage of long-lived effector memory CD8? T

cells at doses above 6 mg which translated to a stable

disease in 7 out of 8 patients [52].

To achieve the maximal benefit for mRCC patients, it is

likely that immunotherapy will need to be combined with

targeted agents, currently approved for first-line therapy, or

with checkpoint blockers or immunomodulators. Bev-

acizumab, an anti-VEGF antibody, in combination with

Interferon-a, is currently the clinically most advanced and

the only approved combination with (non-specific) immu-

notherapy. Two phase III studies demonstrated an

increased OS of the combination as compared to IFN-a
alone (18.3 and 23.3 months) [53, 54].

Using checkpoint inhibitors, the PD-1 targeting antibody

BMS-936558 in combinations of sunitinib or pazopanib

plus anti-PD-1 is evaluated in a phase I study still

recruiting patients [55].

A rather unexpected property of TKIs is their immu-

nomodulatory effect. As an example, sunitinib does not

only inhibit angiogenesis and cell proliferation in mRCC,

but also decreases the number of Tregs and MDSCs while

maintaining DC function [15–17]. One of the advantages in

specific vaccination or immunotherapy is that these treat-

ments are characterized by low to minimal side effects

which makes it easy to combine these together without an

exponential increase in side effects.

Due to the immunomodulatory effect, the combination

with sunitinib is a most challenging approach if compared

to other TKI. AGS-003 is a RNA-loaded dendritic cell-

based vaccine demonstrating a PFS of 11.9 months in a

phase II if combined with sunitinib. Immune monitoring of

AGS-003-treated patients showed an expansion of tumor

antigen-reactive CD28? cytotoxic T lymphocytes and a

decrease in Tregs [56]. For the multipeptide vaccine

IMA901, a large phase III trial has finished the recruitment

of 340 patients who were randomized in a 3:2 fashion to

IMA901 plus sunitinib versus sunitinib alone in first-line

advanced RCC patients. Based on the previous phases I/II,

Cy and GM-CSGF were additionally applied as immuno-

modulators with IMA901. First results are expected in

2014 [57].

Summary and future perspective

The evolution of immunotherapy in RCC has followed a

general refinement from rather non-specific approaches

such as cytokine treatment or tumor cell lysates to the use

of well-defined and selected T-cell targets. Although

promising clinical results have been achieved with peptide-

based vaccination, both clinical benefit and accessibility

for all patients, irrespective of their HLA allele combina-

tion, need to be further improved. Furthermore, therapy is

limited due to the lack of prospective phase III studies.

Peptide vaccination induces a well-defined T-cell response

which can be monitored precisely and was shown to cor-

relate with clinical benefit. The identification of TAAs

expressed with a high tumor tissue specificity, the knowl-

edge of such TAAs suitable for each individual patient, the

adequate in vivo activation of DCs and anti-tumor T cells

are major tasks for the next years.

Currently, the combination of an established first-line

therapy, which ideally not only targets angiogenesis and

cell proliferation, but also presents immunomodulatory

activities, together with a peptide vaccine cocktail

appears as a highly promising strategy in mRCC treat-

ment. In addition, specific checkpoint inhibitors like

PD-1 antibody hold the promise to boost the specific

TAA-directed T-cell response. Here, peptide vaccination

is the new kid on the block in mRCC treatment whose

complex anti-tumor power is currently only visible like

the tip of an iceberg.
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