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Abstract

Background: Finding epistatic interactions in large association studies like genome-wide association studies
(GWAS) with the nowadays-available large volume of genomic data is a challenging and largely unsolved issue.
Few previous studies could handle genome-wide data due to the intractable difficulties met in searching a
combinatorial explosive search space and statistically evaluating epistatic interactions given a limited number of
samples. Our work is a contribution to this field. We propose a novel approach combining K-Nearest Neighbors
(KNN) and Multi Dimensional Reduction (MDR) methods for detecting gene-gene interactions as a possible
alternative to existing algorithms, e especially in situations where the number of involved determinants is high.
After describing the approach, a comparison of our method (KNN-MDR) to a set of the other most performing
methods (i.e., MDR, BOOST, BHIT, MegaSNPHunter and AntEpiSeeker) is carried on to detect interactions using
simulated data as well as real genome-wide data.

Results: Experimental results on both simulated data and real genome-wide data show that KNN-MDR has
interesting properties in terms of accuracy and power, and that, in many cases, it significantly outperforms its
recent competitors.

Conclusions: The presented methodology (KNN-MDR) is valuable in the context of loci and interactions mapping
and can be seen as an interesting addition to the arsenal used in complex traits analyses.

Keywords: Gene-gene interaction, Epistasis, Single nucleotide polymorphism, Genome-wide association study,
Multi dimensional reduction, K-nearest neighbors

Background
These last years have seen the emergence of a wealth of
biological information. Technical improvements in
genotyping and sequencing technologies have facilitated
the access to the genome sequence and to massive data
on genes expression and on proteins. This large avail-
ability of molecular information has revolutionized the
research in many fields of biology. In parallel to these
technical developments, methodological advances are
needed to address the various questions of scientific
interest that have been targeted when developing these

new molecular tools. For example, the identification of
up to several millions genomic variations in many spe-
cies and the development of chips allowing for an effective
genotyping of SNPs panels in large cohorts have triggered
the need for statistical models able to associate genotypes
from individuals and interacting SNPs to phenotypic traits
such as diseases, physiological and productions traits [1].
Our paper is a contribution to this association problem.
The systematic exploration of the universe of variants

spanning the entire genome through genome-wide asso-
ciation studies (GWAS) has already allowed the identifi-
cation of hundreds of genetic variants associated to
complex diseases and traits, and provided valuable infor-
mation into their genetic architecture [1] while allowing
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to improve prediction of phenotypic outcomes [2].
Nevertheless, most variants identified so far have been
found to confer relatively small information about the
relationship between changes at the genomic locations
and phenotypes because of the lack of reproducibility of
many of these findings, or because the identified variants
most of the time explain only a small proportion of the
underlying genetic variation [3]. This observation,
quoted as the ‘missing heritability’ problem [4] of course
raises the following question: where does the unex-
plained genetic variation come from? Several authors
have postulated that many genes and mutations could be
involved, with individual small effects, resulting into a
low detection power in most of the performed studies,
but with large collective effects [5]. Another tentative ex-
planation is that genes do not work in isolation, leading
to the idea that sets of genes (“gene networks”) could
have a major effect on the tested traits while almost no
marginal effect is detectable at individual locus level.
Note also that this gene network hypothesis is a poten-
tially credible explanation to the lack of reproducibility
of obtained positive results [6], due to situations where
different mutations or mutations combinations within
the network (within the same genes or on different
genes in the networks) could lead to similar phenotypic
effects [7].
Consequently, an important question still remains

about the exact relationship between the genomic con-
figuration, including the interactions between the in-
volved genes, and the phenotypic expression. The major
idea in this respect is to try to associate observed varia-
tions at the macroscopic level (phenotype) to identified
variations and their interactions at the molecular level.
This view introduces at least two challenges. First, the

genetic mechanisms underlying most traits of interest
are complex and probably involve most of the time
many genes and many interactions between these genes,
leading to a complex relationship between genomic vari-
ants and phenotypes. So, modeling and identification of
every, and even of any, interaction is a potentially very
challenging task [8]. Second, from a more statistical
point of view, fully modeling the interactions leads to
models with large number of parameters to be estimated
and large search space, leading to the well-known ‘curse
of dimensionality’ problem [9]. Furthermore, increasing
the number of parameters to be estimated potentially
makes the power issues mentioned above even more
critical. Nevertheless, introducing interactions into the
model might lead to a more accurate model of the
underlying genetics, which in turn might improve the
detection power of effects of interest. So it is not obvious
that interaction models will present poor power when
compared to non-interaction ones, which should motiv-
ate more research on the subject.

In the literature, various statistical methods have been
used to detect gene-gene or gene-environment interac-
tions [10, 11]. Many of these statistical methods are
parametric and rely on large samples properties [12, 13].
On the other hand, nonparametric methods have gener-
ated intense interest because of their capacity to handle
high-dimensional data [14]. In order to limit the size of
the search space, many of the proposed approaches may
have missed potential interactions by only considering
variants that have a significant genetic marginal effect
as, for example, in the logistic regression method pro-
posed by [15], where the model relates one or more
independent variables (i.e., main effects for genes) and
their corresponding interaction terms (i.e., gene-gene
interaction effects) to a discrete dependent variable (e.g.,
disease status). Because of issues linked to the dimen-
sionality, models such as the logistic regression are lim-
ited in their ability to deal with interactions involving
many factors [16]. In response to these limitations, novel
methods for detecting interacting variants have been de-
signed, such as neural networks [17], random jungles
[18], random forests [19], BOOST “BOolean Operation-
based Screening and Testing” [20], support vector
machine [21], MegaSNPHunter [22], AntEpiSeeker [23]
or odds ratio [24].
One of the most successfully used family of methods

in the gene-interactions problems is multifactor dimen-
sionality reduction (MDR) [16]. The MDR method is
nonparametric (i.e., makes no hypothesis about the dis-
tribution of the statistical parameters), model-free (i.e., it
assumes no particular inheritance model), and directly
applicable to case-control and discordant-sib-pair
studies [25]. The main idea in MDR is to reduce the
dimensionality of multi-locus data to improve the ability
to detect genetic combinations that confer disease risk
[26]. MDR has been proposed to identify gene–gene or
gene-environment interactions when marker and/or
environment information is available [26]. An advantage
of the MDR methods is, as pointed out in [27], that, due
to their nature, they theoretically allow to highlight
gene–gene interactions of any order [28].
Refinements of the method have been proposed to

deal with potential limitations. Cattaert et al. [29] has
proposed a novel multifactor dimensionality reduction
method for epistasis detection in small or extended
pedigrees, FAM-MDR. Cattaert et al. [30] and [31] have
also developed Model-Based Multifactor Dimensional-
ity Reduction (MB-MDR), a MDR-based technique that
is able to unify the best of both nonparametric and
parametric worlds, allowing to include corrections for
cofactors, as in parametric models, while using the
flexible framework of non-parametric MDR analyses.
Another extension is Generalized MDR (GMDR), a ver-
sion of the MDR method that permits adjustment for
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discrete and quantitative covariates and is applicable to
both dichotomous and continuous phenotypes [32].
Although applied to numerous genetic studies [33, 34],

MDR faces important challenges. First, MDR can be
computationally intensive, especially when a large num-
ber of markers needs to be tested [26]. Second, the inter-
pretation of MDR results is difficult, for example in
situations where a strong marginal effect makes the
effects of the other polymorphisms in the interaction
questionable [31]. Third, the MDR method can fail in
finding the correct models, because it assumes that there
is no genetic heterogeneity, as in situations where a
group of cases are explained by a combination of loci
different from the one that explains another group of
cases [30]. Lastly, the number of possible combinations
explodes exponentially with the number of interacting
factors, which makes the approach impractical in terms
of needed cohorts sizes and computing time in situa-
tions where large numbers of genetic and/or environ-
mental determinants are involved, another instance of
the ‘curse of dimensionality’ problem.
In this paper, we propose a novel MDR approach using

K-Nearest Neighbors (KNN) methodology (KNN-MDR)
for detecting gene-gene interaction as a possible alterna-
tive to current MDR methods in situations where the
number of involved determinants is potentially high and
the number of tested markers is large. After explaining
the rationale of our method, we will provide results on
the comparison of KNN-MDR to a set of competitor
methods on both simulated and real datasets.

Methods
KNN method
KNN stands for “K Nearest Neighbors” and is one of the
most popular algorithms for pattern recognition and classi-
fication. Roughly, classification of an observation can be
made using a majority vote within the K nearest neighbors
of the observation [35], where the neighborhood is based
on a defined distance between observations. Although sim-
ple, many researchers have found that the KNN algorithm
accomplishes very good performance in their experiments
on different data sets [36]. Also, KNN is a multivariate
method that retains the variable relationships seen in the
data because the logical relationships among response vari-
ables will be maintained [37], a feature of importance in
our genetic context. The flexibility of KNN is also a great
advantage and this technique helps to alleviate the curse of
dimensionality by shrinking the unimportant dimensions
of the feature space, bringing more relevant neighbors
close to the target point [35].

MDR method
The method will be described for dichotomous traits for
the sake of simplicity, but could be extended to other

situations using the approach described for GMDR [32].
The Multi-Dimensional Reduction (MDR) method is
designed to replace large dimension problems with re-
duced dimension ones, allowing to make inferences
based on a smaller set of variables. In the context of
genomic studies, the idea in [26] is to replace the high
dimensional problem arising from considering several
markers simultaneously, with one unique variable (for
example, a status) that can take only 2 values (for ex-
ample, ‘high risk’ or ‘low risk’). To illustrate, if a set of N
SNP markers is used in a case-control study to define
the multi-locus genotype, 3N genotypes are possible.
Each of these genotypes can be mapped to a status with
only 2 values (case or control) using a majority vote on
the statuses of the training set individuals falling into
that genotype. The classification performances of any set
of markers used to define the genotypes can then be
assessed, typically using a cross-validation procedure,
where the performance is estimated on a test set for
each partition trough a measure involving sensitivity
and/or sensibility of the classifier, and averaged over all
partitions. For all computations reported in this paper,
we have used a 10-fold cross-validation procedure and
assessed the performances using ‘balanced accuracy’,
which is a simple average of the sensibility and the sensi-
tivity of the classifier. Repeating this procedure over all
possible markers sets allows obtaining the best model,
which is defined as the set of markers providing the best
allocation performances. In practical situations, the
potential number of tested markers sets might be huge:
if an exhaustive search is to be performed on all P-
markers interactions in a GWAS with M markers, about
M!/[P!*(M-P)!] ~MP/P! combinations would need to be
checked, a huge number with nowadays available
markers panels. Significance for the optimal model can
be obtained through a permutations test, in which the
potential links between the individuals’ genotypes and
the phenotypes are disrupted by randomly shuffling the
phenotypes. The p-values obtained using this test have
then to be corrected for multiple testing, where multiple
tests are due to the number of models that are succes-
sively tested.

KNN-MDR method
Although a widely used and well-established technique,
MDR faces several problems, as detailed above. The
computational load described in the previous section re-
mains a major issue. Although recent publications [38]
have provided some tools to achieve low order interac-
tions screening in a GWAS, the task will remain very
challenging for larger order interactions and for larger
markers sets, such as sequencing data, and alternative
approaches reducing the computer burden remain desir-
able. Another problem linked to the MDR methodology
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arises when a test set individual’s multi-locus genotype
has not been observed in the training set, making it im-
possible to classify the newcomer. Furthermore, in situa-
tions where very few training individuals share the same
multi-locus genotype as the tested one, the accuracy of
the assignment can also be questioned. Since the number
of multi-locus genotypes explodes exponentially when the
number of markers in the markers sets increases, this
problem becomes rapidly critical, and could finally render
the approach inaccurate (few individuals are used to clas-
sify) or even unusable (no individual useable to classify) in
situations where more than 3–4 markers are to be used
simultaneously and with classical cohorts’ sizes. Another
consequence of the limited number of markers that can
be considered simultaneously in MDR is that the genomic
regions involved in interactions will most of the time be
represented through a single marker, although, due to
linkage disequilibrium, considering several linked markers
might increase the association signal intensity, and conse-
quently improve the detection power.
Our proposal is therefore to slightly modify MDR to

allow facing some of the shortcomings of the method.
The only modification is in the status allocation proced-
ure: while MDR uses a majority vote among the (poten-
tially scarce or empty) set of individuals sharing the
same multilocus genotype as the tested individual, we
propose to use a majority vote within a set of the K
nearest neighbors of the tested individual. This proced-
ure has the obvious advantage to eliminate the problem
of potentially scarce or empty genotypic configurations
mentioned above. On the other hand, this strategy intro-
duces the need to define the neighborhood: a “distance”
between individuals based on the genotypic configura-
tions at the selected markers will be needed, and the size
K of the neighborhood will have to be provided. These
parameters of the method - the chosen distance, K - are
further discussed in the Discussion section. A second
advantage of our approach is that more markers can be
considered at once than in the classical MDR strategy.
The idea, also detailed in the Discussion section, is thus
to replace the sets of single markers used in MDR by
sets of windows spanning several markers: the M
markers are split into W windows of contiguous
markers, where the choice of the windows sizes and posi-
tions could use genetic criteria explained in the Discussion
section, and the distances used in KNN-MDR are based
on these windows. All the other steps are similar to the
classical MDR steps (partitioning for the cross-validation,
performance and significance assessments, best model se-
lection). Note that the number of windows W might be
much smaller than the number of markers M, as explained
below. Consequently, the proposed approach might greatly
reduce the needed amount of computations, and conse-
quently make higher-order interactions more affordable.

Although alternatives are possible, we have used Mahalano-
bis distances in our analyses because of its numerous ad-
vantages in our setting (see the Discussion).
Note that, in KNN-MDR, the computer burden scales

quadratically with the number of individuals since the
distances between pairs of individuals are needed, but is
less sensitive to the number of markers since markers
are pooled into windows. So, the important parameter
from a computing point of view is the number of win-
dows W, which does not necessarily increase when the
number of markers increases.

Competitor methods
After designing our method, we needed to compare the
performances of our approach to some of the other pro-
posed algorithms. Since many methods are available [2],
we decided to consider four of the most popular ones to
be used in the comparison, namely: MDR, BOOST,
MegaSNPHunter and AntEpiSeeker. The rationale for
choosing this set of methods is the following:

� AntEpiSeeker [23] and BOOST [20] have been
recommended as efficient and effective methods in
the comparative analysis of [39],

� MDR [26] is one of the most famous methodologies
for detecting interactions [2],

� MegaSNPHunter [22] is targeting high level
interactions, one of the potential advantage of
KNN-MDR. Also, a method for exploiting large
genotypes sets is provided, which is another
objective of our algorithm,

� All these methods have been applied successfully to
real datasets,

� These methods have different search strategies:
exhaustive search (MDR, BOOST), stochastic search
(MegaSNPHunter) and heuristic search
(AntEpiSeeker),

� Software implementing the methods is available.

Simulation
In order to assess the performances of the proposed
method, we have simulated various situations and ran
MDR, BOOST, MegaSNPHunter, AntEpiSeeker and
KNN-MDR on the same datasets to compare the perfor-
mances in terms of detection power and accuracy. The
generation of the simulation datasets will be described
in the following lines.
One of the aims of our study was to assess the

performance of the methods to unravel gene-gene or
gene-environment interactions in the absence of large
marginal effects. The reason for that choice was that
many methods are able to detect such large marginal ef-
fects and to infer interactions within a limited set of loci
selected on that basis. Accordingly, we wanted to devise

Abo Alchamlat and Farnir BMC Bioinformatics  (2017) 18:184 Page 4 of 12



an approach that is able to detect interactions even in
the absence of marginal effects. For that reason, efforts
have been devoted to generate datasets with interacting
genes in the absence of significant marginal effects.
Furthermore, heterogeneity between samples has been
shown to be a major source for the non-reproducibility
of significant signals [40]. We have modeled hetero-
geneity by associating penetrances to the multi-locus
genotypes underlying the simulated binary trait. The
data generation algorithm proceeds along the following
lines:

(1)To obtain a linkage disequilibrium (LD) pattern
similar to patterns that can be observed in humans,
SNPs spanning the human chromosome 9 (HSA9)
have been obtained from a study on Crohn disease
in Caucasians [41] for 197 individuals. Two
thousand markers with minor allele frequencies
(MAF) above 0.3, and no missing genotype have
been selected. Hardy-Weinberg equilibrium tests
have been performed on the genotypes for these
markers, and the high MAF threshold has been
chosen to select informative markers among the
complete list of markers, to compensate for the
information loss resulting from discarding the other
available markers to decrease the computational
load. Nevertheless, since experimental data has been
used, genotyping errors might be present. Presence
of LD in the data was checked using simple
association tests between consecutive markers
(data not shown).

(2)Since many different individuals are needed in the
simulations, we used a trick similar to [42] to
generate new individuals based on the few available
genotypes: each individual genotype was chopped
into 10 SNP windows, leading to 200 windows with
(maximum) 197 different 10 loci genotypes. Each
simulated individual genotype was then built by
randomly sampling a genotype for each window and
concatenating the 200 genotypes into a new
complete genotype with 2000 markers. This
technique allows for 197200 potentially different
individuals while conserving some LD.

(3)G SNP were then randomly chosen as having an
effect on the simulated phenotype, where G = 2, 3,
4 or 5. Since SNP selection is random, SNP might
be linked or not.

(4)Selected SNP genotypes were then used to generate
the binary phenotypes. More details of the algorithm
are given in an appendix (see Additional file 1), but
roughly:
a. A penetrance is computed for each multi-locus

(G SNP) genotype in such a way that each of the
G SNP shows no marginal effect:

P A j Gi ¼ 0ð Þ ¼ P A j Gi ¼ 1ð Þ ¼ P A j Gi ¼ 2ð Þ ¼ P

where Gi denotes the genotype for locus i (i = 1,
2, …, G), 0, 1, 2 are the number of instances of the
minor allele in the SNP genotype, A means
Affected, P(A | Gi) is the penetrance for genotype
Gi, and P is the prevalence of the disease in the
sample (since we used a more or less balanced
case-control design, we used a prevalence of P = 0.5).

b. The multi-locus penetrances MP = P(A | G1 = k,
G2 =m, …) where k, m, … = 0, 1 or 2 are obtained
to meet the requirement of no marginal effect
(see previous step). An algorithm to compute
these penetrances is provided in an appendix
(Additional file 1).

c. The phenotypes (i.e., affected or non-affected
status) are then obtained by randomly sampling
a uniform distribution between 0 and 1 and
comparing the obtained deviate d to the multi-locus
penetrance MP: if d < (>) MP, the individual is
(not) affected.

(5)One SNP out of 2 consecutive SNPs was then
randomly discarded, leaving 1000 markers for the
analyses. The rationale of this selection is that
causative mutations might nowadays be present or
not in the genotyped variants. This will also be the
case in our simulations.

(6)Genotypes and corresponding phenotypes were
generated for each simulation, and the obtained datasets
were studied using all four methods. KNN-MDR
windows size was set to 10 markers, leading to 100
non-overlapping windows, and K value was set to 10.
The parameters for the other methods were chosen so
that resolution was almost similar for all methods.

(7)Finally, 100 permutations of the phenotypes were
performed for each simulation (unless otherwise
stated) and the resulting datasets were analyzed
using the four methods in order to assess
significance. Although this number of permutations
is too low for routine work, it was used to reduce
the computing burden and help us to discriminate
between results clearly non-significant (i.e., p > 0.05)
and those potentially significant (i.e., p < 0.05). When
a higher precision was needed for the p-values (see
below), an adaptative permutations scheme was
used, in which windows not reaching a pre-determined
p-value threshold are progressively abandoned in the
permutations scheme since these windows are very
unlikely to finally reach a significant result [43].

Real data
Analyses using real data have also been performed.
Rheumatoid arthritis (RA) genotype data on 1999 cases
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and 1504 controls have been obtained from WTCCC
[44]. Genotypes from the Affymetrix GeneChip 500 K
Mapping Array Set have been filtered using the usual
quality controls tests on DNA quality (percentage of ge-
notyped marker for any given individual above 90%),
markers quality (percentage of genotyped individuals for
any given marker above 90%), genotypes frequencies
(markers with a p-value below a Bonferroni adjusted 5%
threshold under the hypothesis of Hardy-Weinberg equi-
librium in the controls cohort have been discarded).
Missing genotypes for the GeneChip markers have been
imputed using impute2 software [45]. This procedure
led to 312583 SNP to be analyzed for the 2 cohorts.
Zhang et al. [46] and [47] also used this dataset to infer
potential interactions. These studies will therefore serve as
a comparison for the results obtained with our approach.

Working on large datasets
When working on large sets of markers, such as for ex-
ample those commonly met in GWAS analyses, splitting
the complete set into a reasonable set of windows could
necessitate including large numbers of markers in each
window, which would eventually swamp the signals of
interest, as explained in the Discussion section. An alter-
native is to pre-select a subset of markers (for example,
taking one marker every N markers) and to define a first
set of windows based on these markers. This strategy
would allow windows to cover potentially large regions
while preserving some detection power. After a first run
of KNN-MDR using this subset, the detected regions
(i.e., those departing significantly from the distribution
of the results, assuming that most combinations do not
have an effect on the studied trait, and that this distribu-
tion accordingly corresponds to the distribution of the
used measure under the null hypothesis) would be used
for a second round of KNN-MDR runs. In this new
round, the markers hidden in the first round could be
partially or totally recovered for each of the identified re-
gions, and the same approach as in the first round could
be used recursively on these new regions. The sequential
detection of progressively denser regions could continue
down to single markers. An example of this strategy in a
GWAS study is provided in the of “Results on WTCCC
data” section.

Results
Results on simulated data
Since performing classical MDR analyses on a large
number of markers is not an obvious task, especially
when the number of putative involved SNPs (noted G) is
3 or more, we restricted our analyses to G = 2 and G = 3
to make comparisons to other methods feasible. We
have defined the “power” as the proportion of simula-
tions where an association signal was detected (p < 0.05),

and the “corrected power” as the proportion of simula-
tions where the association was detected and involved
the causal SNP (i.e., a rough measure of accuracy). The
comparison of the five tested methods is presented for
situations where G = 2 in Table 1 and for G = 3 in
Table 2 (data sets used to generate these 2 tables are
provided as Additional files 2 and 3 and more details
on the comparisons of the methods results are provided
in Additional file 4).
As can be seen from Tables 1 and 2, KNN-MDR seems

to show reasonable power when compared to its com-
petitors. More importantly, corrected power of the
method is significantly better than for the other tested
methods (after 100 simulations, p = 0.0143 when com-
paring KNN-MDR to its closest competitor for G = 2
and p = 7.23e-7 for G = 3).
A short literature survey [2, 48–50] leads to the con-

clusions that many of the methods seem to be marred
by high false positive rates. To test that, we have simu-
lated situations where no SNP was involved in the gen-
eration of the phenotypes, so that SNP detection by the
algorithms would correspond to false positives. Table 3
shows the results of these simulations.
We ran another set of simulations to assess the

respective effects of the sizes of the windows and of the
number K of neighbors on the (corrected) detection
power. Results of these simulations are reported in
Table 4.

Results on WTCCC data
Since working on such a large dataset (>300 k SNP) is
very demanding in terms of computing time, we pro-
ceeded as follows:

1- 20 k SNP were first extracted from the data.
Although several selection procedures could be
applied, we simply selected 1 SNP every 15 SNP.

2- We divided the data into 200 windows of 100
SNP each.

3- We then tested each of the 19900 possible pairs of
windows (sets of 200 SNP) using KNN-MDR.

4- We extracted the 83 sets for which the p-values
were lower than 2.5e-6 (a threshold obtained after
Bonferroni correction at level 0.05). To reach that
significance level using a permutations procedure,
we used the following adaptative scheme: after 100
permutations performed on the 19900 possible pairs
of windows, only those reaching the 0.05 level were
considered for the next round of permutations,
assuming that those not reaching that level of
significance were very unlikely to reach the desired
significance at the end of the process. This left us
with 2319 combinations. In the next round, 900
more permutations were performed, and only the
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combinations reaching the 0.005 level were kept
(i.e., 1207 combinations). Repeating this procedure
for 1.0e4, 1.0e5, 1.0e6 and 2.0e6 permutations, and
respective thresholds equal to 5.0e-4, 5.0e-5, 5.0e-6
and 2.5e-6, we ended up with the 83 sets cited
above.

5- The SNP hidden in step 1 were then recovered,
leading to 83 sets of 3000 SNP (i.e., 200*15).

6- KNN-MDR was applied on every set from step 5:
the sets were divided into 30 windows of 100 SNP
and all 435 combinations of windows pairs in each
set were considered by KNN-MDR.

7- We kept the 241 sets of 200 SNP with a
p-value < 1.15e-4 (Bonferroni correction at level 0.05).

8- MDR was then used for the sets from the previous
step, leading to examine 19900 SNP-SNP interactions
for each set.

9- The interactions with a p-value < 2.51e-6 (Bonferroni
correction at level 0.05) were then considered as
significant.

Results from this analysis are presented in Table 5.
The full version of Table 5 is provided in a supplemen-
tary file. Figure 1 provides a view of the significant re-
sults at the chromosome level for our study as well as
for 2 other similar studies on this dataset ([46] and [47]).

Discussion
This paper has introduced a new MDR approach to find
markers interactions in genomic scans. It could also be
used for other attributes than markers, such as environ-
mental factors, leading to a gene-environment inter-
action search method. Due to the proposed strategy
relying on the MDR approach, and in parallel with a re-
cent study [42] using (“simple”) MDR as a reference
strategy, we have compared our proposed method’s per-
formances to this reference and other reference methods
(MegaSNPHunter, AntEpiSeeker, BOOST), and tried to
show that our method could have benefits compared to

these methods. Of course, other algorithms might have
been tested, such as the recent Bayesian High-order
Interaction Toolkit [51] which is proposing a MCMC
approach to scan the very large search space of potential
sets of markers (incidentally, this algorithm has also
been tested on a smaller set of simulations, and its
power has been found significantly lower than KNN-
MDR on this dataset). Our point in this respect was not
to be exhaustive, but simply to show that the approach
we propose can bring some more information than other
popular methods, and might be a useful addition to
the arsenal developed to tackle genomic interaction
problems.
The results obtained through the simulations demon-

strate some of the features that potentially make KNN-
MDR helpful. More specifically, the simulations show
the feasibility of scans using large number of markers, as
opposed to MDR where the computer burden explodes
with the number of markers (when it simply increases
linearly with KNN-MDR). This might allow to highlight
interactions between markers far apart on the genomic
map (trans-interactions), while some strategies proposed
to restrict the scans to close-by markers (cis-interactions)
to reduce the amount of computations.
We now discuss some of the features of the method:

Number of interacting loci
In this paper, although the algorithm given in the appen-
dix can be used for G larger than 3, only 3 markers have
been used to generate the phenotypes. Nevertheless, in
practical applications, it is not unlikely that situations in-
volving more than 3 loci might exist. These situations
might increase the interest of using methods such as
KNN-MDR. Indeed, when more regions are involved in
the phenotype, this could decrease the distance measure
between individuals sharing some or all of these regions
and better cluster individuals sharing the same status.
Conversely, in MDR, discovering such complex patterns
would likely necessitate to increase the number of loci

Table 1 Simulation results when G = 2 and the number of cases and controls is 500

Method MDR AntEpiSeeker BOOST MegaSNPHunter KNN-MDR

Power 0.68 0.88 0.76 0.84 0.81

Corrected power 0.56 0.39 0.48 0.20 0.71

Table 2 Simulation results when G = 3 and the number of cases and controls is 500

Method MDR AntEpiSeeker BOOST MegaSNPHunter KNN-MDR

Power N/A 0.65 0.67 0.80 0.74

Corrected power N/A 0.15 0.28 0.12 0.63

Tables 1 and 2 shows the results of 100 simulations. For KNN-MDR, the number of neighbors is set to 10, and the 1000 markers are split into 100 windows of 10
consecutive markers. All possible sets of up to 2 windows for Table 1 (5050 sets) and up to 3 windows for Table 2 (166750 sets) have been tested. Parameters for
the other methods were set to default values. Due to the very large number of tests required when 3 markers are involved, MDR results have not been obtained
in Table 2. Data sets used to generate these 2 tables are provided as Additional files 2 and 3
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scanned simultaneously, which would make computa-
tions even more difficult. Also, increasing the number of
loci increases the number of cells with no (or very few)
observations, making status allocation potentially in-
accurate or even impossible.

Parameter settings
We mentioned earlier that parameters setting in KNN-
MDR mainly involves defining the sizes, positions and
the number of windows, the number K of neighbors and
the distance measure. All parameters are problem
dependent, making it difficult to devise general rules.
Nevertheless, some guidelines might be given.
In all the analyses performed in this study, we have

only used Mahalanobis distances, as already mentioned.
The reason was that this distance allows to take into ac-
count potential correlations between attributes (typically,
linkage disequilibrium between close markers) and be-
cause it makes it possible to weight the attributes in the
sum (for example to take into account that similarity for
rare alleles is more informative that on frequent ones).
In our studies, only SNPs have been used, for which the
distance proposed in the Mahalanobis measure makes
sense, with D(AA, AB) = D(AB, BB) = 0.5* D(AA, BB),
where AA, AB and BB are the three possible SNP geno-
types. This might be different and might need more
investigations if other types of genetic variants are used.
Note also that, in most computations, to reduce the
computational burden, the correlation between neigh-
boring markers has not been estimated but set to 0 (i.e.,
we used the normalized Euclidean distance), which
might potentially affect the power. Although we did not

explicitly test this, we expect that including the correla-
tions would lead to better take into account the linkage
disequilibrium, which should have a positive effect on
the detection power. So, using this information might be
favorable in terms of power, but at the cost of an in-
crease in the computation time. Note also that using this
kind of distance makes less sense when working with
markers with more than 2 alleles, unless it can be postu-
lated that the distance between, for example, alleles 1
and 3 is roughly twice the distance between alleles 1 and
2. An easy to compute and similar distance measure
would then be to square the number of differing alleles
(0, 1 or 2) between two compared genotypes, to
normalize as for the Mahalanobis distance, to sum over
all markers in the window and to take the square root of
the product. This “binary” distance is implemented in
our KNN-MDR software.
For the windows dimensions, our idea is to use the as-

sumption that individuals sharing mutations responsible
for the trait should look more similar in the surroundings
of these mutations than those not sharing these muta-
tions. The resemblance should thus extend to neighboring
markers, where the neighborhood size is a function of the
linkage disequilibrium (LD) in the region. In situations
where LD increases (due to the studied population and/or
the markers density), distance between individuals sharing
genomic regions (including the causal regions) should
decrease and detection power should increase. Note that
this genomic feature is ignored in the other tested
methods. Accordingly, the windows sizes W should ideally
be defined to capture the local linkage disequilibrium.
Since the measurable LD is dependent on the population
history and on the markers density, assessment of this
measure should first be made in order to have reference
dimensions for the various windows to be used in KNN.
Note that the extent of LD need not be the same across
the whole genome: accordingly, the size of the windows
might be varied along the genome to better reflect the
underlying structure and better capture the relevant
information.
To illustrate that expected behavior, we have per-

formed the simulations leading to Table 4. As visible
from that table, the powers decrease when the windows
sizes increase. Our interpretation of this result is that,
due to the way the simulated data are generated, chunks
of five linked (i.e., showing some LD) markers are used,
which should restrict the signal caused by LD to five
markers. Adding more markers to the windows adds
noise, and consequently reduces the resemblance

Table 3 Simulation results when G = 0 and the number of cases and controls is 500

Method MDR AntEpiSeeker BOOST MegaSNPHunter KNN-MDR

Power (p-value <0.05) 0.18 0.45 0.19 0.38 0.07

The detection threshold α is set to 0.05. The data set used to generate this table is provided as Additional file 5

Table 4 Power (above) and corrected power (below) when the
parameters K (number of markers) and W (windows size) are varied
in 100 simulations with 500 cases and 500 controls and G = 2

W=

5 10 15 20

K= 5 71 68 62 52

65 62 51 38

10 70 66 64 56

60 53 51 43

15 71 65 59 58

59 49 47 44

20 69 60 56 53

67 55 52 45

The data set used to generate this table is provided as Additional file 6
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between the composite pieces of chromosomes harboring
the causative mutations, and thus the power.
Next, the number K of neighbors should somehow re-

flect the number of animals sharing regions harboring
causal mutations. This number is of course unknown
and difficult to evaluate a priori because it is dependent
on various population and trait parameters such as the
history of the population or the genetic heterogeneity of
the trait. Furthermore, it might vary from region to re-
gion, making it difficult to devise general rules allowing
to infer relevant values of K. Possible “brute force” ap-
proaches would be to rerun the algorithm with varying
number of neighbors (grid search) or to use bootstrap
methods [52]. This strategy could allow to capture re-
gions of interest while integrating potential sources of
variations, at the cost of supplementary computer bur-
den. Another point of view is that the corrected powers
do not significantly (at the 5% level) disagree between

the various K values for the tested windows sizes, which
indicates that the results might not be very sensitive to
this parameter, at least in our simulations. For this rea-
son, we used K = 5 or K = 10 in our computations. Note
also that odd K values might facilitate the majority vote.

False positive rates
Our simulations have shown that, as reported in other
studies, results are often penalized by high false positive
rates (Table 3). One obvious reason is multiple testing: the
large number of performed tests necessitates that the
significance threshold be properly adapted, which is not
always easy to do. Another reason in our study is the way
we have performed the simulations. Indeed, we have man-
aged to have epistatic interactions with little marginal
effects in order to avoid the easier situations where indi-
vidual loci can be identified in a first step, followed by the
identification of interactions between these loci identified
first in a second step. To obtain these situations, we have
used multi-locus prevalences, which has led to some kind
of genetic heterogeneity: a same multi-locus genotype
could simultaneously be present in cases and in controls,
making it harder to identify these loci. These complicating
factors have been associated to higher false positive rates
in other studies, along with other design factors such as
the number of cross-validation subsets [30, 49, 53]. Our
model might be less sensitive to these factors: looking for
neighbors might allow selecting the individuals sharing the
relevant features in a heterogeneous set of individuals.
Also, decreasing the number of tests (in comparison to
MDR, for example), might also lead to somehow relaxing
the penalty arising from multiple testing.

Power and corrected power
The reason for the drop in the power of the alternative
methods when considering the accuracy is not com-
pletely clear, but we can suggest a tentative explanation.

Table 5 The 10 most significant results of the analysis on the RA dataset from WTCCC

SNP Position Testing balanced accuracy P-value

rs10979420, rs778980 9:108634242, 19:5863725 0.89 2.51*10-6

rs10979420, rs778982 9:108634242, 19:5866574 0.89 2.51*10-6

rs6781338, rs778982 3:180060018, 19:5866574 0.89 2.51*10-6

rs778980, rs17325560 19:5863725, 20:2614933 0.89 2.51*10-6

rs4979291, rs10979420 9:107732763, 9:108634242 0.89 2.51*10-6

rs561259, rs10979420 2:79014325, 9:108634242 0.89 2.51*10-6

rs1862333, rs17325560 5:181066946, 20:2614933 0.89 2.51*10-6

rs1862333, rs485409 5:181066946,18:28918712 0.89 2.51*10-6

rs571307, rs578044 13:29942173,18:28918696 0.89 2.51*10-6

rs1169565, rs571307 2:71196518, 13:29942173 0.88 2.51*10-6

The first two columns provide the names and chromosomal positions of the SNP found to be associated to the phenotype. Positions are indicated by the
chromosome and the SNP physical position on the chromosome using the NCBI human build 35. The third column contains the corresponding balanced
accuracies and the last column reports the P-values computed using an adaptative permutation scheme. The complete table is provided as Additional file 7

Fig. 1 Comparison of the inter-chromosomal interactions detected
on the RA dataset by KNN-MDR and other interaction methods
using this same dataset as example (Shchetynsky et al. [47];
Zhang et al. [46])
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As can be seen from Table 3, all methods show high
rates of false positive results, while KNN-MDR seems to
behave reasonably well from that point of view. Al-
though this is no definite proof, this is an indication that
the high power observed in the simulations for the alter-
native methods is probably due to false positive results.
Correcting for the accuracy (using “corrected power”)
therefore eliminates most of these false positive results,
so drastically reducing the observed power.
A potential criticism on our “accuracy measure” is that

using windows sets makes it more likely to cover the culprit
regions, and so this “accuracy” measure is biased in favor of
KNN-MDR. For that reason, and to make the comparison
fair between the methods, we have chosen the parameters
to end up with similar number of markers in the finally se-
lected markers sets in each approach. Note nevertheless
that the resolution of KNN-MDR could eventually be
increased in these analyses, for example using the strategy
described for large datasets in the Methods section.
Figure 1 shows that no combination at the chromo-

some level is consistent across our study and two other
similar studies on the same dataset ([46] and [47]) while
other significant results are specific to one or two
methods. Some results from KNN-MDR are consistent
with those obtained by Shchetynsky, others are consistent
with those of Zhang while no corresponding results be-
tween Zhang and Shchetynsky studies could be found.
Power and false positive issues might potentially explain
these discrepancies, although no definite proof can be put
forward based on these preliminary analyses.
So, in our study as in the other ones, statistically sig-

nificant SNP interactions have been identified using
KNN-MDR and MDR in a genome-wide association
study. Their biological relevance is obviously not clear at
this stage and needs more investigations in the future.
We can nevertheless say that some of our results are
consistent with other results in the domain of Rheuma-
toid Arthritis ([20, 46, 54]) and that, in addition, new
candidates contributing to the etiology of this disease
have potentially been identified. This result shows that,
as suggested in the simulations, differences in the
approaches and potential differences in the respective
powers of the used methods might lead to new insights
in the etiology of the disease. This observation should
trigger more research on the use of composite methods,
combining the qualities of several approaches.

Computer resources
In our results, the comparisons between (MegaSNPHunter,
AntEpiSeeker, BOOST, MDR) and KNN-MDR in terms of
computer resources has not been fully addressed. Never-
theless, it has been shown how and why KNN-MDR
decreases the computer load with respect to MDR, making
it a potential candidate to analyze large datasets, as shown

for the RA data. To be fair, it should be mentioned that
computing nearest neighbors is more computer intensive
than a majority vote in the subset sharing the same multi-
locus genotype. Nevertheless, as shown in the simulations,
and as can be understood from the previous discussion,
computations remain more affordable in KNN-MDR than
in MDR and the other methods for similar scans. Further-
more, strategies could also be devised to make KNN-MDR
efficient, such as pre-computing distances for windows and
using distance additivity properties to compute distance
over several windows.
Another point that might be worth adding is that, al-

though KNN is natively a classification method, we have
used it here in a detection context. KNN-MDR could
nevertheless as well be used as a classification tool: to that
end, the best model (i.e., the best set of markers) could be
used to compute the neighborhood of a new individual
and classify the latter in one or the other category.

Conclusions
In summary, KNN-MDR is an alternative to existing
methods for detecting epistatic interactions, with interest-
ing features. Among these, we have demonstrated that
KNN-MDR is more computationally efficient than other
exhaustive strategies, facilitating the analysis of large-scale
data sets with potentially genome-wide SNPs. The method
is also capable to detect high-order interactions and to take
into account linkage disequilibrium (LD). Another advan-
tage is that it is able to detect interactions between SNPs
even in the absence of marginal effects. Also, the method is
non-parametric: no prior distribution is assumed, unlike
many parametric-statistical methods. Nevertheless, pa-
rameters (distances, number of neighbors, windows defin-
ition) are available to allow some flexibility in the search
strategies, which could help to render the method useful
in other classification contexts.
Although KNN-MDR is potentially beneficial for epistasis

detection, several aspects would nevertheless deserve more
investigations. For example, the burden associated to the
computation of the K nearest neighbors could become an
issue when the dataset is very large. Since the load increases
quadratically with the number of individuals, and linearly
with the number of markers, improving the computational
performances of the method could necessitate some code
optimization to make the program more efficient. Another
point necessitating more work is the tuning of the parame-
ters allowing an optimal detection power. This includes the
optimal sizes of the windows - which should be dependent
on the studied population, the markers density, the LD
pattern, the optimal size of the neighborhoods to be
considered, the pre-selection of markers in the early phase
of large dataset analyses, the distance measure or the
adaptative selection scheme for the selection of markers in
large studies, among others.
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