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Abstract

Background: A recent large-scale analysis of Gene Expression Omnibus (GEO) data found frequent evidence for
spatial defects in a substantial fraction of Affymetrix microarrays in the GEO. Nevertheless, in contrast to quality
assessment, artefact detection is not widely used in standard gene expression analysis pipelines. Furthermore,
although approaches have been proposed to detect diverse types of spatial noise on arrays, the correction of these
artefacts is mostly left to either summarization methods or the corresponding arrays are completely discarded.

Results: We show that state-of-the-art robust summarization procedures are vulnerable to artefacts on arrays and
cannot appropriately correct for these. To address this problem, we present a simple approach to detect artefacts with
high recall and precision, which we further improve by taking into account the spatial layout of arrays. Finally, we
propose two correction methods for these artefacts that either substitute values of defective probes using probeset
information or filter corrupted probes. We show that our approach can identify and correct defective probe
measurements appropriately and outperforms existing tools.

Conclusions: While summarization is insufficient to correct for defective probes, this problem can be addressed in a
straightforward way by the methods we present for identification and correction of defective probes. As these
methods output CEL files with corrected probe values that serve as input to standard normalization and
summarization procedures, they can be easily integrated into existing microarray analysis pipelines as an additional
pre-processing step. An R package is freely available from http://www.bio.ifi.lmu.de/artefact-correction.
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Background
Hybridization-based DNA microarrays are a key tech-
nology for high-throughput quantification of expres-
sion levels for thousands of genes [1,2]. State-of-the-art
microarrays now allow the genome-wide analysis of tran-
script abundance not only for entire genes but also indi-
vidual exons, alternatively spliced transcripts and even a
large fraction of non-coding genomic regions [3,4]. Thus,
despite the increasing prevalence of alternative methods
such as RNA-seq [5], RNA microarrays remain impor-
tant for the analysis of many biological processes such as
miRNA-based regulation [6], alternative splicing patterns
across human tissues [7] or the role of alternative splicing
in stem cell differentiation [8] and cancer [9].
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Recently, Langdon et al. [10] reported that all human
Affymetrix microarrays available in the Gene Expres-
sion Omnibus (GEO) [11] contain spatial defects to some
degree. Thus, quality control for microarrays remains a
major issue. Although many methods and software tools
have been developed for quality assessment of microar-
rays [12-15], detection of spatial artefacts is not yet rou-
tinely applied. Furthermore, it is usually not clear how to
proceed once such artefacts have been detected. The two
alternatives are (1) to either completely exclude or (2) to
include the corresponding arrays for any subsequent anal-
ysis. In the first case, the correspondingmeasurements are
not available for gene expression profiling and may even
have to be repeated if they are crucial to the analysis. This
can be cost-intensive, for instance if corresponding sam-
ples have been used up. In the second case, one has to
assume that normalization and summarization methods
can correct for the measurement errors.
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The latter assumption is based on the construction
of microarrays where probes of the same probeset are
not contiguous on the array. Thus, smaller artefacts due
to uneven hybridization or other experimental problems
may only affect a subset of probes for a probeset. It is
usually assumed that summarization methods – which
combine the values for individual probes to a probeset
value, such as RMA [16] – can estimate the probeset value
correctly despite measurement errors for some probes.
In this study, we illustrate that this assumption is often

invalid by showing that even small artefacts on the array
can have a significant effect on the overall expression
values of many probesets, not only the ones affected by the
artefact. Furthermore, we introduce two simple but effec-
tive approaches for the identification of corrupted probes:
(1) a threshold-based approach and (2) an extension of this
approach that takes into account the neighborhood of a
probe i.e. spatial information of the array. We show that
the use of spatial information improves the identification
of defective probes as well as reproducibility of probe-
set intensities after summarization. Finally, two strategies
are proposed to either correct probe values using probe-
set information or filter corrupted probes, both of which
improve summarization accuracy as well as reproducibil-
ity between replicates. In this way, we can recover even
arrays with large artefacts for downstream analysis that
otherwise would have to be discarded.

Relatedwork
Although not commonly included in standard microarray
analysis pipelines, a number of methods have been previ-
ously proposed for visualization of microarray artefacts as
well as identification and/or correction of corrupted probe
measurements (see also [17] for an overview of methods
published before 2008). One of the most frequently used
approaches is Harshlight [18], which identifies and masks
local artefacts based on statistical and image processing
methods. Artefacts are grouped into three classes based
on the variation from the median array: compact defects
affecting only a few probes, diffuse defects affecting larger
areas and extended defects that are even larger and may
thus invalidate the whole array. Probes within defects can
either be excluded from the analysis or be replaced by the
median intensity across replicates.
An alternativemethod for identifying artefacts from raw

intensity values is Microarray blob remover (MBR) [19],
which operates in two steps. First, broad areas are deter-
mined in whichmore than half of the probes are above the
kth percentile of probe intensities, where k may be in the
range of 60 to 100. These candidate areas are then further
refined and probes flagged to be within artefacts are added
to the ‘outlier entries’ section in CEL files.
In addition, several other methods have been pro-

posed based on comparisons to reference arrays [20-23].

Reimers and Weinstein [20] calculate the log fold-change
of the probe value compared to the trimmed median of
reference arrays to visualize spatial artefacts but do not
aim to identify individual defective probes. Arteaga-Salas
et al. [21] use a modification of the method by Upton
and Lloyd [24] to identify areas in which the largest fold-
changes compared to the median of all arrays all originate
from the same array. Having identified arrays with defects,
they then try to correct the original values using the
values for the probe on the other arrays. A similar
approach is also pursued by Hulsman et al. [22] as part of
their normalization pipeline.
The most recent approach, caCORRECT2 [23], uses a

z-score-like statistic (h-score) to estimate whether a probe
value on a given array is consistent with the observed
distribution for all other arrays. Corrupted probes are
then flagged if they have high h-scores and are contained
in regions of high h-scores. Corrected values for these
probes are then estimated both from the other probes
in the same probeset as well as the other arrays using
singular value decomposition.

Results
Outline and experimental setup
Our analysis is structured into two parts. First, we illus-
trate that state-of-the-art robust methods for summariza-
tion of probeset values from the individual probe values
cannot appropriately correct for measurement artefacts.
Second, we present methods for the identification of
probes affected by measurement artefacts and the correc-
tion of artefacts by replacing the values of affected probes
or modifying probeset definitions.
To evaluate the performance in correcting for arte-

facts, we used 18 exon array measurements of DG75 and
DG75-10/12 B-cell lines (see Methods) for which dis-
tinctive measurement artefacts were observed in some
samples (see Figure 1 and Additional file 1: Figure S1).
These measurements included three replicates each of
total RNA, newly transcribed RNA labeled for 60 min
with 4-thiouridine [25,26] and the complementary unla-
beled pre-existing RNA (see Methods for details). As
newly transcribed and pre-existing RNA should sum up
to total RNA, these experiments provide a true biological
control for the assessment of quality problems and their
correction.
In this study, we focused mostly on the measurements

of the DG75-10/12 cells. In this case, 2 out of 3 total
RNA measurements showed substantial spatial artefacts
in the images of the arrays but the corresponding mea-
surements of newly transcribed and pre-existing RNA
were free of defects or showed only very small or weak
artefacts allowing us to use these as biological control (see
Additional file 1: Figure S1). The largest artefact affecting
a sizable amount of probes was observed in replicate 3 and
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Figure 1Measurement artefacts observed on different arrays of
our dataset: total RNA for replicates 1 (a) and 3 (b) in DG75-10/12
cells; total RNA for replicate 2 (c) in DG75-eGFP cells; newly
transcribed RNA for replicate 1 (d) in DG75-eGFP cells.

a smaller one in replicate 1. Replicate 2 was artefact-free in
total RNA, although slight defects were observed in pre-
existing and newly transcribed RNA. As we only required
the total RNA sample of replicate 2 as a control for the
other two replicates, this was not a problem.

Identification of artefacts using probe noise plots
Although the array images already gave a first clue to the
artefacts observed in our example, this was only due to
the high intensity values of the affected probes and not
all defects can be identified so easily. Thus, instead of
intensities, we visualize probe noise scores that quantify
the deviation from a control or a linear model as used e.g
by RMA. As a control, we can use e.g additional repli-
cates that are artefact-free in the relevant region or the
biological control from RNA labeling experiments (see
Methods for details). If residuals from the RMA models
are used, the probe noise plots correspond to the residual
plot proposed by Bolstad et al. [12].
Probe noise plots and residual plots for the arrays ana-

lyzed are shown in Additional file 1: Figure S2. Here, we
used as controls for total RNA either the artefact-free
replicate 2 or the normalized sum of newly transcribed
and pre-existing RNA of the corresponding sample.While
different noise scores pick up the artefacts similarly well
for the defective replicates 1 and 3, a striking observa-
tion was made for replicate 2 in the RMA residual plots.
Here, an additional stain showed up in the center of the
array, which is not observed in the original image. Most

likely, the RMA model, which is based on several repli-
cates (in this case all three total RNA measurements), was
biased by the stains on the other two arrays at this loca-
tion, thus, leading to large residuals for replicate 2. This
provides a first indication that summarization suffers from
these artefacts.

Insufficient correction by summarization
To evaluate whether the final probeset values can nev-
ertheless be estimated correctly by summarization, we
used replicate scatter plots that compare probeset levels
between the affected array and a control (see Figure 2
a,b and Additional file 1: Figure S3). Here, the same con-
trols as for the probe noise plots were used and probesets
were colored according to the fraction of probes that were
flagged as corrupted by our simple thresholding approach
on the probe noise scores (the ε-criterion, see Methods).
As expected, the deviation to the control is substantial

for probesets with all probes affected as no reasonable
estimation is possible. In contrast, if only 75% or less
(0-3 probes for most probesets) probes were affected, we
did not see a correlation between the number of defec-
tive probes and the deviation from the diagonal. Instead,
all probeset levels were affected to some degree. Strik-
ingly, the deviation for replicate 1 with the small stain
was stronger than for replicate 3 with the largest stain.
Furthermore, this deviation was most pronounced for
probesets with high expression values, which were not
even affected by the stain.
One possible explanation is that this is an effect of the

normalization – in this case quantile normalization – that
has to be performed before summarization. It might com-
pensate for the extremely high values for some of the
probes by reducing the levels of the remaining probes.
When omitting quantile normalization, the strong devia-
tion for highly expressed genes in replicate 1 is reduced
(Figure 2 c,d). Nevertheless, even without normalization,
the nonlinear behavior for both replicates in comparison
to replicate 2 is still observed.
Exon arrays also offer the possibility to summarize

probe values to meta-probesets that correspond to genes.
As there are more probes per meta-probeset the effect
of the artefacts should be smaller. Nevertheless, we still
observed a systematic shift from the diagonal in the cor-
responding replicate scatter plot, although for replicate 3
the deviation was much smaller (Additional file 1: Figure
S4). In contrast to probeset level summarization, how-
ever, omitting quantile normalization did not reduce this
deviation.

Sensitivity of summarization to noise
To systematically analyze the influence of measurement
artefacts on summarization, we performed the following
experiment using three replicates of total RNA measured
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Figure 2 Replicate scatter plots comparing total RNA for replicates 1 (a, c, e) and 3 (b, d, f) against the artefact-free replicate 2 for the
exon array measurement in DG75-10/12 cells. Subfigures a and b show the results using both RMA and quantile normalization, c and d using
only RMA without quantile normalization and E and F after probe correction. Probesets are colored according to the percentage of their probes that
are flagged as corrupted according to the ε-criterion based on the noise scores calculated using newly transcribed and pre-existing RNA as control.
For replicate 1 there is a bias even for the uncorrupted probesets (a) that can be reduced by omitting quantile normalization (c). If probe correction
is applied prior to normalization and summarization (e,f), this bias is removed. Here, the results are shown for the correction method which replaces
the probe value by the mean of the unaffected probes in the same probe set. In this case, the intensity of probesets for which all probes are
corrupted are set to zero. Results for the filtering approach in which affected probes are removed from the probeset definition are very similar.
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with exon arrays for theDG75-eGFP cell lines. Thesemea-
surements were basically artefact-free with only a very
small stain in one replicate, which could be easily cor-
rected using our ε-criterion (Additional file 1: Figure S5).
Here, only 6380 probes (out of >5.5 million features on
the array) were identified as corrupted and 6335 probesets
had 1 corrupted probe, 21 had 2 and only one had 3. This is
a much smaller number than observed for the substantial
artefacts on the DG75-1012 arrays.
We then introduced artificial measurement artefacts

into the corrected DG75-eGFP arrays (spiking, see
Methods). Depending on a noise level δ, probes to be
spiked were chosen randomly with probability δ and their
intensity values were drawn randomly from a log-normal
distribution (with parameters μ = log2(850) and σ = 1).
Mean intensity values were taken from corrupted probes
identified by the ε-criterion on the DG75-10/12 total
RNA measurements (mean intensity values ∼850) to pro-
vide a realistic level of noise. Spiking was performed for
only one of the arrays and the remaining arrays were used
as control. After spiking the raw values on the array, we
performed summarization and normalization. To assess
the effect on the resulting probeset levels, we evaluated
the average log2 fold-changes in probeset levels between
each pair of spiked array and unspiked control for noise
levels in the range of 0.01 to 0.1. For each noise level,
random spiking was repeated 100 times.
Comparing the log2 fold-change against the number of

spiked probes for each probeset (Figure 3), we found a very
clear trend: if only one probe is affected, the median fold-
change is slightly higher than for probesets not affected
by spiking. However, if more than one probe is spiked, the
fold-changes increase substantially. Thus, variance of the
probeset levels are increased considerably even if only few
probes are affected. This larger variance can lead to low
or no statistical significance for differentially expressed
genes and as a consequence reduce the sensitivity of gene
expression profiling.

Identification and correction of corrupted probes
To address the problem of measurement artefacts for
summarization, we propose a two-step approach in which
we first identify corrupted probes and then correct for
these corrupted probes in one of two ways. The first cor-
rection method consists in replacing the probe value by
the mean of the remaining unaffected probes for the given
probeset. The second alternative consists in removing the
probe from the analysis, for instance by re-defining probe-
set definitions to exclude the affected probes. As several
analysis tools including the Affy Power Tools (APT) suite
cannot handle missing values appropriately and even the
de facto standard of present and absent flags is often
ignored by downstream tools, the first method is more
robust than the second.

To identify the corrupted probes we use a simple thresh-
old criterion based on probe noise scores calculated either
from fold-changes to a control or RMA-derived residu-
als. Here, we developed two approaches that calculate the
probe noise score either for each probe alone (ε-criterion)
or as a distance-weighted mean of the noise scores within
a 2D-window around the probe (ε-criterion) (seeMethods
for details). The latter approach is based on the obser-
vation that measurement artefacts, e.g. due to uneven
hybridization, usually affect several closely located probes
and not only individual probes. Probes with a noise score
above a certain threshold are then flagged as corrupted.
To correct the DG75-10/12 measurements and to eval-

uate the performance of correction appropriately, we pur-
sued the following procedure to avoid overfitting. If we
compared the corrected and summarized probeset values
between replicates (Figure 2 e-f ), detection of corrupted
probes was based on the ratio of total RNA to the normal-
ized sum of newly transcribed and pre-existing RNA and
vice versa (Additional file 1: Figure S6).
These results show a significant improvement after

probe value correction. Both with and without quan-
tile normalization, the distinctive deviation for large
expression values seen before in replicate 1 is no longer

Figure 3 Boxplot of the log2 fold changes for probesets with 0,
1, 2, 3 or 4 spiked probes in the simulation in which 5% of all
probes were spiked in total (δ = 0.05). Here, probesets with the
same number of spiked probes were pooled across all simulation
results. For the case of 0 spiked probes, probesets were selected
randomly from the pooled set as there were too many probesets for
loading into R. In this case, each probeset was selected with a
probability of 0.01. We observe a very strong correlation between the
number of affected probes and fold-change biases on probeset level,
which may seriously harm downstream analyses.
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observed. Instead, for both defective replicates 1 and
3, variance is symmetrical on both sides of the diago-
nal. This was true both for the correction using mean
values of unaffected probes of the same probeset (Figure 2
e-f, Additional file 1: Figure S6) as well as for the filter-
ing approach in which the affected probes were removed
from the probeset definition (not shown). Here, the mean
absolute deviation from the diagonal decreased from 12.2
in the original data to 7.34 and 4.7 for the first and second
correction method, respectively. Thus, even the simple
ε-criterion could successfully identify the defective probes
and probeset values could be corrected appropriately,
with slightly better results obtained by removing affected
probes instead of using values from unaffected probes.

Accuracy of artefact identification approaches
To perform a systematic analysis of the performance in
detecting measurement artefacts, we used Gene ST array
measurements of the same samples that were measured
with the exon arrays. The Gene ST measurements were
free of artefacts and have been published recently [27].
Artifical stains were spiked into these artefact-free Gene
ST measurements by projecting the artefact observed in
total RNA of replicate 3 for the DG75-10/12 cells from the
exon arrays to one sample of total RNA measured with
gene arrays as described in the Methods section (Figure 4
a). We used the pattern of the stain on a real-life example
instead of random selection or some other spatial pat-
tern to perform a realistic simulation of noise and fair
comparison of the approaches.

Comparedmethods
We compared the ε-criterion and window-criterion using
probe noise scores based on

1. fold-changes between replicates, calculated from all 3
replicates of total RNA for the DG75-eGFP cells
including the spiked replicate.

2. fold-changes between total RNA and normalized
sum of newly transcribed and pre-existing RNA
corresponding to the spiked replicate.

3. RMA residuals calculated based on all 18 replicates
using the affyPLM library.

These approaches were additionally compared against
Harshlight [18] and MBR [19], which were applied to the
6 array measurements of total RNA. Harshlight does not
provide noise scores per se but relies on downstream algo-
rithms to decide on affected probes. To compute precision
and recall values, probes were ranked by their fold-change
to the correspondingmedian probe value across all arrays.
This score is used by Harshlight in its initial step. For our
purposes, it was additionally incremented by a constant
value for probes flagged as defects byHarshlight such that
all flagged probes ranked higher than any other probe.
As MBR is only available as a GUI, we investigated only
a small number of values for the parameter k (60-80 in
increments of 5; values larger than 80 were found to have
only very small recall).
Additionally, we planned to evaluate performance of

caCORRECT2 [23] as well as the method by Reimers and
Weinstein [20], which both are available as webservers.
However, as none of the two programs had yielded a
result 24 h after uploading the data to the webservers, we
aborted the evaluation. Thus, it appears that these meth-
ods did not scale well to the size of the Gene ST arrays
used in this study, which are substantially larger than older
Affymetrix arrays but still much smaller than the exon
arrays. Alternatively, in particular for the Reimers and

Figure 4 Illustration of the results on the spiked Gene ST arrays. Both shape of the artefact and intensities of the spiked probes were transfered
from exon arrays containing artefacts. a) shows the spiked probes in red and b) and c) the probe scores based on fold changes between replicates
using only the probe information itself (b) or also its neighborhood (c). For both b and c the overall shape of the spiked stain can easily be identified,
but only when using thewindow-criterion (c) all probes within this area are identified. Furthermore, in B there are more probes with high noise
scores that were not spiked (false positives).
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Weinstein method, the webservers might no longer be
maintained. The method by Hulsman et al. for identifying
location artefacts is only available as an intermediate
step within their normalization pipeline and could not be
evaluated on its own.

Evaluation results
Figure 4 illustrates the spiked artefact as well as the probe
noise scores calculated using either only the probe infor-
mation alone or including also the probe neighborhood
using the window-based approach. Here, the probe scores
were calculated from the fold-changes between replicates.
The window approach results in a much smoother change
of scores and high noise scores within the complete spiked
area. If scores are calculated on each probe alone, we
observe large variations in the spiked area with not all
probes having high scores. Similar results are observed for
the other types of noise scores (Additional file 1: Figure
S7), indicating that the window approach results in higher
sensitivity in identifying defective probes.
To compare the different approaches, Precision-Recall

curves were calculated (Figure 5). For this purpose, pre-
cision in identifying defective probes is plotted on the y-
axis against recall on the x-axis for decreasing thresholds
for flagging a probe corrupted. Here, several interesting
observations can be made. First, the noise scores based
on fold-changes to either replicate or newly transcribed

plus pre-existing RNA samples perform almost identi-
cally using the ε-criterion. In contrast, the scores based
on the RMA residuals show a higher precision for low
recall values but this precision deteriorates more rapidly
for increasing recall values.
Second, performance of all probe scores improves con-

siderably when the window-criterion is applied. By taking
the local information of a probe’s neighborhood into
account, recall can be increased significantly while the
number of probes mistakenly flagged as corrupted is
reduced. Furthermore, when using the window-criterion
the differences between the scoring approaches disap-
pear and all scoring methods show a very similar perfor-
mance. Here, the reason for the poor performance of the
ε-criterion at low recall are a few isolated probes with
high noise scores on the arrays that were not spiked and,
thus, are counted as false positives. While these outliers
might also be interesting, they do not indicate a systematic
artefact. Accordingly, smoothing over the scores in the
neighborhood of these probes reduces their noise level.
This enables us to find an appropriate threshold between
spiked and unspiked probes independent of the scoring
method used.
Finally, the performance of the different window-

criterion variants was compared to Harshlight and MBR.
WhileHarshlight performs similarly well for intermediate
recall values, precision is very low when trying to reach

Figure 5 Precision-Recall curves for spiked Gene STmeasurements. Here, artefacts were projected from the exon array measurements onto the
gene arrays to produce realistic noise patterns. Three different scoring approaches were compared both for the simple threshold approach, the
ε-criterion (a), and its cumulative variant, thewindow-criterion (b), which takes into account the probe neighborhood information. The scoring
approaches compared are: (i) absolute log fold change between total RNA and normalized sum of newly transcribed and pre-existing RNA (fold
change (T/N + P), see Methods); (ii) absolute log fold change between replicates (fold change replicates); (iii) residuals determined with the RMA
summarization approach using the affyPLMmodel (affyPLM). These results show that the window-based approach improves the performance of all
used methods, resulting in almost identical performance for all of them, which is superior to the performance of both Harshlight andMBR.
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full recall. At a recall of 85% of spiked probes, the fraction
of correctly flagged probes is only less than 50%, whereas
for the window-criterion more than 90% of the flagged
probes had been spiked. Thus, it appears that Harsh-
light uses too strict requirements on probe quality and,
accordingly, tends to flag too many probes as defective.
Additionally, modern platforms like gene and exon arrays
appear to cause problems to Harshlight due to either
calibration or technical issues. Using default settings large
diffuse defects are detected even for artefact-free arrays
and spike-in probes used for calibration are detected as
compact defects.
MBR also performed worse than all window-criterion

variants at all recall values but outperformed Harshlight
in a small range. It should be noted that the parameter
k used by MBR allowed only very little tuning of perfor-
mance. For k = 80 (the largest value investigated), recall
was as low as 0.1, then increased dramatically to 0.81 for
k = 75 and then only increased moderately up to 0.83 for
the smallest allowed value of k = 60. At the same time,
precision varied only between 0.90 for k = 80 and 0.77 for
k = 60.

Discussion
A recent study [10] showed that an alarming number
of arrays deposited in the Gene Expression Omnibus
(GEO) contain spatial defects. As deposition in the GEO
generally occurs only prior to publication, this does not
even include the array measurements that were dis-
carded before analysis due to larger artefacts. If arte-
facts are not considered substantial enough to discard
the array, normalization and summarization procedures
are routinely relied upon to correct for these smaller
defects.
In this study, we show that this reliance is risky as even

small artefacts can have serious impacts on the results
of normalization and summarization procedures. For this
purpose, we used a set of exon array measurements which
contained several artefacts of various sizes in the form of
stains in the center of the arrays. In this case, replace-
ment of the corresponding arrays by measurements of the
same samples was not an option as for some samples all
RNA material had been used up. Thus, the only alterna-
tives were to either repeat the whole experiments and all
array measurements which would be highly cost-intensive
or try to use at least the measurements of the probes not
affected by the artefacts.
However, the comparison of replicates containing arte-

facts with corresponding artefact-free measurements
clearly showed that even a robust summarization pro-
cedure such as RMA could not appropriately correct
for the defective probes as considerable non-linear devi-
ations were observed between replicates. Interestingly,
the degree of the deviations between replicates did not

necessarily depend on the number of probes affected in
total on the array. One of the arrays showed only a minor
stain whichwould normally be considered acceptable. Yet,
deviations compared to the control were substantial, in
particular for high expression values. Although this effect
could be traced partially to quantile normalization, it did
not disappear when omitting normalization.
While simulations showed a clear correlation between

the number of probes affected within a probeset and
the deviation between replicates of the estimated probe-
set values, this was not quite reflected in the real-life
measurements. Here, probesets were similarly affected no
matter whether 1, 2 or 3 probes were corrupted. Only
probesets for which all probes were defective were clear
outliers. Furthermore, even probeset measurements with
no corrupted probes were biased. To some degree this is
due to the normalization step required before summariza-
tion, which is based on the global intensity distribution
on the arrays. As even small artefacts on the arrays can
have a substantial influence on the distribution of inten-
sities, all normalized probe values are affected to some
degree. Although it is not clear why this is effect is also
seen without normalization, it can clearly be attributed to
the artefacts as it disappears after correction of corrupted
probes.
Although a few approaches have been proposed for

identifying probe-level artefacts, they are usually highly
complex using e.g. image analysis as in the case of
Harshlight or singular value decomposition in case of
caCORRECT2. Furthermore, they were often developed
for previous generations of Affymetrix arrays and do not
scale well to the new Gene and Exon ST array designs.
Here, we propose amuch simpler approach that relies only
on the availability of an artefact-free control measure-
ment, which is usually available in the form of technical
or biological replicates. Instead of replicates, a biological
control can alternatively be used as in the case of simul-
taneous measurements of total, newly transcribed and
pre-existing RNA.
We showed that even a simple comparison of fold-

changes between corrupted and control measurements
was sufficient to identify the corrupted probes on our exon
array measurements and correct them by either replac-
ing their values or removing them from the analysis.
While noise scores calculated only from the probe val-
ues themselves were already successful for this purpose,
an extension of this approach that also uses the neigh-
borhood of the probe improved the performance even
more. In this case, the probe noise score is calculated as
a distance-weighted average of all noise scores in a win-
dow around the probe considered. In this way, the layout
of the array and the spatial nature of most artefacts can
be taken into account. This approach was also superior to
MBR as well as Harshlight, which in general appeared to
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be too stringent on probe quality as it also flagged many
probes on arrays without apparent defects.

Conclusions
In this article, we illustrate the necessity of integrat-
ing artefact detection and correction into standard gene
expression analysis pipelines as state-of-the-art normal-
ization and summarization procedures were found to be
vulnerable even to small spatial defects. We propose a
general and simple approach for identification and correc-
tion of these artefacts that relies only on the availability
of controls in the form of technical or biological repli-
cates. By additionally taking the probe neighborhood into
account, we can furthermore improve detection accuracy
also compared to more complex approaches. Thus, even
if a substantial amount of probes is defective on an array,
the measurements of the remaining probes can be still be
used.

Methods
Microarray measurements
We used RNA measurements for two cell lines using
both Affymetrix GeneChip Human Gene 1.0 ST and Exon
1.0 ST arrays: 1) the B-cell line DG75 transduced to
express 10 out of 12 miRNAs encoded by the Kaposi’s
sarcoma-associated herpesvirus (KSHV) (DG75-10/12)
and 2) DG75 transduced to express eGFP (DG75-eGFP)
as control [28]. For each cell line and array type, total RNA
was quantified. In addition, RNA synthesis and decay was
measured using a recently developed method for label-
ing of newly transcribed RNA using 4-thiouridine (4sU)
[25,26]. This allows the separation of total RNA (T) into
the labeled newly transcribed RNA (N) and the unla-
beled pre-existing RNA (P) as well as quantification of
de novo transcription and decay in a single experimental
setting.
For each cell line and each RNA fraction three repli-

cates were measured resulting in a total of 18 arrays for
each microarray platform. The Gene 1.0 ST measure-
ments were recently published [27]. Exon 1.0 ST measure-
ments were performed in the same way. However, in this
case considerable experimental artefacts were observed
for several of the 18 arrays resulting in distinctive stains
visible in the array images (see Figure 1 and Additional
file 1: Figure S1). These artefacts were probably a con-
sequence of a drying out of the central part of the array
during the hybridization step resulting in artificially high
values for the corresponding probes.

Summarization and normalization
Two steps that are generally performed first in a
microarray experiment are normalization and summa-
rization. Normalization is applied to allow the compar-
ison of results from different replicates and conditions.

Summarization estimates overall expression values for
each probeset from the individual probe measurements.

Normalization
In this study, we used quantile normalization, which is
commonly used in combination with RMA summariza-
tion. If newly transcribed (N) as well as pre-existing
(P) RNA have been quantified in addition to total cel-
lular RNA (T), an additional normalization step has to
be applied to account for the different amounts of RNA
between the fractions [26]. Since T = N + P has
to hold approximately for all probes, the linear model
T = λ1N + λ2P minimizes the sum of residuals for λi ∈
R+, i ∈ {1, 2}. The correspondingλi can be found by linear
regression [26], which can be applied both on the summa-
rized probeset values as well as the individual probe values
themselves. If the fold-change between replicates is used
to calculate the probe noise score a loess normalization is
additionally applied before fold-change calculation.

Summarization
One of the most widely used summarization methods is
RMA [16], which estimates both an overall expression
value for each probeset and the probe-specific measure-
ment error by fitting a linear model to the probe values.
Thus, this method implicitly estimates the noise level for
each probe and effectively subtracts the estimated noise
from the probe when calculating the overall probeset val-
ues. This explains why it is commonly assumed that this
method can correct for measurement artefacts [29]. For
our purposes, the Affymetrix Power Tools (APT) were
used for summarization (http://www.affymetrix.com). An
alternative implementation is provided by the affyPLM
[12] library, which also provides access to the estimated
residuals. However, due to its considerable memory usage
when working on exon arrays the affyPLM library could
not be applied to all exon array measurements together.

Quality assessment
Probe noise score
To assess the level of noise for individual probes, different
criteria can be applied. If measurement errors are explic-
itly modeled as in the RMA approach, residuals can be
used to assess reliability of the corresponding approach
[12]. The higher the absolute values of the residuals, the
stronger the effect of measurement errors on this probe.
The global residual level (e.g. calculated by the APT sub-
routine qcc, [29]) can be used to indicate which arrays are
suited as control and which are likely to contain artefacts.
A general probe-level noise score for probe j can be

calculated as the fold-change compared to a control:

sj =
∣∣∣∣∣log2 vj + c

v′
j + c

∣∣∣∣∣ (1)

http://www.affymetrix.com


Petri et al. BMC Bioinformatics 2012, 13:114 Page 10 of 12
http://www.biomedcentral.com/1471-2105/13/114

Here, vj is the intensity for the probe on the corrupted
array and v′

j is their value on the control. The pseudocount
c corresponds to the estimated detection limit (in our
case c = 16). Both vj and v′

j can be measured directly or
can be derived values, e.g. using measurements of newly
transcribed and pre-existing RNA as described in the nor-
malization section. In the latter case, the normalized sum
of N and P serves as a control for the measurement of T,
i.e. vj = T and v′

j = λ1N + λ2P. Alternatively, replicates
may serve as a control. If it is not possible to determine a
suitable control, the fold-change against the median probe
intensities of all replicates can be used. This corresponds
to the error image used by Harshlight [18].

Probe noise plot
As each probe has a defined location on the array, the
noise level of individual probes can be visualized by plot-
ting the noise score of the probe against this location. For
a more intuitive visualization, the noise score is color-
coded and the location represented by the x- and y-axis.
If residuals from the RMA model are plotted, this cor-
responds to the residual plot proposed by Bolstad et al.
[12]. To calculate residuals for noise plots, we used the
affyPLM implementation of RMA which provides access
to these residuals. In this case, residual estimation for a
specific array was based on the three replicates for the
corresponding condition.

Replicate scatter plot
To evaluate correction of artefacts, probeset values for
the affected arrays are plotted against the control values.
If no artefacts are observed, summarized probeset val-
ues should be highly reproducible between the replicates.
Instead of replicates for the same condition and RNA frac-
tion, the complementarity of the total, newly transcribed
and pre-existing RNA fractions can be exploited.

Introducing artificial noise
Measurement errors were introduced artificially (spiked)
in exon array measurements by selecting a noise level
δ and spiking each probe according to this probability.
The raw measured values of spiked probes were then
replaced by an artificial level drawn from a log-normal
distribution with mean μ and standard deviation σ (in
our case μ = log2(850) and σ = 1 were inferred from the
intensities within the real artefacts). Only probes corre-
sponding to core probesets defined by Affymetrix were
spiked and included in the summarization. Simulations
for each selected value of δ were repeated 100 times.
Furthermore, real-life stains were projected onto the

Gene ST arrays to create realistically shaped artefact pat-
terns. For this purpose, our artefact detection approach
(see below) was applied to the exon array measurements
with artefacts to detect the location of the corrupted

probes. The exon array artefacts were then scaled down
to the dimensions of the gene arrays and transferred to
the artefact-free gene arrays. For this purpose, 2 × 2 rect-
angles of probes on the exon arrays was mapped to one
probe on the gene arrays and the maximum value of any of
the probes in this rectangle was used for the spiked probe.
To account for the overall larger intensities on the gene
arrays, the resulting value was multiplied by the ratio of
the 75 percentile of the intensity distribution on the gene
arrays relative to the corresponding 75 percentile for the
exon arrays.

Artefact detection
We propose two alternative approaches to identify probes
which are affected by significant measurement errors. The
first method is based on a simple threshold criterion, the
second approach extends this method by including the
neighborhood information on the array.

ε-criterion
The ε-criterion is based on the noise score defined in
equation 1 and simply applies a threshold t on this score.
Thus,

ε(sj) =
{

true sj > t
false otherwise

(2)

If ε(sj) is true, probe j is flagged as corrupted. Thresh-
olds can be adjusted manually by analyzing both probe
noise and replicate scatter plots.

Window criterion
As measurement artefacts usually affect a specific region
on the array and, accordingly, a set of probes closely
located to each other, we propose a method which takes
into account the neighborhood information. Thus, for
estimating the reliability of a specific probe we take into
account the values of the probes in a window around this
probe. For our purposes, we used a 2D window of dimen-
sion (2k + 1) × (2k + 1) with the probe considered in the
center of the window (here k = 25 was used). We calcu-
late a weighted average of the probe noise scores in this
window:

swj =
∑

p∈P sp · w(p, j)∑
p∈P w(p, j)

(3)

where P is the set of probes in the window, sj the noise
score of the probe p and w(p, j) is the weight of probe p
in the window for j. The weight is calculated as 1/d(p, j)
if p �= j where d is the distance between probes. In this
study, we used the euclidean distance on the probe coor-
dinates but alternative distances can be used. If p = j,
the weight is set to 2. If residuals from RMA-like methods
are used as noise scores, sp is set to the absolute value of
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the residuals. For probes close to the borders of the array,
the window will be cut off at the respective sides. Sub-
sequently, the ε-criterion is applied to the window-based
noise scores.

Correction of corrupted probes
For correction of corrupted probe values we use two
alternative approaches. In the first case, we replace the
intensities of the corrupted probes by the mean intensity
of the remaining probes of the corresponding probeset
in the CEL file. This correction only takes into account
probe values measured with the same array, thus, differ-
ences in intensity distributions between arrays do not have
to be considered. If all probes of a probeset are corrupted
it is not possible to infer a meaningful probeset intensity.
Thus, we set all probe intensities to 0 resulting in a probe-
set intensity of 0. These probesets should be excluded
from further analysis.
The alternative method consists in removing corrupted

probes from the probeset definition by modifying the
PGF annotation file provided by Affymetrix. It should be
noted that it is also possible to completely exclude affected
probes from the summarization procedure using the “--
kill-list” option of the Affymetrix Power Tools, but it is
still experimental and does not always work. Additionally,
since downstream toolsmay request the filtered probe val-
ues direct probe value correction is far more robust than
complete removal.

Evaluation of artefact detection
To evaluate the performance of artefact detection, Gene
ST arrays were spiked as described above. For each thresh-
old applied, we then calculated true positives (spiked
probes that are filtered, TP), false positives (probes not
spiked but filtered, FP) as well as true negatives (probes
neither spiked nor filtered,TN) and false negatives (spiked
probes not filtered, FN). To evaluate different approaches
over all possible thresholds, we used Precision-Recall
curves for which

precision = TP/(TP + FP) (4)

is plotted on the y-axis against

recall = TP/(TP + FN) (5)

on the x-axis for all possible thresholds.

Availability and requirements
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