
J Internet Serv Appl (2011) 1: 165–181
DOI 10.1007/s13174-010-0016-5

O R I G I NA L PA P E R

A lightweight and extensible platform for processing personal
information at global scale

Michael Duller · Gustavo Alonso

Received: 9 November 2010 / Accepted: 29 November 2010 / Published online: 11 December 2010
© The Brazilian Computer Society 2010

Abstract Advances in digital devices, computing, and net-
working have led to an ever increasing number of personal
information being exchanged across the globe. Typically,
this is done through centralized, web-based applications like
Flickr, YouTube, Twitter, or Facebook. In this paper we pro-
pose an alternative architecture for the dissemination of per-
sonal information at a global scale. Our solution runs both
within a data center as well as on a pool of personal de-
vices such as mobile phones, desktop and laptop computers,
or Internet gateways. Our approach leverages idle resources
available in millions of devices, allows for much more flex-
ible applications than the predefined services available on
the web, and permits users to exchange personal informa-
tion in a peer-to-peer manner with the possibility but not the
requirement to store the personal data in a data center.

Keywords Personal information · Application platform ·
Distributed system · XTream

1 Introduction

Pervasive access to the Internet as well as the proliferation of
mobile devices for both producing (e.g., cameras, recorders)
and consuming (e.g., displays, e-readers) digital media have
led to a vast amount of personal information being shared
and distributed across the globe. In addition to pictures and
video clips, there is also a wide variety of other personal

M. Duller (�) · G. Alonso
Department of Computer Science, ETH Zurich,
Universitatstrasse 6, 8092 Zurich, Switzerland
e-mail: michael.duller@inf.ethz.ch

G. Alonso
e-mail: alonso@inf.ethz.ch

information being exchanged such as chat, text, and e-mail
messages.

Online services and communities like Flickr, YouTube,
Twitter, or Facebook provide a partial solution to the chal-
lenge of handling personal information. In these platforms,
users upload their information to a centralized service which
in turn stores it and provides access to the owner as well as
to designated groups of users or the public. We identify the
following limitations and challenges of these services that
need to be addressed to leverage the full potential of per-
sonal information:

Processing: The primary goal of these services is to store
data. They do not support sophisticated data processing
since it is not possible to provide significant amounts of
CPU cycles to the large number of users of the service.

Extensibility: The functionality provided is typically lim-
ited. Some services provide an extension mechanism for
custom applications (e.g., Flickr App Garden [10], Face-
book API [9]). However, as the primary focus is on storing
data, these extension mechanisms do not allow for complex
processing.

Integration: Integration of these services is limited to the
possibilities implemented by the providers. The possibili-
ties for integration of services on the client side are also
limited, as the web browser is the primary interface and
client to these services; text can be copied through the clip-
board and files exchanged by downloading and uploading
them but that is about all.

Dissemination: These services do not provide the means for
efficient dissemination of the information that has been up-
loaded. Instead, users can subscribe to notifications and
then access the new information by visiting the service’s
website. The approach is clearly related to the advertise-
ment driven business model.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81775405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:michael.duller@inf.ethz.ch
mailto:alonso@inf.ethz.ch


166 J Internet Serv Appl (2011) 1: 165–181

Size: The ever increasing amount of information being up-
loaded to these services requires the steady expansion of
the data centers backing the services. This directly trans-
lates into operational costs that must be recovered by the
services’ business models. Given the rising energy prices
and the increasing awareness of ecological concerns, we
can assume that this problem will become more relevant.

Privacy: Not everybody feels comfortable with giving away
information to a service operated by a big corporation just
to be able to exchange it easily with friends. An increasing
number of users are becoming aware of and concerned with
the loss of control, usage agreements granting the service
provider irrevocable rights to, e.g., private pictures, and the
target advertisement they are subjected to.

An ideal solution to dealing with personal information
should address the challenges identified above. It should
provide not only a storage facility but also processing ca-
pabilities that allow to arbitrarily process the data. It should
also be easy to integrate with other kinds of data and infor-
mation.

In addition to storing data, it should also be possible to
disseminate data efficiently and proactively to users’ de-
vices. Like push e-mail, this will allow users to access infor-
mation directly and potentially in a situation without con-
nectivity, because the information has been pushed to the
device at an earlier point in time.

Finally, limitations of centralized services in terms of
storage space and processing capacity can be mitigated by
leveraging the users’ devices to store and process informa-
tion. There are millions of devices in operation and mostly
idling (e.g., at night) in peoples’ homes like Internet gate-
ways (e.g., wireless routers, cable modems, etc.), network
attached storage (NAS) devices, or even dedicated home
servers. Taking advantage of such devices will lead to users
benefiting from low latency, direct access to their own data,
virtually unrestricted storage space and CPU cycles, and
greater control over the data.

Nevertheless, we cannot assume that everybody has suit-
able device or is willing to keep the device running around
the clock. Therefore, it is important that the advantages of
the approach (flexible processing, efficient data dissemina-
tion) can also be leveraged in a hosted environment and that
hosted and private setups can interact seamlessly with each
other.

2 The XTream vision

2.1 Background

There is a body of work that deals with different parts of
the challenges we identified. However, these initiatives are

mostly orthogonal to each other and they do not provide a
complete system solution.

Peer-to-peer networks [19, 22] address the problem of in-
formation storage and sharing without resorting to central-
ized infrastructures. Unfortunately, they lack a data process-
ing model supporting the tailoring, filtering, and process-
ing of the information as it flows from sources to sinks.
On the other extreme, publish/subscribe systems [8] imple-
ment routing mechanisms that disseminate information to
end users. However, publish/subscribe systems lack a pro-
gramming model and efficient mechanisms for intermediate
storage and processing. Data stream processing [1, 2, 4, 6]
has changed conventional queries into continuously running
queries over data streams, but does so only in (logically)
centralized settings as well as only for predefined data and
operators. Other techniques such as mash-ups [21, 23] or sit-
uational applications [20] focus only on client side process-
ing and cannot be easily generalized.

The purpose of the work presented in this paper is to
develop a complete software stack that combines all these
ideas into a coherent system, thereby creating the opportu-
nity to explore how a global data processing and dissemina-
tion platform may work in practice.

2.2 A data processing and dissemination platform

Our vision for XTream is that of a global scale, collabora-
tive, data processing and dissemination platform. XTream
has been designed as a dynamic and highly distributed
mesh of data processing stages connected through strongly
typed channels. The mesh connects heterogeneous data
sources and sinks through standard interfaces and supports
in-network data processing and storage. Figure 1 illustrates
the processing model consisting of a mesh of processing
elements (π -slets; slet is the short form for streamlet) and
channels that connect sources (adapted by α-slets) and sinks
(adapted by ω-slets). The mesh is extensible and config-
urable, with the ultimate goal of providing a declarative pro-
gramming language as the means to specify how data should
be disseminated and processed. Slets operate under standard
interfaces and are language and OS independent. The chan-
nels constitute the underlying messaging fabric for the entire
system. Slets and channels are dynamic elements that can be
added and removed at runtime, with the system taking care
of the necessary steps to ensure continuous operation. The
overall design aims at providing a coherent software stack
that does not preclude scalability and extensibility.

An important part of the XTream vision is the general-
ization of the data stream processing model beyond current
applications (e.g., stock tickers, data feeds, sensor data) to
support a more general class of pervasive streaming appli-
cations that encompass a wider range of heterogeneous in-
formation sources and almost any form of data exchange [7].



J Internet Serv Appl (2011) 1: 165–181 167

Fig. 1 Data processing model
of XTream

2.3 Contributions

XTream uses techniques from publish/subscribe systems
and data stream processing. It also borrows ideas from sys-
tems such as P2 [13] or commercial platforms like Yahoo
Pipes [23]. XTream is heavily inspired by social networks
and Web 2.0 ideas. Yet, XTream is unique both as a complete
system as well as in terms of the applications it supports
and the scope for programmability and extensibility. In addi-
tion, XTream contains design aspects that are also important
contributions on their own. First, XTream provides a com-
plete system model for both processing and dissemination,
without imposing any restrictions on the implementation of
the corresponding elements. Second, XTream carefully sep-
arates concerns so that data processing, data management,
and communication are treated separately. Third, XTream
supports distribution as a first class property of the architec-
ture with disconnected operation being a property supported
by XTream, not an error condition. Finally, XTream is to our
knowledge the first large scale data processing and dissemi-
nation platform that is designed as a Service Oriented Archi-
tecture. This allows for easy exchange and adding of imple-
mentations of individual components, their loose coupling to
support dynamic changes, their lifecycle management, and
maintaining and updating individual configuration parame-
ters for every instance at runtime.

3 XTream system overview

XTream can be seen from four different perspectives: the
end user, communities of users, developers, and service
providers. Figure 2 illustrates a simple application built on
our platform that processes and exchanges photos. Through-
out the paper, we will explain this example step by step and
use it to illustrate key aspects of the system.

3.1 XTream: End User

For each single user, XTream is intended as a platform for
managing information. XTream turns arbitrary sources of

data into data streams and pushes them through the mesh
of processing stages to deliver them to the user at, po-
tentially, several end devices. XTream is intended to sup-
port multiple sources and multiple sinks for the informa-
tion flow, with the sinks being in most cases different
end devices (e.g., a computer, a screen, a PDA, a mobile
phone). The sources of information we are considering in-
clude photos and videos from digital cameras, voice and
text messages, reports on calls/SMS/e-mails from several
addresses, RSS feeds, e-mail, etc. XTream allows the user
to define the sources, define the sinks, and specify from
a library of processing steps how the data will be com-
bined/filtered/processed as it moves from the sources to the
sinks. XTream supports rules to decide which path the in-
formation should follow (e.g., depending on time of day,
content, or user settings). Finally, XTream also supports the
storage and caching of the data, offering functionality for
querying the data in different ways.

In the photo application in Fig. 2, the processing mesh on
the upper left shows how a user can collect photos from dif-
ferent devices (photo camera, mobile phone) in a common
place (channel MyPhotos), from where they are accessed by
a photo widget running on the user’s desktop. A selection
of photos is made publicly accessible through channel Pub-
lic, which is fed by an slet Filter, which can implement any
kind of filter from looking at photos’ metadata (e.g., EXIF)
to face recognition, to manual selection by the user. In ad-
dition, a low resolution version of all photos is made avail-
able in channel LowRes, which is fed by a scaling slet Scale.
The low resolution variants are copied to the internal mem-
ory of a digital photo frame (DPF) when it is connected,
thus saving space and fitting more photos. The main part
of the processing mesh is running on a network attached
storage (NAS) device, which is always powered on. Camera
and photo frame are connected via USB to the correspond-
ing source and sink adapters running on the NAS device.
Adapters for the phone’s camera and the desktop widget are
running on the phone and desktop machine, thus turning the
user’s own setup already into a distributed application.



168 J Internet Serv Appl (2011) 1: 165–181

Fig. 2 Photo processing example application

3.2 XTream: communities of users

For communities of users, XTream offers the possibility
of linking the personal data processing and dissemination
mesh of each user with those of other users, thereby build-
ing an even larger mesh. XTream platforms communicate
directly with each other, in a peer-to-peer manner. Con-
nections are either established directly (connecting to the
address of a known, remote platform) or by discovering
channels of interest on devices in the network vicinity (see
Sect. 5.9).

Through standard interfaces in the processing stages and
the communication channels between processing stages,
XTream gives users the option of publishing any of the fi-
nal or intermediate results of their personal processing mesh
while other users can connect to that information and feed
it into their own meshes. The scenarios that we are target-
ing include forwarding of notifications to other persons de-
pending on conditions (e.g., user sets a do-not-disturb flag,
routing to other users or devices depending on the time of
day), raising and propagating alarms, content based routing,
etc. In this way, XTream can be used not only to dissemi-
nate data among users but also to build data dissemination
and processing meshes that are shared by a group of users
and that directly feed on the personal meshes of each user.
Taking it to the extreme, XTream meshes could all be inter-
connected, in the same way that following a small number
of links allows to reach almost any web page in the Internet.

XTream has been designed to function and operate at such
Internet scale.

In the photo application in Fig. 2, another user (Friend 1,
on the lower left) accesses the public photos and merges
them with her own photos (MyPhotos) into the channel All.
This channel holds all photos that are less than a week old
and is connected to a sink on Friend 1’s mobile phone. The
photos in channel All are synchronized with the phone and
also available on the phone when it has no connection to her
laptop, which is hosting her personal processing mesh.

3.3 XTream: Developers

For developers, XTream provides a very clean and rigor-
ous system design. Processing happens in so-called slets,
which use standard interfaces for input and output and are
language and OS independent. That way, the libraries of
specialized (e.g., e-mail or SMS filters) or general (e.g.,
splitters, routers, duplicators) processing steps can be built
independently of how they are combined by users. Commu-
nication between the slets happens through channels. Chan-
nels are strongly typed and support all the data management
in the system. Slets put data into channels or read data from
them. Channels store/buffer/forward the data from the slets
providing the input to the slets interested in their contents.
There is no processing and there are no side effects in the
channels, which treat data as push, pull, or both. Channels
also support callbacks to send request back along the re-
verse path of the processing and dissemination mesh. This



J Internet Serv Appl (2011) 1: 165–181 169

Fig. 3 Layered XTream design

allows slets to request specific data from given sources in
either push or pull mode, regardless of whether the source
supports push or pull. The architecture of XTream has also
been conceived as a modular system where slets and chan-
nels can be added or removed at runtime, with XTream deal-
ing with the corresponding dynamic changes. Thus, XTream
has been designed to allow separate development of slets, of
channels, and of the processing and dissemination meshes—
which we envision may in fact be done by completely dif-
ferent people.

In the photo application in Fig. 2, examples for slets that
can be developed separately and then deployed and inte-
grated into a processing mesh by different people are the
ω-slets for the mobile phone, desktop photo widget, and dig-
ital photo frame. They are custom with respect to the sink
they adapt (phone, widget, frame) but once implemented
they can be reused by all users who want to use the same
kind of sink and they can be connected to any channel con-
taining photos.

3.4 XTream: service providers

Users of XTream who do not have a device at hand that is
connected to the Internet all the time can use the services
of XTream platform providers. These companies offer ac-
cess to an XTream platform for individual users, similar to
mailboxes or accounts for existing photo, video, or social
network sites. In contrast to the limited, application-specific
possibilities that these sites offer, users can deploy and run
their XTream mesh with all the flexibility and different pos-
sible applications on their provider’s infrastructure. In con-
trast to the extreme of infrastructure as a service (IaaS), the
platform as a service (PaaS) approach of XTream saves re-
sources on the provider side (only one OS instance with the
XTream platform running on top is required) and also al-
lows for more fine-granular optimizations in terms of, e.g.,
machine utilization or data locality compared to the coarse
granularity of a virtual machine.

In the photo application in Fig. 2, Friend 2 and Friend 3
host their XTream meshes at a provider. The meshes of the

two friends frequently exchange data and are thus located on
the same physical machine.

3.5 Interface

Channels and slets are the model and mechanism used in the
background to implement applications. Typically, they are
not visible to the user but hidden behind a convenient inter-
face that provides a declarative specification of the process-
ing mesh using, e.g., a visual language. This final element of
XTream is not explored in this paper. The separation of con-
cerns between elements of the system, the clean interfaces
between components, and the architecture of the system all
contribute to simplifying the task for developers, providers,
and the end user for whom using XTream should be no more
difficult than using a web browser.

3.6 XTream architecture

The emphasis of XTream is on extensibility and flexibility.
Therefore, XTream follows a layered architecture represent-
ing an application at different levels of abstraction (Fig. 3).
Different optimizations can be performed at each level.

On top, application builders (Sect. 5.8) provide a high-
level language and interface to build applications. One level
below, applications are represented in the data processing
model of XTream (Sect. 4), describing the data format, flow,
and access between slets and channels. One level further
below, the implementation model (Sect. 5) formalizes the
implementation entities of an application, including the ser-
vices provided by slets, channels, and connectors (a class of
components introduced at this level) and their interaction. At
the bottom level, the actual implementation of the applica-
tion is illustrated for our prototype, which is written in Java
(Sect. 5.2).

In this paper, we elaborate in detail on the lower three
layers. Application builders are discussed only in the context
of their interaction with the framework.



170 J Internet Serv Appl (2011) 1: 165–181

4 XTream data processing model

4.1 System elements

The XTream data processing model is based on slets and
channels (Fig. 1). Slets interact with channels by using in-
put and output ports and every port connects to exactly one
channel. α-slets on the left and ω-slets on the right adapt
data sources and sinks, respectively. Inside these boundaries,
a mesh of π -slets is used to process the data with the chan-
nels in charge of the dissemination and distribution. The
model is made of six elements:

Source: A data source is any external device, application,
or software component that creates data. External refers to
the property that it is not part of XTream’s processing mesh
of slets and channels but needs to be adapted. There are no
specific requirements for data sources except that they pro-
vide at least one means of accessing their data. This can
range from a shared memory region to high-level commu-
nication mechanisms like, e.g., SOAP RPC.

Sink: A sink is any external device, application, or software
component that consumes data. Like sources, there are no
specific requirements for sinks except that they provide at
least one means of consuming data.

α-slet: An α-slet adapts a source by wrapping it into an slet.
α-slets have no input ports, they consume data only from
the source they adapt. If the source can be divided into
well-defined subparts (e.g., folders of an e-mail account),
each subpart corresponds to one output port of the α-slet.

ω-slet: An ω-slet adapts a sink by wrapping it into an slet.
ω-slets have no output ports, they output data only to the
sink they adapt.

π -slet: A π -slet processes data it receives through one or
more of its input ports and outputs the result—if any—
through one or more of its output ports.

Channel: A channel transports and optionally buffers data
between producing and consuming slets. Any number of
input and output ports can connect to a channel.

4.2 Data format

The XTream data processing model does not impose any
specific data format per se. α-slets packetize data from ex-
ternal data sources into discrete parts—items. They option-
ally have to convert or embed data into a general data type
of the implementation language of the system, e.g., a Java
object, if the source is implemented in a different language.

Items typically represent a unit of information that corre-
sponds with the stream’s content, like, e.g., a single photo,
video clip, or e-mail message. Every item is associated with
metadata which includes the unique identifier of the slet that
created the item, a unique identifier for the item in the scope
of the slet that created it, a type description of the item in

the implementation language of XTream, one timestamp in-
dicating when the item was created, and an optional item-
specific content date.

Items in XTream can either be short-lived, for immedi-
ate processing and subsequent discarding, or long-lived, for
temporary or persistent buffering of data.

4.3 π -Slets

π -slets can execute arbitrary operations on data accessed
through upstream channels, including filtering, joining, and
transformation. Slets can be parametrized with configura-
tion information that influences their behavior. We discuss
the implementation model of π -slets in Sect. 5.

In the photo application in Fig. 2, the Scale slet can
be parametrized with the desired result size and compres-
sion settings which facilitates its reuse in other applications
where different photo sizes are needed.

4.4 Channels

The XTream data processing model distinguishes between
two different data access facets: the stream and the query
data path. Channels implement both facets and allow for
push and pull access to the stream data path and pull or
query-like access to the query data path. Slets can access
data from channels in any combinations thereof.

Data arriving on the stream data path resembles the ac-
tual streaming data and is pushed to the channel by upstream
slets. Every input port of a downstream slet that connects
to a channel specifies its buffer requirements and its access
method. The channel then manages a corresponding buffer
for this port. It buffers items that arrive through the stream
data path and, if requested, notifies the slet’s port of the ar-
rival of new elements (in case of pull access) or directly
pushes one or more items to the port (in case of push ac-
cess).

In the photo application in Fig. 2, the All channel of
Friend 1 keeps photos that are at most one week old for the
ω-slet connecting to the mobile phone.

In contrast to data arriving on the stream data path, which
arrives by virtue of the upstream mesh, data delivered on
the query data path arrives as response to explicit requests.
By default, a pull request on the query data path returns all
items in the channel. If the channel is operating in material-
ized mode, the results are returned from the channel’s buffer.
Else, the channel fetches all items from the upstream mesh.
Optionally, the pull request can be accompanied by a query
object and if the upstream slets understand the query, selec-
tivity can be pushed towards the sources. The result of a pull
request on the query data path is returned in a buffer that is
(logically) separate from the stream data path.



J Internet Serv Appl (2011) 1: 165–181 171

Fig. 4 Implementation model

Conceptually, a channel holds a copy of all data pro-
duced by the upstream slets it is connected to. This con-
ceptual perspective resembles views in traditional database
systems. Channels can either materialize their contents or
request data on demand when being polled by a downstream
slet.

In the photo application in Fig. 2, the LowRes channel
contains low resolution copies of all photos in the MyPho-
tos channel. If LowRes is operating in materialized mode, it
will physically have copies of the scaled photos. Else it will
request the slet it is connected to (Scale) to return all items
when the channel itself receives a request from the down-
stream DPF sink slet. This will trigger that the Scale slet
fetches all photos from MyPhotos, scales them, and returns
the scaled photos to the LowRes channel. Materialization al-
lows to trade storage requirements off against result latency.

4.5 Merging and replication

If multiple ports are connected to the input of a channel,
the channel merges incoming items on the stream data path
as they arrive. On the query data path, the request will be
forwarded to all connected ports and the results merged.
When multiple ports are connected to the output of one
channel, the channel replicates data to all logical buffers of
the connected ports. Though variations of channels could be
implemented that support, e.g., round-robin distribution to
multiple downstream slets, this is not done and not allowed.
Selective data routing decisions taken in the channel would
violate the principle that a channel holds all the data cre-
ated by the upstream mesh it is connected to. Thus, selective
replication techniques have to be realized by adding a re-
spective slet to the mesh.

In the photo application in Fig. 2, the user’s channel Pub-
lic replicates its contents to all components connected down-
stream; the slets of the meshes of Friend 1, Friend 2, and
Friend 3 connected to channel Public.

5 Implementation model and prototype

5.1 Overview

XTream is implemented using a Service Oriented Architec-
ture (SOA). Applications developed over XTream are made
up of individual components with well-defined interfaces
that are composed into a data processing mesh. Figure 4 il-
lustrates the implementation model of XTream by depicting
all implementation details from slets emitting items on the
left, to a channel, to slets consuming items on the right. Note
that, compared to the higher level data processing model,
connectors have been added as another class of components.
Furthermore, the internal implementation of slets, their input
and output ports, as well as buffers have been made explicit
in the illustration. Arrows between components are bidirec-
tional as they represent the component interaction in terms
of service method invocations rather than in terms of data
flow. Ellipses between slets or connectors indicate that any
number of instances thereof can exist and interact with one
instance of a connector or a channel, respectively. For the
sake of readability, only service interfaces used in data ex-
change have been depicted using thick, red bars. Service
interfaces for managing components are not explicitly de-
picted but the component as a whole represents the respec-
tive service.

The following sections elaborate the general implemen-
tation aspects of the individual components as well as their
interaction. We also present implementation details of our
prototype.

5.2 OSGi

Our prototype implementation of XTream is based on the
OSGi Service Platform [14]. OSGi is a widely used (e.g.,
Eclipse IDE, BMW 3 series cars) framework for module



172 J Internet Serv Appl (2011) 1: 165–181

management and service composition for Java. In OSGi,
modules are called bundles and explicitly state code depen-
dencies on other bundles. Bundles can be installed, unin-
stalled, updated, started, and stopped at runtime. The OSGi
framework takes care of the dynamic dependencies that arise
from this process.

Services are implemented as ordinary Java classes, which
are registered with the OSGi framework’s service registry
under one or more interfaces. A service registration can fur-
ther be augmented by a set of key/value properties. Service
clients can look services up in the registry including filters
on properties. When fetching a service they receive a direct
Java reference to the instance of the class that was registered.
Thus, OSGi provides loose coupling and dynamic service
composition within a Java VM.

The open source project R-OSGi [18] extends OSGi
to support dynamic service composition across multiple
Java VMs. When accessing a remote service with R-OSGi,
a proxy bundle is generated on the fly and installed in the lo-
cal framework. This proxy bundle registers a proxy service
that is identical to the original service. Calls to the methods
of the local proxy service are converted to remote procedure
calls to the original service. XTream is implemented on top
of OSGi and uses R-OSGi to interact with remote frame-
works.

5.3 Component logic

π -, α-, and ω-slets and channels are also entities in the im-
plementation model and reflect their roles in data processing
as discussed in the preceding section. In addition, ports and
connectors have been added as explicit entities. Every com-
ponent exposes one or more specific service interfaces for
interaction and components are subject to lifecycle manage-
ment by the platform.

5.3.1 π -Slets

π -Slets have any number of input and output ports. They can
create and remove ports during initialization or at runtime.
Individual properties can be assigned to every instance of an
slet. These properties, a set of key/value pairs, customize the
behavior of the particular instance.

A π -slet can normally become active under three circum-
stances. The first case is the arrival of new data on the stream
data path of a channel connected to an input port. The sec-
ond case is the arrival of a request on the store data path from
a channel connected to an output port. The third case is an
update to the slet’s configuration. Depending on what event
caused the slet to become active, it can execute an arbitrary
combination of operations valid for that cause. Table 1 lists
which operations are valid for activity caused by new data
arriving on the upstream stream data path, a request on the

Table 1 Slet processing model

Operation Stream Store Config.

Access Stream Data � �
Access Store Data � �
Update State � � �
Update Configuration � � �
Emit Items �
Return Result �
Modify Ports �

downstream store data path, or an update to the configura-
tion. The operations are:

Access Stream Data: If the slet’s ports are connected to
channels that provide buffers/windowing on the stream
data path (see Sect. 4), it can access these buffers.

Access Store Data: The slet can pull on any channel con-
nected to its input ports.

Update State: The slet can update its internal, volatile state.
Update Configuration: The slet can update its configura-

tion, which will be persisted by the platform.
Emit Items: The slet can emit (push) any number of items

to any of its output ports.
Return Results: The slet must return results to the pull re-

quest it received through a downstream channel. The result
set can be empty. This operation is compulsory, must only
be executed once, and forms the end of processing a request
on the store data path.

Modify Ports: The slet can create and destroy ports.

Looking at the first two rows of the above table, we can
see that slets can pull data from their upstream stream and
store data paths regardless of being activated on an upstream
stream data path or downstream store data path. This capa-
bility bridges both access variants to data and thus is the key
to the integration of push, pull, and hybrid data sources.

π -slets expose an Slet service interface used for man-
aging their properties and state. Additionally, every port of
an slet offers an InputPort or OutputPort service providing
methods for pushing data to the port or querying it, respec-
tively. Ports expose their requirements with respect to buffer
policy and access method in their service properties.

In our prototype, slets can be implemented using any
number of Java classes. One class must implement the in-
terface SletMain, which defines methods that are called
at initialization or state transitions. In Fig. 4, the solid black
disks represent instances of these main classes. The colored
shapes represent instances of other classes used by a partic-
ular slet implementation.

Multiple instances of the same slet can exist and each
is instantiated by creating a new instance of the class im-
plementing SletMain. During initialization, an object of



J Internet Serv Appl (2011) 1: 165–181 173

type SletUtil is passed to the slet. This interface provides
methods for creating and destroying ports, updating configu-
ration and state, and logging. A callback object (implement-
ing SletInputReader or SletOutputFeeder) has
to be supplied for every port that is created by an slet to han-
dle requests (push or access on query path) arriving at the
port.

5.3.2 α- and ω-slets

The processing model for α- and ω-slets is very similar to
that of π -slets, with some exceptions. Push or pull requests
can arrive through the external source or sink they wrap and
the same rules apply as for π -slets. In terms of schedul-
ing, α- and ω-slets typically drive the execution of slets and
channels in the mesh, either using a thread or by external re-
quest. α-slets can access stream data or query data if the data
sources they are connected to support the respective kind of
interaction. The same holds for ω-slets and sinks in terms of
emitting items and returning results.

In the photo application in Fig. 2, α-slets adapt the user’s
photo camera and mobile phone. In the example of the cam-
era, the α-slet is running on the home gateway together with
the remaining mesh of the protagonist user and interfaces
with the camera via USB. Similarly, the digital photo frame
interfaces via USB when it is connected to the home gate-
way. In contrast, the source gathering the photos taken on
the mobile phone as well as the sink displaying photos in
a desktop widget run on the phone or the desktop machine,
respectively. There they form a small XTream mesh them-
selves that interacts with the mesh on the NAS through a
remote connection, as discussed in Sect. 5.9.

5.3.3 Channels

Channels forward and buffer data between slets. Thus, their
processing model is dictated by the processing model of
slets. When a pull request arrives, they either return their
contents (if fully materialized) or forward the pull request
to all connected upstream slets and return the results to the
requesting slet.

Channels provide a Channel service interface for man-
agement. Every channel also exposes a ChannelInput ser-
vice interface used by input connectors and a ChannelOuput
service interface used by output connectors. These interfaces
provide methods for data exchange between connectors and
channels. Furthermore, channels also form the well-defined
interface for remote data exchange and every channel has a
unique URI.

5.3.4 Connectors

Connectors provide a level of indirection in the interac-
tion between channels and slets. Slets’ ports connect to

connectors instead of directly to channels. Connectors pro-
vide a Connector service interface for management. In addi-
tion, connectors for channel inputs expose CICI and CICO
service interfaces (ChannelInputConnectorIn and -Out) and
connectors for channel outputs COCI and COCO service in-
terfaces (ChannelOutputConnectorIn and -Out).

In a local setting, connectors only forward requests be-
tween channels and ports. Thus, they can be omitted as opti-
mization and channels and ports interact directly with each
other. In a distributed setting, connectors provide means for
accessing a channel in a remote framework as well as for
implementing optimizations like, e.g., local caches, where
the connector itself can fulfill the connected slets’ buffer re-
quirements. Figure 5 illustrates distributed operation using
remote connectors and Sect. 5.9 discusses its details.

5.4 Component interaction

Interaction between slets’ ports, connectors, and channels
happens through services and unique identifiers. Every com-
ponent in XTream has a unique identifier in an instance of an
XTream platform, including every port which has a unique
identifier in the scope of the slet it belongs to. These unique
identifiers in conjunction with a unique identification of a
platform can thus serve as a URI for the component. Upon
being connected, a port or a connector saves the identifier of
its peer connector or channel, respectively, in its own service
properties.

5.4.1 Accessing the target service

When interacting with the peer component(s), i.e, invoking
a method of its/their service, we do not look up and fetch
the service(s) for every single interaction. Instead, we use
OSGi’s service tracker, which tracks the respective services
we want to interact with. It will lookup and fetch the services
once, cache their service objects, and subscribe to OSGi sys-
tem events concerning these services. Additional processing
happens only in the case of service withdrawal or disconnec-
tion from and reconnection to a different connector or chan-
nel, in which cases the trackers are directly notified by the
OSGi framework. Most of the time, however, during which a
channel, connector, or port service is present and in use, the
service objects are cached by the tracker and do not change.
Thus, the service oriented design only adds the cost of one
additional dereferencing of one native Java object reference.

Figure 6 shows the result of a micro benchmark1 that il-
lustrates the advantages of using caching and proactively up-
dating services when implementing a dynamic binding. We

1Times captured using System.nanoTime() on dual-socket dual-
core Opteron 275 machines with 4 GB RAM using Sun’s 64 bit JDK
1.6 on 64 bit Linux.



174 J Internet Serv Appl (2011) 1: 165–181

Fig. 5 Distributed operation
using connectors

Fig. 6 Data path on local
machine

consider the time needed to transmit an item (average of 10
runs with 100 000 items transmitted in each run) from one
slet through a connector, a channel, and a connector to an-
other slet. Figure 4 illustrates this chain. We compare our
service tracker based implementation with one in which we
removed only one of the four trackers (the one tracking the
channel’s In service) and instead used lookup. When con-
sidering only one channel present in the system (x-axis),
the one lookup involved already causes the time to quadru-
ple. When increasing the number of channels present (not
even involved in the chain measured), lookup time and thus
overhead increases linearly with the number of channels.
Achieving constant time regardless of the number of chan-
nels, connectors, and ports present in the system is key for
scalability.

5.4.2 Recording component bindings

Figure 7 illustrates the binding of components. It shows a
set of components, their services, and their respective ser-
vice properties. When a port is connected to a connector,

the unique identifier of the connector is communicated to
the port, which in turn saves it in its service properties. Us-
ing this identifier, the port can directly fetch the right in-
stance of the CICI (ChannelInputConnectorIn—the In of an
input connector) or COCO (ChannelOutputConnectorOut—
the Out of an output connector) service when interacting
with the connector.

The connector can access all ports that are connected to
it by fetching all instances of the InputPort or OutputPort
service that have the connector’s own unique identifier saved
in their properties.

Likewise, connectors and channels are connected by sav-
ing the unique identifier of a channel in the properties of
a connector. The minimal overhead of communicating the
unique identifier to connect two components, as well as the
indirection of fetching a service by a unique identifier, estab-
lish loose coupling between components and basically allow
components to come and go at any time. It also facilitates
the exchange of implementations, as only the unique iden-
tifier of the exchanged entity itself has to be transferred to
the new implementation. Furthermore, the fact that there is



J Internet Serv Appl (2011) 1: 165–181 175

Fig. 7 Component bindings

only one distinct location—the ports’ or connectors’ service
properties—that specifies a distinct interaction between two
entities benefits consistency.

This approach also provides better performance in con-
trast to the obvious alternative—also communicating the
port’s or connector’s identifier to the connector or channel.
First, only the port or connector service has to update its
properties. The property holding the “foreign” identifier is
not different from the property holding its own identifier.
Thus, a service tracker can be used straightforwardly. Sec-
ond, the filter expression used by the tracker in the connector
or channel is always of fixed length, regardless of the num-
ber of ports or connectors connected to it—it only consists
of one key (connector or channel identifier property xt.conn
or xt.chan) and one value (the connector’s or channel’s ac-
tual identifier). Otherwise, the filter expression used by the
tracker would consist of one key (ports or connectors iden-
tifier property) and a disjunctive list of actual port or con-
nector identifiers, which linearly grows in length with the
number of ports connected to the connector or connectors
connected to the channel.

Figure 7 gives two examples of expressions for the ser-
vice trackers; one is for a port tracking a connector and the
other one is for a channel tracking any number of connectors
connected to it. It is important to note that all components
can construct the tracker expression purely from their own
service properties—either their own unique identifier (value
of xt.cid) or the unique identifier of the component they are
connected to (value of xt.conn or xt.chan).

5.5 Data management

5.5.1 Data type

Our prototype of XTream is implemented in Java. Every
data item processed is represented as an instance of a Java
reference type—an object. The object can have references
to other objects, as long as every participating class can be
serialized, which is required for distributed operation.

5.5.2 Item container

We define a class XTreamItem as a container holding
metadata (see Sect. 4.2) and the data item object. The type
description in the metadata used in conjunction with inher-
itance enables, e.g., that an item of a specific subtype can
be processed by slets that only know one of its supertypes.
Contrariwise, this can also be inhibited by not including the
respective supertype.

In addition, a container also holds the date when it has
been created and an optional date that reflects the content’s
date (e.g., date an e-mail has been sent or a photo has been
taken).

5.5.3 Channel buffer sharing amongst slets

To supply an efficient implementation of a buffer that op-
timally serves one or more requirements in terms of what
backing data structure and storage type (RAM, disk) to use,
is a separate field of research. To evaluate and illustrate the
implementation issues in terms of how these virtual buffers
are accessed, we have implemented a memory-backed chan-
nel that uses one central buffer to serve different require-
ments of downstream slets, e.g., n most recent items, items
newer than m minutes, or keep all items until consumed by
downstream slets.

Every call to the channel or connector through a down-
stream connector or port is accompanied by the caller’s
unique identifier, which allows the called connector or chan-
nel to identify the correct virtual buffer to return. The caller’s
identifier is automatically transmitted as the port and con-
nector implementations are provided by XTream and slet
implementors only need to use them. The identifier is, like
every object in Java, passed by reference, resulting in only
four or eight additional bytes in argument size.

5.5.4 Item sharing amongst local components

To reduce unnecessary copy operations inside XTream, item
containers and their content data items are not copied when



176 J Internet Serv Appl (2011) 1: 165–181

being exchanged between slets and channels. This happens
naturally within one Java VM, as by default only references
are passed in Java and XTream’s model requires item con-
tent to be immutable. When an item is contained in a channel
that is also accessed by remote frameworks, a deep copy of
the item will be sent to the remote frameworks.

In the setting of a platform-as-a-service provider, this
potentially expands to the optimization of sharing items
of meshes of independent users if they exchange data and
the provider places both meshes onto the same platform
instance, as is illustrated by the meshes of Friend 2 and
Friend 3 in the photo application example in Fig. 2.

5.6 Lifecycle management

The lifecycle of every slet, connector, and channel is indi-
vidually managed. The primary states are running and sus-
pended, whereas the former is the normal state of operation
and the latter is used to suspend the component. Compo-
nents can be suspended for, e.g., temporarily disabling an
application as a whole (or parts of it), shutdown of the whole
framework, or moving a component to a remote framework.
The component itself, however, cannot tell the difference
and only has to implement the transition from running to
suspended and back. Typically, this only is an issue for
α- and ω-slets because they interact with external entities,
while most π -slets do not require explicit transition process-
ing.

In our prototype, every type of slet is a separate bundle
in OSGi, referred to as slet class bundle. Any number of
instances of this kind of slet can be created once the respec-
tive slet class bundle has been installed. Every instance is
managed individually in terms of state and custom proper-
ties. Channels and connectors are provided by one or more
respective bundles per XTream platform that may provide
different implementation variants.

OSGi manages the lifecycle of bundles, which includes
that bundles that were active when the OSGi framework
has been shutdown will be restarted when the framework
is started again. We use this feature in combination with
OSGi’s configuration admin service, which provides persis-
tent configuration for services, to fully and automatically re-
store the state of an XTream framework as it was at the time
when the framework was shutdown, including bindings of
ports to connectors and connectors to channels as well as
configuration and state of slets. It is thus possible to restore
a full XTream framework and its processing mesh without
having to install the management bundle and rerun the ap-
plication builder—an important feature especially for small
devices that were configured once by an application builder
running on a remote machine.

5.7 Monitoring and management

XTream provides a management module in charge of com-
position and management of all components in one instance
of the XTream framework. It provides a service interface
with methods to, e.g., create a new instance of a component,
connect two components, or change the properties of an slet.

It would be possible to allow application builders (see
below) to directly execute these tasks on the SOA environ-
ment, but the implementation of a central, authoritative man-
agement service provides a number of advantages. It pro-
vides a high-level interface that abstracts from implementa-
tion details and also allows remote access to a framework.
The management module acts as synchronization point for
all operations modifying the state of the framework, thus en-
suring consistency and also providing the possibility to ap-
prove or reject operations. Finally, by decoupling the man-
agement, clients of the management module (and also the
module itself) can be loaded and unloaded at runtime, e.g.,
to save space or be replaced with a different version.

Similarly, the monitoring bundle establishes a loose cou-
pling between monitored entities (slets, connectors, and
channels) and its clients, thereby allowing not only to add
and remove clients at runtime, but also to add and remove
the monitoring bundle itself at any time. In our prototype,
we make heavy use of OSGi service trackers to track slets,
connectors, and channels as well as the clients of the moni-
toring bundle.

5.8 Application builders

The preceding sections have specified the implementation
model of slets and which mechanisms are in place to com-
pose slets and channels into applications. The entities that
actually program slets and use the provided mechanism to
compose actual applications are called application builders.
They range from manual to fully automatic solutions.

The most simple solution is a graphical interface that al-
lows a user to manually instantiate slets from a library of
predefined slets and wire them to channels and thus create
an application in the scale of applications implemented, e.g.,
using Yahoo Pipes [23].

Automatic means are required to implement larger, more
sophisticated applications. Such an automatic application
builder takes a description of the application (e.g., in a
declarative or functional language) and translates it into a
processing mesh.

5.9 Distributed operation

In a distributed setting, every instance of the XTream frame-
work has its own management module which is also re-
motely accessible. Interaction between instances of the



J Internet Serv Appl (2011) 1: 165–181 177

framework happens in a peer-to-peer manner and on the
level of services. The management services of the partici-
pating frameworks are accessed remotely by an application
builder to coordinate the placement of a distributed applica-
tion or relocate parts of it.

Channels contain intermediate and final results and are
like a view of their upstream processing mesh (see Sect. 4).
Hence, they are typically the entity on a remote platform
that a local application wants to connect to. It is possible to
directly connect to a remote channel (if its unique identifier
is known) or list channels from a known, remote platform.
However, some applications are not interested in a particu-
lar instance of a channel or do not know its identifier or even
the address of the remote platform it resides on. Instead, they
want to find channels in the network vicinity that match cer-
tain criteria. These criteria can include anything that can be
saved in the Channel’s service’s properties, in particular its
name and all the custom configuration it received.

To achieve this, our prototype’s remote operation bun-
dle uses R-OSGi’s discovery listeners. A discovery listener
is registered for services of type Channel and with proper-
ties matching certain criteria. R-OSGi then discovers these
services using discovery techniques of the network trans-
port(s) used. For TCP/IP, it uses the Service Location Pro-
tocol (SLP) [12], for Bluetooth, it uses Bluetooth’s service
discovery mechanisms.

Regardless of how the remote channel has been identi-
fied, connection to it is realized using remote connectors,
which are illustrated in Fig. 5. One-half of a remote connec-
tor is installed in the framework where the channel resides
and implements either the CICO or COCI service interface.
The other half of the connector is installed in the framework
where the channel needs to be accessed and implements ei-
ther the CICI or the COCO service interface. The two parts
communicate with each other and act as one logical connec-
tor. Typically, the latter part implements a local buffer that
satisfies the buffer requirements of all the connected slets.
Smart connectors can cache the content of the channel they
are representing, serve requests from their own buffer, and
thus reduce latency and save bandwidth. Similarly, when the
connection between the smart connector and its counterpart
on the remote platform is not available, the connector can
autonomously work in offline mode. The wiring of slets to
the connector can be left unchanged, because transitions be-
tween online and offline mode happen inside the connector,
behind the service interfaces.

Using connectors as local proxies for channels serves the
following principal concepts:

Local memory buffers: Logical buffers of remote channels
can be accessed as local memory because they are proxied
physically in the local connector part.

Performance: By moving the buffer for an slet to the node
on which the slet runs, access times are reduced and band-
width can be saved. This can include proactive caching of

new items arriving on the stream data path, caching of re-
sults on the query data path, and keeping a full and up-to-
date copy of a channel’s buffer.

Transparency of composition: Remote connectors have the
same interfaces as local connectors, thus they can be man-
aged and used like a local connector.

Offline operation: When the connection between connector
and remote channel is not available, the connector can au-
tonomously work in offline mode. The composition of slets
with the connector can be left unchanged, as the transition
to offline mode and back happens inside the connector.

In the photo application in Fig. 2, the connector connect-
ing Friend 1’s mobile phone to channel All is a smart con-
nector that supports offline operation. The half of the con-
nector that is installed on the mobile phone caches the chan-
nel’s content (photos less than seven days old). Thus, these
photos are also accessible on the phone when there is no
connection to the laptop.

Distribution inherently introduces new possibilities for
failures not present in a local system and inevitably imposes
longer invocation times. One can argue that transparent dis-
tribution can be realized in a SOA environment despite these
immanent differences between local and remote operation.
Exploiting the property that services can come and go at any
time and implementations of services can be exchanged, it is
possible to hide network failures behind service withdrawals
and justify longer execution times as different implementa-
tion of the service. We employ this model, which was pro-
posed by R-OSGi [18].

While the withdrawal of remote channels can be a solu-
tion on the implementation level of XTream, we must also
deal with it in our model and expose it to management com-
ponents like application builders, so that they can react and,
e.g., reconfigure a distributed mesh. Thus, the management
module provides a monitoring service interface that facili-
tates and abstracts the monitoring of channels, connectors,
slets, and ports in the same way as the management service
abstracts from implementation details of managing a frame-
work. The monitoring service notifies distribution-agnostic
clients uniformly about changes of both local and remote
components, while distribution-aware clients can retrieve
additional details from the notifications concerning remote
components.

We measured the overhead of remote operation on our
prototype. Figure 8 plots transmission times for data items
with differently sized payloads over a path that includes
a gigabit ethernet link. We show the average transmission
time of an item of 10 runs with 100 000 items transmit-
ted in each run. We compare XTream to a direct TCP con-
nection with no ports, connectors, or channels involved. We
also show the time spent solely for serializing data items
but not sending them over the network (in fact, we write



178 J Internet Serv Appl (2011) 1: 165–181

Fig. 8 Data path including a
gigabit ethernet link

Fig. 9 A part of the synthetic
PlanetLab application

them to /dev/null). Though at this time scale schedul-
ing and garbage collection effects materialize in errors and
fluctuations, we can see that using XTream only adds about
3 microseconds overhead. One-third thereof stems from the
service calls in the chain, as discussed in Sect. 5.4 and
Fig. 6.

6 Evaluation on PlanetLab

The microbenchmarks presented in the previous section
show that the careful design of XTream imposes low over-
head and confirms its lightweight nature. In this section, we
complement them with an experiment on PlanetLab [16] that
shows XTream’s ability to process and disseminate data on
the Internet. PlanetLab is a network testbed consisting of
1137 nodes in 518 locations worldwide, primarily hosted
by academic or research institutions. Users can acquire a
slice of this testbed to run their experiments. Other users’
experiments contending for resources on the same node, un-
predictable node behavior, and the “real” Internet provid-
ing connectivity between nodes make it a good testbed for
widely distributed applications.

We selected 200 nodes from 200 distinct PlanetLab sites
and deployed Sun’s JRE 1.6, our XTream prototype, and a
synthetic application on each node. The application simu-
lates users that consume data streams, process them, and
publish some of them to be consumed by other users—
an abstract description of the collaborative, personal data
processing applications we have in mind. The result is a
global data stream processing system implementing a com-
plex and dynamic processing mesh of slets and channels.
The experiment exposes our platform to dynamic and unpre-
dictable situations, namely the setup phase of the process-
ing mesh (see below) and inevitable node failures in Planet-
Lab.

Figure 9 illustrates a part of the synthetic application run-
ning on each PlanetLab node. When starting up, every node
creates an identical local processing mesh, which is fully de-
picted for nodes 1 and 2. It consists of five push chains with a
source Tx, a channel chx, and sink Lx. Every source creates
an item every five seconds. An item consists of a sequence
number, the local hostname, and the local timestamp. It is
then pushed through the channel and received by the sink,
which logs every item to a log file.

After the local mesh has been set up, every node au-
tonomously chooses zero to four random nodes to connect



J Internet Serv Appl (2011) 1: 165–181 179

Fig. 10 Analysis of PlanetLab experiment

to. If it cannot connect to the node immediately, the connec-
tion is retried ten times with a timeout of one minute be-
tween retries. For each connected node, it connects the local
channel with number x to the output of the remote chan-
nel with the same number x with probability 0.8 for chan-
nel 0, 0.5 for 1, 0.3 for 2, 0.2 for 3, and 0.1 for 4. On the
connecting node, remote and local channels are connected
by an slet Ax that appends local hostname and timestamp
to items. These slets also drop items already seen to break
loops.

We ran the experiment for 4 hours and then collected the
logged data. Figure 10a shows the average transmission time
of an item between two hops over the duration of the experi-
ment, grouped into bins of 10 seconds. The number of items
transmitted on all nodes in the specific time bin is plotted
as well. We observe that the average transmission time stays
below 500 ms throughout the whole experiment. Figure 10b
examines the first ten minutes of the experiment in more de-
tail, showing again the average transmission time of an item
between two hops but this time grouped into bins of one sec-
ond. We can see that though the load triples after 5 minutes
and after another 3 minutes halves again, average transmis-
sion time stays at roughly 200 ms. In both figures, the aver-
age transmission time as well as the load clearly vary and
exhibit jitter, which reflects the unpredictable nature of the
testbed as well as nodes failing.

Figures 10c and 10d analyze the experiment with respect
to the length of a processing chain. Figure 10c shows that
the average transmission times between hops are not influ-
enced by the chain length. As the experiment setup naturally

exhibits a smaller total number of chains with increasing
length and the probability for a “bad” node to take part in
the chain also increases with length, outliers have a higher
impact in longer chains causing the values for longer chains
to fluctuate slightly more than those of shorter chains. Fig-
ure 10d gives the number of items received per channel for
individual chain lengths in a 10-hour run of the same exper-
iment. Subchains logged by upstream nodes are excluded
from this figure. The different chain lengths per channel
follow from the different probabilities for connecting to a
channel. In total, around 1.2 million unique items were cre-
ated per channel, which is illustrated at the value for chain
length 1, representing the local sink that logs all data created
by the local source.

Deploying and running XTream on PlanetLab, together
with the performance numbers shown, demonstrates that
XTream can operate in a highly distributed manner and can
support large scale processing and dissemination meshes
where nodes connect spontaneously to stream sources and
publish streams in a continuous manner. The experiment
demonstrates that the depth of the processing pipeline
is not an issue and can be sustained by XTream. Also,
channels can deal with varying amounts of data arriving
concurrently and we did not perceive any significant im-
pact on average transmission times between nodes. Fi-
nally, XTream proves to be resilient to failures of individual
nodes, an advantage of how component interaction is im-
plemented in XTream. This is exactly the behavior needed
to implement large scale, collaborative exchange of data
streams.



180 J Internet Serv Appl (2011) 1: 165–181

7 Discussion and related work

XTream borrows ideas and techniques from a wide variety
of research areas and systems. Its strength is to put all these
ideas and techniques into a coherent system.

Data streams XTream is like data stream management
systems (DSMS’s) in that it continuously processes data
streams using a mesh of operators. XTream is unlike
DSMS’s in that: (1) it is an open and extensible system
rather than a closed engine; (2) it supports operators writ-
ten in standard languages (currently Java); (3) dissemina-
tion is a first class element of the system and treated as
an orthogonal concern; and (4) it is peer-to-peer. Typical
DSMS’s (Aurora [1] and Borealis [2], TelegraphCQ [6], and
STREAM [4]) are based on a (logically) centralized engine
and mostly predefined operators. In contrast, we have devel-
oped a conventional data stream application (Linear Road
Benchmark [3]) on top of XTream with performance com-
parable to that obtained with these systems. This is done by
embedding a streaming engine [5] as an slet into an XTream
processing mesh, thereby showing that XTream can be used
to develop data stream applications. Yet, the interface-based
interaction that is at the heart of XTream’s design makes
processing, storage, and communication distinct entities that
can be independently extended, modified, replaced, and de-
ployed in a distributed setting, unlike in existing DSMS’s.

Publish/subscribe XTream is like publish/subscribe sys-
tems in that it provides mechanisms and an infrastructure
to disseminate data from sources to sinks and thus decouple
senders from receivers. XTream is unlike publish/subscribe
systems in that: (1) it supports sophisticated in-network data
processing; (2) the dissemination network is peer-to-peer;
(3) the staged processing allows subscribers to hook up
to different parts of the processing pipeline; and (4) there
is support for in-network storage and callback processing.
Publish/subscribe is used to refer to a wide variety of dif-
ferent systems [8]. Common to all of them is the ability to
disseminate information using more or less complex routing
predicates and strategies. It is trivial to implement a pub-
lish/subscribe system using XTream with the routing and
filtering implemented as slets and the dissemination done
through channels. The advantage of using XTream comes
from the SOA architecture, the ability to perform optimiza-
tions at all levels (e.g., slet and channel placement, buffer
management), and late binding to implementations (XTream
uses the most efficient transport, e.g., local invocations,
shared memory, TCP connections, depending on the end-
points).

RSS-mashups XTream bears certain similarity to systems
like Yahoo Pipes [23] and Damia [21]. Ultimately, we could

think of having something similar to these systems for spec-
ifying XTream applications at a high level. Unlike these sys-
tems, XTream is completely decentralized, does not rely on
a central infrastructure, and is extensible with a richer inter-
face for developers.

Global data streaming XTream resembles global data
streaming systems such as XPORT [15], HiFi [11], and
Hourglass [17]. These systems propose an overlay net-
work that allows the placement of operators for process-
ing data streams. They assume well-connected, dedicated
machines. Unlike XTream, they do not provide a complete
stack, lack interfaces, are not extensible, and do not have
a clean separation of processing, storage, and communica-
tion.

8 Conclusion

In this paper we presented XTream, a complete system
and software stack for data processing and dissemination
at Internet scale. XTream defines an application model for
building applications on personal information streams. Slets
written by different developers can be added at any time
and seamlessly integrated into applications because of com-
mon interfaces defined by XTream. The ability to run on
users’ devices and also as platform as a service hosted at
providers is an important property of the system. Applica-
tions are not restricted to a specific platform and advanced
users can leverage resources of their local devices. It also
enables everyday users to define, run, and access their per-
sonal information processing applications without bothering
about the wheres, hows, whens, and further challenges of de-
ploying and running a distributed application. We demon-
strated the feasibility and potential of the idea using mi-
crobenchmarks and through a large scale deployment on
PlanetLab. Our experimental results demonstrate the advan-
tages of using SOA as a design principle, giving XTream a
degree of flexibility and openness lacking in DSMS’s, pub-
lish/subscribe, and global data streaming systems. Unlike
previous work in these areas, XTream provides a platform
for development that supports the combination of existing
systems: e.g., a publish/subscribe platform extended with
data streaming capabilities or a peer-to-peer data stream
processing system.

References

1. Abadi DJ et al (2003) Aurora: a new model and architecture for
data stream management. In: VLDB

2. Abadi DJ et al (2005) The design of the Borealis stream processing
engine. In: CIDR

3. Arasu A et al (2004) Linear road: a stream data management
benchmark. In: VLDB



J Internet Serv Appl (2011) 1: 165–181 181

4. Arasu A et al (2004) STREAM: the Stanford data stream manage-
ment system

5. Botan I et al (2007) Extending XQuery with Window functions.
In: VLDB

6. Chandrasekaran S et al (2003) TelegraphCQ: continuous dataflow
processing for an uncertain world. In: CIDR

7. Duller M et al (2007) XTream: personal data streams. In: SIG-
MOD

8. Eugster PT et al (2003) The many faces of publish/subscribe.
ACM Comput Surv

9. Facebook API http://developers.facebook.com/
10. Flickr App Garden http://www.flickr.com/services/
11. Franklin MJ et al (2005) Design considerations for high fan-in

systems: the hifi approach. In: CIDR
12. Guttman E (1999) Service location protocol: automatic discovery

of IP network services. IEEE Internet Comput. 3:71–80
13. Loo BT et al (2005) Implementing declarative overlays. In: SOSP
14. OSGi Service Platform http://www.osgi.org/

15. Papaemmanouil O et al (2006) Extensible optimization in overlay
dissemination trees. In: SIGMOD

16. Peterson L et al (2003) A blueprint for introducing disruptive tech-
nology into the Internet. SIGCOMM Comput Commun Rev

17. Pietzuch P et al (2006) Network-aware operator placement for
stream-processing systems. In: ICDE

18. Rellermeyer JS et al (2007) R-OSGi: distributed applications
through software modularization. In: Middleware

19. Rowstron AIT et al (2001) Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In: Mid-
dleware

20. Rozlog M (2008) Situational applications. http://www.ddj.com/
architect/206102105

21. Simmen DE et al (2008) Damia: data mashups for intranet appli-
cations. In: SIGMOD

22. Stoica I et al (2001) Chord: a scalable peer-to-peer lookup service
for internet applications. In: SIGCOMM

23. Yahoo Pipes: http://pipes.yahoo.com/

http://developers.facebook.com/
http://www.flickr.com/services/
http://www.osgi.org/
http://www.ddj.com/architect/206102105
http://www.ddj.com/architect/206102105
http://pipes.yahoo.com/

	A lightweight and extensible platform for processing personal information at global scale
	Abstract
	Introduction
	The XTream vision
	Background
	A data processing and dissemination platform
	Contributions

	XTream system overview
	XTream: End User
	XTream: communities of users
	XTream: Developers
	XTream: service providers
	Interface
	XTream architecture

	XTream data processing model
	System elements
	Data format
	pi-Slets
	Channels
	Merging and replication

	Implementation model and prototype
	Overview
	OSGi
	Component logic
	pi-Slets
	alpha- and omega-slets
	Channels
	Connectors

	Component interaction
	Accessing the target service
	Recording component bindings

	Data management
	Data type
	Item container
	Channel buffer sharing amongst slets
	Item sharing amongst local components

	Lifecycle management
	Monitoring and management
	Application builders
	Distributed operation

	Evaluation on PlanetLab
	Discussion and related work
	Data streams
	Publish/subscribe
	RSS-mashups
	Global data streaming

	Conclusion
	References


