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Simultaneous consumption of pentose and hexose sugars:
an optimal microbial phenotype for efficient fermentation
of lignocellulosic biomass
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Abstract Lignocellulosic biomass is an attractive carbon
source for bio-based fuel and chemical production;
however, its compositional heterogeneity hinders its
commercial use. Since most microbes possess carbon
catabolite repression (CCR), mixed sugars derived from
the lignocellulose are consumed sequentially, reducing
the efficacy of the overall process. To overcome this
barrier, microbes that exhibit the simultaneous con-
sumption of mixed sugars have been isolated and/or
developed and evaluated for the lignocellulosic bio-
mass utilization. Specific strains of Escherichia coli,
Saccharomyces cerevisiae, and Zymomonas mobilis have
been engineered for simultaneous glucose and xylose
utilization via mutagenesis or introduction of a xylose
metabolic pathway. Other microbes, such as Lactobacil-
lus brevis, Lactobacillus buchneri, and Candida shehatae
possess a relaxed CCR mechanism, showing simulta-
neous consumption of glucose and xylose. By exploiting
CCR-negative phenotypes, various integrated processes
have been developed that incorporate both enzyme
hydrolysis of lignocellulosic material and mixed sugar

fermentation, thereby enabling greater productivity and
fermentation efficacy.
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Introduction

Use of lignocellulosic biomass is currently under intensive
study as an alternative growth substrate for bio-based
chemical and energy production. Despite the advantages
in sustainability and availability, commercial use of
lignocellulose is still problematic. Due to the complexity
of lignocellulosic materials, hydrolysis of hemicellulose
and cellulose into five- and six-carbon sugars has to be
carried out prior to, or concurrently with, the fermenta-
tion. During the fermentation of sugars released by
hydrolysis, microorganisms tend to selectively utilize a
preferred sugar, usually glucose. This preferential con-
sumption of sugar, termed carbon catabolite repression
(CCR), makes it challenging to design and efficiently
control the fermentation processes using lignocellulosic
biomass as a feedstock.

The development of microorganisms to ferment sugars
released from lignocellulosic biomass, either through
selection of new strains or by genetic engineering of
traditional strains, has generally focused on generating
maximum product yield from total available sugar. How-
ever, the pattern of substrate utilization is also important in
overall process design as simultaneous use of all sugars is
likely to lead to a shorter and more productive process. In
this review, we present several microbial strains that can
utilize mixed sugars simultaneously and discuss the
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advantages in lignocellulosic biomass utilization in terms of
fermentation process design.

Fermentation of mixed sugars derived
from lignocellulosic biomass

Lignocellulose is one of the structural materials of the plant
cell wall that contains the heterogeneous complex of
cellulose, hemicellulose, and lignin (Buchanan et al.
2000). Cellulose is a β-1,4-linked homopolymer of
glucose, whereas hemicellulose is a heteropolymer of
hexoses (glucose) and pentoses (mainly xylose and arabi-
nose). Lignin, another component of lignocellulose, is a
heterogeneous polymer of phenylpropanoid units that gives
the tensile strength of plant material (Boerjan et al. 2003).
To use a lignocellulosic biomass as a substrate for a bio-
based chemical production, hydrolysis of cellulose and
hemicellulose has to be achieved prior to the fermentation
of the resulting mixed sugars. Hemicellulose can be
chemically degraded at high pressure and high temperature
by chemicals such as ammonia (Ammonia fiber explosion:
AFEX) or at ambient temperature by dilute sulfuric acid
(<1.2%) (Dale and Moreira 1982; Holtzapple et al. 1992;
Ropars et al. 1992; Schell et al. 1991). However, cellulose
fiber is hydrolyzed to glucose enzymatically by the
commercially available cellulases and cellobiases.

Lignocellulosic biomass is comprised of up to 45%
hemicellulose. Therefore, in order to achieve maximum
product yield and productivity, a complete utilization of
mixed sugars derived from hemicellulose is essential (Saha
2003). While many fermentation microbes are able to
utilize pentose sugars, catabolism of these pentose sugars is
typically suppressed by glucose derived from cellulose
(Stulke and Hillen 1999). This selective and sequential
utilization of mixed sugars by most microbes makes the
fermentation process complex and often reduces the yields
and productivity on the target biomass (Bothast et al. 1999).
When sugars are consumed sequentially during the fed-
batch fermentations, the non-preferred sugars (such as
pentoses) accumulate in the media until the preferred sugar
(i.e., glucose) is completely consumed (Fig. 1a). Due to the
high concentration of inhibitory fermentative end products,
such as lactic acid or ethanol, the utilization rate of the
remaining pentose sugars is slower than if it had been
fermented as a sole carbohydrate. Furthermore, if a small
amount of glucose is left in the media, pentoses will not be
utilized and remain unfermented (Fig. 1b). To avoid the
accumulation of pentoses, sequential fermentations of all
available glucose and pentose sugars have to be repeated
after addition of new substrates during fed-batch fermenta-
tion (Fig. 1c). This frequent change of available carbon
sources causes a non-steady state of growth, making it

difficult to predict and control the fermentation process and
causing delays between different growth phases. Sequential
utilization of mixed sugars, therefore, limits the overall
process design and optimization, and restricts maximum
yield and productivity of lignocellulosic biomass.

An integrated process of hydrolysis and fermentation,
termed simultaneous saccharification and fermentation
(SSF), has been well established using cellulosic fiber as
a sole carbon source. The advantage of SSF is the removal
of glucose by fermentation preventing feedback inhibition
of the cellulolytic enzyme. However, to ensure that no
glucose remains in the medium, the glucose utilization rate
of the microorganism needs to be higher than the glucose
production rate by enzymatic hydrolysis. In other words,
maximum efficacy of SSF can be achieved when the
fermentative microbes are maintained at the interface
between substrate-limiting and substrate-rich conditions.
During SSF, the fermentative microbe constantly consumes
glucose which, in turn, activates CCR. However, if
lignocellulosic biomass is used as a substrate, then the
overall SSF process must contend with sequential mixed
substrate utilization. Pentose sugars will accumulate and
remain unfermented in the media during the SSF process. If
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Fig. 1 Schematic diagram of mixed sugar utilization during fed-batch
fermentation by CCR positive strain. a Pentoses (line) accumulate while
glucose (dotted line) is completely consumed. Remaining pentoses is
utilized only after depletion of glucose. b Pentoses (line) accumulate
during the consumption of glucose. Due to the incomplete consumption
of glucose, pentoses cannot be fermented. c Repetitive sequential
utilization of glucose and pentoses. Additional mixed sugar substrate is
added after complete and sequential consumption of glucose and pentoses
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carried out in a fed-batch mode, sequential utilization by
the host microorganism results in a consecutive repeat of
SSF and pentose fermentation which does not truly achieve
a full integration of hydrolysis and fermentation.

One solution to the problem of sequential utilization of
lignocellulosic-derived sugars is to employ CCR-negative
microorganisms. With such microbes, pentoses are co-
utilized with glucose and accumulation of pentose sugars
did not occur during the fermentation. If pentose utilization
is as efficient as glucose utilization, the fermentation
process can be designed as if a single carbohydrate were
present in the medium. CCR-negative strains have parti-
cular merit when operating in SSF mode using lignocellu-
lose hydrolysate (termed simultaneous saccharification and
co-fermentation; SSCF). In such a process, pentose utiliza-
tion and SSF of cellulosic fiber occur independently in a
single reactor without the interference from each process. In
SSCF, microbial utilization of glucose maximizes the
cellulolytic activity by removing feedback inhibition. At
the same time, the simultaneous pentose metabolism
ensures that microorganisms maintain optimum and steady
state cellular activity.

Bacterial carbon catabolite repression

Microorganisms regulate their catabolic activity in
response to environmental nutrients. Because glucose
is the most abundant carbohydrate monomer, bacterial
metabolic pathways have evolved for glucose utilization
and, therefore, efficient generation of energy is achieved
through oxidation of glucose (Lengeler et al. 1999). At
the same time, most bacteria possess alternative sugar
utilization mechanisms as well to survive in competitive
mixed sugar environments. In this case, hierarchical
control of sugar utilization is accomplished by a complex
regulatory mechanism and is a common phenomenon of
bacteria (Lengeler et al. 1999). Although the control
mechanisms, often called CCR, are different between
Gram-negative and Gram-positive bacteria, the use of a
secondary sugar is generally controlled in two layers. In
the first layer, the transport of a secondary sugar is
inhibited when a preferred sugar is present, a process
called inducer exclusion (or repulsion). In the second
layer, transcription of catabolic enzyme for a secondary
sugar is regulated by two mechanisms. First, the
expression of catabolic enzymes requires an inducer.
Commonly, transcription of catabolic enzymes is sup-
pressed by a repressor protein that is released by binding
with the secondary sugar. Second, transcription of
catabolic enzymes is co-repressed by a carbon catabolite
control protein (CcpA; in Gram-positive bacteria (Stulke
and Hillen 2000)) or activated by catabolite repression

protein (CRP) complex (in Gram-negative bacteria
(Stulke and Hillen 1999)).

Co-consumption of mixed sugars by CCR-negative
strains

Targeted genetic engineering for a CCR-negative
phenotype

Escherichia coli is widely used as a host strain for
industrial processes. As described above, three different
mechanisms are involved in CCR in E. coli. Inducer
exclusion is achieved by being coupled to the
phosphoenolpyruvate-dependent sugar phosphotransferase
system (PTS) for each specific carbohydrate (Lengeler
1996). As shown in Fig. 2a, translocation occurs by the
specific sugar transporter of the EII B and EII C complex
(EII BC) accompanied by the phosphorylation of the
respective sugar. The phosphate group originates on
phosphoenolpyruvate (PEP) and is transferred sequentially
to EI, HPr, and finally to EII A. Among these components,
the glucose-specific EII A (EII Aglc) is a key element for
CCR in E. coli. In the presence of glucose, dephosphory-
lated EII Aglc is more abundant than phosphorylated EII A
(EII Aglc-P) because the phosphate group in EII A is
transferred to glucose with high affinity. EII Aglc then binds
onto the EII BC complex of carbohydrates other than
glucose and inhibits translocation of these other sugars
(a process called inducer exclusion). When glucose is
absent, EII Aglc-P predominates and cannot bind the EII BC
complexes of other carbohydrates, which relives the
inducer exclusion. In addition to inducer exclusion, EII
Aglc plays an important role in CRP-cAMP-mediated
activation of catabolic gene transcription (Fig. 2b). Phos-
phorylated EII Aglc (EII Aglc-P) activates the adenyl cyclase
(AC), which, in turn, converts ATP to cyclic AMP (cAMP).
The CRP then binds with cAMP and interacts with the
upstream regulation region of catabolic operons for alter-
native sugars, thereby activating transcription.

A CCR-negative phenotype of E. coli has been achieved
by the manipulation of the pstG gene encoding the EII Aglc.
Through a deletion mutation of ptsG, inducer exclusion can
be relieved enabling the translocation of alternative sugars
in the presence of glucose. As noted, EII Aglc is also
involved in the CRP-cAMP-mediated transcriptional acti-
vation of catabolic genes for the alternative sugar. However,
disruption of ptsG successfully achieved simultaneous
sugar consumption suggesting that the inducer exclusion
is more important for CCR (Kimata et al. 1997). Based on
this observation, Nichols and co-workers engineered an E.
coli strain that is a CCR-negative phenotype and produce
ethanol exclusively from lignocellulosic materials (Nichols
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et al. 2001). Starting from E. coli NZN111, a strain that
contains knockout mutations in lactate dehydrogenase
(ldhA) and pyruvate-formate lyase (pfl) genes (Bunch et
al. 1997), Nichols and co-workers further deleted the
fumarate dehydrogenase (ΔfrdABCD), preventing the pro-

duction of succinic acid to minimize byproduct formation.
For production of ethanol, a plasmid encoding both
pyruvate decarboxylase (pdc) and alcohol dehydrogenase
(adhA) was introduced to construct an ethanol-producing
pathway. At the same time, the CCR-negative variant was
generated by knocking out the ptsG gene. As a result,
xylose and arabinose were simultaneously consumed as fast
as glucose, suggesting the catabolic pathways for xylose
and arabinose were fully activated despite the presence of
glucose in the medium (E. coli FRB16; Fig. 2c).

Co-utilization of mixed sugars by metabolic pathway
implantation

In addition to the modulation of a specific CCR component,
different metabolic engineering approaches result in a
simultaneous sugar utilization in microorganisms that do
not naturally use five-carbon sugars, even in the absence of
glucose. To enable pentose utilization, the metabolic
pathway for xylose and/or arabinose metabolism of E. coli
was transferred into Zymomonas mobilis (Lawford and
Rousseau 2002; Zhang et al. 1995). Since the pentose
metabolic pathway came from an exogenous source, Z.
mobilis host regulation (CCR or otherwise) did not govern
its expression, resulting in co-utilization of glucose and
pentoses (Joachimsthal and Rogers 2000; Lawford and
Rousseau 2002). However, since Z. mobilis did not have a
specific transporter for xylose (or arabinose) (Parker et al.
1995), the consumption of pentoses was slow. When this
strain was grown on the same initial amounts of xylose and
glucose, less than 10% of the xylose was consumed, while
the glucose was completely depleted. Perhaps future
engineering to introduce an exogenous pentose transport
system into this organism will further increase pentose co-
utilization in this strain.

Saccharomyces cerevisiae has long history of develop-
ment as a host strain for ethanol production from renewable
resources, including lignocellulosic biomass. The genes
necessary for xylose catabolism have been incorporated
into S. cerevisiae to produce ethanol from mixtures of
glucose and xylose (Hahn-Hagerdal et al. 2007; Ho et al.
1998; Kuyper et al. 2004; Sedlak and Ho 2004a). As was
the case with Z. mobilis, heterologous xylose catabolism
was expressed regardless of the presence of glucose, thus
enabling the simultaneous utilization of glucose and
xylose. In spite of this capacity, a lack of xylose-specific
transporter in engineered strains has hindered the efficient
use of xylose in a mixed sugar fermentation. It has been
reported that S. cerevisiae transports xylose and glucose
using the same transporter, and the presence of glucose
inhibited xylose uptake and its utilization rate (Meinander
and HahnHagerdal 1997; Sedlak and Ho 2004b). While
S. cerevisiae has 18 different hexose transport proteins
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Fig. 2 Carbon catabolite repression of E. coli and simultaneous sugar
utilization by CCR-negative strain. a Schematic diagram of inducer
exclusion and b CRP mediated transcription activation in E. coli. c
Simultaneous sugar utilization profile by ptsG knockout mutant of E.
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components of glucose-specific PTS; EIglc, EI component of glucose-
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(Leandro et al. 2009), a study of glucose and xylose
uptake kinetics revealed that S. cerevisiae exhibited low
and high affinity uptake systems, respectively, depending
on the extracellular concentration of glucose. Xylose
could be transported both cases; however, the transporters
exhibited a low affinity for xylose when the glucose
concentration was high. Conversely, when the extracellu-
lar glucose concentration was low, there was an 85%
increase in the maximum xylose transport rate (Lee et al.
2002). Therefore, in order to fully enable the co-utilization
of xylose and glucose in this organism, glucose had to be
maintained at a low concentration (Meinander et al. 1999;
Pitkanen et al. 2003; Lee et al. 2003). Like the engineered
Z. mobilis strain, the amount of xylose consumed was only
10–20% of glucose in mixed sugar fermentation. More-
over, the xylose utilization rate was still slow even after
depletion of glucose since xylose alone cannot match the
redox balance of the cell (Lau and Dale 2009; Sedlak and
Ho 2004b). To enable the effective co-utilization of xylose
and glucose during SSCF, Olofsson and co-workers
suggested modulation of the cellulase level to maintain
a low (but not zero) concentration of glucose in order
to promote the xylose uptake and metabolism. In
this fashion, total xylose consumption was increased
to 40–80% (Bertilsson et al. 2009; Olofsson et al.
2010).

CCR-negative lactic acid bacteria for lignocellulosic
biomass utilization

CCR for lactic acid bacteria (LAB) has been reported in
Lactobacillus casei (Gosalbes et al. 1999; Veyrat et al.
1994; Viana et al. 2000), Lactobacillus pentosus (Chaillou
et al. 2001; Chaillou et al. 1999; Mahr et al. 2000),
Lactobacillus plantarum (Marasco et al. 1998), Lactoba-
cillus sakei (Zuniga et al. 1998), and Lactobacillus
delbrueckii (Morel et al. 1999; Schick et al. 1999). The
regulatory mechanism for sugar utilization in LAB is
similar to that in Bacillus subtilis, which possesses CcpA-
mediated and PTS-related CCR mechanisms (Stulke and
Hillen 1999; Titgemeyer and Hillen 2002; Warner and
Lolkema 2003). As summarized in Fig. 3a, inducer
exclusion is coupled with PTS. However, instead of EII
A, the histidine-containing phosphocarrier protein HPr
plays a key role in CCR. Histidine-phosphorylated Hpr
(P-[His]Hpr) transfers a phosphate group to incoming
carbohydrate via the EII BC complex; however, P-[His]
Hpr then interacts with the EII BC complexes of other
carbohydrates to prevent the translocation of alternative
sugars as well. At the same time, some Hpr is involved in a
CcpA-mediated transcription repression. Upon activation
by glycolytic metabolites such as a fructose 1, 6 bisphos-
phate (Fru-1,6-BisP), another enzyme, Hpr kinase,

phosphorylates the serine residue of Hpr (P-[Ser]Hpr).
P-[Ser]Hpr then complexes with CcpA and Fru-1,6-BisP.
A complex of CcpA/P-[Ser]Hpr/Fru-1,6-BisP lands on the
catabolite repression element (cre) sequence in the up-
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stream region of catabolic operons and inhibits transcription
initiation.

Recently, we reported that Lactobacillus brevis, a
facultative heterofermentative LAB, is able to simulta-
neously utilize any fermentable sugars present in the media
(Kim et al. 2009). As shown in Fig. 3b, both glucose and
xylose were consumed simultaneously and completely.
Importantly, xylose was utilized as efficiently as glucose
exhibiting similar specific consumption rates. Moreover,
the specific consumption rate of total sugar during the
mixed sugar fermentation was the same as when either
glucose or xylose was fermented separately as a sole carbon
source. These fermentation kinetics enable a mixed sugar
fermentation process to be designed as if a single carbon
source existed in the medium. When rice straw hydrolysate
was used as a carbon source, the resulting mixed sugars
were utilized simultaneously as well, and the kinetic
parameters were equivalent to mixed sugar fermentations
using rich media. These results suggest that L. brevis is also
resistant to possible inhibitors commonly present in
lignocellulosic hydrolysate. When applied in an integrated
process (termed simultaneous saccharification and mixed
sugar fermentation (SSMSF)), the hydrolysis of cellulose
and fermentation of mixed sugars were carried out
independently, yet simultaneously, without cross inhibition.
Efficient consumption of glucose by L. brevis completely
relieved feedback inhibition of cellulase and cellobiase.
Moreover, xylose and arabinose derived from hemicellulose
were simultaneously consumed, thus providing a consistent
energy source even when concentration of glucose reached
zero to remove the feedback inhibition of enzymes. As a
consequence, sugar utilization and product formation
profiles during SSMSF were similar to those observed in
a control mixed sugar fermentations using rich media
(Kim et al. 2010b).

While components of CCR have been observed in L.
brevis (Chaillou et al. 1998; Kim et al. 2009; Reizer et al.
1987, 1988), a putative mechanism enabling simultaneous
sugar utilization was proposed (Fig. 3c) (Kim et al. 2009).
Instead of PTS, the sugar transport system of L. brevis
consists of H+ symporters that operate at the expense of the
proton motive force for the translocation of sugar. As
shown by the work of Saier (Djordjevic et al. 2001; Ye and
Saier 1995a, b), when glucose is present in the media, the
transport mechanism for secondary sugar such as xylose or
galactose changes from H+ symport to facilitated diffusion.
This results in xylose or galactose in the cytosol being
excreted into medium, thereby achieving inducer exclusion.
However, it also opens up the possibility that external
(secondary) sugars can be imported via facilitated diffusion,
depending on the cytosolic concentration of that sugar.
Moreover, introduction of a secondary sugar into cytosol
via facilitated diffusion can relieve the transcription

repression by the repressor protein. Consequently, the
CcpA–Hpr complex-mediated transcriptional repression
solely regulates the CCR in L. brevis. Through this
mechanism, the co-presence of glucose and a pentose sugar
possibly relaxes the CCR of sugar utilization.

A similar CCR-negative phenotype has been found in
two other Lactobacillus species. Lactobacillus buchneri
NRRL B-30929, a strain isolated at a fuel ethanol
production facility, exhibited co-utilization of glucose and
xylose (Liu et al. 2008). Fermentation of lignocellulosic
hydrolysate by NRRL B-30929 demonstrated that the strain
could simultaneously and completely consume mixed
sugars, while producing lactate, acetate, and ethanol (Liu
et al. 2009). Recently, we generated a CCR-negative mutant
of Lactobacillus pentosus by repeated selection in the
presence of 2-deoxyglucose (Kim et al. 2010a). This
derived strain can utilize a broad range of sugar substrates
simultaneously with glucose. Notably, both L. pentosus
JH5XP5 and L. buchneri NRRL B-30929 are able to
produce ethanol with similar or higher molar yields than
lactate when grown on hexoses, suggesting the potential
use of these strains in the bio-ethanol production from
lignocellulosic biomass.

Other CCR-negative microorganisms

Although CCR is considered a common regulation mech-
anism for microorganisms, there are several microbes for
which simultaneous utilization of mixed carbon sources has
been reported. Many LAB are able to consume citrate
with glucose simultaneously (Kennes et al. 1991; Ramos
et al. 1994). Streptococcus thermophilus was shown to
co-metabolize lactose and sucrose (Poolman et al. 1995).
Co-utilization of glucose and glycerol has been observed in
Lactobacillus reuteri and L. brevis (El-Ziney et al. 1998;
Veiga da Cunha and Foster 1992). Maltose and fructose co-
fermentation has been reported in L. brevis subsp. lindneri
CB1 (Gobbetti and Corsetti 1996). Other bacteria have also
been shown to simultaneously consume sugars as well.
Clostridium thermohydrosulfuricum can co-metabolize
mixtures of glucose and xylose as well as combinations of
cellobiose, xylose, and xylobiose (Cook et al. 1993; Slaff
and Humphrey 1986).

Ruminal bacteria are able to degrade cellulose and
hemicelluloses and to ferment the resulting sugars. Two
Butyrivibrio fibrisolvens strains were shown to utilize
xylose and glucose simultaneously (Marounek and
Kopecny 1994). B. fibrisolvens strain D1 consumed glucose
and xylose simultaneously, but preferred xylose over
arabinose. Interestingly, this strain showed strong prefer-
ence for disaccharides such as maltose and cellobiose over
glucose and pentose sugars (Strobel and Dawson 1993).
Ruminococcus albus preferred cellobiose over xylose and
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arabinose as well, but was able to utilize glucose and xylose
simultaneously (Thurston et al. 1994). Another ruminal
bacterium, Prevotella ruminicola B14, was shown to
simultaneously metabolize pentoses and glucose or maltose,
but the strain preferentially fermented pentoses over
cellobiose and preferred xylose to sucrose (Strobel 1993).

Finally, two eukaryotic strains have shown CCR-
negative phenotypes. Maheshwari and Balasubramanyam
reported that an unidentified thermophilic fungus could
simultaneously consume glucose and sucrose (Maheshwari
and Balasubramanyam 1988). In addition Candida shehatae,
a strain used for the lignocellulosic biomass utilization,
exhibited simultaneous consumption of glucose with xylose
(Kastner et al. 1998; Kastner and Roberts 1990).

Conclusion

In terms of substrate utilization and predictable control of
overall process, CCR-negative microorganisms appear ideal
for mixed sugar utilization. However, the fermentation
characteristics of only a few CCR-negative strains have
been studied, much less their potential application for the
lignocellulose-based processes. Most current strain devel-
opment mainly focuses on the product yield, for example,
by removing the byproduct formation or enabling xylose
utilization. However, when considering the whole produc-
tion scheme, it is just as important to consider how the
fermentation host strains consume the mixed substrates as
how much target bioproduct they produce.
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References

Bertilsson M, Olofsson K, Liden G (2009) Prefermentation improves
xylose utilization in simultaneous saccharification and co-
fermentation of pretreated spruce. Biotechnol Biofuels 2:8

Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu
Rev Plant Biol 54:519–546

Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new
recombinant organisms. Biotechnol Progr 15(5):867–875

Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and
molecular biology of plants. American Society of Plant Physiol-
ogists, Rockville

Bunch PK, MatJan F, Lee N, Clark DP (1997) The ldhA gene
encoding the fermentative lactate dehydrogenase of Escherichia
coli. Microbiology 143:187–195

Chaillou S, Bor Y-C, Batt CA, Postma PW, Pouwels PH (1998)
Molecular cloning and functional expression in Lactobacillus
plantarum 80 of xylT, encoding the D-xylose-H+ symporter of

Lactobacillus brevis. Appl Environ Microbiol 64(12):4720–
4728

Chaillou S, Pouwels PH, Postma PW (1999) Transport of D-xylose in
Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus
plantarum: evidence for a mechanism of facilitated diffusion via
the phosphoenolpyruvate: mannose phosphotransferase system. J
Bacteriol 181(16):4768–4773

Chaillou S, Postma PW, Pouwels PH (2001) Contribution of the
phosphoenolpyruvate:mannose phosphotransferase system to
carbon catabolite repression in Lactobacillus pentosus. Microbi-
ology 147(3):671–679

Cook GM, Janssen PH, Morgan HW (1993) Simultaneous uptake and
utilization of glucose and xylose by Clostridium thermohydro-
sulfuricum. FEMS Microbiol Lett 109(1):55–61

Dale BE, Moreira MJ (1982) A freeze explosion technique for
increasing cellulose hydrolysis. Biotechnol Bioeng 12:31–43

Djordjevic GM, Tchieu JH, Saier MH (2001) Genes involved in
control of galactose uptake in Lactobacillus brevis and reconsti-
tution of the regulatory system in Bacillus subtilis. J Bacteriol
183(10):3224–3236

El-Ziney MG, Arneborg N, Uyttendaele M, Debevere J, Jakobsen M
(1998) Characterization of growth and metabolites production of
Lactobacillus reuteri during glucose/glycerol cofermentation in
batch and continuous cultures. Biotechnol Lett 20(10):913–916

Gobbetti M, Corsetti A (1996) Co-metabolism of citrate and maltose
by Lactobacillus brevis subsp. lindneri CB1 citrate-negative
strain: effect on growth, end-products and sourdough fermenta-
tion. Z Lebensm-Unters Forsch 203(1):82–87

Gosalbes MJ, Monedero V, Perez-Martinez G (1999) Elements
involved in catabolite repression and substrate induction of the
lactose operon in Lactobacillus casei. J Bacteriol 181(13):3928–
3934

Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF
(2007) Metabolic engineering for pentose utilization in Saccha-
romyces cerevisiae. Biofuels 108:147–177

Ho NW, Chen Z, Brainard AP (1998) Genetically engineered
Saccharomyces yeast capable of effective cofermentation of
glucose and xylose. Appl Environ Microbiol 64(5):1852–1859

Holtzapple MT, Lundeen JE, Sturgis R, Lewis JE, Dale BE (1992)
Pretreatment of lignocellulosic municipal solid waste by ammo-
nia fiber explosion (AFEX). Appl Biochem Biotechnol 34-5:5–
21

Joachimsthal EL, Rogers PL (2000) Characterization of a high-
productivity recombinant strain of Zymomonas mobilis for
ethanol production from glucose/xylose mixtures. Appl Biochem
Biotechnol 84-6:343–356

Kastner JR, Roberts RS (1990) Simultaneous fermentation of D-xylose
and glucose by Candida shehatae. Biotechnol Lett 12(1):57–60

Kastner JR, Jones WJ, Roberts RS (1998) Simultaneous utilization of
glucose and D-xylose by Candida shehatae in a chemostat. J Ind
Microbiol Biotechnol 20(6):339–343

Kennes C, Veiga MC, Dubourguier HC, Touzel JP, Albagnac G,
Naveau H, Nyns EJ (1991) Trophic relationships between
Saccharomyces cerevisiae and Lactobacillus plantarum and their
metabolism of glucose and citrate. Appl Environ Microbiol 57
(4):1046–1051

Kim J-H, Shoemaker SP, Mills DA (2009) Relaxed control of sugar
utilization in Lactobacillus brevis. Microbiology 155(4):1351–
1359

Kim J-H, Mills DA, Block DE, Shoemaker SP (2010a) Atypical
ethanol production by carbon catabolite derepressed lactobacilli.
Bioresour Technol 101(22):8790–8797

Kim J-H, Mills DA, Block DE, Shoemaker SP (2010b) Conversion of
rice straw to bio-based chemicals: an integrated process using
Lactobacillus brevis. Appl Microbiol Biotechnol 86(5):1375–
1385

Appl Microbiol Biotechnol (2010) 88:1077–1085 1083



Kimata K, Takahashi H, Inada T, Postma P, Aiba H (1997) cAMP
receptor protein–cAMP plays a crucial role in glucose–
lactose diauxie by activating the major glucose transporter
gene in Escherichia coli. Proc Natl Acad Sci USA 94(24):12914–
12919

Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal
metabolic engineering of Saccharomyces cerevisiae for efficient
anaerobic xylose fermentation: a proof of principle. FEMS Yeast
Res 4(6):655–664

Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-
treated corn stover using Saccharomyces cerevisiae 424A(LNH-
ST). Proc Natl Acad Sci USA 106(5):1368–1373

Lawford HG, Rousseau JD (2002) Performance testing of Zymo-
monas mobilis metabolically engineered for cofermentation of
glucose, xylose, and arabinose. Appl Biochem Biotechnol
98:429–448

Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose
transport in ascomycetous yeasts: an overview. FEMS Yeast Res
9(4):511–525

Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies
on glucose and xylose transport in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol 60(1–2):186–191

Lee WJ, Kim MD, Yoo MS, Ryu YW, Seo JH (2003) Effects of
xylose reductase activity on xylitol production in two-substrate
fermentation of recombinant Saccharomyces cerevisiae. J Micro-
biol Biotechnol 13(5):725–730

Lengeler JW (1996) The phosphoenolpyruvate-dependent carbohy-
drate: phosphotransferase system (PTS) and control of carbon
source utilization. In: Lin ECC, Lynch AS (eds) Regulation of
gene expression in Escherichia coli. R. G. Landes Co., Austin,
Texas, pp 231–254

Lengeler JW, Drews G, Schlegel HG (1999) Biology of the
prokaryotes. Blackwell, New York

Liu SQ, Skinner-Nemec KA, Leathers TD (2008) Lactobacillus
buchneri strain NRRL B-30929 converts a concentrated mixture
of xylose and glucose into ethanol and other products. J Ind
Microbiol Biotechnol 35(2):Cp4–Cp81

Liu S, Bischoff KM, Hughes SR, Leathers TD, Price NP, Qureshi N,
Rich JO (2009) Conversion of biomass hydrolysates and other
substrates to ethanol and other chemicals by Lactobacillus
buchneri. Lett Appl Microbiol 48(3):337–342

Maheshwari R, Balasubramanyam PV (1988) Simultaneous utilization
of glucose and sucrose by thermophilic fungi. J Bacteriol 170
(7):3274–3280

Mahr K, Hillen W, Titgemeyer F (2000) Carbon catabolite repression
in Lactobacillus pentosus: analysis of the ccpA region. Appl
Environ Microbiol 66(1):277–283

Marasco R, Muscariello L, Varcamonti M, De Felice M, Sacco M
(1998) Expression of the bglH gene of Lactobacillus plantarum
is controlled by carbon catabolite repression. J Bacteriol 180
(13):3400–3404

Marounek M, Kopecny J (1994) Utilization of glucose and xylose in
ruminal strains of Butyrivibrio fibrisolvens. Appl Environ Micro-
biol 60(2):738–739

Meinander NQ, HahnHagerdal B (1997) Influence of cosubstrate
concentration on xylose conversion by recombinant, XYL1-
expressing Saccharomyces cerevisiae: a comparison of different
sugars and ethanol as cosubstrates. Appl Environ Microbiol 63
(5):1959–1964

Meinander NQ, Boels I, Hahn-Hagerdal B (1999) Fermentation of
xylose/glucose mixtures by metabolically engineered Saccharo-
myces cerevisiae strains expressing XYL1 and XYL2 from
Pichia stipitis with and without overexpression of TAL1.
Bioresour Technol 68(1):79–87

Morel F, Frot-Coutaz J, Aubel D, Portalier R, Atlan D (1999)
Characterization of a prolidase from Lactobacillus delbrueckii

subsp. bulgaricus CNRZ 397 with an unusual regulation of
biosynthesis. Microbiology 145(2):437–446

Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression
mutants for fermentation of sugar mixtures to ethanol. Appl
Microbiol Biotechnol 56(1–2):120–125

Olofsson K, Wiman M, Liden G (2010) Controlled feeding of
cellulases improves conversion of xylose in simultaneous
saccharification and co-fermentation for bioethanol production.
J Biotechnol 145(2):168–175

Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995)
Characterization of the Zymomonas mobilis glucose facilitator
gene product (Glf) in recombinant Escherichia coli—examination
of transport mechanism, kinetics and the role of glucokinase in
glucose transport. Mol Microbiol 15(5):795–802

Pitkanen JP, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M (2003)
Metabolic flux analysis of xylose metabolism in recombinant
Saccharomyces cerevisiae using continuous culture. Metab Eng 5
(1):16–31

Poolman B, Knol J, Mollet B, Nieuwenhuis B (1995) Regulation of
bacterial sugar-H+ symport by phosphoenolpyruvate-dependent
enzyme I/HPr-mediated phosphorylation. Proc Natl Acad Sci
USA 92(3):778–782

Ramos A, Jordan KN, Cogan TM, Santos H (1994) 13C nuclear
magnetic resonance studies of citrate and glucose cometabolism
by Lactococcus lactis. Appl Environ Microbiol 60(6):1739–1748

Reizer J, Peterkofsky A, Romano AH (1987) Evidence for Hpr in
Lactobacillus brevis in the absence of transport function. Abstr
Annu Meet Am Soc Microbiol 87:228

Reizer J, Peterkofsky A, Romano AH (1988) Evidence for the
presence of heat-stable protein (HPr) and ATP-dependent HPr
kinase in heterofermentative lactobacilli lacking phosphoenol-
pyruvate:glycose phosphotransferase activity. Proc Natl Acad Sci
USA 85(7):2041–2045

Ropars M, Marchal R, Pourquie J, Vandecasteele JP (1992) Large
scale enzymatic hydrolysis of agricultural lignocellulosic bio-
mass. Part 1: pretreatment procedures. Bioresour Technol 42
(3):197–204

Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol
Biotechnol 30(5):279–291

Schell DJ, Torget R, Power A, Walter PJ, Grohmann K, Hinman ND
(1991) A technical and economic analysis of acid catalyzed
steam explosion and dilute sulfuric acid pretreatments using
wheat straw or aspen wood chips. Appl Biochem Biotechnol 28–
9:87–97

Schick J, Weber B, Klein JR, Henrich B (1999) PepR1, a CcpA-like
transcription regulator of Lactobacillus delbrueckii subsp lactis.
Microbiology 145(11):3147–3154

Sedlak M, Ho NWY (2004a) Characterization of the effectiveness of
hexose transporters for transporting xylose during glucose and
xylose co-fermentation by a recombinant Saccharomyces yeast.
Yeast 21(8):671–684

Sedlak M, Ho NWY (2004b) Production of ethanol from cellulosic
biomass hydrolysates using genetically engineered Saccharomyces
yeast capable of cofermenting glucose and xylose. Appl Biochem
Biotechnol 113–16:403–416

Slaff GF, Humphrey AE (1986) The growth of Clostridium thermy-
drosulfuricum on multiple substrates. Chem Eng Commun 45(1–
6):33–51

Strobel HJ (1993) Pentose utilization and transport by the ruminal
bacterium Prevotella ruminicola. Arch Microbiol 159(5):465–
471

Strobel HJ, Dawson KA (1993) Xylose and arabinose utilization by
the rumen bacterium Butyrivibrio fibrisolvens. FEMS Microbiol
Lett 113(3):291–296

Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria.
Curr Opin Microbiol 2(2):195–201

1084 Appl Microbiol Biotechnol (2010) 88:1077–1085



Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus
species. Annu Rev Microbiol 54(5):849–880

Thurston B, Dawson KA, Strobel HJ (1994) Pentose utilization by the
ruminal bacterium Ruminococcus albus. Appl Environ Microbiol
60(4):1087–1092

Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a
Gram-positive solution. Anton Leeuw Int J G 82(1–4):59–71

Veiga da Cunha M, Foster MA (1992) Sugar–glycerol cofermentations
in lactobacilli: the fate of lactate. J Bacteriol 174(3):1013–1019

Veyrat A, Monedero V, Perez-Martinez G (1994) Glucose transport by
the phosphoenolpyruvate:mannose phosphotransferase system in
Lactobacillus casei ATCC 393 and its role in carbon catabolite
repression. Microbiology 140(5):1141–1149

Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Perez-Martinez
G, Deutscher J (2000) Enzyme I and HPr from Lactobacillus
casei: their role in sugar transport, carbon catabolite repression
and inducer exclusion. Mol Microbiol 36(3):570–584

Warner JB, Lolkema JS (2003) CcpA-dependent carbon catabolite
repression in bacteria. Microbiol Mol Biol Rev 67(4):475

Ye JJ, Saier MH (1995a) Allosteric regulation of the glucose: H+

symporter of Lactobacillus brevis: cooperative binding of
glucose and HPr(ser-P). J Bacteriol 177(7):1900–1902

Ye JJ, Saier MH (1995b) Cooperative binding of lactose and the
phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/
H+ symport permease of Lactobacillus brevis. Proc Natl Acad Sci
USA 92(2):417–421

Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995)
Metabolic engineering of a pentose metabolism pathway in
ethanologenic Zymomonas mobilis. Science 267(5195):240–
243

Zuniga M, Champomier-Verges M, Zagorec M, Perez-Martinez G
(1998) Structural and functional analysis of the gene cluster
encoding the enzymes of the arginine deiminase pathway of
Lactobacillus sake. J Bacteriol 180(16):4154–4159

Appl Microbiol Biotechnol (2010) 88:1077–1085 1085


	Simultaneous...
	Abstract
	Introduction
	Fermentation of mixed sugars derived from lignocellulosic biomass
	Bacterial carbon catabolite repression
	Co-consumption of mixed sugars by CCR-negative strains
	Targeted genetic engineering for a CCR-negative phenotype
	Co-utilization of mixed sugars by metabolic pathway implantation
	CCR-negative lactic acid bacteria for lignocellulosic biomass utilization
	Other CCR-negative microorganisms

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


