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1 Introduction

Conformal field theories (CFTs) offer delightful examples of quantum field theories that

are strongly coupled, yet contain enough symmetry and structure that they may turn out

to be tractable if the right techniques are found. Until recently, the idea of exploiting

this structure in order to find complete non-perturbative solutions to theories was only

carried out successfully in 2D, most notably in the seminal work of [1]. However, over the

last several years great progress has been made at developing the conformal bootstrap [2]

approach to CFTs in D > 2, where a large number of nontrivial bounds have been found

which follow very generally from the constraints of crossing symmetry and unitarity [3–15].

The results obtained so far have been particularly striking in 3D, where it was found in [12]

that the CFT described by the critical 3D Ising model occupies a special place in the space

allowed by crossing symmetry and unitarity. Moreover it appears possible that a robust

numerical solution to this theory can be obtained using bootstrap techniques [16].

In this paper we will extend the work of [12] to study 3D CFTs with an O(N) global

symmetry using the conformal bootstrap. We will focus on theories containing a scalar field

φi(x) in the vector representation of O(N). The most notable theories falling into this class
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are the critical O(N) vector models [17, 18], which describe second-order phase transitions

in a variety of real-world systems at small values of N [19], and are also solvable in a 1/N

expansion at large values of N (see [20] for a review). Moreover, the O(N)-singlet sector

of this theory is thought to be holographically described by a higher-spin gauge theory in

AdS4 [21]. Previously, bootstrap ideas have been applied to the O(N) vector models in the

1/N expansion, for example in work by Lang and Rühl [22–27], Petkou [28, 29], and more

recently Maldacena and Zhiboedov [30, 31]. Our approach allows bootstrap constraints to

be studied (albeit numerically) at any value of N .

Our primary goal, following previous numerical studies of the bootstrap [3–15], will

be to place general upper bounds on the scaling dimensions of the first nontrivial scalar

operators (both O(N) singlets S and O(N) symmetric tensors Tij) in the φi × φj operator

product expansion (OPE). We will also place general lower bounds on the central charge

c, defined as the coefficient appearing in the two-point function of the stress-energy tensor.

We will then compare these bounds to the best previous results based on Monte Carlo

simulations, analytical estimates, and the 1/N expansion. In all cases where results are

known (including small values of N), we find that the O(N) vector models saturate our

bounds, and moreover sit near special locations in the space allowed by crossing symmetry.

Inputting the previously measured values of ∆φ, this allows us to give sharp predictions

for ∆S , ∆T , and c for different values of N .

In order to efficiently implement the bootstrap in the presence of a global symmetry,

we will use techniques based on semidefinite programming, developed for 4D CFTs in [10].

Here we will show how to adapt this technique for CFTs in an arbitrary number of space-

time dimensions. This requires approximating conformal blocks as rational functions of

the exchanged operator dimension ∆, and we will show that such a rational approximation

follows directly from a recursion relation expressing a general conformal block as a sum

over poles ∼ 1/(∆ − ∆∗) occurring at special (non-unitary) values of the dimension ∆∗

where the conformal multiplet contains a null state. This conformal block representation

generalizes an idea of Zamolodchikov, first applied to Virasoro blocks in 2D [32, 33], to

arbitrary space-time dimensions.

This paper is organized as follows. In section 2 we review the formulation of the

conformal bootstrap for CFTs containing an O(N) global symmetry, as well as convex

optimization techniques for placing bounds on operator dimensions and OPE coefficients.

In section 3 we show how to find rational representations for conformal blocks in arbitrary

space-time dimensions, presenting a new recursion relation for conformal blocks as a sum

over poles in ∆. In section 4 we present our bounds and a comparison with the O(N)

vector models. We conclude in section 5.

2 Conformal bootstrap with O(N) global symmetry

2.1 Statement of crossing symmetry

Let us briefly review the formulation of the conformal bootstrap for 3D CFTs with an O(N)

global symmetry. Further details can be found in [8–10]. We focus on theories containing
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a scalar primary operator φi of dimension ∆φ, transforming as a fundamental under O(N).

The operator product of φi with itself takes the schematic form

φi × φj ∼
∑

S+

δijO +
∑

T+

O(ij) +
∑

A−

O[ij] , (2.1)

where S+ denotes O(N) singlets of even spin, T+ denotes O(N) symmetric tensors of even

spin, and A− denotes O(N) anti-symmetric tensors of odd spin.

By pairing up φ’s and performing the OPE, a four-point function can be decomposed

into conformal blocks as

x
2∆φ

12 x
2∆φ

34 〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =
∑

S+

λ2
O(δijδkl)g∆,ℓ(u, v)

+
∑

T+

λ2
O

(

δilδjk + δikδjl −
2

N
δijδkl

)

g∆,ℓ(u, v)

+
∑

A−

λ2
O(δilδjk − δikδjl)g∆,ℓ(u, v) , (2.2)

where each sum runs over primary operators O of dimension ∆ and spin ℓ appearing in

φi × φj . Here, xij ≡ xi − xj , λO is the OPE coefficient of O, and the conformal blocks

g∆,ℓ(u, v) are functions of conformal cross-ratios

u = zz̄ =
x212x

2
34

x213x
2
24

, v = (1− z)(1− z̄) =
x214x

2
23

x213x
2
24

. (2.3)

The four-point function itself should be independent of how we perform the OPE.

Swapping (1, i) ↔ (3, k), we find two different conformal block expansions of a single four-

point function which must agree with each other. Writing out this condition and isolating

the coefficient of each tensor structure that appears, we obtain three equations which can

be grouped into a vector “sum rule”
∑

S+

λ2
OVS,∆,ℓ +

∑

T+

λ2
OVT,∆,ℓ +

∑

A−

λ2
OVA,∆,ℓ = 0 , (2.4)

where

VS,∆,ℓ =







0

F−
∆,ℓ

F+
∆,ℓ






, VT,∆,ℓ =







F−
∆,ℓ

(1− 2
N )F−

∆,ℓ

−(1 + 2
N )F+

∆,ℓ






, VA,∆,ℓ =







−F−
∆,ℓ

F−
∆,ℓ

−F+
∆,ℓ






, (2.5)

F±
∆,ℓ(u, v) ≡ v∆φg∆,ℓ(u, v)± u∆φg∆,ℓ(v, u) . (2.6)

The coefficients λ2
O appearing in (2.4) are unknown a-priori, with the exception of the unit

operator which has λO = 1 if φi is canonically normalized. However, we do know that the

OPE coefficients λO must be real in unitary theories, which means that λ2
O is positive.

Further, in D-dimensional unitary theories the operator dimensions must satisfy the lower

bounds [34–38]

∆ ≥
{

D−2
2 if ℓ = 0 ,

ℓ+D − 2 if ℓ > 0 ,
(2.7)

where saturation occurs for free scalars (ℓ = 0) or conserved currents (ℓ > 0).
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2.2 Bounds from convex optimization

From here, we follow the general strategy of [3] for putting bounds on CFT data. Let us

begin by isolating the unit operator in (2.4),

0 = Vunit +
∑

λ2
OVO . (2.8)

The procedure is as follows:

1. Make an assumption about the CFT spectrum, for instance that all singlet scalars

have dimension above some ∆∗.

2. Try to find a linear functional α such that

α(Vunit) > 0 ,

α(VO) ≥ 0 for all O satisfying the assumption in (1) . (2.9)

3. If such a functional exists, the assumption (1) is ruled out, since applying α to eq. (2.8)

gives a contradiction. If not, we cannot conclude anything about our assumption.

Step 2 requires us to solve a convex optimization problem: we must search over the

vector space F of linear functionals, subject to linear constraints of the form α(V ) ≥ 0.

Each linear constraint restricts us to a half-space of F , and together these half-spaces carve

out a convex subset C ⊂ F . We would like to determine whether this subset is non-empty.

In the case at hand, we will take our functional α to be linear combinations of deriva-

tives with respect to the cross-ratios z, z̄ around the crossing symmetric point z = z̄ = 1/2,

α







f1
f2
f3






=

3
∑

i=1

∑

0≤m+n<2k

aim,n∂
m
z ∂n

z̄ fi(z, z̄)
∣

∣

z=z̄=1/2
. (2.10)

The parameter k controls the dimension of the space of linear functionals that we search

over. Note that truncating this search space leads to valid, though possibly suboptimal,

bounds. As we increase k, our bounds get better and better, converging to an optimal

bound as k → ∞.

2.3 Formulation as a semidefinite program

A key difficulty in our convex optimization problem is that we have an infinite number

of constraints on α — one for each O which could appear in the OPE. We must impose

α(FR,∆,ℓ) ≥ 0 for all representations R, dimensions ∆, and spins ℓ obeying our assumptions

about the spectrum. An efficient way to deal with this infinity is to reformulate our problem

as a semidefinite program, which can include constraints of the form:

α
(

Pi(x)
)

≥ 0 for all x ≥ 0, where Pi(x) are polynomials in x . (2.11)

Systems of these inequalities can be solved efficiently using interior point methods.
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To write our constraints α(V ) ≥ 0 in this form, it suffices to find an approximation

∂m
z ∂n

z̄ g∆,ℓ(z, z̄)
∣

∣

z=z̄=1/2
≈ χℓ(∆)P

(m,n)
ℓ (∆) , (2.12)

where χℓ(∆) are positive functions, and P
(m,n)
ℓ (∆) are polynomials. (Crucially, χℓ(∆) is

independent of m,n.) Indeed, assuming eq. (2.12), and combining eqs. (2.5) and (2.10),

we see that

α(VR,∆,ℓ) ≥ 0 if and only if
∑

m,n,i

aim,nP
(m,n)
R,ℓ,i (∆) ≥ 0 , (2.13)

for polynomials P
(m,n)
R,ℓ,i (∆). The dimensions ∆ satisfy bounds ∆ ≥ ∆min,ℓ, so writing

∆ = ∆min,ℓ + x yields a set of inequalities in the form (2.11).

In [10], special analytic expressions for conformal blocks in even dimensions [39, 40]

were used to derive approximations of the form (2.12), which proved sufficient for apply-

ing semidefinite programming to even dimensional CFTs. These approximations worked

surprisingly well, but it was unclear how to generalize the techniques to CFTs in odd (or

fractional) space-time dimension.

In the next section, we will show that the existence of approximations (2.12) in any

space-time dimension follows naturally from representation theory of the conformal group.

This is sufficient for formulating our optimization problem as a semidefinite program, which

can then be solved using one of the many freely available semidefinite program solvers. We

give details of our implementation using the solver SDPA-GMP in appendix B.

3 Rational representations for conformal blocks

3.1 Why rational approximations exist

To compute CFT bounds using semidefinite programming, we need precise, systematic ap-

proximations for conformal blocks g∆,ℓ in terms of positive functions times polynomials in

∆, or equivalently positive functions times rational functions of ∆ with positive denomi-

nator. The existence of such approximations follows from conformal representation theory.

Recall that the conformal block g∆,ℓ is a sum over states in radial quantization

g∆,ℓ(u, v)

x
2∆φ

12 x
2∆φ

34

=
∑

α=O, PO, PPO, ...

〈0|φ(x1)φ(x2)|α〉〈α|φ(x3)φ(x4)|0〉
〈α|α〉 , (3.1)

where O is a conformal primary of dimension ∆ and spin ℓ, and α runs over O and all of its

descendants. It will be convenient for our discussion to use the radial coordinates of [41],

where the points xi are arranged as in figure 1, and the coordinate ρ is given in terms of

cross-ratios by

ρ =
z

(1 +
√
1− z)2

, ρ̄ =
z̄

(1 +
√
1− z̄)2

. (3.2)

The states Pµ1 · · ·Pµn |O〉 have eigenvalue ∆ + n under dilatation and can be decom-

posed into traceless symmetric tensor representations of the rotation group. It follows that

– 5 –
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x1 = −ρ

x2 = ρ

x3 = 1x4 = −1

Figure 1. Configuration of points for radial quantization in the ρ-coordinate [41].

the sum over states (3.1) can be written

g∆,ℓ(r, η) =
∞
∑

n=0

∑

j

Bn,jr
∆+n j!

(2ν)j
Cν
j (η) , (3.3)

where r = |ρ|, η = cos θ = (ρ+ ρ̄)/2|ρ|, ν = D/2− 1, and the Cν
j (η) are Gegenbauer poly-

nomials. The coefficients Bn,j can be computed straightforwardly by solving the conformal

Casimir equation

Dg∆,ℓ = C∆,ℓg∆,ℓ , C∆,ℓ = ∆(∆−D) + ℓ(ℓ+D − 2) , (3.4)

term by term around r = 0. Here, D is a second-order differential operator in the cross-

ratios u, v, representing the action of the quadratic Casimir of the conformal group on a

four-point function,

Dg(u, v) =
1

2

(

L
(1)
AB + L

(2)
AB

)(

L(1)AB + L(2)AB
)

g(u, v) . (3.5)

Further details can be found in [41].

Solving the Casimir equation to second order in r, we find [41]

B2,ℓ−2 =
ℓ(ℓ−1)(∆−ℓ−2ν)

2(ℓ+ν−1)(ℓ+ν)(∆−ℓ−2ν+1)
, B2,ℓ = ν

∆ν(ν−1)+(∆−1)ℓ(ℓ+2ν)

(∆−ν)(ℓ+ν+1)(ℓ+ν−1)
,

B2ℓ+2 =
(∆+ℓ)(ℓ+2ν)(ℓ+2ν+1)

2(∆+ℓ+1)(ℓ+ν)(ℓ+ν+1)
. (3.6)

Let us make some comments about these coefficients. First, Bn,j is a rational function

of ∆. This is a simple consequence of the Casimir equation (3.4), but it follows more

directly from the expression for g∆,ℓ as a sum over states. Each term in the numerator and

denominator of (3.1) can be computed from the action of the conformal algebra on |O〉.
This action is polynomial in ∆, so Bn,j is rational in ∆.

Secondly, the denominators of Bn,j are positive, as long as ∆ obeys the unitarity

bound (2.7). This is because poles in Bn,j occur when a state |α〉 becomes null. However,

the absence of null or negative-norm states in a conformal multiplet is precisely what defines

the unitarity bound.

– 6 –
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These facts are exactly what we need. We can obtain good approximations to conformal

blocks by truncating the expansion (3.3) at some high order r∆+N . Each term in the

resulting expression will be a rational function of ∆, times an overall factor of r∆. The

error is näıvely of order rN , which is quite small at the crossing-symmetric point r =

3 − 2
√
2 ≈ 0.17. Indeed, this näıve estimate is correct, since it can be shown that the

coefficients Bn,j are uniformly bounded as a function of ∆ for all n, j.

The cost of keeping more terms in the series expansion (3.3) is that the degree of the

resulting rational approximation grows. As we’ll see in the next subsection, this growth is

slow and under control. Further, additional tricks can improve the rational approximation

significantly without increasing the degree. We discuss these in appendix A.

3.2 Poles in ∆ and recursion relations for g∆,ℓ

We can be more precise about the structure of our rational approximations by exploiting

an idea of Zamolodchikov, originally applied to Virasoro blocks in 2 dimensions [32, 33].

Recall that poles in g∆,ℓ as a function of ∆ occur precisely at special values ∆ = ∆∗

where some state |α〉 = Pn|O〉 in the conformal multiplet of |O〉 becomes null. When

this happens, all the descendants of |α〉 become null as well, and together they form a

nontrivial sub-representation of the (now reducible) multiplet of |O〉. Since the pole in ∆

gets contributions from all states in this sub-representation, its residue is proportional to

a conformal block for a primary with the same dimension and spin as |α〉:

g∆,ℓ ∼
cα

∆−∆∗
g∆α,ℓα as ∆ → ∆∗ , (3.7)

where ∆α = ∆∗ + n, and cα is a coefficient which is independent of conformal cross-ratios.

Poles in ∆ determine g∆,ℓ up to a function which is analytic on the entire complex

plane. Thus, we can write

g∆,ℓ(r, η) = g
(∞)
ℓ (∆, r, η) +

∑

i

ci
∆−∆i

g∆i+ni,ℓi(r, η) , (3.8)

where g
(∞)
ℓ (∆, r, η) is an entire function of ∆. The block g∆,ℓ has an essential singularity

of the form r∆ as ∆ → ∞. Stripping this off, we have

h∆,ℓ(r, η) ≡ r−∆g∆,ℓ(r, η) , (3.9)

h∆,ℓ(r, η) = h
(∞)
ℓ (r, η) +

∑

i

cir
ni

∆−∆i
h∆i+ni,ℓi(r, η) . (3.10)

Note that the entire function h
(∞)
ℓ (r, η) = lim∆→∞ h∆,ℓ(r, η) is now independent of ∆, since

it has no singularities as ∆ → ∞.

With the recursion relation (3.10), we can be more explicit about the form of our

positive-times-polynomial approximation (2.12). Truncating (3.10) to a finite number of

poles ∆i, it’s clear that

∂m
z ∂n

z̄ g∆,ℓ(z, z̄)
∣

∣

z=z̄=1/2
≈ χℓ(∆)P

(m,n)
ℓ (∆) , where χℓ(∆) ≡ r∆

∏

i(∆−∆i)
, (3.11)

and r = 3− 2
√
2 is evaluated at the crossing-symmetric point.

– 7 –
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ni ∆i ℓi ci

2k 1− ℓ− 2k ℓ+ 2k c1(k) k = 1, 2, . . .

2k 1 + ν − k ℓ c2(k) k = 1, 2, . . .

2k 1 + ℓ+ 2ν − 2k ℓ− 2k c3(k) k = 1, 2, . . . , ⌊ℓ/2⌋

Table 1. The positions of poles of g∆,ℓ in ∆ and their associated data. There are three types of

poles, corresponding to the three rows in the table. The first two types exist for all positive integer

k, while the third type exists for positive integer k ≤ ⌊ℓ/2⌋. The coefficients c1(k), c2(k), c3(k) are

given in eqs. (3.13).

Let us now determine the data entering (3.10). The function h
(∞)
ℓ can be computed

easily by solving the conformal Casimir equation to leading order in ∆,

h
(∞)
ℓ (r, η) =

ℓ!

(2ν)ℓ

Cν
ℓ (η)

(1− r2)ν
√

(1 + r2)2 − 4r2η2
. (3.12)

In principle, the pole positions ∆i and coefficients ci are determined by the conformal

algebra. It would be interesting to compute them directly. In practice, by inspecting the

solution to the conformal Casimir equation, we find that there are three series of poles,

described in table 1, whose coefficients are as follows:

c1(k) = − k(2k)!2

24k−1k!4
(ℓ+ 2ν)2k
(ℓ+ ν)2k

,

c2(k) = −
k(ν + ℓ− k)(ν)k(1− ν)k

(

ν+ℓ+1−k
2

)2

k

k!2(ν + ℓ+ k)
(

ν+ℓ−k
2

)2

k

,

c3(k) = − k(2k)!2

24k−1k!4
(1 + ℓ− 2k)2k

(1 + ν + ℓ− 2k)2k
. (3.13)

The recursion relation eq. (3.10), with poles listed in table 1, reveals another fact

that proves useful for our implementation: when we truncate the series expansion for

h∆,ℓ at order rN , the degree of the resulting rational approximation grows like N . Not

only is each coefficient Bn,j a rational function, but the number of new factors which

enter the denominator as we increase N → N + 2 is either 2 or 3 (depending on whether

N ≤ ℓ). In practice, this means that we can compute the expansion (3.3) to extremely

high order without incurring too much of a performance hit from dealing with large degree

polynomials.

Once we know the residues ci(k), our recursion relation (3.10) provides an extremely

efficient way to compute conformal blocks, either analytically in a series expansion, or

numerically (for any number of derivatives around any point (r, η)). It would be very

interesting to generalize these ideas to other four-point functions — for example, external

scalars φi with different dimensions ∆i, or external operators with spin. Although much

progress has been made computing conformal blocks for these types of operators using

series manipulations [12, 39–42], derivative relations [43, 44], and conformal integrals [45],

we believe the residues ci are the most convenient and directly useful data for numerical

bootstrap applications.
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N ∆φ = 1/2 + η/2 ∆S = 3− 1/ν ∆T = 3− φc/ν = 1 + ηc

1 0.51813(5) [46] 1.41275(25) [46] −
0.51819(7) [47] 1.4130(4) [47] −

2 0.51905(10) [48] 1.37970(3) [48] 1.237(4) [49]

3 0.51875(25) [50] 1.5939(10) [50] 1.211(3) [49]

4 0.51825(50) [51] 1.6649(35) [51] 1.189(2) [49]

5 0.5155(15) [52] 1.691(7) [52] 1.170(2) [49]

6 0.5145(15) [52] 1.733(8) [52] −

Table 2. Previous determinations of operator dimensions in the O(N) vector models.

4 Results and comparison to O(N) vector models

In this section we will present our results from the bootstrap. We focus our attention

on computing bounds on the lowest singlet dimension ∆S , the lowest symmetric tensor

dimension ∆T , and the central charge c, as a function of the external scalar dimension ∆φ.

Let us begin by summarizing what is known about these quantities in the O(N) vector

models. In these theories, results are typically phrased in terms of critical exponents,

rather than scaling dimensions. Concretely, ∆φ is related to the critical exponent η via

∆φ = 1/2 + η/2. The dimension of the O(N) singlet operator S is related to the critical

exponent ν via ∆S = 3 − 1/ν. Finally, the dimension of the O(N) symmetric tensor

operator T is related to the crossover exponents φc and ηc, through the relations ∆T =

3−φc/ν = 1+ηc. In table 2 we show the most accurate determinations of these dimensions

that we have found in the literature for N = 1, 2, 3, 4, 5, 6 (with N = 1 being the 3D Ising

model).

These quantities have also been computed in the large N limit. ∆φ is known to order

1/N3 while ∆S has only been computed to order 1/N2 (see [20] and references therein).

The crossover exponent connected to ∆T was also computed to order 1/N2 in [53]. The

results are:

∆φ =
1

2
+

4

3π2

1

N
− 256

27π4

1

N2

+
32
(

− 3188 + 3π2
(

− 61 + 108 log(2)− 3402ζ(3)
))

243π6

1

N3
+O

(

1

N4

)

∆S = 2− 32

3π2

1

N
+

32(16− 27π2)

27π4

1

N2
+O

(

1

N3

)

∆T = 1 +
32

3π2

1

N
− 512

27π4

1

N2
+O

(

1

N3

)

. (4.1)

Finally, let us mention that the leading correction to the central charge c was computed

in [28, 29] to be
c

Ncfree
= 1− 40

9π2

1

N
+O

(

1

N2

)

, (4.2)

where cfree = D/(D − 1) is the central charge of a free scalar field.
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O(20)

O(2)
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O(4)

O(5)
O(6)

O(N) Singlet Bounds

0.505 0.5150.51 0.5250.52 0.5350.530.5
1

1.2

1.4

1.6

1.8

2

2.2

Figure 2. Upper bounds on the dimension of the lowest dimension singlet S in the φ × φ OPE,

where φ transforms as a vector under an O(N) global symmetry group. Here, we show N =

1, 2, 3, 4, 5, 6, 10, 20. The blue error bars represent the best available analytical and Monte Carlo

determinations of the operator dimensions (∆φ,∆S) in the O(N) vector models forN = 1, 2, 3, 4, 5, 6

(with N = 1 being the 3D Ising Model). The black crosses show the predictions in eq. (4.1) from

the large-N expansion for N = 10, 20, . . . , 100. In this expansion, ∆φ has been determined to three-

loop order, while ∆S is at two-loop order. The dashed line interpolates the large-N prediction for

N ∈ (4,∞).

4.1 Bounds on O(N) singlets

Now we determine a general bound on the O(N) singlet operator dimension ∆S following

the procedure described in section 2.2. We assume there is a gap in the CFT spectrum

so that all singlet scalar operators have dimension greater than ∆S , all symmetric tensor

scalars have dimension greater than 1, and the dimensions of all the other operators are

constrained only by the unitarity conditions. Note that due to the assumption on symmetric

tensor scalars this is not the most general bound. However, we found that this mild

assumption improves numerical stability while not significantly affecting the bound on ∆S

– moreover the assumption is certainly satisfied for O(N) vector models, as can be seen

from previous determinations of the operator dimensions (see table 2).

The boundaries for the allowed values of ∆S as a function of ∆φ are shown in figure 2.

These bounds are determined by a bisection search in ∆S to within 10−3. The parameter

k of section 2.3, controlling the number of derivatives in the functional α, is set to k = 10

everywhere. For a given N , only the values of ∆S below the corresponding solid line are

allowed.

In figure 2 we see that the bounds on ∆S grow monotonically from ∆S = 1 at ∆φ = 0.5,

the point corresponding to the non-interacting theory. At a certain value of ∆φ, each
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boundary line exhibits a change in the slope. This type of behavior was already discussed

for the Ising model bound in ref. [12], where it was found that the change in slope occurs

at the values of ∆φ and ∆S corresponding to Ising model point. The changes in slopes

are somewhat less sharp for the O(N) theories at intermediate values of N ; however, they

occur in the vicinity of the O(N) vector model points, shown as points with error bars in

figure 2. These points always seem to lie very close to the boundary; in fact it is possible

to rigorously reduce the previous error bars using the bound we obtained.

For large values of N , we can also compare the bound with the results for ∆φ and ∆S

obtained using the 1/N expansion, eq. (4.1). The 1/N expansion results (shown as black

crosses in figure 2) are consistent with our bound at large N . Moreover, the change in

the slope of the boundary line is sharper for large N and it occurs very close to the O(N)

vector model points.

4.2 Bounds on O(N) symmetric tensors

Bounds on the dimension of the first symmetric tensor scalar operator ∆T are obtained

following a similar procedure as for the singlet bounds. We assume that all the symmetric

tensor scalars have dimension greater than ∆T , all singlet scalars have dimension greater

than 1, and all other operator dimensions satisfy unitarity conditions. The allowed values

of ∆T as a function of ∆φ are shown in figure 3 — only the values of ∆T below the solid

line are allowed. Just like in the case of the singlet operators, the boundary lines start at

the free field point, ∆φ = 0.5, ∆T = 1 and grow monotonically. The change of the slope

is more gradual than for the singlet bound. The O(N) vector model points from table 2

appear to be consistent with the bound to within error bars for N = 2, 3, 4, with some mild

tension between the N = 5 bound and the quoted results from [52] and [49].

At large N the symmetric tensor dimension ∆T approaches 1 in the O(N) model. This

is reflected in the fact that our bounds become more and more constraining as N → ∞.

Moreover, we find that the order 1/N2 computation of ∆T in eq. (4.1) becomes very close

to our bound (and occurs near changes of slope) at large but finite values of N , shown in

black crosses at N = 10, 20, . . . in figure 3.

4.3 Bounds on the central charge

The central charge c is defined as a coefficient in the two-point correlation function of the

canonically normalized stress tensor:

〈Tµν(x1)Tρσ(x2)〉 =
c

S2
D

1

x2D12

{

1

2

[

Iµρ(x12)Iνσ(x12)+Iµσ(x12)Iνρ(x12)
]

− 1

D
ηµνηρσ

}

, (4.3)

where SD = 2πD/2/Γ(D/2). In our notation, the central charge is related to the OPE

coefficient of the stress tensor λS,3,2 by

λ2
S,3,2 =

∆2
φ

c/cfree
, (4.4)

where cfree = D/(D − 1) is the central charge of a free scalar field. We can find an upper

bound on this OPE coefficient as follows. Rewrite the sum rule (2.8), separating the
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∆φ

∆T

O(10)

O(20)

O(2)

O(3)

O(4)
O(5)
O(6)

O(N) Symmetric Tensor Bounds

0.505 0.5150.51 0.5250.52 0.5350.530.5

1.05

1.1

1.15

1

1.2

1.25

1.3

Figure 3. Upper bounds on the dimension of the lowest dimension symmetric tensor T in the

φ × φ OPE, where φ transforms as a vector under an O(N) global symmetry group, for N =

2, 3, 4, 5, 6, 10, 20. We additionally assume that the lowest dimension singlet S has ∆S ≥ 1. The blue

error bars represent the best available analytical and Monte Carlo determinations of the operator

dimensions (∆φ,∆T ) in the O(N) vector models for N = 2, 3, 4, 5. Note in particular that previous

predictions for the O(5) model are essentially ruled out by our bounds. The black crosses show

the predictions in eq. (4.1) from the large-N expansion for N = 10, 20, . . . , 100. The dashed line

interpolates the large-N prediction for N ∈ (4,∞).

contribution of the stress tensor:

λ2
S,3,2VS,3,2 = −Vunit −

∑

O6=Tµν

λ2
OVO . (4.5)

Applying a functional α such that α(VO) ≥ 0 for all operators in the spectrum other than

unit operator and normalized so that α(VS,3,2) = 1, eq. (4.5) then yields the inequality

λ2
S,3,2 ≤ −α(Vunit) . (4.6)

Finding the functional α that minimizes −α(Vunit) then gives the strongest upper bound

on the OPE coefficient. By eq. (4.4) this implies a lower bound on the central charge.

The most general bound would be obtained by making no assumptions about the

operator spectrum, except that they obey unitarity conditions. However, we can obtain

a somewhat stronger bound by making additional assumptions about the spectrum. In

particular, we can assume there are gaps in the spectrum of singlet and symmetric tensor

operators, as long as they are consistent with the results of previous subsections. Here we

will assume mild gaps, ∆S ≥ 1 and ∆T ≥ 1. This assumption on the operator dimension

spectrum is not too stringent; for example, we know from previous determinations that

O(N) vector models satisfy these conditions, see table 2.
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c/Ncfree

Ising

O(10)

O(20)

O(2)

O(3)

O(4)
O(5)
O(6)

O(N) Central Charge Bounds

0.505 0.5150.51 0.5250.52 0.5350.530.5

1.025

1

0.875

0.925

0.95
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Figure 4. Lower bounds on the central charge for theories containing a scalar φ transforming

as a vector under O(N). We additionally assume that ∆S ,∆T ≥ 1. The black crosses show the

predictions in eq. (4.1) from the large-N expansion for N = 10, 20, . . . , 100. The dashed line shows

the asymptotic behavior of the central charge as a function of ∆φ as N → ∞.

The central charge bound as a function of the scalar dimension ∆φ is shown in figure 4.

The central charge approximately scales linearly with N (exactly in the non-interacting

theory), so we have plotted c scaled to Ncfree. At low values of ∆φ, all of the bounds

approach the same asymptote. The slope of the asymptote is −10/3, which is the same

curve that one obtains in the N → ∞ limit from eqs. (4.1) and (4.2); i.e. the O(N) vector

model points will lie on that line for large values of N .

To obtain stronger bounds on the central charge we can introduce larger gaps in the

operator spectrum. In the plots of figure 5 we assumed that the gap in the singlet scalar

spectrum saturates the bound obtained in subsection 4.1, while the gap in the symmetric

tensor scalar spectrum is kept at ∆T ≥ 1. At low values of ∆φ, the bounds again approach

the same asymptote and in general don’t differ too much from the bounds in the figure 4.

However, here the bounds exhibit a change in the slope at certain value of ∆φ. At larger

values of ∆φ the bounds are much stronger than the ones in figure 4. For large N values

the change in the slope occurs at the O(N) vector model points. At smaller N the change

in the slope is more gradual, but still occurs at ∆φ close to the known values in the O(N)

models.

Just like the operator dimensions in the previous subsections, the central charge values

obtained using 1/N expansion in the case of large N lie very close to the boundary line.

Encouraged by these facts, we can conjecture that the central charge values will lie on the

boundary even for low values of N . Using the values of ∆φ determined by other methods,

we can then make a prediction for the values of c. These are shown, along with our
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∆φ
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O(20) O(2)

O(3)
O(4)
O(5)

O(6)

O(N) Central Charge Bounds With Singlet Gap
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Figure 5. Lower bounds on the central charge for theories containing a scalar φ transforming as

a vector under O(N). In this figure we assume that the lowest dimension singlet scalar operators

saturate the bounds we found in subsection 4.1, while the symmetric tensor scalar operators are

assumed to have dimensions ∆T ≥ 1. The black crosses show the predictions in eq. (4.1) from the

large-N expansion for N = 10, 20, . . . , 100. The dashed line shows the asymptotic behavior of the

central charge as a function of ∆φ as N → ∞.

bootstrap predictions for ∆S and ∆T , in table 3. In calculating these values of c we used

the bounds of figure 5, since these are our strongest bounds for the O(N) vector models.

5 Discussion

Let us take a moment to reflect on the results of the previous section. First, we have

discovered the remarkable fact that operator dimensions in the critical O(N) vector models

take on values which saturate general constraints from crossing symmetry and unitarity.

This gives us an organizing principle by which we can understand why these theories are

special — gaps in the spectrum of operator dimensions are maximized in a way that is

consistent with unitarity. It will be interesting to verify that this trend continues for

operators of higher dimension. A promising approach to extracting more of the spectrum

in these theories is to consider the locations of the zeros of α(VO) along the boundary [6,

14, 16]. We hope to develop this approach in the O(N) models in future work.

As far as we are aware, we have presented the first predictions for the central charge

in the O(N) models at small values of N . In doing so we have verified that there is

approximately linear growth with N and that c < Ncfree for each value of N . It will be

interesting if these predictions can be verified in lattice simulations of the O(N) models

— this will require a robust lattice construction of the stress-energy tensor, which is a
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N ∆φ ∆S ∆T c/Ncfree

1 0.51813(5) 1.4119+0.0005
−0.0015 − 0.946600+0.000022

−0.000015

2 0.51905(10) 1.5118+0.0012
−0.0022 1.23613+0.00058

−0.00158 0.94365+0.00013
−0.00010

3 0.51875(25) 1.5942+0.0037
−0.0047 1.2089+0.0013

−0.0023 0.94418+0.00043
−0.00036

4 0.51825(50) 1.6674+0.0077
−0.0087 1.1864+0.0024

−0.0034 0.94581+0.00071
−0.00039

5 0.5155(15) 1.682+0.047
−0.048 1.1568+0.009

−0.010 0.9520+0.0040
−0.0030

6 0.5145(15) 1.725+0.052
−0.053 1.1401+0.0085

−0.0095 0.9547+0.0041
−0.0027

10 0.51160 1.8690+0.000
−0.001 1.1003+0.000

−0.001 0.96394

20 0.50639 1.9408+0.000
−0.001 1.0687+0.000

−0.001 0.97936

Table 3. The values of the scalar and symmetric tensor operator dimensions and the values of

the central charge saturating the obtained bound for the O(N) vector model values of ∆φ. For

N = 1, 2, 3, 4, 5, 6, the value of ∆φ is taken from table 2; for N = 10, 20 the value of ∆φ is the

3-loop large-N result. The errors reflect the uncertainty in the value of ∆φ. In the determinations

of ∆S,T we have also included a contribution to the error due to our bisection precision of 0.001.

This uncertainty is only in one direction, since the upper bound is rigorous.

worthwhile task in its own right. One can also easily extend these methods to determine

the flavor central charges, appearing in 〈JµJν〉 ∝ τ , where Jµ is the O(N) current.

In this work we only considered the constraints from crossing symmetry of 〈φiφjφkφl〉.
It is very interesting to extend this analysis to include constraints from other correlators,

such as 〈φiφjφ
2φ2〉, 〈φ2φ2φ2φ2〉, 〈φiφjJ

µJν〉, or 〈φiφjT
µνT ρσ〉. Such extensions are e.g.

necessary in order to learn about the Z2 odd operators in the spectrum of these theories.

Studying these correlators may also help to give a sharper criterion that can be used to

determine the value of ∆φ in the O(N) models, going beyond the fact that it appears to

take a value near (somewhat smooth) changes in slope of the general bounds.

The recursion representation for the conformal blocks presented in section 3 is a power-

ful and efficient method of computing conformal blocks in any number of dimensions. This

representation can for example be utilized in studies of CFTs that interpolate between

2 < D < 4, in D = 5, 7 where conformal blocks are similarly complicated, or perhaps in

constructing an argument (extending [54]) that nontrivial CFTs in large D do not exist.

The representation as a sum over poles in ∆ may also be useful for making general ana-

lytic arguments (going beyond the large spin arguments of [55, 56]) in the context of the

conformal bootstrap. The sum over poles may also be particularly interesting from the

perspective of Mellin amplitudes [57–65].

Finally, we’d like to emphasize that the O(N) models at N = 2, 3 have numerous

beautiful realizations in experimental condensed matter systems. E.g., the O(2) model

describes the superfluid transition in 4He and the bicritical point in uniaxial magnets

such as GdAlO3, while the O(3) model describes the Curie transition in simple isotropic

magnets such as Ni, Fe, and EuO. Many more examples can be found in [19]. Thus,
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the conformal bootstrap in 3D allows one to realize the physicists’ dream — it makes

quantitative predictions in strongly-interacting systems that can be experimentally tested!
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A Improving rational approximations

When truncated to a finite number of poles ∆i, the recursion relation

h∆,ℓ(r, η) = h
(∞)
ℓ (r, η) +

∑

i

cir
ni

∆−∆i
h∆i+ni,ℓi(r, η) (A.1)

gives a rational approximation for h∆,ℓ = r−∆g∆,ℓ as a function of ∆. The precision of

this approximation increases as we include more and more poles ∆i. However, the degree

increases as well, and this can be problematic for computation. Larger degree polynomials

slow down semidefinite program solvers.

A useful compromise is to keep n poles ∆1, . . . ,∆n with the largest residues, and use

these as a basis to approximate other poles ∆j with smaller residues. That is, for poles

with small residues, we write

1

∆−∆j
≈

n
∑

i=1

ai
∆−∆i

, (A.2)

where the coefficients ai are chosen to make the approximation as good as possible. In

this way, we can approximately include the contribution of the pole at ∆ = ∆j without

increasing the degree of our rational function. Note that the ∆i lie below the unitarity

bound ∆unitarity, so ∆ itself never approaches a pole when we compute CFT bounds.

How should we choose the coefficients ai? We need eq. (A.2) to hold to high accuracy

across all ∆ ≥ ∆unitarity (away from the singularities on both sides). A method that works

well in practice is to ensure that eq. (A.2) and its first n/2 derivatives hold exactly at

∆ = ∆unitarity and at ∆ = ∞. These conditions give n linear equations which determine

the ai.
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In practice, including poles with residues less than 10−2 yields rational approximations

to conformal blocks which are correct to within 10−9. Including poles with residues less

than 10−10 yields approximations correct to within 10−22.

B Implementation in Mathematica and SDPA-GMP

A brief summary of our implementation is as follows. All steps but the last are performed

in Mathematica.

1. We compute a rational approximation for derivatives of conformal blocks at the cross-

ing symmetric point ∂m
r ∂n

η g∆,ℓ ≈ r∆P
(m,n)
ℓ (∆)/Qℓ(∆), where r = 3 − 2

√
2. This

can be done using either the Gegenbauer expansion and Casimir equation described

in [41], or more efficiently using our recursion relation (3.10). The recursion relation

can be implemented numerically in the space of vectors of (r, η) derivatives, where

multiplication by rk is a matrix on this space. We compute approximations up to

order 60 in the r-expansion.

2. We approximate “small” poles as described in appendix A, resulting in a new rational

approximation with smaller degree ∂m
r ∂n

η g∆,ℓ ≈ r∆p
(m,n)
ℓ (∆)/qℓ(∆). To decide which

poles to keep and which poles to approximate, we choose a threshold value θ and

compute

θi ≡ max
m,n

∣

∣

∣

∣

Res∆→∆i
∂m
r ∂n

η g∆,ℓ

∂m
r ∂n

η g∆,ℓ|∆=unitarity bound

∣

∣

∣

∣

. (B.1)

Poles with θi ≤ θ are approximated in terms of other poles. In practice, we found

that θ = 10−2 gives a good tradeoff between accuracy and speed. We have checked

that our results remain essentially unchanged as θ is varied between 10−2 and 10−12.

After reducing the degree of our rational approximation, the factors r∆/qℓ(∆) can

be discarded. Henceforth, we will use “∼” to indicate approximate equality up to an

overall positive function of ∆.

3. To compute a bound, we need derivatives ∂m
z ∂n

z̄ VR,∆,ℓ, where the vectors VR,∆,ℓ are

defined in (2.5). These are linearly related to the vectors of derivatives of g∆,ℓ,

∂m
z ∂n

z̄ VR,∆,ℓ,i ∼ (MR,∆φ
)mn
i rsP

(r,s)
ℓ (∆) , (B.2)

where i = 1, 2, 3 runs over the components of VR,∆,ℓ and MR,∆φ
is a matrix depending

only on the representation/channel R and the external operator dimension ∆φ.

4. In section 2.3, we defined a semidefinite program as an affine optimization problem

which can include constraints of the form

α
(

Pi(x)
)

≥ 0 for all x ≥ 0, where Pi(x) are polynomials in x . (B.3)

More precisely, semidefinite programs can include matrix inequalities of the form

X is positive semidefinite , (B.4)

– 17 –



J
H
E
P
0
6
(
2
0
1
4
)
0
9
1

Parameter Value

maxIteration 1000

epsilonStar 10−20 (10−10)

lambdaStar 1020

omegaStar 1020

lowerBound −1040

upperBound 1040

betaStar 0.1

betaBar 0.3

gammaStar 0.7

epsilonDash 10−20 (10−10)

precision 200 (300)

Table 4. SDPA-GMP parameters used in the calculation of the operator dimension bounds. In

parentheses are the values of the parameters used in the central charge bounds.

where X is a matrix of variables (which might be subject to additional linear con-

straints). The transformation of a set of inequalities from the form (B.3) to the

form (B.4) is standard in the optimization literature [66] and is described in detail

in [10]. We transform our polynomial inequalities

aimn(MR,∆φ
)mn
i rsP

(r,s)
ℓ (∆min,ℓ + x) ≥ 0 for x ≥ 0 (B.5)

into matrix inequalities in this fashion.

5. Once written in terms of matrix inequalities, our semidefinite program can be solved

using a variety of freely available tools. For this work, we use the solver SDPA-GMP

with the parameters listed in table 4. Our plots are computed in parallel by assigning

each point to an individual cluster node. Our cluster management software is written

in Cloud Haskell.
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