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1 Introduction

Given the discovery of a Higgs-like boson at the LHC with a mass of 125 GeV, it is important

to have a model-independent effective field theory (EFT) approach to Higgs boson physics.

To date, the Standard Model (SM) provides a good description of LHC data up to energies

of around 1 TeV. No evidence of beyond the SM (BSM) physics, natural or otherwise, has

emerged thus far, so it is important not to introduce strong bias when considering how BSM

physics can impact experimental studies, and to keep the analysis as general as possible.
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The properties of the recently discovered scalar are consistent with it being identified

with the Higgs boson of the SM, but these properties have not been measured with precision

yet. In this paper, we will assume that the discovered scalar boson can be described by

the SM plus BSM effects parametrized by adding higher-dimensional operators in the SM

fields to the SM Lagrangian. The higher-dimensional operators are suppressed by powers

of a high-energy scale Λ. The leading operators which affect the Higgs production and

decay amplitudes arise at dimension six, and so are suppressed by 1/Λ2. Since no BSM

states have been found so far, LHC results already indicate that the scale Λ is higher than

the scale v = 246 GeV of electroweak symmetry breaking (EWSB).

A recent general classification of higher dimensional operators involving SM fields is

given in ref. [1], which showed that there are 59 independent dimension-six operators (as-

suming the conservation of baryon number). Ref. [1] reduces the set of possible dimension-

six operators from those of the earlier work ref. [2] by using the classical equations of

motion to eliminate redundant operators. While the choice of operator basis is not unique,

the operators of ref. [1] represent one consistent choice of independent operators. In our

recent paper [3], we studied a subset of these dimension-six operators which modify the

h → γγ and h → Zγ decay rates, and calculated the renormalization group evolution of

these operators, including operator mixing.1 Our calculation shows that it is important

to include operator mixing of the new physics operators for precision analysis of Higgs

decays. Deviations of h → γγ from the SM rate at the ∼ 10% level are possible due to

renormalization group running of new physics operators contributing to the decay.

These results were criticized recently by ref. [13], which argued that (i) the specific

choice of operator basis is crucial for the analysis, and there is a special basis which makes

the analysis very simple, (ii) there is a powerful and general classification of EFT coef-

ficients based on a “tree” and “loop” classification, even when the underlying theory is

strongly interacting and non-perturbative, and (iii) the principle of minimal coupling2 de-

fines an unambiguous classification scheme in which higher-dimensional operators which

violate minimal coupling are suppressed by loop factors of g2/(16π2), where g is a coupling

constant.3 If true, these arguments have significant implications for the construction of

EFTs, including widely studied EFTs such as chiral perturbation theory (χPT), heavy

quark effective theory (HQET), the operator analysis of weak decays, etc.

Recent use of minimal coupling stems from the analysis of ref. [14], where minimal

coupling is asserted to underly a “tree” and “loop” operator classification scheme for higher-

dimension Higgs boson interactions with other SM fields. The analysis of ref. [14] has been

quite influential, and it has led to significant phenomenological work on BSM Higgs boson

interactions [13–17]. It also underlies the arguments in ref. [13].

Since the idea of EFT was pioneered by Weinberg and others in the 1960s and 1970s

however, minimal coupling has not generally been used as an organizational scheme for

1The running and mixing of dimension-six operators modifying the SM has been extensively studied in

the literature, see e.g. ref. [4–12] for previous studies.
2Minimal coupling is the replacement of an ordinary derivative ∂µ by the covariant derivative Dµ =

∂µ + igAµ to construct a theory with gauge interactions from a theory without gauge interactions.
3Ref. [3] used this classification for the sole purpose of an illustrative example (based on the strongly

interacting light Higgs model [14]) of mixing effects.
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higher dimensional operators, and it has long been appreciated that minimal coupling

is of limited value in the context of EFTs [18]. Even earlier, H. Weyl appreciated that

theories could have non-minimally coupled interactions [19, 20] in his study of electro-

dynamics and gravity. In fact, such interactions were required in these references for

mathematical consistency.4

In this paper, we show that the principle of minimal coupling is ill-defined in field

theory and even in quantum mechanics, and that in general there is no unambiguous clas-

sification of higher dimensional operators into tree and loop operators based on a principle

of minimal coupling. We provide many examples of well-studied EFTs to illustrate these

points. Furthermore, we explain why it is not possible to postulate that an EFT satisfies

a minimal coupling principle by the choice of a suitable UV theory. This point is relevant

when considering the generation of higher dimensional operators by a UV theory, as many

UV theories considered in the literature are themselves non-renormalizable EFTs with no

valid operator classification based on a principle of minimal coupling. Many of the ideas

in this paper can be traced at least as far back as 1970 [18] to Weinberg’s distinction be-

tween algebraic and dynamical symmetries. While many of the ideas are familiar to EFT

practitioners, we hope that at least a few points are novel.

The outline of the paper is as follows:

• In section 2, we review the standard terminology of EFT, the notion of tree and loop

graphs in the EFT, and EFT power counting. In some recent work invoking minimal

coupling operator classification schemes, terms such as “tree”, “loop”, and “power

counting” do not have the traditional definitions used in the EFT literature, so we

summarize the standard EFT nomenclature.

• In section 3, we show that it is not possible to classify amplitudes in a low-energy

effective theory arising from a strongly coupled gauge theory in a “tree” and “loop”

classification based on the diagrams involving the fundamental fields. We also com-

ment on the weakly coupled case, and show that the classification depends on as-

sumptions about the high energy theory.

• In section 4, we show how the usual definition of minimal coupling is ambiguous, and

does not lead to a clear-cut distinction between operators which preserve or violate

minimal coupling. We propose several natural generalizations, which suffer from the

same problem.

• In section 5, we provide many field-theoretic and quantum mechanical examples which

violate the minimal coupling classification.

• section 6 discusses the concept of minimal coupling in chiral perturbation theory and

in pseudo-Goldstone Higgs theories.

• Other common misconceptions are examined in section 7, i.e.:

4We thank S. Deser for this reference.
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– strongly coupled gauge theories can be treated as weakly coupled theories in

which coupling constants are taken to be of order 4π,

– particles must have magnetic moments with g = 2 (at tree-level) in an EFT for

good high-energy behavior up to the high-energy scale Λ where the EFT breaks

down.

– one can adjust UV theories so that their IR effective theories are minimally

coupled.

We explain why these notions are not true in section 7.

• Finally, in the appendix, we show that any dimension-six Higgs operator can be

generated by tree-level exchange, if the underlying theory is an EFT.

2 EFT and power counting

We start by summarizing well-known properties of EFTs (for a review, see ref. [21]). This

summary will introduce the notation and terminology used in this paper. An EFT is

described by a local gauge-invariant Lagrangian written as an expansion in operators,

L = Ld≤4 +
L5

Λ
+
L6

Λ2
+ . . . (2.1)

where Ld≤4 denotes terms of dimension less than or equal to four, L5 consists of terms of

dimension five, etc. In certain cases, there also can be topological terms, which contribute

to the action, but are not given as the integral of a Lagrange density.

An EFT can be used to compute particle interactions in a power series in 1/Λ. The

1/Λ amplitude is given by one insertion of L5, the 1/Λ2 amplitude by one insertion of

L6 or two insertions of L5, etc. Dimensionful parameters in the EFT consist of particle

masses and momenta, so that an amplitude in the EFT has an expansion in powers of p/Λ,

which is referred to as the EFT power counting parameter. One can also formulate a power

counting expansion for fields and operators. The EFT is weakly coupled at p → 0. Tree

and loop graphs in the EFT are well-defined, but this designation does not correspond

to tree and loop graphs in the underlying theory. Whenever we refer to tree and loop

graphs, we will mean tree and loop graphs computed using the EFT Lagrangian in the

weak coupling regime of the EFT.

Loop graphs in the EFT can be divergent, and are usually renormalized using the MS

scheme, in which operators of different dimension do not mix and no positive powers of Λ

are generated by loop graphs. The EFT power counting is explicit, i.e. one can read off

the powers of 1/Λ from the operator insertions. The renormalization structure of the EFT

follows from the power counting. Let {c4}, {c5}, etc. be the coupling constants in L4, L5,

etc, then schematically,

µ
d{c5}

dµ
= A1 ({c4}) {c5},

µ
d{c6}

dµ
= A2 ({c4}) {c6}+A3 ({c4}) {c5}2, (2.2)
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and so on. This pattern shows that operators of arbitrarily high dimension in the EFT are

required to absorb divergences from loops with arbitrarily many insertions of Ld≥5. For

this reason, EFTs are referred to as non-renormalizable theories. The infinite set of higher

dimension operators is not generated if there are no terms with dimension ≥ 5; these

are the renormalizable theories, and are a very special case of EFT with Λ → ∞. The

pattern of eq. (2.2) shows that, in general, it is not useful to introduce an ordering scheme

of the ci of the EFT based on some external principle unless the ordering follows from

a symmetry, and hence is preserved by loop diagrams. Minimal coupling, as we discuss

below, is not a symmetry, and it does not lead to an ordering scheme which is preserved

under renormalization.

It is important to remember that the EFT has a different divergence structure from

the full theory, because massive propagators are expanded out in a momentum expansion,

1

p2 −M2
= − 1

M2
+

p2

M4
+ . . . (2.3)

The EFT is constructed by a procedure known as matching: coefficients in the EFT are

adjusted order by order in the power counting expansion so that the EFT produces the

same S matrix elements as the full theory. Operators in the full theory need to be matched

onto operators in the effective theory.

Fields in the effective theory are not identical to the corresponding fields in the full

theory. For example, the gluon field Aaµ in QCD with six quark flavors is not the same as

the gluon field A′aµ in the EFT of QCD with five quark flavors obtained when the top quark

is integrated out of the full QCD theory. As an example, the matching result for the field

strength tensor is [22]

GAµνG
Aµν

2g
=
G′AµνG

′Aµν

2g′
∂g′

∂g
−
∑
i

∂m′i
∂g

ψ̄′iψ
′
i, (2.4)

where the unprimed fields are in the full QCD theory with a top quark, and the primed

fields are in the EFT without a top quark. The EFT should be thought of as a different

field theory than the original full theory; it has been constructed to reproduce the S-matrix

elements of the original theory order by order in the power counting expansion in 1/Λ. The

input of the underlying theory is via the matching procedure. In some cases, a perturbative

matching can be performed, as in HQET.

By construction, higher dimension operators in the EFT are treated as insertions, i.e.

the effective theory is treated as an expansion in 1/Λ. The expansion parameter p/Λ

becomes order unity, and the EFT expansion breaks down, when p becomes order Λ.

While the EFT is treated as an expansion in 1/Λ, the theory need not be perturbative.

For example, the standard analysis of hadronic weak decays treats the weak interactions

using four-fermion operators with a coefficient GF ∼ 1/v2. The weak Hamiltonian can be

treated perturbatively, but the hadronic matrix elements of the weak Hamiltonian needed

for hadronic weak decays are non-perturbative, and one expands the decay amplitude

in GFΛ2
QCD.

– 5 –
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The EFT describes the interactions of low-energy degrees of freedom, such as par-

ticle scattering amplitudes at momenta below Λ. In general, an EFT is constructed by

writing down the most general possible Lagrangian consistent with the symmetries and

the low-energy degrees of freedom, with arbitrary coefficients for the operators. One can

estimate the size of the coefficients using naive dimensional analysis [23], or relate coef-

ficients through symmetries, but their numerical values generally have to be determined

from experiment if the UV theory is strongly coupled, or if the UV theory is not known.

The above power counting procedure works for massless or massive gauge theories, as

long as the gauge boson mass is generated by spontaneous symmetry breaking [24]. Thus,

one can use an EFT for the SM augmented by higher dimension operators suppressed by

Λ > v, and this EFT will be valid up to energies of order Λ, since the EFT includes the Higgs

field which gives mass to the electroweak gauge bosons by spontaneous symmetry breaking.

3 Tree versus loop

Weakly coupled theories have a perturbative expansion in coupling constants, and ampli-

tudes can be expanded in the number of loops. Typically, each additional loop gives a

1/(16π2) suppression, in addition to suppressions from factors of small coupling constants,

which are generically denoted by g2 in this paper. The leading amplitudes are tree am-

plitudes, followed by one-loop amplitudes, two-loop amplitudes, etc. This weak coupling

analysis does not carry over to strongly coupled gauge theories, such as QCD at low en-

ergies. To illustrate this point, consider QCD with light quark masses set to zero. The

theory is given by a coupling constant g3(µ), which evolves with µ. As is well-known, QCD

has the property of dimensional transmutation — g3(µ) can be replaced by a dimensionful

parameter ΛQCD. In terms of the one-loop β-function,

µ
dg3

dµ
= − b0g

3
3

16π2
, (3.1)

ΛQCD and g3(µ) are related by(
ΛQCD

µ

)b0
= e−8π2/[~ g23(µ)] , (3.2)

where we have put back the factors of ~ [25, 26]. ΛQCD is a non-perturbative parameter.

It is clear from eq. (3.2) that ΛQCD is not of any given order in the loop expansion. It

cannot even be thought of as summing the g2
3 expansion to all orders. There is an essential

singularity at g2
3~ = 0 in the g2

3 and ~ expansions, and ΛQCD is non-analytic in g2
3~. A

formal expansion of eq. (3.2) in powers of g2
3 > 0 gives a series with all terms vanishing. It

simply is not possible to describe non-perturbative physics as a series of factors of g2/16π2

with g → 4π, and treat QCD as a weakly coupled theory in which g ∼ 4π.

The low-energy dynamics of QCD is governed by χPT, which is discussed further in

Sec 6.1. The scattering amplitudes depend on the pion decay constant fπ ∝ ΛQCD, and

they cannot be characterized as n-loop amplitudes for some value of n ≥ 0. χPT has its

own power counting as an EFT, but this expansion in p/Λχ has nothing to do with the loop

– 6 –
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expansion of QCD. Loops in the effective theory defined by the chiral Lagrangian are not

related to loops in the full theory, QCD. (The only connection between the two theories is

through the flavor dependence of amplitudes in the large Nc limit [27] in terms of single vs

multi-trace operators, but that is not what is being referred to here.)

In weakly coupled theories, one can classify operators based on whether they are gen-

erated by tree or loop graphs when heavy particles are integrated out. The distinction

between tree and loop operators depends on the high energy theory. For example, in

the Standard Model, nonleptonic weak decays of hadrons can be described by four-quark

operators. ∆S = 1 weak decays such as K → ππ are given by the current-current operator

L∆S=1 = −4GF√
2
VudV

∗
us uγ

µPLd sγµPLu , (3.3)

which is generated at tree level by single W exchange at the scale MW . ∆S = 2 processes,

such as K0 −K0
mixing, are given by very similar-looking current-current operators

sγµPLd sγµPLd . (3.4)

However, in the Standard Model, these operators are not generated at tree level because

there are no flavor changing neutral currents at tree-level due to the GIM mechanism. They

are generated by box graphs, and are second order in the weak interactions. They could

be generated at tree-level if there were new physics interactions such as new gauge bosons

or quark multiplets which violated the GIM mechanism. The tree-loop classification of

operators in the EFT requires knowledge of the underlying high energy theory, even in a

weak coupled theory.

The ∆S = 1 operator eq. (3.3) looks like the product of currents. However, it is a

composite operator in an interacting field theory, and cannot be treated as the product

of two current operators when one takes hadronic matrix elements. A very prominent

feature of nonleptonic weak decays is the ∆I = 1/2 rule: the ∆I = 1/2 amplitude A1/2 is

enhanced relative to the ∆I = 3/2 amplitude A3/2 by a factor of A1/2/A3/2 ∼ 20. If the

∆S = 1 operator is treated as the product of currents, one can show that A1/2 =
√

2A3/2

(see Prob. 4.1 in [27]).

In summary, when non-perturbative physics is present (and sometimes even when it

is not), intuition based on weak coupling or minimal coupling, can fail in an EFT in non-

intuitive ways. These cautionary remarks are relevant to the case of the pseudo-Goldstone

boson (PGB) Higgs theories, and to other theories containing higher dimensional operators.

4 Minimal coupling is ambiguous

Usually, in constructing effective theories, one writes down all possible gauge invariant op-

erators up to a given dimension. All operators occurring at a given dimension are regarded

as equally important because they contain the same suppression factor of 1/Λd−4. Recently,

it has become popular to advocate an additional ordering principle, minimal coupling. One

assumes that the underlying UV theory is minimally coupled. Some gauge invariant op-

erators result from integrating out particles in the minimally coupled theory at tree level,

– 7 –
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while others do not, and the latter operators have coefficients suppressed by at least a loop

suppression factor of g2/(16π2) beyond the usual EFT power counting. For this concept

to have any content, it is necessary that some gauge invariant operators are minimally

coupled, and others are not. Otherwise, minimal coupling becomes indistinguishable from

gauge invariance.

To be able to use minimal coupling in EFTs, it is important to define minimal coupling

at the operator level in the EFT in an unambiguous way. Otherwise, different authors using

the same principle will obtain different results. Unfortunately, the definition of minimal

coupling in EFT is ambiguous, as explained below.

The principle of minimal coupling is a method of constructing theories with gauge inter-

actions from a theory without gauge interactions. In non-relativistic quantum mechanics,

one constructs the Hamiltonian with electromagnetic interactions from the Hamiltonian

without electromagnetic interactions by the replacement

p→ π = p− eqA, (4.1)

where A is the photon field, and e is the coupling constant. The momentum operator p

acts on particle fields (or wavefunctions), and q is the corresponding particle charge. In

four-vector notation, one replaces the ordinary derivative by the covariant derivative,

i∂µ → iDµ = i∂µ − eqAµ. (4.2)

In non-Abelian gauge theories, i∂µ is replaced by the covariant derivative iDµ = i∂µ −
gT aAaµ, where the matrices T a are the generators of the gauge group in the representation

of the field on which the covariant derivative acts. A covariant derivative Dµ is only defined

when it acts on some field, because the matrices T a in Dµ depend on the representation of

the field.

It is important to keep in mind that minimal coupling is merely one way of constructing

a gauge Lagrangian from an ungauged Lagrangian, and that the minimal coupling prescrip-

tion does not always lead to a unique gauge Lagrangian, or even the correct one. Elevating

“minimal coupling” to a fundamental principle and confusing it with gauge invariance is

a mistake. One can always go the other way — the ungauged theory is obtained from the

gauged theory by setting all the gauge fields and gauge couplings to zero. The question is

whether a mapping in the opposite direction can be defined: can a unique gauge theory

Lagrangian be obtained from a Lagrangian without gauge interactions? The answer to this

question is “no,” as we show below.

The difference between gauge invariance and minimal coupling can be illustrated by a

simple example. In QED, consider the three gauge invariant dimension-six operators

O1 = φ†φDµφ
†Dµφ, O2 = e2φ†φFµνF

µν , O3 = e2Φ†ΦFµνF
µν , (4.3)

where φ is a charged scalar field with q = 1, and Φ is a neutral complex scalar field with

q = 0. The procedure for going from the gauge theory to the theory without gauge fields is

well-defined — set the gauge fields to zero. The ungauged operator analogues of the above

– 8 –
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three operators are

Õ1 = φ†φ∂µφ
†∂µφ, Õ2 = 0, Õ3 = 0 . (4.4)

If we apply a principle of minimal coupling to eq. (4.4), we recover O1 from Õ1, but O2,3

cannot be recovered from Õ2,3, which are zero. In the standard EFT power counting,

O1,2,3 all have coefficients of order 1/Λ2. Invoking the principle of minimal coupling at an

operator level, on the other hand, implies that O2,3 are suppressed by an additional loop

suppression factor of g2/(16π2) relative to O1.

The above procedure for constructing a gauge invariant theory from a theory without

gauge fields via minimal coupling is not unique, however. The operator Õ2, while zero, can

be written in the equivalent form

Õ2 = −φ† [∂µ, ∂ν ] [∂µ, ∂ν ]φ . (4.5)

Now, [∂µ, ∂ν ]φ = 0, but [Dµ, Dν ]φ = ieqFµνφ, so O2 can be recovered from Õ2 by a

minimal coupling procedure, since φ has q = 1. It is a logical possibility that the correct

rule for obtaining a gauge theory from an ungauged theory is to write down all possible

interactions in the non-gauge theory, including terms such as eq. (4.5) which are zero,

before applying a principle of minimal coupling. This new rule gives a different result

from the previous paragraph — now the coefficient of O2 is not loop suppressed. O3 is

still loop suppressed, because Φ is a neutral field with q = 0, so Dµ = ∂µ when it acts on

Φ. No commutator gymnastics can produce an Fµν . Thus, there are two distinct ways to

apply a principle of minimal coupling to the same theory, and these two possibilities give

different tree and loop classifications of higher dimensional operators. To distinguish these

two distinct ways of applying minimal coupling, we refer to the one in this paragraph as

the principle of next-to-minimal coupling.

It is also instructive to study the case of a non-Abelian gauge theory. Consider SU(N)

gauge theory with a scalar field ϕ which transforms according to the fundamental repre-

sentation. There are two dimension-six gauge invariant operators analogous to O2,3 of the

previous QED case, namely

O4 = ϕ†GµνG
µνϕ, O5 = ϕ†ϕ TrGµνG

µν , (4.6)

where Gµν ≡ GaµνT
a. These operators are not generated by the principle of minimal

coupling, since they both vanish when the gauge field is set to zero. The first operator

can be generated by the principle of next-to-minimal coupling applied to the vanishing

ungauged operator

Õ4 = ([∂µ, ∂ν ]ϕ)† ([∂µ, ∂ν ]ϕ) . (4.7)

The second operator O5, however, cannot be generated by next-to-minimal coupling,

because of the color structure. The representation matrix T a in the covariant deriva-

tive Dµ = ∂µ + igT aAaµ depends on the field on which it acts. An object such as

Tr [Dµ, Dν ] [Dµ, Dν ] is meaningless, since the covariant derivatives need to act on some

– 9 –
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field on the right. One can try constructing a Õ5 by acting on ϕ†ϕ, but ϕ†ϕ is a gauge

singlet, and Dµ acting on a gauge singlet is an ordinary derivative. Acting on the adjoint

ϕ†T aϕ also does not work, because Dµ does not change the color transformation property

of the object on which it acts, and a Lagrangian term must be invariant under color. Once

again, the principle of minimal coupling and the principle of next-to-minimal coupling give

different tree and loop classifications of operators. The principle of minimal coupling im-

plies that both O4 and O5 are loop suppressed, whereas the principle of next-to-minimal

coupling implies that only O5 is loop suppressed.

In summary, we have attempted to apply a principle of minimal coupling systematically

in an EFT at an operator level. The minimal coupling procedure is not unique, and different

procedures give different tree versus loop operator classifications.

5 EFTs are not minimally coupled

In constructing effective Lagrangians, one can impose symmetries such as baryon or lepton

number conservation, or flavor symmetries. These symmetries lead to relations between

scattering amplitudes that must be respected by the effective theory, and hence lead to

constraints on the effective theory. This statement is true even if the flavor symmetry is

spontaneously broken, as in χPT. Weinberg [18] refers to such symmetries as algebraic

symmetries because they lead to algebraic relations between S-matrix elements. In con-

trast, Weinberg [18] calls gauge invariance a dynamical symmetry, since it does not lead to

relations between S-matrix elements. Gauging a symmetry does not give any additional

conserved charges beyond those of the corresponding global symmetry. Minimal coupling

is not a symmetry of any kind.

5.1 Minimal coupling in the SM

The Lagrangian of the SM is a renormalizable Lagrangian. The only terms with dimension

≤ 4 containing derivatives in the ungauged theory are the kinetic energy terms of the

matter fields, and they give the correct gauged terms

ψ i /Dψ, Dµφ
†Dµφ, (5.1)

on using minimal coupling. In this example, minimal coupling gives the correct result,

but the success is accidental, because there are no fermion or scalar gauge interactions

of dimension ≤ 4 involving field strengths. The situation is similar to (B − L) conser-

vation in the SM, which is an accidental symmetry. The most general gauge invariant

Lagrangian with terms of dimension ≤ 4 automatically preserves (B−L). However, if one

includes higher dimension operators, the symmetry can be violated. Similarly, in QED,

there can be dimension-five anomalous magnetic moment interactions which are not given

by minimal coupling.

Eq. (5.1) often is given as an example of the success of minimal coupling, but in fact,

renormalizable interactions in the Standard Model violate the minimal coupling principle.

The reason is that there are two other interactions, the gauge kinetic term GaµνG
aµν , and
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a topological term proportional to GaµνG̃
aµν , which both violate minimal coupling.5 Thus,

minimal coupling actually fails even for a renormalizable gauge theory such as the SM, if

one looks at the full Lagrangian. The kinetic energy term has coefficient −1/4, and is order

unity. The topological term has coefficient θg2/(32π2), and is normalized so that the action

is θν, where ν is an integer. The topological action is not loop suppressed, even though it

has a 1/(16π2) in the Lagrangian, because for classical field configurations (instantons), it

is an integer.

It might be argued that minimal coupling is of some value in constructing the QED

Lagrangian as it does not generate an anomalous magnetic moment (Pauli) term. However,

such claims about the use of minimal coupling in gauge theories have long been appreciated

to be incorrect [18]. Weinberg in his 1970 Brandeis lectures shows that for a charged

fermion Ψ,

1

Λ
Ψ̄σµ ν [∂µ , ∂ν ] Ψ→ iqe

Λ
Ψ̄σµ νF

µ ν Ψ. (5.2)

under (next-to-)minimal coupling, the same argument used in section 4. Minimal coupling

alone does not forbid the appearance of non-renormalizable operators involving the field

strength, or lead to the conclusion that such operators must be suppressed. Instead, as

Weinberg argues, it is renormalizability which forbids these terms in the SM. From the

EFT point of view, if we want our theory to be valid to some high scale Λ→∞, then the

Pauli operator must be suppressed by an inverse power of the scale Λ by the EFT power

counting expansion.

5.2 Charged particles in an electromagnetic field

Now, let us examine how minimal coupling can fail as an organizing principle. We start

with the quantum mechanical Hamiltonian for a non-relativistic particle,

H =
p2

2m
1, (5.3)

where 1 is a unit matrix of dimension (2s + 1) for a particle of spin s. The Hamiltonian

for the interaction with the electromagnetic field is

Hem =
π2

2m
1 =

(p− qeA)2

2m
1 + eqA01 (5.4)

using the substitution of eq. (4.1), assuming the particle has charge q. The eqA0 term

arises from using eq. (4.2) for the i∂/∂t term in the time-dependent Schrödinger equation.

Eq. (5.4) describes a gauge invariant theory, but is it the correct theory? For electrons

(with qe = −1), it is not, because it is missing the magnetic moment term. Let us rewrite

eq. (5.3) for spin-1/2 particles in the alternate form

H =
(σ · p)2

2m
=

p2

2m
1. (5.5)

5In pure Yang-Mills theory, the Lagrangian is only these two terms, which is a challenge for minimal

coupling.
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We emphasize that Hamiltonian eq. (5.5) is identical to eq. (5.3). However, applying the

principle of minimal coupling to eq. (5.5) gives

Hem =
(σ · π)2

2m
+ eqA01 =

(p− qeA)2

2m
1 + eqA01− eq

2m
σ ·B, (5.6)

not eq. (5.4). Starting with the same Hamiltonian as before, and applying exactly the

same principle of minimal coupling, we have generated the Hamiltonian eq. (5.6) with a

magnetic moment interaction rather than the Hamiltonian eq. (5.4) with no magnetic mo-

ment interaction! However, neither of these Hamiltonians is the correct electron interaction

Hamiltonian, which is

Hem =
(p− qeA)2

2m
1 + eqA01− c qe

2m
σ ·B, (5.7)

where c = 1.00116 = 1 + α/(2π) + . . . is the electron magnetic moment.

Once again, generating an interacting theory from a non-interacting one by using

minimal coupling is ambiguous. The ambiguity arises from terms involving the commutator

of two derivatives,

[∂µ, ∂ν ]ψ = 0, (5.8)

which vanishes, but which leads to the non-vanishing contribution,

[Dµ, Dν ]ψ = ieqψFµνψ 6= 0, (5.9)

when partial derivatives are promoted to covariant derivatives via the minimal coupling

procedure. This inconsistency is the reason why minimal coupling is ill-defined in theories

with a derivative expansion, such as effective field theories.

5.3 Protons and neutrons

The minimal coupling enthusiast might think that eq. (5.7) gives the correct value of c

up to a missing “loop correction.” Maybe all one needs to do is to use σ · p for spin-1/2

particles (for unspecified reasons connected with the UV theory), and one will correctly

reproduce all electromagnetic interactions up to “loop factors.” However, this reasoning is

also not correct. Consider another well-known spin-1/2 particle, the proton. Using qp = +1

leads to either eq. (5.4) with c = 0 or eq. (5.6) with c = 1 depending on whether eq. (5.3)

or eq. (5.5) is used as the starting point. The proton magnetic moment is c = 2.793, so the

correction δc to the minimal coupling Hamiltonian is δc = 2.793 or δc = 1.793 depending

on the starting choice. The missing term is no longer a small correction of “loop level.”

Maybe all the proton and electron examples show is that one should be using next-

to-minimal coupling, not minimal coupling. However, consider another familiar spin-1/2

particle, the neutron, with qn = 0. For the neutron, the ordinary and covariant derivatives

are the same, and like the neutral scalar example in section 4, one cannot generate a

magnetic interaction via minimal coupling. Nevertheless, the neutron has a magnetic

moment which is approximately −2/3 as big as the proton, µn = −1.91 nuclear magnetons.
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In this case, minimal coupling does not produce any electromagnetic interactions, since

q = 0, but the neutron clearly interacts electromagnetically, and its magnetic moment

interaction is not suppressed by a loop factor. One can prove in QCD that the ratio of the

proton and neutron magnetic moments is [28, 29]

µn
µp

= −2

3
+O

(
1

N2
c

)
, (5.10)

which follows from an exact SU(6)c symmetry in the Nc →∞ limit [28, 30, 31]. This is a

symmetry relation that violates minimal coupling. The “minimal coupling” prediction is

zero, since electromagnetic interactions are proportional to the particle charges.

5.4 The hydrogen atom and quarkonia

Another example in which neutral particles can couple to photons with couplings which

are not loop suppressed is the Hydrogen atom. The interaction of the neutral Hydrogen

atom with an external electric field leads to an effective interaction

H = −1

2
αEE2, (5.11)

where E is the electric field, αE = 9a3
0/2 is the electric polarizability, and a0 is the Bohr

radius. Clearly, there is no loop suppression at work here, since there are no loop graphs

in non-relativistic quantum mechanics. Brambilla, Pineda, Soto and Vairo pioneered an

effective theory for QCD bound states called pNRQCD [32, 33], and QED bound states are

a special case of their formalism. The interaction eq. (5.11) with αE = 9a3
0/2 is consistent

with their power counting.

Similarly, electromagnetic transitions of Hydrogen, such as the 2p→ 1s+γ transition,

are not loop suppressed. The transition amplitudes are given by p · E dipole transitions

proportional to the field strength, and obey the pNRQCD power counting. Neutrality

of the bound states implies that the electric fields at long distances are dipole fields of

order 1/r3 from a p ·E interaction, rather than Coulomb fields of order 1/r2 from a qA0

interaction. Neutrality of bound states does not imply that electromagnetic transitions are

suppressed by loop factors.

These basic examples are not exceptions to a general rule. Consider another example

with a non-Abelian gauge symmetry. The interaction of quarkonium with background

chromoelectric and chromomagnetic fields is given by an interaction [34]

L =
(
P †vPv − V †µ,vV µ

v

)
(cEOE + cBOB) ,

OE = −GAµαGAναvµvν , OB =
1

2
GAαβGAαβ −GAµαGAναvµvν , (5.12)

where Pv annihilates the pseudoscalar meson ηc or ηb, and Vµ,v annihilates the vector meson

J/ψ or Υ for the Q = c and b quarkonia systems, respectively. Here, v is the velocity of

the state, and a0 is its radius. In the rest frame, vµ = (1, 0, 0, 0), and

OE = Ea ·Ea, OB = Ba ·Ba, (5.13)
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are the squares of the color electric and magnetic fields. The coefficient cE , the analogue

of αE for the Hydrogen atom, was computed by Peskin [35],

cE =
14π

27
a3

0, (5.14)

where a0 is the bound state radius. The quarkonia states ηc,b, J/ψ and Υ are all color-

neutral particles. Nevertheless, they couple to colored fields with couplings given by pN-

RQCD power counting, with no loop suppression factors, contrary to the expectation from

minimal coupling.

The intuitive idea that the photon must couple with a loop suppression to neutral

fields, which is based on the accidental success of minimal coupling for the matter part of

the Standard Model Lagrangian, cannot be used in arbitrary EFTs.

5.5 Baryon chiral perturbation theory

Now consider the interactions of baryons with photons at low momentum. These interac-

tions are described by the baryon chiral Lagrangian. To describe the interactions of baryons

with photons, we can study an even simpler version of the theory where the pion fields have

been set to zero. The low-momentum interactions of baryons with the electromagnetic field

can be described by a relativistic Lagrangian of the form

L = ψ
(
i/∂ − eq /A−m

)
ψ − ec̃

4m
ψσµνψFµν , (5.15)

where the total magnetic moment is q+c̃, with q coming from the fermion kinetic term. The

baryon interactions also can be described by using a non-relativistic Lagrangian written in

terms of velocity-dependent fields [36],

L = ψvv · (i∂ − eqA)ψv −
ec

4m
ψvσ

µνψvFµν , (5.16)

where vµ = (1, 0, 0, 0) in the baryon rest frame and the magnetic moment is c. The

kinetic term in eq. (5.16) does not generate a magnetic moment interaction because it

is spin independent. Eq. (5.16) is obtained from eq. (5.15) by taking the non-relativistic

limit. The relativistic Lagrangian eq. (5.15) with Aµ = 0 matches onto the non-relativistic

Lagrangian eq. (5.16) with Aµ = 0,

ψ
(
i/∂ −m

)
ψ → ψvv · (i∂)ψv. (5.17)

The relativistic magnetic moment interaction matches onto the non-relativistic one,

− e

4m
ψσµνψFµν → −

e

4m
ψvσ

µνψvFµν . (5.18)

However, for the two Lagrangians to describe the same physics, we need c = c̃+ q, i.e. the

matching of the gauged kinetic term is

ψ
(
i/∂ − eq /A−m

)
ψ → ψvv · (i∂ − eqA)ψv −

eq

4m
ψvσ

µνψvFµν . (5.19)
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This result (using the principle of minimal coupling and then matching) is not the same

as first matching using eq. (5.17) and then using the principle of minimal coupling, which

misses the Fµν term in eq. (5.19). Introducing gauge interactions by the principle of

minimal coupling is incorrect in a non-renormalizable EFT, even in a simple one such as

eq. (5.16), which is obtained from eq. (5.15) by integrating out antiparticle states at tree

level. Note that in our example, we have worked only at tree level, and the missing Fµν
term in eq. (5.19) is not suppressed by a loop factor.

6 EFTs of goldstone bosons and dynamical symmetry breaking

An interesting idea for solving the hierarchy problem is to have the weak interaction gauge

symmetry spontaneously broken by a strongly interacting sector, in analogy to the spon-

taneous breaking of (global) chiral symmetry in QCD due to strong interaction dynamics.

The earliest implementations of this idea were technicolor theories, which were essentially

QCD-like theories with f , the analogue of the pion decay constant, equal to v, the elec-

troweak symmetry breaking scale.

The SU(3)L×SU(3)R chiral symmetry of QCD with three light flavors is spontaneously

broken by the strong interaction dynamics. As a result, one has an octet of Goldstone

bosons, the π, K and η mesons. The SU(3)L × SU(3)R symmetry is realized non-linearly;

under an infinitesimal chiral transformation ε, the octet Goldstone boson field π shifts by

π → π + fε , (6.1)

where π and ε are traceless 3 × 3 matrices. The chiral symmetry eq. (6.1) forbids a pion

mass term Trππ, so the pions are exactly massless in the absence of interactions which

explicitly break the chiral symmetry, such as quark masses and electromagnetism.

A similar symmetry argument is applicable in composite Higgs theories when the Higgs

field is generated dynamically as a pseudo-Goldstone boson. In QCD, one can make the K

meson doublet arbitrarily light compared to ΛQCD by taking ms → 0. A similar mechanism

is commonly used in composite Higgs theories to generate a light scalar with the quantum

numbers of the SM Higgs boson; one simply makes the symmetry breaking parameter small.

In these theories, one needs to explicitly break the Higgs shift symmetry eq. (6.1), otherwise

Yukawa couplings to SM fermions are forbidden. We will directly address the issues of

minimal coupling in composite Higgs theories in subsection 6.2. However, before doing

this, it is instructive to study minimal coupling in χPT, which describes the interactions of

the photon with neutral particles in a spontaneously broken strongly coupled gauge theory,

i.e. QCD.

6.1 Chiral perturbation theory

The chiral Lagrangian is an effective field theory with an expansion in powers of momen-

tum p/Λχ, where Λχ ∼ 1 GeV is the scale of chiral symmetry breaking. As long as the

momentum p � Λχ, one has a well-defined weakly coupled expansion. As p approaches

Λχ, the momentum expansion breaks down, and the theory becomes strongly coupled. The
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lowest order Lagrangian of order p2 is

L2 =
f2

4

〈
DµUD

µU † + U †χ+ χ†U
〉

+ . . . (6.2)

where 〈·〉 denotes a trace over flavor indices, and

U = e2iπ/f , π = πaT a,
〈
T aT b

〉
=

1

2
δab, χ = 2B0M, (6.3)

and

M =

mu 0 0

0 md 0

0 0 ms

 (6.4)

is the quark mass matrix, which is order p2 in the power counting. χ is the explicit

breaking of chiral symmetry due to the light quark masses, and f ∼ 93 MeV is the pion

decay constant. Amplitudes with different numbers of pions arise from the expansion of

U , and are related algebraically, as a consequence of the chiral symmetry.

The chiral Lagrangian is a non-renormalizable theory, because U is exponential in the

pion fields, and generates interactions of arbitrarily high dimension when expanded. Thus,

there is an infinite series of higher order terms that must be included to obtain a consistent

theory. The order p4 terms are [37]

L4 = L1 〈DµU
†DµU〉2 + L2 〈DµU

†DνU〉 〈DµU †DνU〉
+ L3 〈DµU

†DµUDνU
†DνU〉 + L4 〈DµU

†DµU〉 〈U †χ+ χ†U〉

+ L5 〈DµU
†DµU

(
U †χ+ χ†U

)
〉 + L6 〈U †χ+ χ†U〉2

+ L7 〈U †χ− χ†U〉2 + L8 〈χ†Uχ†U + U †χU †χ〉
− iL9 〈FµνR DµUDνU

† + FµνL DµU
†DνU〉 + L10 〈U †FµνR UFLµν〉

+ H1 〈FRµνFµνR + FLµνF
µν
L 〉 + H2 〈χ†χ〉 . (6.5)

where FL,R are background flavor gauge fields. For electromagnetic interactions, one substi-

tutes FµνL = FµνR = eQFµν , where Q = diag(2/3,−1/3,−1/3) is the quark charge matrix.

The size of coefficients in the chiral Lagrangian is given by naive dimensional analy-

sis [23], with terms of order∑
n

f2Λ2
χ

Ln
Λnχ

= f2Λ2
χ

[
L2

Λ2
χ

+
L4

Λ4
χ

+ . . .

]
=

Λ4
χ

16π2

[
L2

Λ2
χ

+
L4

Λ4
χ

+ . . .

]
(6.6)

where Λχ ∼ 4πf is the scale of chiral symmetry breaking. (The last equality is not valid

in the large N limit, see section 7.1). There is a double expansion, in powers of 1/Λχ from

the derivative expansion, and in powers of 1/f from expanding U . There is no sense in

which terms in eq. (6.6) can be classified in terms of “tree” or “loop” graphs in QCD. Λχ
and f are non-perturbative parameters, as discussed in section 3.

The anomalous dimensions of the couplings Li are

µ
dLi
dµ

=
γi

16π2
, (6.7)
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where γi are pure numbers [37], e.g. γ10 = −1/4. The anomalous dimensions do not contain

any suppression factors which maintain an operator classification scheme based on minimal

coupling. The operators with coefficients L9, L10 involve the field strength Fµν , violate

minimal coupling and have anomalous dimensions of order unity. The chiral Lagrangian

leads to observable scattering amplitudes, and the coefficients Li can be determined from

experiment. The best fit values of Li are given in ref. [37, 38]. A quick glance shows

that there is no loop suppression whatsoever of L9,10 in this EFT of a strongly interacting

sector. In fact, L9,10 are slightly larger than the other coefficients.

6.1.1 Interactions of neutral pseudo-goldstone bosons

There are some interesting features of the interaction of the neutral pseudo-scalars with

photons in χPT which are relevant for PGB Higgs models. Consider QCD with three

massless quarks, and turn on electromagnetic interactions. Even in the presence of elec-

tromagnetism, there is an unbroken chiral SU(2)L × SU(2)R × U(1)L × U(1)R symmetry

generated by

1

2

[
0 0

0 τa

]
,

1√
12

−2 0 0

0 1 0

0 0 1

 . (6.8)

This symmetry is spontaneously broken, so the π0, η, K0 and K̄0 are exact Goldstone

bosons, and have a shift symmetry eq. (6.1). It is important to realize that terms such as(
π0
)2
FµνF

µν , K0K̄0FµνF
µν (6.9)

of order p4, with non-derivative interactions, are forbidden by this unbroken exact chiral

symmetry, not because the mesons are neutral. When the remaining exact chiral symmetry

is broken, e.g. for K0 and K̄0 by turning on ms, or for π0 by non-zero mu and md, then

one generates

mu,d

(
π0
)2
FµνF

µν , msK
0K̄0FµνF

µν . (6.10)

interactions from the order p6 terms [39, 40] in the chiral Lagrangian without any loop sup-

pression. We have explicitly verified that this is the case. Thus, neutral pseudo-Goldstone

bosons in QCD do couple to photons without a loop factor once the Goldstone boson shift

symmetry is broken.

6.2 The Higgs as a pseudo-goldstone boson

Now consider a very interesting class of models in which the Higgs is a pseudo-Goldstone

boson [41–44]. A strongly interacting gauge theory with scale ΛS spontaneously breaks its

global symmetry group G down to a subgroup H. The Goldstone bosons are parametrized

by a field Σ(x) that lives in the coset space G/H [45, 46]. One can weakly gauge a subgroup

GW = SU(2)×U(1) of G or a larger subgroup that contains the SM SU(2)×U(1) group.

The G symmetry is broken explicitly by these weak gauge couplings, and the Goldstone

bosons are no longer exactly massless, but develop a potential proportional to powers of
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the weak gauge coupling. The theory is constructed so that a pseudo-Goldstone multiplet

with the quantum numbers of the SM Higgs doublet develops a vacuum expectation value

v � ΛS , which breaks SU(2)×U(1) down to U(1) electromagnetism.

In PGB Higgs models, the leading sigma model interaction terms are

L2 =
f2

2
(DµΣ)†(DµΣ) + . . . (6.11)

There are also all possible higher dimension operators consistent with the EFT expansion in

powers of 1/ΛS . The PGB Higgs theory, just like any other EFT, is not minimally coupled.

The p2 Lagrangian is only accidentally minimally coupled, because of the structure of the

kinetic term in eq. (6.11). In general, the higher order terms will not be minimally coupled,

and they include terms containing field-strength tensors, just as they do in QCD. The idea

that PGB Higgs theories are minimally coupled arises from ignoring the . . . in eq. (6.11),

and the gauge kinetic terms.6

Of particular relevance is the neglect of operators of the form

OW Σ = ig2W
µ ν
a Tr

[
(DµΣ)† τaDνΣ

]
,

OBΣ = ig1B
µ νTr

[
(DµΣ)†DνΣ τ3

]
, (6.12)

which, when expanded out, give contributions to operators that have been argued to be

loop suppressed in ref. [13], but without any loop suppression factor. As we have shown,

one cannot invoke a minimal coupling loop factor to suppress these operators. Eq. (6.12)

is written for theories in which the Higgs field H is part of Σ(x), and Σ(x) transforms as a

(2, 2) under weak and custodial SU(2) symmetry. In more general G/H symmetry breaking

patterns, operators of the form eq. (6.12) are present, but the notation is more abstract —

τa/2 and τ3 should be thought of as the gauge generators acting on Σ(x) ∈ G/H.

In PGB models, the Higgs would be an exactly massless Goldstone boson if the SM

couplings were turned off, because the Goldstone boson’s shift symmetry H → H + vε is

analogous to the pion chiral shift symmetry π → π+ fε in QCD. In QCD, weakly gauging

electromagnetism generates a mass for the π+ through graphs shown in figure 1(a), which

generates the Goldstone boson potential

LM = c TrUQU †Q, (6.13)

where c is of order f2Λ2
χ × e2/(16π2). We can use the perturbative estimate of c since the

EFT is weakly coupled below the scale Λχ, and the integral is cut off at Λχ. Eq. (6.13)

gives a pion mass term of order m2 ∼ Λ2
χ × e2/(16π2), and is of the order of m2

π+ −m2
π0 .

This term explains the π+ − π0 mass splitting in QCD.7

The general structure of figure 1(a) involves the amplitude for the PGB to interact

with two gauge fields,

g2Xab (Σ, . . .) (6.14)

6It is important to point out that the original papers developing the PGB Higgs idea [42–44] are not

based on minimal coupling arguments. The concept was introduced in later work.
7The total π+ mass also gets a contribute from the u and d quark masses.
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(a) (b)

Figure 1. (a) Gauge boson contribution to the pseudo-Goldstone boson mass m2
HH

†H (b)

Higgs-gauge interaction H†HFµνF
µν .

where g is the gauge coupling, which generates the mass term from figure 1(a),

LM =
g2

16π2
Λ2
SX

aa (Σ, . . .)→ −m2
HH

†H + . . . (6.15)

as for QCD, where we have used the cutoff ΛS . The . . . indicates that Xab is an arbitrary

invariant polynomial that can be expanded in powers of the symmetry breaking interactions

of the theory, such as gauge interactions gT a, or quark mass terms χ. The precise form for

Xab depends on the G→ H symmetry breaking pattern and the way in which SU(2)×U(1)

is embedded in G.

In QCD, if we weakly gauge a subgroup of the SU(3)V symmetry, Xab has the form

Xab = c1g
2TrUT aU †T b + c2g

4TrUT aU †T bUT cU †T c + c3g
2TrχT aU †T b + . . . , (6.16)

to show some representative terms. For the case of electromagnetic interactions, we have

only one generator T a → Q and g → e. The c1 term in eq. (6.16) generates the π+ and K+

electromagnetic masses, the c2 term generates higher order corrections to the π+ and K+

masses, and the c3 term generates a mass for the neutral K0 meson of order e2ms. In Little-

Higgs theories, the Higgs mass is of order g4, so . . . in the Xab contains an additional factor

of (gT )(gT ), and there is an additional gauge interaction hidden in the blob in figure 1.

The details of Xab do not matter. By assumption in some PGH models, an interaction

eq. (6.15) generates the Higgs mass. But this implies (by cutting open the gauge loop in

figure 1(a) to get figure 1(b)) that the EFT also has a Higgs-gauge interaction allowed by

the symmetries of the theory,

L =
g2c6

Λ2
S

H†HFµνF
µν . (6.17)

Closing the gauge loop in figure 1(b) to generate eq. (6.15) shows that

m2
H ∼

g2Λ2
S

16π2
c6 . (6.18)

The relationship discussed here is between operators of the form in eq. (6.17), and the

resulting counter terms generated by the divergent loops, which generate operators of the

form that contribute to the Higgs mass. In Little Higgs theories, c6 would be order g2,
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and m2
H order g4. It does not matter what suppression factors mH and c6 have; we know

experimentally that mH ∼ 125 GeV. From eq. (6.18), we see that (approximately)

c6 ∼
16π2m2

H

g2Λ2
S

∼
(

2.5 TeV

ΛS

)2

(6.19)

and c6 is not suppressed by a loop factor for ΛS in the 1 − 10 TeV range. This equation

also provides a rough relation between ΛS and any observed deviation of the h→ γγ rate

from the SM value due to the operator in eq. (6.17).

6.3 Higher dimension Higgs operators

In ref. [3], we considered the subset of dimension-six operators

OGG = g2
3 H
†H GAµνG

Aµν , ÕGG = g2
3 H
†H GAµνG̃

Aµν ,

OBB = g2
1 H
†H Bµ νB

µ ν , ÕBB = g2
1 H
†H Bµ νB̃

µ ν ,

OWW = g2
2 H
†HW a

µ νW
aµ ν , ÕWW = g2

2 H
†HW a

µ νW̃
aµ ν ,

OWB = g1 g2H
† τaHW a

µ νB
µ ν , ÕWB = g1 g2H

† τaHW a
µ νB̃

µ ν ,

(6.20)

of the 59 dimension-six operators in the operator basis of ref. [1]. The operators in eq. (6.20)

were chosen because they contribute to gg → h, h → γγ, and h → Zγ at tree-level in the

EFT, i.e. through tree diagrams in the EFT which are linear in the dimension-six operator

coefficients. The unknown coefficients ci/Λ
2 accompanying the operators parametrize arbi-

trary new physics. For this formalism to be model independent, no assumption should be

made about the size of the operator coefficients beyond the usual assumption of the EFT

power counting. A simple model that yields these operators is given in the appendix.

In the operator basis of ref. [1], 15 of the 59 dimension-six operators do not involve

fermions. These 15 operators are the eight operators of eq. (6.20), three additional operators

involving the Higgs doublet field,

Oϕ =
(
H†H

)3
, Oϕ� =

(
H†H

)
∂2
(
H†H

)
, OϕD =

(
H†DµH

)† (
H†DµH

)
. (6.21)

and four additional pure-gauge operators

OGGG = fABCGAµ
νGBν

ρGCρ
µ, OGGG̃ = fABCG̃Aµ

νGBν
ρGCρ

µ,

OWWW = εabcW a
µ
νW b

ν
ρW c

ρ
µ, O

WWW̃
= εabcW̃ a

µ
νW b

ν
ρW c

ρ
µ. (6.22)

A full calculation of the 15 × 15 anomalous dimension matrix needs to be performed.

However, it is easy to construct models of new physics which only produce the operators

OWW , OBB and OWB in the EFT at the matching scale Λ. For such models, the RG

running of the operator subset yields the results for h → γγ and h → Zγ given in our

paper [3].

The authors of ref. [13] argue that the choice of operator basis is extremely important.

They consider the operator OBB and four additional operators

PHW = −i g2 (DµH)† τa (DνH)W a
µ ν , PHB = −i g1 (DµH)† (DνH)Bµ ν ,

PW = − i g2

2
(H† τa

←→
D µH) (DνW a

µ ν), PB = − i g1

2
(H†
←→
D µH) (DνBµ ν),

(6.23)
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none of which are in the basis of ref. [1]. The P operators are related by the equations of

motion to OBB, OWW and OWB by

PB = PHB +
1

4
OBB +

1

4
OWB, PW = PHW +

1

4
OWW +

1

4
OWB. (6.24)

Notice that two of the three operators of ref. [3], namely OWW and OWB, have been

eliminated from this subset of five operators. Ref. [13] uses the basis of ref. [14]. This

basis is viewed to be a special transparent basis in which operators obey a tree and loop

suppression organization in the EFT when minimal coupling is invoked in the underlying

theory. In this basis, one combination of the operators PHW and PHB gives a direct

coupling of the photon to ZH in the EFT (a violation of minimal coupling), and another

combination of the operators contributes to the gyromagnetic ratio of the W deviating from

2, which is believed to not happen at “tree” level in the EFT due to minimal coupling.

If another basis was used where more operators contributed to these effects, there would

be no coherent scheme to use to identify offending operators directly, hence the belief that

this basis is important. This reasoning underlies the opinion expressed in ref. [13] that

for broad scenarios satisfying a minimal coupling assumption, the large contribution to

the Wilson coefficients of the operators PHW , PHB, and OWB in the EFT must cancel in

mixing that gives h→ γγ. It is asserted that any direct contribution to these operators is

loop suppressed, due to minimal coupling in the underlying theory, and that the only large

contribution that these operators can possibly receive comes from PB and PW , which they

claim do not mix with the single Wilson coefficient OBB giving h→ γγ in their basis.

Ref. [13] considers operator mixing of their five operators but does not calculate explic-

itly the anomalous dimension matrix for this entire subset of operators. Instead, they use

the anomalous dimension calculation of ref. [3], and they argue that some of the remaining

unknown anomalous dimensions vanish because “tree” operators do not mix with “loop”

operators. These zeros and the results of ref. [3] are used to determine part of the 5 × 5

anomalous dimension matrix for the alternative set of 5 operators, OWW , OBB, OWB,

PHW and PHB, which they call the GJMT basis of ref. [3], despite the fact that it involves

P operators, and was not the basis used in ref. [3] for the anomalous dimension calculation.

Two of the new operators introduced in ref. [13], PW and PB, can be eliminated

using the gauge field equations of motion, DνW a
µν = g2j

a
µ and DνBµν = g1jµ, in terms

of the gauge currents which involve fermion and Higgs fields. Operators with a similar

structure, the penguin operators ψγµTAPLψ
(
DνG

A
µν

)
, arise in the study of non-leptonic

weak interaction, and are eliminated in favor of four-quark operators using the equation of

motion DνGAµν = g3j
A
µ in standard treatments of hadronic weak decays.

We have explained at length in this paper why minimal coupling operator classification

schemes are invalid in EFT. Ref. [13] uses such a scheme to argue that h → γγ is loop-

suppressed in the EFT, and that this loop suppression is preserved under RG running.

7 Other misconceptions

In this section, we discuss the invalidity of other arguments which have been advanced in

the literature, and are related to the minimal coupling arguments discussed earlier.
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Figure 2. Meson exchange contribution to π − π scattering.

7.1 Confining large N theories are not like the linear sigma model

Strongly interacting gauge theories in the large N limit produce a weakly coupled spectrum

of mesons. Three-meson interactions are order 1/
√
N , four-meson interactions are 1/N ,

etc. In theories such as large N QCD with a spontaneously broken flavor symmetry, one

can construct a sigma model description as in chiral perturbation theory. The N → ∞
limit of the gauge theory is taken so that the analog of ΛQCD, or equivalently, meson masses

are order unity as N →∞. We will call this generic scale m.

The Goldstone boson dynamics is described by a chiral Lagrangian that depends on

f ∝
√
N , so that f ∼

√
Nm. Since the Lagrangian is expanded in powers of π/f , it auto-

matically implements the suppression by 1/
√
N for each additional meson. The Lagrangian

has an expansion in derivatives suppressed by Λχ, which is order unity, not order
√
N , in

the large N limit. The scale of the derivative expansion is given by the scale of variation

of form factors, or by the masses of mesons, which are order unity. One way to see this

is to consider figure 2, which is a contribution to π − π scattering due to the exchange of

a meson. The amplitude is order 1/N , from the two 1/
√
N factors at each three-meson

vertex. The expansion of 1/(p2 −m2), produces terms of the form
(
p2/m2

)r
, so there is a

p4/(Nm4) contribution to the scattering amplitude. This is precisely the amplitude from

the p4 term

f2

Λ2
χ

〈
∂µU∂

µU †∂νU∂
νU †

〉
∼ f2

Λ2
χ

(
p

f

)4

π4 + . . . ∼ p4

Nm4
π4 + . . . (7.1)

The large N theory also has an infinite tower of mesons with arbitrarily high spin.

The reason is that correlation functions of gauge invariant operators can be obtained by

summing over physical intermediate states, by the optical theorem. The gauge theory

correlation functions at momentum Q scale with powers of logQ, by asymptotic freedom.

The only way this logQ behavior can be reproduced by the sum over mesons is if the sum is

over an infinite number of terms. One also must have mesons of arbitrarily high spin, since

one can construct gauge invariant operators of arbitrarily high spin in the fundamental

theory, such as ψγµ0Dµ1 . . . Dµnψ, and these have to couple to physical mesons so that the

optical theorem is satisfied.

The ’t Hooft model, large N QCD in 1+1 dimension, has been exactly solved, and the

above points have been explicitly demonstrated. The meson form factors can be computed,

and vary on a scale of order one [47]. Operator correlation functions are reproduced by a

sum over intermediate mesons [48], a feature often referred to as quark-hadron duality. A

linear sigma model with a fundamental scalar where the scalar self-coupling λ is large does

not capture all of the important physics of a confining gauge theory, which has an infinite

tower of states.
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7.2 g 6= 2

One argument which has been advanced for the loop suppression of higher dimensional

operators violating minimal coupling is that the value g = 2 for the gyromagnetic ratio

of fundamental fields arises at tree level, and operators with explicit factors of Fµν can

lead to tree level deviations from this value. We have already seen how g = 2 arises in a

fundamental renormalizable theory [18, 49] — the anomalous magnetic moment operators

are suppressed by 1/Λ and vanish as Λ → ∞. Arguments of this form do not imply that

there are no 1/Λ terms for finite Λ. Several examples already have been discussed where

these terms occur without loop suppression.

A second argument advanced to argue that some higher dimension operators (PHW and

PHB) in the EFT are loop suppressed is that they can contribute to scattering amplitudes

of photons with W and Z bosons, potentially leading to high-energy behavior of scattering

amplitudes which violates unitarity. In an EFT, one only needs to ensure that unitarity

is not violated below the scale Λ of new physics. General arguments [24] imply that PHW
and PHB do not lead to violations of unitarity in the EFT until the scale Λ. This result

is true even for massive gauge bosons such as the W and Z, provided the gauge symmetry

is spontaneously broken. We have verified by explicit calculation that the cross section

γ + W → γ + W in the EFT does not violate unitarity below Λ, even if PHW and PHB
have coefficients which are not suppressed by g2/(16π2).

7.3 The UV theory cannot be adjusted to enforce minimal coupling in the IR

It has been argued that the underlying UV theory can be chosen so that the EFT is mini-

mally coupled. This is usually done using the mantra “we assume that the UV completion

is such that the EFT is minimally coupled.” Consider the implications of this in QCD,

as an example of a prototypical UV strongly interacting theory. We will take the light

quark masses mu,d,s to be zero, as they are irrelevant to the discussion. The fundamental

theory has only two parameters, the scale ΛQCD and electromagnetic coupling constant e.

In the low-energy EFT, the ρ mass determines ΛQCD, and the ρ+ charge determines e.

There are no other parameters in the full QCD theory which can be adjusted to enforce

minimal coupling in the low-energy effective theory. Or another example — let the low

energy theory be atomic physics with the UV theory given by QED. What does it mean to

adjust the UV theory so that atomic interactions satisfies minimal coupling, and Hydrogen

polarizabilities and transition amplitudes are loop suppressed? There is no such freedom

to modify QED. It certainly cannot be done by any local modification.

To make the argument even more explicit, consider QED bound states in a potential

V (x). We know that V (x) must be a Coulomb potential, but assume that our “UV theory”

is sufficiently flexible that we can adjust V (x) arbitrarily, while still retaining Coulomb

bound states. Can we adjust V (x) to make Hydrogen and Positronium minimally coupled?

For this to happen, all electromagnetic dipole transition matrix elements must be “loop

suppressed.” The oscillator-strength sum-rule for the dipole transition operators is [50]

1 =
∑
f

2m (Ef − Ei)
2~2

|〈f |xa|i〉|2 , a = 1, 2, 3 . (7.2)
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One cannot make the i→ f dipole transition matrix elements highly suppressed for all f ,

regardless of the potential V (x).

The concept of choosing the UV theory so that the low-energy effective theory is

minimally coupled is generally invalid; a UV theory will contain fewer parameters than

the EFT, which has an infinite set of gauge invariant operators if one works to arbitrarily

high orders in 1/Λ. There are not enough adjustable parameters in the UV theory to make

the low energy theory minimally coupled. One can assume the EFT has symmetries such

as CP which follow from symmetries of the underlying UV theory because they constrain

low-energy scattering amplitudes through Ward identites. However, minimal coupling is

not a symmetry, and does not give such constraints.

8 Conclusions

We have examined the concept of minimal coupling in EFT, and shown that it is con-

tradicted by experimental evidence and explicit calculations in a wide range of examples.

The results should not be surprising to those who have applied EFT methods to analyze

experimental measurements of strong, weak and electromagnetic processes. Minimal cou-

pling is not a symmetry, and does not lead to constraints on the low-energy effective theory

other than the usual one of gauge invariance. In general, the use of minimal coupling as

an organizing principle in an EFT is simply invalid and inconsistent. The notion that a

UV theory can be chosen so that the EFT is minimally coupled also is misguided.

We have shown that in the case of PGB Higgs models, many claims in the literature

based on minimal coupling are not generic predictions. The impact of new physics on the

properties of the SM Higgs can be described by an EFT which contains all higher dimen-

sional operators consistent with the symmetries of the theory with operator coefficients

suppressed by the scale of new physics Λ. There is, in general, no additional ordering due

to minimal coupling of the operator coefficients beyond the usual power counting expansion

and gauge invariance of the EFT.
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A Generating “loop-level” operators at tree level

In this paper, we have shown that “non-minimally coupled” operators in EFTs are not

loop suppressed in general, and we have shown in section 6.2 how operators such as PHW ,

PHB, and the h→ γγ amplitude, can arise at tree-level in PGB Higgs models.

Here we note another mechanism by which “loop” operators can be generated with

large coefficients consistent with the EFT power counting expansion. A strongly interacting

theory can generate a low-energy EFT description that has an infinite tower of states with
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arbitrary spin, and a tower of interactions consistent with the EFT’s power counting,

including super-renormalizable operators with explicit factors of the Λ scale of the EFT.

Integrating out low mass states in the EFT can generate the desired operators with order

unity coefficients.

A simple toy example is given by the interaction Lagrangian

L =
1

Λ

(
ag2

2σW
aµ νW a

µ ν + bg2
1σB

µ νBµ ν + cg1g2 ΣaW a
µ νB

µ ν
)

+ Λ
(
dH†Hσ + f H†τaHΣa

)
, (A.1)

where σ and Σa are real scalar fields with masses mσ and mΣ, respectively, and W a
µν and

Bµν are the usual SU(2) and U(1) field strengths of the SM. This example is an EFT with

a cutoff scale Λ. The particles σ and Σa are generated by dynamics at the scale Λ. An

exactly solvable model which gives this toy model is constructed in ref. [51].

Integrating out σ and Σa at tree level gives the effective interaction Lagrangian

L =
ad

m2
σ

g2
2H
†HW aµ νW a

µ ν +
bd

m2
σ

g2
1H
†H Bµ νBµ ν +

cf

m2
Σ

g1g2H
†τaHW a

µ νB
µ ν . (A.2)

Since mσ,mΣ ∼ Λ, this toy example gives the OWW , OBB and OWB terms expected by

the EFT power counting with order one coefficients.

This toy example illustrates two points that we wish to comment on. First, it shows

that the gauge invariant operators OWW , OBB and OWB considered in ref. [3] can receive

independent contributions consistent with EFT power counting. Second, is the possibility

of super-renormalizable operators being accompanied by positive powers of the EFT scale.

When such operators are included in the EFT, one can generate any dimension-six Higgs

operator at tree-level in a similar manner as the toy example.
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