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Abstract

Background: Numerous methods have been developed over the last decade to predict allelic identity at
unobserved loci between pairs of chromosome segments along the genome. These loci are often unobserved
positions tested for the presence of quantitative trait loci (QTL). The main objective of this study was to understand
from a theoretical standpoint the relation between linkage disequilibrium (LD) and allelic identity prediction when
using haplotypes for fine mapping of QTL. In addition, six allelic identity predictors (AIP) were also compared in this
study to determine which one performed best in theory and application.

Results: A criterion based on a simple measure of matrix distance was used to study the relation between LD and
allelic identity prediction when using haplotypes. The consistency of this criterion with the accuracy of QTL
localization, another criterion commonly used to compare AIP, was evaluated on a set of real chromosomes. For this
set of chromosomes, the criterion was consistent with the mapping accuracy of a simulated QTL with either low or
high effect. As measured by the matrix distance, the best AIP for QTL mapping were those that best captured LD
between a tested position and a QTL. Moreover the matrix distance between a tested position and a QTL was shown
to decrease for some AIP when LD increased. However, the matrix distance for AIP with continuous predictions in the
[0,1] interval was algebraically proven to decrease less rapidly up to a lower bound with increasing LD in the simplest
situations, than the discrete predictor based on identity by state between haplotypes (IBShap), for which there was no
lower bound. The expected LD between haplotypes at a tested position and alleles at a QTL is a quantity that
increases naturally when the tested position gets closer to the QTL. This behavior was demonstrated with pig and
unrelated human chromosomes.

Conclusions: When the density of markers is high, and therefore LD between adjacent loci can be assumed to be
high, the discrete predictor IBShap is recommended since it predicts allele identity correctly when taking LD into
account.

Background
Numerous methods have been developed to predict allelic
identity at an unobserved locus between pairs of chro-
mosome segments. Such predictions are generally carried
out by observing allelic similarities between the pairs of
chromosome segments that surround this locus [1-3]. It
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is assumed that chromosome segments that exhibit more
similarities have a higher chance of harboring the same
allele(s) at this locus. Many of these methods [1-5] use
either directly or implicitly the concept of identity-by-
descent (IBD), and therefore predict allelic identity based
on allelic likeness. Such predictions of allelic identity can
be either continuous or discrete in the [0,1] interval. The
matrices that contain these predictions for pairs of chro-
mosome segments, at an unobserved locus, can be used in
a statistical procedure to detect association between the
locus and some phenotypes of interest. For example, these
matrices can be interpreted as being proportional to the
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covariance matrices of the effect of the locus on pheno-
types of interest [1,4,6] and therefore play a central role
in the statistical analysis of the variability. The similarity
between chromosome segments can be measured based
on the haplotypes of markers carried by the segments.
Indeed, it has been shown that haplotype-based methods
have a higher potential to detect trait-marker associa-
tions than single-marker methods in some cases [7-16].
Different methods for predicting allelic identity, hereafter
named Allelic Identity Predictors (AIP), have been pro-
posed and in this study, we have compared some of these
methods i.e.: (1) the probability measure described by
Meuwissen and Goddard [1] is the conditional probability
of being IBD at an unobserved locus for pairs of haplo-
types, given the identical-by-state (IBS) status of alleles
spanning that position; (2) the similarity score of Li and
Jiang [2] calculates the sum of the number of shared alleles
and the length of the longest shared substring that spans
an unobserved locus for pairs of haplotypes; (3) the prob-
ability model of Browning [3] is based on Variable Length
Markov Chains (VLMC) and performs chromosome clus-
tering at a given marker, and in this model, chromosomes
that belong to a given cluster are considered as potentially
harboring the same unobserved allele(s) locally; and (4)
the IBS status of all marker alleles between pairs of haplo-
types and (5) the IBS status of single markers alleles, which
are the simplest AIP.
In some association studies, such as those that use ran-

dom effect models for example, the only input that differs
from one AIP to another is the similarity (covariance)
matrix built for the tested location. Thus, investigating the
properties of similarity matrices is another strategy when
comparing AIP, since this comparison is generally based
on the accuracy of quantitative trait locus (QTL) localiza-
tion (e.g. root mean square error). The main objective of
the present study was to understand the relation between
linkage disequilibrium (LD) and allelic identity prediction
when using haplotypes, by identifying the properties of
similarity matrices in the neighborhood of a QTL and
at the QTL. This was performed using a simple distance
measure between these matrices and the similarity matrix
at the QTL based on the observed allelic identity (IBS).
This distance measure was expressed analytically in terms
of LD coefficients. There has been an increasing interest
in taking advantage of LD for fine-mapping of complex
disease genes [17-20] and QTL [21-24]. Nevertheless, to
the best of our knowledge, no study has yet used ana-
lytical methods to compare AIP in relation to LD. Here,
we define a new criterion based on the chosen matrix
distance measure, which allows discrimination between
the six AIP. We evaluated the consistency of this cri-
terion with the mapping accuracy of the six AIP for a
QTL simulated according to different LD patterns and
populations.

The simulations were based on two population types,
a set of human chromosomes and a set of porcine
chromosomes, with different LD and density patterns. In
each case, the QTL was a hidden SNP that simulated a
biallelic QTL, as previously proposed [4,8,23,25]. Hence,
the present study was framed around the common idea
that there is a favorable allele at the QTL, which affects an
observed trait. In this context, the aim of AIP is to predict,
at the QTL, whether both chromosomal segments of any
pair harbor the same unobserved favorable allele or not,
which is the same as predicting the IBS or non-IBS state
of the alleles. A new (6) unreferenced AIP, named trained
predictor and abbreviated as TP, is also compared in this
paper. This new predictor, based on amatrix distance con-
cept similar to the one used to discriminate between the
AIP, performs least squares prediction in a global fash-
ion over chromosomes. The purpose of this predictor
was to investigate the behavior of an AIP which performs
global training over the chromosomes in relation to local
patterns of LD.

Methods
Matrix distance comparison
Let I = {i1, . . . , ir} be a set of positions that are tested
for the presence of a QTL on 2n phased homologous
chromosomes for n diploid individuals. Only one QTL is
considered to be in the screened region. In a sliding win-
dow approach, each position tested is considered to be
the unobserved center of the haplotypes carried by differ-
ent chromosome segments. Figure 1 shows an example of
tested positions for a sliding window of six markers and a
QTL located between SNPs 39 and 40.
Let sPi,c1,c2 ∈ [0, 1] be the IBS or IBD prediction of allelic

identity, depending on an AIP P at a tested position i ∈ I ,
for a couple (c1, c2) of chromosome segments. Note that
sPi,c1,c2 is calculated according to the observed similarity
between the haplotypes carried by c1 and c2. Hence, c1 and
c2 can harbor different unobserved alleles at i even if these
segments carry the same haplotype. We define MP ,i =(
sPi,c1,c2

)
1≤c1,c2≤2n

as the similarity matrix built from the

predictions of allelic identity at locus i for P . MatrixMP ,i

can be used in a statistical procedure to detect association
between i and some phenotype of interest.
Let uQTL

c1,c2 ∈ {0, 1} be the true allelic identity observed
at the QTL (IBS) for a couple (c1, c2) of chromosome seg-
ments. On the basis of known alleles at the QTL, the
similarity MQTL = (

uQTL
c1,c2
)
1≤c1,c2≤2n can be built with the

real allelic identities. Note that MQTL is simply a similarity
matrix that describes the IBS or non-IBS state of alleles at
the QTL.
Let d1 be a normalized distance measure between MP ,i

and MQTL induced by the entrywise 1-norm, which is the
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Figure 1 Principle of the sliding window approach when screening a chromosome for the set {i1, . . ., ir} of tested positions for
associations between phenotypes and 6-marker haplotypes.

sum of the absolute differences between the elements of
two matrices or vectors, i.e.

d1
(
MP ,i,MQTL

) = 1
4n2

‖MP ,i − MQTL‖1

= 1
4n2

2n∑
c1=1

2n∑
c2=1

|sPi,c1,c2 − uQTL
c1,c2 |

Note that some AIP have continuous prediction errors
|sPi,c1,c2 − uQTL

c1,c2 | in [0, 1], while for others, prediction errors
are limited to the discrete set {0, 1}. Measure d1 is there-
fore more appropriate than the euclidean metric d2, for
example, because it does not shrink continuous predic-
tion errors in [0, 1]. Let θQTL be the position of the QTL.
When a predictor P performs well, d1(MP ,i,MQTL) should
be minimum at the tested position closest to θQTL. Hence
d1(MP ,i,MQTL) can be used to compare different AIP for a
set of tested positions. Note that d1(MP ,i,MQTL) can also
be expressed as [see Additional file 1]:

d1
(
MP ,i,MQTL

) =
K∑

p=1
fi,hp

K∑
q=1

fi,hq
[
pQTL
i,hp,hq ×

(
1 − sPi,hp,hq

)

+
(
1 − pQTL

i,hp,hq

)
sPi,hp,hq

]
(1)

where K = 2t is the number of possible observed hap-
lotypes at position i, for a sliding window of t markers.

fi,hp and fi,hq are the frequencies of haplotypes hp and
hq at position i, respectively. Note that some haplotypes
among the K possible haplotypes may not be observed
in practice. Hence, the corresponding frequencies for
these haplotypes will naturally be equal to 0 in expres-
sion (1). pQTL

i,hp,hq is the proportion of identical alleles shared
at the QTL by the pairs of chromosomes that carry hp
and hq, at position i, and sPi,hp,hq is the prediction of
allelic identity at locus i for the predictor P and a pair
(hp, hq) of haplotypes. Expression (1) will be used sub-
sequently to express d1 as a function of LD coefficients,
and to understand the trained predictor defined in this
paper.

Measures of AIP evaluated
The AIP evaluated in this study were IBSm (IBS status of
alleles at single markers), IBShap (IBS status of all marker
alleles between pairs of haplotypes), P(IBD) (IBD proba-
bility of Meuwissen and Goddard [1]), Score (similarity
score of Li and Jiang [2]), Beagle (cluster-based probabil-
ity model of Browning [3]) and TP (the trained predictor).
Note that the tested positions coincide with marker posi-
tions for IBSm and Beagle. These positions are therefore
different from those in Figure 1. The tested positions for
IBShap, P(IBD), Score and TP are defined as presented in
Figure 1.
IBSm gives an allelic identity prediction of 1 if a pair

of chromosome segments carries the same allele at a
tested marker and 0 otherwise. With IBShap the predic-
tion of allelic identity is equal to 1 if both chromosome
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segments of a pair carry the same marker alleles for hap-
lotypes that span the tested position i, and 0 otherwise.
P(IBD) is an estimation of the conditional probability
of being IBD at i for a pair of chromosome segments,
given the IBS status of marker alleles of the haplotypes
spanning i. This measure of probability is based on a
coalescence process and models recombination between
markers. The P(IBD) function was applied here with an
ancestral effective population size of 100 and 100 gen-
erations from the base population, as in Meuwissen and
Goddard [1]. Meuwissen and Goddard [23] showed that
violations of these assumptions, i.e. that alter the effec-
tive population size and the number of generations since
the base population, had no effect on the mapping accu-
racy of their methods [23,26]. For a pair of haplotypes
carried by two chromosome segments, Score is the sum-
mation of the number of IBS alleles and the length of
the longest common substring of IBS alleles that span i.
Score integrates weight functions that decrease the signif-
icance of markers based on their genetic distance from i.
As proposed in Li and Jiang [2], these functions were cho-
sen to be one minus the distance, in centiMorgan (cM),
of each marker from i on the haplotypes within the slid-
ing window (as presented in Figure 1). Beagle clusters
chromosomes or haplotypes locally at a tested marker if
they have similar probabilities of carrying the same alle-
les at following adjacent markers. The Beagle probability
model was built at each marker by running the Beagle
software (Beagle 3.3.2; http://faculty.washington.edu/
browning/beagle/beagle.html, Browning [3], Browning
and Browning [12]) and fitting all the chromosome mark-
ers at one time. The Beagle probability model needs two
parameters (scale and shift) to be built. These parameters
were first estimated from the data using a cross-validation
procedure. However, the mapping results were less accu-
rate than those obtained with the default values for these
parameters that were proposed by the authors. According
to the authors, the default values have performed well in
simulation studies and real data analyses [12,27]. Hence
the default values scale = 4.0 and shift = 0.2 [12] were
used.
The trained predictor (TP), built by least squares

prediction, is based on the idea that pairs of haplotypes
that exhibit the same amount of allelic similarity should
have the same probability of harboring identical alleles,
regardless of the tested positions they span. Estimates
for

(
sTPi,hp,hq

)
(p,q)∈{1,..,K}2 can be obtained as follows. Let

J = {j1, . . . , jT } be a set of observed SNPs on chromo-
somes, which are called target SNPs. Each target SNP j is
defined as the middle marker of a sliding window of t + 1
loci, where t is the number of observed flanking mark-
ers used to predict allelic identity at the target SNP. Let

uj,c1,c2 ∈ {0, 1} be the real allele identity at j for (c1, c2) and
let ETP be the mean squared prediction errors over J for
TP, i.e.

ETP = 1
T

jT∑
j=j1

⎡
⎣ 1
4n2

2n∑
c1=1

2n∑
c2=1

(
sTPc1,c2 − uj,c1,c2

)2⎤⎦

= 1
T

jT∑
j=j1

[
d2
(
MTP,j,Mj

) ]

= 1
T

jT∑
j=j1

⎡
⎣ K∑
p=1

fj,hp
K∑

q=1
fj,hq

[
pj,hp,hq

(
sTPhp,hq − 1

)2

+
(
1 − pj,hp,hq

) (
sTPhp,hq − 0

)2]⎤⎦

Note that the expression of the normalized squared
euclidean distance, d2, in terms of frequencies and pro-
portions is analogous to that of d1 in (1).
Indeed fj,hp , fj,hq and pj,hp,hq at locus j are defined as

in (1). Estimates for
(
sTPi,hp,hq

)
(p,q)∈{1,..,K}2 are obtained by

differentiating ETP with respect to sTPhp,hq , i.e.

∂ETP

∂sTPhp,hq
= 0 ⇐⇒ ŝTPhp,hq =

∑jT
j=j1 fj,hp fj,hqpj,hp,hq∑jT

j=j1 fj,hp fj,hq

Note that the second derivative of ETP with respect to
sTPhp,hq is positive since it is a sum of frequencies. This
implies that ETP reaches a minimum for the set of esti-
mates

(
ŝTPhp,hq

)
(p,q)∈{1,..,K}2 , since ETP is a sum of convex

functions of each sTPhp,hq . Hence, TP associates ŝTPhp,hq to
any observed couple

(
hp, hq

)
at any tested position i ∈

I . The observed target SNPs (j ∈ J ) are used to esti-
mate the predictions of allelic identity for TP and should
not be confused with the unobserved tested positions
(i ∈ I).

Statistical models, test statistic and relative efficiency
Mixedmodels
The following mixed models were used to test for the
presence of a QTL at a given position i ∈ I for all AIP:

{
Y = Xβ + Zhh + Zuu + ε (H1)
Y = Xβ + Zuu + ε (H0)

http://faculty.washington.edu/browning/beagle/beagle.html
http://faculty.washington.edu/browning/beagle/beagle.html
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where β is a fixed effect, which is the overall mean, and
X = 1n is a vector of n ones. Vector u represents the
random polygenic effects due to relationships among
individuals, i.e. u ∼ Nn

(
0,Aσ 2

u
)
where A is the additive

relationship matrix built from the pedigree [28,29]. Zh
and Zu are design matrices that link random effects to
individuals and ε is the vector of homoscedastic error
terms, i.e. ε ∼ Nn

(
0, Inσ 2

ε

)
.

In the model corresponding to (H1), h is a vector
of random effects of haplotypes at position i, i.e. h ∼
Nκ(0,HP ,iσ 2

h ), where κ (κ ≤ K) corresponds to the
number of observed haplotypes, or alleles, at position i.
Note that h has the same dimension κ for all AIP except
for IBSm and Beagle. The tested positions coincide with
marker positions for these two predictors. At a tested
marker i, κ = 2 for IBSm and κ is equal to the number
of local clusters for Beagle. Therefore, depending on the
predictor P , HP ,i is a similarity matrix based on either
distinct observed haplotypes (e.g. P = Score) or distinct
clusters (e.g. P = Beagle). Note that HP ,i and MP ,i are
equivalent sources of data contingent upon the list of hap-
lotypes, or distinct local clusters, for the chromosome
segments at any tested position. Indeed, depending on P ,
one can build MP ,i from HP ,i in one of the two following
ways. (1) MP ,i

c1,c2 = HP ,i
h(c1),h(c2), where h(c1) and h(c2) are

the haplotype numbers carried by chromosomes c1 and c2,
respectively or (2) MP ,i

c1,c2 = HP ,i
C(c1),C(c2), where C(c1) and

C(c2) are the cluster numbers to which chromosomes c1
and c2 belong, respectively.

RLRT statistic
The Expectation-Maximization algorithm was used for
the restricted maximum likelihoods of the mixed mod-
els [30-33], to estimate the components β, h, u, ε and the
variance terms σ 2

h , σ
2
u , σ 2

ε . Let λP
i be the restricted maxi-

mum likelihood ratio test (RLRT) of (H1) versus (H0) for
position i, i.e.

λP
i = −2ln

(
LREML(H0)

LPREML(H1)

)

We defined θP
m.a. as the estimated position of a QTL for

a predictor P , i.e.

θP
m.a. = argmax

i∈I

{
λ̂P
i

}

Relative efficiency
To compare the predictive ability of the different predic-
tors in relation to LD, we defined θP

r.e. as the tested position
where d1

(
MP ,i,MQTL

)
is minimized for a predictor P ,

i.e.

θP
r.e. = argmin

i∈I
{
d1
(
MP ,i,MQTL

)}

Consequently, we defined the relative efficiency of a pre-
dictor P as follows. Predictor P is considered to be more
efficient than a predictor P ′ if
⎧⎪⎨
⎪⎩

|θP
r.e. − θQTL| < |θP ′

r.e. − θQTL| (a)

d1
(
MP ,θPr.e. ,MQTL

)
< d1

(
MP ′,θP ′

r.e. ,MQTL
)

(b)

where |.| is the absolute value. When θP
r.e. was not unique,

the mean of the different argmins was retained as θP
r.e..

Inequality (a) states that the tested position associated
with the best prediction, of the allele identity at the QTL,
is closer to the QTL for P than that for P ′. Inequality
(b) states that the true allelic identity at the QTL is better
predicted by P at θP

r.e. than by P ′ at θP ′
r.e. .

Comparison criteria
N simulations (w = 1, ..,N) were performed to evaluate
the mapping accuracy and the relative efficiency of the
different AIP in different situations.

Mapping accuracy
The mapping accuracy of the simulated QTL was eval-
uated for each AIP with the root mean square error
(RMSE):

RMSEm.a. =
√√√√ 1

N

N∑
w=1

(
θ
P ,w
m.a. − θQTL

)2

Relative efficiency
The relative efficiency of each AIP was evaluated by con-
sidering the three following quantities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSEr.e. =
√√√√ 1

N

N∑
w=1

(
θ
P ,w
r.e. − θQTL

)2

Ê
r.e. = 1

N

N∑
w=1

d1
(
MP ,θP ,w

r.e. ,MQTL,w
)

σ̂ r.e. =
√√√√ 1

N

N∑
w=1

(
d1
(
MP ,θP ,w

r.e. ,MQTL,w
)

− Êr.e.
)2

where RMSEr.e. and Ê
r.e. measure conditions (a) and (b),

defined in the paragraph on relative efficiency, and σ̂ r.e.

measures the standard deviation of the matrix distance at
θP
r.e..

Data for simulation
A sliding window of t = 6 markers was chosen for
all analyses, except for IBSm and Beagle. Windows of
six and 12 markers were previously shown to be opti-
mal for QTL mapping accuracy [34,35] with 60K type
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SNP chips. Hence, all analyses were done using a sliding
window of t = 6 markers, except for IBSm and Bea-
gle, to make comparison between the series of results
easier. A set of 90 human chromosomes 21 from unre-
lated Han Chinese individuals from Beijing (HCB), and
a set of 235 swine chromosomes 18 from French Large
White (FLW) pigs, were used for LD and matrix dis-
tance computations. The 90 HCB chromosomes were
genotyped for 16 881 SNPs and are available from
the HapMap project website (http://hapmap.ncbi.nlm.nih.
gov/downloads/phasing/2005-03_phaseI/full/). The FLW
chromosomes were genotyped for 1252 SNPs using the
Illumina Porcine 60K+SNP iSelect Beadchip [36]. Only 14
976 SNPs on the HCB chromosomes and 969 SNPs on the
FLW chromosomes for which the minor allele frequency
was greater than 5% were retained for analysis. The LD
and matrix distance computations were conducted for the
HCB and the FLW chromosomes. The QTL simulations
were only conducted for the FLW chromosomes for which
a pedigree was available. The marker density varied across
the FLW chromosomes based on physical distance in kilo-
base. One megabase was considered equivalent to 1 cM
for conversion in this study.

Variation of LD between tested positions and a QTL
LD between a tested position i and a QTL was measured
using the multiallelic measure R of LD as suggested by
[37-39]. Let �p = f QTLi,hpa1 − fi,hp fa1 be the LD coefficient
between haplotype hp at position i and allele a1 at the
QTL. f QTLi,hpa1 is the frequency of haplotype hpa1 defined
by the marker haplotype hp that spans position i and
allele a1 at the QTL. fa1 is the frequency of allele a1 at
the QTL and fi,hp is haplotype hp frequency at i. Note
that −�p = f QTLi,hpa2 − fi,hp fa2 . Hence, for a biallelic QTL, R
can be expressed as:

Ri,QTL =
∑K

p=1
∑2

l=1

(
f QTL
i,hpal − fi,hp fal

)2
(
1 −∑K

p=1 f
QTL 2
i,hp

) (
1 −∑2

l=1 f 2
al

)

=
∑K

p=1

[(
�p
)2 + (−�p

)2]
(
1 −∑K

p=1 f
QTL 2
i,hp

) (
1 −∑2

l=1 f 2
al

)

= 2
∑K

p=1 �2
p(

1 −∑K
p=1 f

QTL 2
i,hp

) (
1 −∑2

l=1 f 2
al

) = D2
i,QTL

Hi.HQTL

where Hi = 1 − ∑K
p=1 f

QTL 2
i,hp and HQTL = 1 − ∑2

l=1 f 2
al

are the Hardy-Weinberg heterozygosities at i and the QTL
respectively and D2

i,QTL = 2
∑K

p=1 �2
p. Ri,QTL and D2

i,QTL are
expected to increase as the tested position i gets closer

to a QTL. The general behaviors of the normalized mea-
sure Ri,QTL and the non-normalized measure D2

i,QTL were
described by computing the LD between the haplotypes
at successive distinct positions, using a sliding window,
and the alleles of a fixed SNP centered over a region
of 81 markers on the chromosomes. The fixed SNP was
centered over a region of 76 distinct overlapping sliding
windows available within the region of 81 markers. The
76 distinct positions associated to the windows played the
role of the tested positions of an association study. The
fixed SNP played the role of a biallelic QTL. The computa-
tion was repeated for all possible regions of 81 successive
markers. Since 969 SNPs were retained on the 235 porcine
chromosomes, computation was performed for 889 (969-
81 + 1 = 889) regions of 81 markers. The same procedure
was performed on the HCB chromosomes, thus leading
to 14 896 possible regions for this set of chromosomes.
The empirical means of the 889 FLW and the 14 896 HCB
LD profiles were then computed to describe the expected
behaviors of Ri,QTL and D2

i,QTL. Another major purpose of
these computations was to help the analytical comparison
of the AIP and the associated matrix distances, which can
be expressed as elements of multiallelic LD (see Results
section).

Distributions of matrix distance as a function of
multiallelic LD
The distributions of the matrix distance for the six com-
pared AIP, as function of local multiallelic LD, were
also evaluated on the FLW and HCB chromosomes. The
matrix distances for the six AIP were calculated at 966
and 14 973 possible target SNPs for the FLW and HCB
chromosomes, respectively. The target SNPs were defined
in exactly the same way as used for the trained predic-
tor (TP). The matrix distances calculated at each window
that harbors a target SNP for the six AIP were then plot-
ted against the multiallelic measure R of LD between the
haplotypes and the target alleles within the window.

QTL simulation on FLW chromosomes
The 235 FLW chromosomes were included in N = 200
gene-drop simulations, in a 25-generation pedigree for
the FLW breed, using the LDSO software [40]. The pedi-
gree was composed of 1594 founders, 3373 sires and 7100
dams. The gene-drop procedure was used to generate
different realistic genealogy structures between the chro-
mosomes. For each gene-drop the 235 FLW chromosomes
were uniformly distributed, with replacement, among the
1594 founders of the pedigree. Hence, the measured LD
structure for mapping among descendant individuals at
the end of each gene-drop was almost the same as on
the 235 FLW chromosomes. It must be emphasized that
the use of replicates of only 235 chromosomes to pop-
ulate 1594 diploid founders, followed by 25 generations

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_{p}haseI/full/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_{p}haseI/full/
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of recombinations events, means that the number of dif-
ferent haplotypes at a position is much lower than 3188
(2× 1594). Thus, the results correspond to medium range
population sizes. After each gene-drop, only the chromo-
somes and phenotypes of the n = 485 individuals of
generation 25 were retained for subsequent analyzes.
Three distant SNPs were chosen as putative QTL, in

order to have different LD levels with the six-marker hap-
lotype that surrounds them on the 235 initial FLW chro-
mosomes. Two different QTL effects were simulated for
each of these SNPs, thus leading to six different scenarios.
The LD between these SNPs and the observed haplotypes
that harbored them was measured using the multiallelic
measure R of LD. The LD levels around the three SNPs
were equal to 0.52, 0.18 and 0.08, and the lengths of the
haplotypes harboring them were equal to 0.09 cM, 0.37
cM and 0.75 cM, respectively. Note that these differences
in length were due to the different marker densities in
the distinct regions that harbor each putative QTL. The
length of the region scanned for QTL mapping around
each simulated QTL was approximately 3 cM.
The phenotypes in the pedigree were computed as yi =

1
2

(
pfi + pmi

)
+ φi + gQTLi + δ, where pfi , pmi are normal

random polygenic effects of the parents with variance 0.5,
φi is a normal random mendelian sampling effect with
variance 0.25 and δ is a normal random environmental
effect with variance 1. gQTLi is the QTL genotype effect
of individual i. QTL genotype effect was first computed
as gQTLi = 2 or 0 or −2, if the QTL genotype of indi-
vidual i was a1a1 or a1a2 or a2a2 respectively. In the
same way a second set of simulations was carried out with
the QTL genotype effect computed as gQTLi = 0.5 or 0
or −0.5. Only the gene-drop simulations for which the
minor allele frequency at the QTL was greater or equal
to 0.1 were retained. Each simulated QTL was verified for
Hardy-Weinberg equilibrium during simulations. Hence,
under the standard model, where the dominance effect
is equal to 0 as in this study, the first simulated QTL
effect explained at most 57% of the phenotypic variance
for equal frequencies at the QTL. In the same way, the
second simulated QTL effect explained at most 8% of the
phenotypic variance.

Results
This section gives theoretical and empirical results that
show that, compared to others, some AIP exhibit a bet-
ter behavior for the decrease of their matrix distance,
as defined by expression (1), when the multiallelic LD
between a tested position and a QTL increases. In sum-
mary, the theoretical results show that expression (1) can
be written as a function of the multiallelic LD coefficients
of R, and that the decreasing behavior of this function
depends on the nature of the AIP (see equations (2), (3),

(4), (5) and (6) of this section). The empirical results show
that R is expected to be highest when the tested position
is closest to the QTL (see Figure 2 of this section). The
expectation taken for the multiallelic LD was the empiri-
cal mean, which was found to converge for distant regions
on the chromosomes. These regions can be assumed to
be independent, thus showing an expected behavior for
the multiallelic LD. The empirical results also show that
the tested position that minimizes the matrix distance
is highly correlated with the mapping accuracy of the
AIP (see sub-section on mapping accuracy and relative
efficiency of this section).

Variation of LD between tested positions and a QTL
Figure 2 shows the empirical means of the 889 FLW and
the 14 896 HCB LD profiles for Ri,QTL and D2

i,QTL.
In Figure 2 the values of Ri,QTL and D2

i,QTL increase, as
expected, as the tested position imoves closer to the QTL.
This implies that the sum of the �2

p terms increases on
average as position i moves toward the QTL. The highest
expected values for Ri,QTL andD2

i,QTL, in Figure 2 are reached
for the tested position closest to the QTL. Note that the
range of values for D2

i,QTL, in Figure 2 is smaller than that of
Ri,QTL. This is due to the lack of a normalization factor for
D2
i,QTL.

Matrix distance as function of multiallelic LD coefficients
Based on expression (1), d1(MP ,i,MQTL) can be re-written
as [see Additional file 1]:

d1
(
MP ,i,MQTL

) =
K∑

p=1

K∑
q=1

[[
f QTL
i,hpa1 f

QTL
i,hqa1

+ f QTL
i,hpa2 f

QTL
i,hqa2

] (
1 − sPi,hp,hq

)
+
[
f QTL
i,hpa2 f

QTL
i,hqa1 + f QTL

i,hpa1 f
QTL
i,hqa2

]
sPi,hp,hq

]
(2)

Replacing the 2K frequencies in expression (2) by
the (�p)1≤p≤K LD coefficient terms and the product of
marginal frequencies gives [see Additional file 1]:

d1
(
MP ,i,MQTL

) =
K∑

p=1

⎡
⎣4
⎛
⎝ K∑

q 	=p
sPi,hp,hq − sPi,hp,hp

⎞
⎠�2

p

+	P
pq
(

l 	=p,q

)
�p + �P

pq
(

l 	=p,q

)⎤⎦
= ξP (�1, ..,�K ) , (3)

where 	P
pq
(

l 	=p,q

)
and �P

pq
(

l 	=p,q

)
are sums and prod-

ucts of marginal frequencies, allelic identity predic-
tions and LD coefficient terms. The general behavior
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Figure 2 Empirical means of the 889 FLW and 14 896 HCB LD profiles, obtained for the normalized and the non-normalized multiallelic
LD between tested positions (tested position i = center of six marker haplotypes) and a biallelic QTL (red vertical line), for regions of 81
markers on chromosomes.

of ξP (�1, ..,�K ), with respect to Ri,QTL, is unspecifi-
able due to its complexity. For instance, the behavior of
ξP (�1, ..,�K ) cannot be specified for continuous AIP in
[0,1]. However for P = IBShap, ξP (�1, ..,�K ) reduces to
a sum of strictly concave functions of each LD coefficient
[see Additional file 1], i.e.

ξ IBShap (�1, ..,�K ) =
K∑

p=1

[
−4
2

p + 	
IBShap
pq �p

+ �
IBShap
pq

]

=
K∑

p=1

[
Qp(�p)

]
, (4)

where 	
IBShap
pq and �pq are sums and products of

marginal frequencies that do not depend on LD coef-

ficients. Let �∗
p = 	

IBShap
pq

8 be the critical value for
each Qp function. ξ IBShap (�1, ..,�K ) will decrease if the
squared or absolute deviation of each �p term from
its corresponding �∗

p increases [see Additional file 2].
However note that the squared deviations of all �p
terms from their corresponding critical values do not
need to increase simultaneously for ξ IBShap (�1, ..,�K )

to decrease. For example, some Qp functions correspond-
ing to haplotypes with low frequencies can be negligible

in expression (4). Hence, if
∑K

p=1

(
�p − �∗

p

)2
increases

sufficiently, ξ IBShap (�1, ..,�K ) will decrease. It can be
shown that

∑K
p=1

(
�p − �∗

p

)2
will increase if

∑K
p=1 �p

2

increases and that these two quantities share almost the
same pattern for their expected values [see Additional
file 2]. Thus, according to the D2

i,QTL profiles in Figure 2,
ξ IBShap (�1, ..,�K ) is expected to decrease as position i
moves toward the QTL position.
An important result for ξP (�1, ..,�K ) is obtained

when only two haplotypes are observed among the K pos-
sible haplotypes. In this case, ξP (�1, ..,�K ) reduces to a
real function of one LD coefficient [see Additional file 1],
i.e.:

ξP(�1) =
[
−4sPi,h1,h1 − 4sPi,h2,h2 + 8sPi,h1,h2

]
�2

1

+ 	P�1 + �P , (5)

where 	P and �P are terms independent of LD, and the
minimum and maximum possible values for �1 are given
by −1

4
and

1
4
, respectively. If P = IBShap we have:

ξ IBShap(�1) = −8�2
1 + 	IBShap�1 + �IBShap (6)

The minimum and maximum possible values for the
critical value, �∗

1, of ξ IBShap are given by −1
4

and
1
4
, respectively, if the tested locus and the QTL are

monomorphic [see Additional file 1]. In other words, the
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critical value of this function will always lie within the
range of the LD coefficient when LD exist. In expres-
sion (5), the coefficient

[
−4sPi,h1,h1 − 4sPi,h2,h2 + 8sPi,h1,h2

]
is

always greater or equal to −8 for any other predictor P
than IBShap, since sPi,h1,h2 ∈ [0, 1]. For instance, AIP by
construction assign positive values to sPi,h1,h2 when hap-
lotypes h1 and h2 share allele similarity. This property is
even truer if h1 and h2 are very similar. In such cases,
the highest rate of decrease for ξP , with respect to the
absolute deviation of �1 from �∗

1, is thus induced by
P = IBShap. Moreover, for such cases, we also have

ξP
(

−1
4

)
= ξP

(
1
4

)
∈
[
1
2
sPi,h1,h2 , 1

]
, which expresses

a lower bound for ξP (i.e.
1
2
sPi,h1,h2 , [see Additional

file 1]). Finally, ξP
(

−1
4

)
= ξP

(
1
4

)
= 0 if and only if

P = IBShap. In other words, when LD between the haplo-
types and the QTL alleles is complete, the matrix distance
is equal to 0 if and only if P = IBShap [see Additional
file 1]. The decreasing behavior of ξP between a tested
position and a QTL for a substantial increase of LD is
therefore deteriorated for AIP with continuous predic-
tions in [0, 1]. Hence, this result questions the behavior of
AIP with continuous predictions in [0, 1] in relation to LD,
in the general case where K is greater than 2.

Distributions of matrix distance as function of multiallelic
LD
Figures 3 and 4 show the distributions of the matrix dis-
tance for the six AIP against the local multiallelic LD.
Figures 3 and 4 convey only local information for the
case where the tested position is closest to the QTL, as
opposed to Figure 2. Darker and lighter blue regions in
Figures 3 and 4 correspond to higher and lower density
of points. The red lines in Figures 3 and 4 correspond to
non-parametric LOESS regressions of the matrix distance
on the multiallelic LD.
Figures 3 and 4 show a better behavior of IBShap and

P(IBD) for the decrease of their matrix distance, with
lower variability around the LOESS curves compared to
the other predictors, when the LD between the haplo-
types and the target alleles increases. The distributions of
the matrix distance for IBShap and P(IBD) in these figures
show similar trends on the FLW and HCB chromosomes.
This is due to the fact that these two predictors perform
similarly in some conditions (see sub-section on map-
ping accuracy and relative efficiency). However IBShap
shows a better behavior compared to all other predictors
in Figures 3 and 4, for the decrease of its matrix distance
with increasing multiallelic LD. The good behavior of
IBShap for the decrease of its matrix distance in Figures 3
and 4 is totally explained by equation (4), where the sum

of the concave polynomials decreases as the multiallelic
LD increases. The better behavior of IBShap, compared to
the other predictors in Figures 3 and 4, is explained by
equations (3) and (5), which show that continuous predic-
tions in [0,1] will deteriorate the decrease of the matrix
distance with respect to LD.
The matrix distances for Beagle and IBSm were also

plotted against the local multiallelic LD between the hap-
lotypes and the target alleles in Figures 3 and 4, although
these two predictors are defined for marker positions only.
Indeed, one of the aims of this study was to compare the
AIP based on local LD between haplotypes and alleles at
a hidden locus. TP, Score, Beagle and IBSm showed poor
relationships for the decrease of their matrix distance
with the increasing multiallelic LD. The matrix distance
distributions showed high variability for these predictors
with respect to R on the FLW and HCB chromosomes.
Note that the length of the six marker haplotypes on the
HCB chromosomes were equal to 0.01 cM, on average,
compared to 0.31 cM on average for those on the FLW
chromosomes.

Mapping accuracy and relative efficiency
Table 1 relates the relative efficiency of the six AIP that
were compared, and their mapping accuracies, for a QTL
simulated under six scenarios on the FLW chromosomes
for N = 200 simulations. Ri∗,QTL in Table 1 corresponds
to the multiallelic LD at position i∗, measured between
themarker-haplotypes that harbor the simulatedQTL and
the QTL alleles. Note that the tested position i∗ does not
necessarily coincide with the QTL position. Thus, i∗ can
be defined as the tested position closest to the simulated
QTL.
In Table 1, IBSQTL

m refers to the IBSm predictor applied to
the data set containing the causal variants. This situation
was examined as a gold standard. As shown in Table 1 and
as expected, IBSQTL

m provided the best mapping accuracy
since the data set used contained the causal variants and
both the simulated QTL and the analyzed markers were
biallelic. However, it should be noted that the RMSEm.a.

for IBSQTL
m was never equal to 0. This is principally due to

the error term in the probabilistic models for hypothesis
testing. RMSEr.e. for IBSQTL

m was also not equal to 0 when
LD was highest (Ri∗,QTL = 0.52). This was due to a nearby
marker which was in complete LD with the SNP that
simulated the QTL (i.e. the biallelic LD was complete).
Consequently the argument of the minimum (argmin) for
the set of matrix distances was not unique.
In Table 1 both RMSEr.e. and RMSEm.a. increased glob-

ally for all predictors when LD decreased in the vicinity
of the QTL. RMSEr.e. and RMSEm.a. were highly corre-
lated, regardless of the QTL effect. Across all LD levels,
the Spearman correlation coefficient between these two
quantities was equal to 0.89 (or 0.91) when the QTL
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Figure 3 The matrix distance at 966 target SNPs on the 235 FLW chromosomes for the six compared AIP. Darker and lighter blue regions
correspond to higher and lower density of points. The red lines correspond to LOESS regressions of the matrix distance on the multiallelic LD.

effect explained at most 57% (or 8%) of the total variance,
respectively (Figure 5).
Each dot in Figure 5 represents RMSEm.a. against

RMSEr.e. for one of the AIP at a particular LD level. In
Table 1, the IBShap predictor was often the most accurate
and efficient AIP when the data was analyzed without the
QTL. However, the P(IBD) predictor showed similar map-
ping and efficiency results to IBShap. As defined by [1], the
P(IBD) predictor relies on the IBS state of alleles between
haplotype markers which suggests that IBShap and P(IBD)
may perform similarly in some conditions [41]. Indeed,
the distribution of IBD probabilities in the vicinity of a
simulated QTL was almost bimodal (0 or 1) among the
different pairs of chromosome segments for the different

sets of simulations, and thus similar to the distribution
of the values for IBShap between the segments. To illus-
trate this phenomenon, Figure 6 provides an example of
distributions for the values of P(IBD) and IBShap, for one
gene-drop simulation, between pairs of chromosome seg-
ments around the simulated QTL for the moderate LD
situation (Ri∗,QTL = 0.18).
IBShap and P(IBD) also showed similar patterns at a set

of tested positions for thematrix distances d1(MP ,i,MQTL).
Figure 7 shows an example for the mean and the sam-
ple quantiles at 2.5 and 97.5% for d1(MP ,i,MQTL) at each
tested position for the six AIP, from 200 gene-drop simula-
tions with a QTL simulated for the moderate LD situation
(Ri∗,QTL = 0.18).
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Figure 4 The matrix distance at 14973 target SNPs on the 90 HCB chromosomes for the six compared AIP. Darker and lighter blue regions
correspond to higher and lower density of points. The red lines correspond to LOESS regressions of the matrix distance on the multiallelic LD.

As observed in Figure 7, the minima of the curves for
the mean and the sample quantiles at 2.5 and 97.5% of
the matrix distance distributions almost coincide with the
QTL position for IBShap and P(IBD). For these two pre-
dictors, the three curves also show a smooth decreasing
behavior as the tested position gets closer to the simu-
lated QTL. This behavior shows the ability of IBShap and
P(IBD) to capture LD structure along the chromosomes
with respect to the simulated QTL, for different gene-
drop simulations. It is interesting to note that IBShap and

P(IBD) show similar patterns for the mean and the sample
quantiles curves. However, the minimum of each of the
three curves in Figure 7 is lower for IBShap than for P(IBD).
Note that the patterns of the matrix distances for IBShap in
Figure 7 are explained by equation (4) and Figure 2. That
is, the matrix distance will decrease for IBShap due to the
expected increase of themultiallelic LD, as the tested posi-
tion moves toward the QTL position. In the same way, the
patterns of the matrix distances for P(IBD) in Figure 7 are
explained according to Figures 2 and 6. That is, P(IBD)



Jacquin et al. Genetics Selection Evolution 2014, 46:45 Page 12 of 16
http://www.gsejournal.org/content/46/1/45

Table 1 Relative efficiencies andmapping accuracies for different QTL effects

AIP IBSQTL
m IBSm TP Score IBShap P(IBD) Beagle

Ri∗ ,QTL = 0.52

Relative efficiency

RMSEr.e. 0.02 0.16 0.17 0.15 0.06 0.10 0.54

Ê
r.e. 0.03 0.01 0.23 0.14 0.12 0.14 0.28

σ̂ r.e. 0.09 0.02 0.02 0.03 0.04 0.03 0.04

Mapping ≤ 57% RMSEm.a. 0.11 0.17 0.23 0.17 0.10 0.11 0.16

accuracy ≤ 8% RMSEm.a. 0.17 0.22 0.32 0.45 0.28 0.26 0.40

Ri∗ ,QTL = 0.18

Relative efficiency

RMSEr.e. 0.00 0.18 0.46 0.21 0.14 0.14 0.40

Ê
r.e. 0.00 0.18 0.39 0.35 0.31 0.34 0.31

σ̂ r.e. 0.00 0.06 0.02 0.03 0.05 0.04 0.06

Mapping ≤ 57% RMSEm.a. 0.06 0.29 0.27 0.33 0.16 0.21 0.28

accuracy ≤ 8% RMSEm.a. 0.10 0.34 0.36 0.46 0.29 0.30 0.31

Ri∗ ,QTL = 0.08

Relative efficiency

RMSEr.e. 0.00 0.76 1.00 1.00 1.04 1.04 0.72

Ê
r.e. 0.00 0.24 0.35 0.33 0.31 0.37 0.34

σ̂ r.e. 0.00 0.06 0.04 0.05 0.06 0.05 0.08

Mapping ≤ 57% RMSEm.a. 0.13 0.66 0.58 0.54 0.51 0.58 0.55

accuracy ≤ 8% RMSEm.a. 0.18 0.71 0.66 0.71 0.62 0.69 0.59

� Ri∗ ,QTL : Multiallelic measure of LD between the simulated QTL and the haplotypes harboring it.
� RMSEr.e. : Root mean square error of θP

r.e. with respect to θQTL (cM).
� Êr.e. : Expected value of the matrix distance at θP

r.e. .
� σ̂ r.e. : Standard error of the matrix distance at θP

r.e. .
� RMSEm.a. : Root mean square error of θP

m.a. with respect to θQTL (cM).

Figure 5 RMSEm.a. against RMSEr.e. for the compared AIP according to different QTL effects across all LD levels.
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Figure 6 Distribution of values for IBShap and P(IBD) between chromosome segments around the simulated QTL for the moderate LD
situation (Ri∗ ,QTL = 0.18), example for one simulation. The class width for the IBD probabilities is equal to 0.05.

will behave slightly differently from IBShap, according to
Figures 2 and 6, when taking equations (3) and (5) into
account.
As shown in Figure 7, the other predictors cannot

capture the LD structure along the chromosomes with
respect to the simulated QTL as well as IBShap and P(IBD);
this is particularly the case for Score and even more for
TP. For the latter two predictors, d1(MP ,i,MQTL) shows
little variability and is low on average across the tested
positions. This could explain the lack of a clear rank-
ing between the mapping accuracies of TP and Score in
Table 1. For Beagle, a good relative efficiency and map-
ping accuracy was observed for the lowest LD situation
(Ri∗,QTL = 0.08) in Table 1, compared to all the other pre-
dictors, when the QTL effect was low. Note that AIP that
are based on haplotypes and that do not perform haplo-
type clustering like Beagle, may not be at an advantage
for a low LD situation. For example, the matrix distance
for IBShap, as defined by equation (4), will not decrease if
there is little LD between local haplotypes and QTL alle-
les. Therefore, haplotype clustering is necessary for such
situations. Moreover, these AIP will intrinsically provide
an excess of degrees of freedom for testing association if
the QTL is biallelic, while not compensating for the low

LD captured in the matrix distance. Hence, AIP based on
haplotype clustering can provide higher mapping accu-
racy for low LD situations.

Discussion
Matrix distance properties
The present study showed that the QTL mapping accu-
racy of AIP is highly correlated to the tested position
that minimizes the matrix distance defined for compari-
son. The use of the matrix distance to compare various
AIP has many advantages for methodology development
and validation. First, it is independent of phenotype sim-
ulation processes and statistical tests that are commonly
used to compare QTL mapping accuracy of different
AIP [4,8,23,25]. Indeed the phenotype simulation process,
when based on certain specific assumptions, may favor
some AIP over others: for example, IBD-based AIP might
be at an advantage if the phenotypes are simulated only
according to population history. The statistical test used
may also favor some AIP, such as IBShap, IBSm and Bea-
gle, over others due to numerical stability when estimat-
ing variance components. As such, solving mixed model
equations when covariance matrices are close to singu-
larity due to AIP computation has been reported as an
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Figure 7 The mean and sample quantiles at 2.5% and 97.5% of d1(MP ,i,MQTL) (black, brown and orange respectively) for TP, Score,
IBShap, P(IBD), Beagle and IBSm, with respect to the tested position and the simulated QTL position (red line) for the moderate LD
situation (Ri∗ ,QTL = 0.18).

issue, and clustering strategies for haplotypes, which actu-
ally modify the properties of the AIP matrices, have been
proposed to facilitate computation [42,43]. The major
drawback of the matrix distance approach is related to
this advantage: a particularly efficient AIP or a particu-
larly efficient haplotype size, identified from the matrix
distance, that can not be used in association studies would
be of no value. Another advantage of the matrix dis-
tance approach is that computation time is highly reduced
compared to association studies, so numerous compar-
isons can be done. In the present study, the relative
efficiency of the AIP was consistent with the results for
QTL mapping accuracy, regardless of the QTL effects

and LD patterns. Therefore, the concept of relative effi-
ciency was proven useful to compare AIP and avoid
time-consuming association studies on simulated data.
Combining the relative efficiency with the mapping accu-
racy of predictors could also be helpful to gain a bet-
ter understanding of the underlying mechanisms in an
association study.

Comparing AIP
The results showed that the most accurate AIP for map-
ping were those that best captured LD between a tested
position and a QTL. This was proposed from algebraic
developments in the simplest situations and validated
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using real data and simulations. The matrix distance can
be written for any AIP as a sum of functions of LD
coefficients, and more precisely for the IBShap predic-
tor as a sum of concave polynomials of LD coefficients.
When LD was moderate to high around the QTL, the
IBShap predictor was the most efficient and accurate
matrix for mapping. For a biallelic QTL, the domains
of values for which some of these concave polynomials
can either decrease or increase with increasing LD was
shown in our developments as limited to extreme allele
frequencies for the haplotypes and QTL. Additionally,
continuous AIP in [0,1] were shown to deteriorate the
matrix distance generally when LD between a tested posi-
tion and the QTL increased. This was observed on two
unrelated data sets, which showed that this behavior is
not related to the marker density or population history.
All LD measures are based on counting occurrences for
discrete events at distinct loci to quantify non-random
association [37,38], which thus explains the algebraic and
simulation results for discrete and continuous AIP when
a relatively high LD is available for detection. The pig
example was built using 235 haplotypes and 25 gene-
drop generations, a realistic situation with regard to the
effective population size. However, the impact of the
resulting long-range haplotypic identity, which depends
strongly on the population size and mating strategies,
on the relative values of the considered AIP should be
investigated.
Despite using two contrasting data sets in terms of

marker density and population history, P(IBD) always
behaved very similarly to IBShap. When extending the
calculations to longer haplotypes (results not shown), a
similar behavior was observed. Yet advantages have been
reported for P(IBD) compared to IBShap in some situa-
tions. For example, Roldan et al. [43] showed better accu-
racy for P(IBD) compared to IBShap, after a clustering step
for haplotypes when marker intervals were equal to 0.05
cM between SNPs, but not when they reached 0.25 cM.
However in Roldan et al. [43], different statistical mod-
els were applied to P(IBD) versus IBShap (mixed model
versus fixed effects model respectively). Hence, these two
AIP were not compared on the same basis. For instance,
Boleckova et al. [44] showed that statistical models in
which haplotypes were fitted as random effects performed
better than those in which they were fitted as fixed effects.
When both LD and the QTL effect were low, Beagle
showed a relatively good efficiency and mapping accu-
racy. It was not possible to derive algebraical comparisons
between AIP when LD was low, but this, together with
earlier studies that point out that continuous advanced
methods are more efficient than simple IBShap, sug-
gests that some continuous AIP in [0,1] may provide
efficiency when LD between markers and a QTL is
reduced.

Extending the results to multiallelic QTL
In the present study, we considered a biallelic QTL for
algebra and simulations. Yet the algebraic derivation of the
matrix distance can be generalized to a multiallelic QTL
without difficulty [see Additional file 1]. As suggested by
these developments, for a multiallelic QTL, the relation-
ship between continuous predictions of allelic identity at a
tested position and the corresponding LD coefficients will
tend to be looser than for discrete predictions. In addition,
the matrix distance for the IBShap predictor can always be
written as a sum of concave polynomials of LD coefficients
for any degree of allelism at the QTL.

Conclusion
The IBShap predictor can always capture multiallelic LD
between a tested position and a QTL, regardless of the
degree of allelism at the QTL. The IBShap predictor also
has the advantage of being simple, fast and numerically
stable when used in association studies. Therefore, it is
suggested that, for studies with a high density of markers
and for which LD between markers and the causal vari-
ants is likely to be high, the use of the IBShap predictor is
recommended.

Additional files

Additional file 1: Algebraic derivations of formulas in the main text.
This file contains all the algebraic derivations for expressions (1) to (6) and
the generalization of the matrix distance, as a sum of concave functions of
LD coefficients whenP = IBShap, for the case of a multiallelic QTL.

Additional file 2: Domains of LD coefficients and boundary
conditions for the critical values of eachQp function. This file contains
the domain of values for the multiallelic LD coefficients, the boundary
conditions for the critical value of each Qp function in expression (4) and
the relation between the sum of the squared deviations and D2
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