
SOFTWARE Open Access

Computationally efficient flux variability analysis
Steinn Gudmundsson1, Ines Thiele1,2*

Abstract

Background: Flux variability analysis is often used to determine robustness of metabolic models in various
simulation conditions. However, its use has been somehow limited by the long computation time compared to
other constraint-based modeling methods.

Results: We present an open source implementation of flux variability analysis called fastFVA. This efficient
implementation makes large-scale flux variability analysis feasible and tractable allowing more complex biological
questions regarding network flexibility and robustness to be addressed.

Conclusions: Networks involving thousands of biochemical reactions can be analyzed within seconds, greatly
expanding the utility of flux variability analysis in systems biology.

Background
Flux balance analysis (FBA) [1,2] is concerned with the
following linear program (LP)

max v c v

Sv 0

v v v

T

l u

subject to =
≤ ≤

(1)

where the matrix S is an m × n stoichiometry matrix
with m metabolites and n reactions and c is the vector
representing the linear objective function. The decision
variables v represent fluxes, with V ⊆ ℝn and vectors vl
and vu specify lower and upper bounds, respectively.
The constraints Sv = 0 together with the upper and
lower bounds specify the feasible region of the problem.
Flux variability analysis (FVA) [3] is used to find the

minimum and maximum flux for reactions in the net-
work while maintaining some state of the network, e.g.,
supporting 90% of maximal possible biomass production
rate.
Applications of FVA for molecular systems biology

include, but are not limited to, the exploration of alter-
native optima of (1) [3], studying flux distributions
under suboptimal growth [4], investigating network
flexibility and network redundancy [5], optimization of
process feed formulation for antibiotic production [6],

and optimal strain design procedures as a pre-proces-
sing step [7,8].
Let w represent some biological objective such as bio-

mass or ATP production. After solving (1) with c = w,
FVA solves two optimization problems for each flux vi
of interest

max

subject to =
v v

Sv 0

w v

v v v

min v

Z

i

T

l u

≥
≤ ≤

‡ 0

(2)

where Z0 = wTv0 is an optimal solution to (1), g is a
parameter, which controls whether the analysis is done
w.r.t. suboptimal network states (0 ≤ g <1) or to the
optimal state (g = 1). Assuming that all n reactions are
of interest, FVA requires the solution of 2n LPs. While
FVA is clearly an embarrassingly parallel problem and is
therefore ideally suited for computer clusters, this note
focuses on how FVA can be run efficiently on a single
CPU. A multi-CPU implementation of fastFVA can be
done in the same way as for FVA, i.e., by distributing
subsets of the n reactions to individual CPUs. It is
expected to give almost linear speedup for sufficiently
large problems.

Implementation
A direct implementation of FVA iterates through all the
n reactions and solves the two optimization problems in
(2) from scratch each time by calling a specialized LP

* Correspondence: ithiele@hi.is
1Center for Systems Biology, University of Iceland, Reykjavik, Iceland
Full list of author information is available at the end of the article

Gudmundsson and Thiele BMC Bioinformatics 2010, 11:489
http://www.biomedcentral.com/1471-2105/11/489

© 2010 Gudmundsson and Thiele; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81774509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ithiele@hi.is
http://creativecommons.org/licenses/by/2.0


solver, such as GLPK [9] or CPLEX (IBM Inc.) At itera-
tion i, i = 1, 2, ..., n all elements of c are zero except ci
= 1. Since the only difference between each iteration is
a change in the objective function, i.e., the feasible
region does not change, solving the LPs from scratch is
wasteful. Each time a LP is solved, the solver has to
spend some effort in finding a feasible solution. Once a
feasible solution is found, the solver then proceeds to
locate the optimum. The small changes in the objective
function suggest that, on average, the optimum for itera-
tion i does not lie far away from the optimum for itera-
tion i + 1. With Simplex-type LP algorithms, this
property can be exploited by solving problem (1) from
scratch and then solving the subsequent 2n problems of
(2) by starting from the last optimum solution each
time (warm-starts). It should be noted that the default
behavior of some Simplex-type solvers is to use warm-
starts when a sequence of LPs is solved within the same
application call. However, current implementations of
FVA do not make use of this option (c.f. [10]). Further-
more, for increased efficiency, model preprocessing
(presolving) should be disabled after solving the initial
problem P. Given a value of 0 <g ≤ 1, fastFVA performs
the following procedure
Setup problem (1), denote it by P
Solve P from scratch to get v0 and Z0

Add the constraint wTv ≥ gZ0 to P
for i = 1 to n
Let ci = 1 and cj = 0, ∀j ≠ i
Maximize P, starting from vi-1

to get vi and Zi

maxFluxi = Zi

Once all maximization problems have been solved, the
minimization problems are solved in the same way,
starting from v0 = vn.
An important difference between the various LP sol-

vers available is their ability to exploit multiple core
CPUs or multi-processor CPUs to increase performance.
The GLPK solver, for example, is a single threaded
application. When running on a quad-core machine
with hyperthreading enabled, the CPU load is only at
12-13%. On multi-core machines, a significant speedup
can often be achieved by simply running multiple
instances of fastFVA, each working on a different subset
of the n reactions.
The fastFVA package runs within the Matlab environ-

ment, which will facilitate the use of fastFVA by users
less experienced in programming. In addition, many bio-
chemical network models can be imported into Matlab
using the Systems Biology Markup Language (SBML)
and the COBRA toolbox [10].
The fastFVA code is written in C++ and is compiled

as a Matlab EXecutable (MEX) file (additional file 1).
Matlab’s PARFOR command is used to exploit multi-

core machines. Two different solvers are supported, the
open-source GLPK package [9], and the industrial
strength CPLEX solver from IBM.

Results and Discussion
We evaluated the performance of fastFVA on six bio-
chemical network models ranging from approx. 650 up
to 13,700 reactions (Table 1, additional file 2).

Performance evaluation
Four metabolic networks and two versions of a genome-
scale network of the transcriptional and translational
(tr/tr) machinery of E. coli were used for testing the fas-
tFVA code (Table 1). The biomass reaction was used as
an objective in the metabolic models, while the demand
of ribosomal 50 S subunit was used as the objective in
the tr/tr models. In all cases, flux distributions corre-
sponding to at least 90% of optimal network functional-
ity were sought.
The fastFVA code was tested on a DELL T1500 desk-

top computer with a 2.8 GHz quad core Intel i7 860
processor with hyperthreading enabled and Windows 7.

Running times
The running times are given in Table 2 where fastFVA
is compared to the direct implementation of FVA found
in the COBRA toolbox [10]. The observed speedup is
significant, ranging from 30 to 220 times faster for
GLPK and from 20 to 120 times faster for CPLEX. The
minimum and maximum flux values obtained with fas-
tFVA were essentially identical to the values obtained
with the direct approach (data not shown).

Table 1 The models used in the experiments

Model References Reactions Metabolites

T. maritima [13] 647 565

P. putida [14] 1060 911

E. coli [15] 2382 1668

Human [16] 3820 2785

E-matrix [17] 13694 11991

Ecoupled-matrix [5] 13726 13047

Table 2 Running time (s) for fastFVA versus a direct FVA
implementation

GLPK CPLEX

FVA fastFVA FVA fastFVA

T. maritima 10.3 0.3 4.3 0.2

P. putida 37.0 1.1 12.3 0.3

E. coli 340.0 2.5 119.5 1.5

Human 2217.8 12.5 659.8 5.4

E-matrix 12263.1 184.0 9514.6 108.1

Ecoupled-matrix > 120 h 1919.4 30630.1 1421.7

Gudmundsson and Thiele BMC Bioinformatics 2010, 11:489
http://www.biomedcentral.com/1471-2105/11/489

Page 2 of 3



Other uses of fastFVA
The fastFVA code can be used to compute the flux-
spectrum [11], a variant of metabolic flux analysis, sim-
ply by setting g = 0 in (2). The a-spectrum [12], which
has been used to study flux distributions in terms of
extreme pathways, can also be computed with fastFVA.
In this case, the parameter g in (2) is set to zero and the
S matrix is replaced by a matrix P containing the
extreme pathways as its columns.

Conclusions
With this efficient FVA tool in hand, new questions can
be addressed to study the flexibility of biochemical reac-
tion networks in different environmental and genetic
conditions. It is now possible to design computational
experiments requiring hundreds or even thousands of
FVAs.

Availability and requirements
The fastFVA package is freely available at http://noten-
dur.hi.is/ithiele/software/fastfva.html together with pre-
compiled binaries for Linux and Microsoft Windows.
The fastFVA code runs under Matlab and relies on
third-party solvers to solve linear optimization problems.
Two such solvers are supported, the open source GLPK
[9] and the industrial strength CPLEX (IBM Inc.) The
fastFVA code is written in C++ and is compiled as a
Matlab EXecutable function (MEX). It is released under
GNU LGPL.

Additional material

Additional file 1: This file contains the C++ source code, the pre-
compiled binaries, an example on how to use fastFVA and scripts
for carrying out the experiments described above.

Additional file 2: This file contains the six metabolic networks used
in the experiments.

Acknowledgements
We want to thank the authors of GLPK, GLPKMEX and CPLEXINT for making
their code publicly available. We would like to thank the anonymous
reviewers for their helpful comments. The authors are also grateful to Ronan
M.T. Fleming for valuable discussions.
This study was supported by the Office of Science (ASCR), Department of
Energy, under Award Number DE-SC00092009 ("Numerical Optimization
Algorithms and Software for Systems Biology”).

Author details
1Center for Systems Biology, University of Iceland, Reykjavik, Iceland. 2Faculty
of Industrial Engineering, Mechanical & Industrial Engineering & Computer
Science, University of Iceland, Reykjavik, Iceland.

Authors’ contributions
IT conceived and designed the study. SG implemented fastFVA and carried
out the experiments. Both authors wrote the manuscript and approved its
final version.

Received: 26 May 2010 Accepted: 29 September 2010
Published: 29 September 2010

References
1. Fell D, Small J: Fat synthesis in adipose tissue. An examination of

stoichiometric constraints. Biochem J 1986, 238(3):781.
2. Savinell J, Palsson B: Network analysis of intermediary metabolism using

linear optimization. I. Development of mathematical formalism. J Theor
Biol 1992, 154(4):421-454.

3. Mahadevan R, Schilling C: The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metabolic engineering
2003, 5(4):264-276.

4. Reed J, Palsson B: Genome-scale in silico models of E. coli have multiple
equivalent phenotypic states: assessment of correlated reaction subsets
that comprise network states. Genome Research 2004, 14(9):1797.

5. Thiele I, Fleming R, Bordbar A, Schellenberger J, Palsson BO: Functional
characterization of alternate optimal solutions of Escherichia coli’s
transcriptional and translational machinery. Biophysical Journal 2010.

6. Bushell M, Sequeira S, Khannapho C, Zhao H, Chater K, Butler M, Kierzek A,
Avignone-Rossa C: The use of genome scale metabolic flux variability
analysis for process feed formulation based on an investigation of the
effects of the zwf mutation on antibiotic production in Streptomyces
coelicolor. Enzyme and Microbial Technology 2006, 39(6):1347-1353.

7. Pharkya P, Maranas C: An optimization framework for identifying reaction
activation/inhibition or elimination candidates for overproduction in
microbial systems. Metabolic engineering 2006, 8:1-13.

8. Feist A, Zielinski D, Orth J, Schellenberger J, Herrgard M, Palsson B: Model-
driven evaluation of the production potential for growth-coupled
products of Escherichia coli. Metabolic Engineering 2009, 12:173-186.

9. Makhorin A: Glpk (gnu linear programming kit), version 4.42.[http://www.
gnu.org/software/glpk/].

10. Becker S, Feist A, Mo M, Hannum G, Palsson B, Herrgard M: Quantitative
prediction of cellular metabolism with constraint-based models: the
COBRA Toolbox. Nat Protoc 2007, 2(3):727-738.

11. Llaneras F, Pico J: An interval approach for dealing with flux distributions
and elementary modes activity patterns. Journal of theoretical biology
2007, 246(2):290-308.

12. Wiback S, Mahadevan R, Palsson B: Reconstructing metabolic flux vectors
from extreme pathways: defining the α-spectrum. Journal of theoretical
biology 2003, 224(3):313-324.

13. Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon A,
Wooley J, Lesley S, Wilson I, Palsson B, Osterman A, Godzik A: Three-
Dimensional Structural View of the Central Metabolic Network of
Thermotoga maritima. Science 2009, 325(5947):1544.

14. Nogales J, Palsson B, Thiele I: A genome-scale metabolic reconstruction of
Pseudomonas putida KT 2440: iJN 746 as a cell factory. BMC Systems
Biology 2008, 2:79.

15. Feist A, Henry C, Reed J, Krummenacker M, Joyce A, Karp P, Broadbelt L,
Hatzimanikatis V, Palsson B: A genome-scale metabolic reconstruction for
Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information. Molecular systems biology 2007, 3.

16. Duarte N, Becker S, Jamshidi N, Thiele I, Mo M, Vo T, Srivas R, Palsson B:
Global reconstruction of the human metabolic network based on
genomic and bibliomic data. Proc Natl Acad Sci 2007, 104(6):1777.

17. Thiele I, Jamshidi N, Fleming RMT, Palsson B: Genome-Scale
Reconstruction of Escherichia coli’s Transcriptional and Translational
Machinery: A Knowledge Base, Its Mathematical Formulation, and Its
Functional Characterization. PLoS Comput Biol 2009, 5(3):e1000312.

doi:10.1186/1471-2105-11-489
Cite this article as: Gudmundsson and Thiele: Computationally efficient
flux variability analysis. BMC Bioinformatics 2010 11:489.

Gudmundsson and Thiele BMC Bioinformatics 2010, 11:489
http://www.biomedcentral.com/1471-2105/11/489

Page 3 of 3

http://notendur.hi.is/ithiele/software/fastfva.html
http://notendur.hi.is/ithiele/software/fastfva.html
http://www.biomedcentral.com/content/supplementary/1471-2105-11-489-S1.ZIP
http://www.biomedcentral.com/content/supplementary/1471-2105-11-489-S2.ZIP
http://www.ncbi.nlm.nih.gov/pubmed/3800960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3800960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1593896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1593896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14642354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14642354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15342562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15342562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15342562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20483314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20483314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20483314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19840862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19840862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19840862?dopt=Abstract
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17292923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17292923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12941590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12941590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19762644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19762644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19762644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18793442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18793442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19282977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19282977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19282977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19282977?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and Discussion
	Performance evaluation
	Running times
	Other uses of fastFVA

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

