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behaviors as a function of the the jet energy. As a consequence of this fact, we arrive at the

robust prediction that if the depolarizing 1S
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FJF will diminish with increasing energy for fixed momentum fraction, z, and z > 0.5.
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1 Introduction

Nonrelativistic QCD (NRQCD) is an effective field theory [1–3] for quarkonium that repro-

duces full QCD as an expansion in the relative velocity, v, of the heavy quark and antiquark.

This theory has been used to study both the decay and production of these bound states [4].

Its predictive power is predicated on our knowledge of a set of non-perturbative matrix

elements that must be extracted from the data. In the case of J/ψ or Υ production there

are four such matrix elements that must be fit at leading order, and thus predictions have

mainly been limited to shapes of spectra. NRQCD predictions at NLO in the coupling

have been compared to the world data on J/ψ production in refs. [5, 6]. The χ2/d.o.f. of

4.42,1 found in ref. [5] is higher than one would hope for, but not unexpected given large

theoretical uncertainties.

Thus, it is perhaps fair to say that we cannot yet claim that NRQCD is correctly de-

scribing quarkonium production with unqualified success. In particular, one prediction [7]

of the theory is that, at asymptotically large transverse momentum, the 3S1 state (J/ψ or

Υ) should be purely transverse at leading order. At present the data in both the charm

and bottom sector do not see this trend [8] though the error bars are large, especially in

the bottom system. Furthermore the various experiments are not in agreement.

It is important to appreciate that concluding that NRQCD is “wrong”, in any sense, is

equivalent to saying that QCD does not properly describe these states. If NRQCD predic-

tions for large pT production are not agreeing with the data, and we assume that the data

is correct, then the only logical alternatives are: (1) the velocity and/or αs expansions are

not converging, (2) the fragmentation approximation, along with its expansion in mQ/pT ,

is wrong, either due to the failure of factorization or the presence of anomalously large

1This χ2 is based on an analysis in which feed down from higher charmonia is ignored. Accounting for

these contributions reduces the χ2 slightly to 3.74.
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power corrections. Let us consider each of these possibilities in turn. The perturbative

corrections in αs(2mQ) to the fragmentation function were found to be small [9]. The

possibility that the velocity power counting could not apply to the charmed system [10, 11]

is certainly a viable option, though the velocity expansion seems to work relatively well

for the decay processes [12]. Moreover, one would expect for the bottom system that the

velocity expansion should converge nicely. It is possible that factorization is breaking down

in the production processes, as all such proofs, at least within the confines of SCET, are

lacking a treatment of the factorization breaking “Glauber mode”. Nonetheless, given the

success of semi-inclusive predictions in light hadronic systems, it would be surprising to

see a failure in the case of quarkonium.

A more conservative guess would be that there is nothing wrong with the theory, but

perhaps the values of extracted matrix elements are sufficiently inaccurate as to change

the nature of the polarization prediction. For example, the magnetic spin flip operator

could be anomalously large. In any case, to get a better handle on the situation we must

improve our quantitative understanding of the various production channels associated with

the aforementioned matrix elements. The purpose of this paper is to introduce a new tool

that will allow for a new extraction of these matrix elements by studying the characteristics

of jets within which the quarkonium reside.

2 The fragmenting jet function (FJF)

Power counting dictates that at asymptotic values for p⊥ � mQ, quarkonia should be

produced by single parton fragmentation.2 Since the parton initiating the fragmentation

is a colored object, the quarkonium will be produced in association with light hadrons. In

this paper we will consider a J/ψ,3 produced within a jet of energy E and cone size R,

in which the J/ψ carries a fraction of the jet energy, z. In this situation, a generic cross

section is determined by the convolution of a hard and soft function (and possibly other jet

functions, if there are other jets detected in the final state) multiplied by a quantity known

as the fragmenting jet function (FJF), first introduced in ref. [16] and further studied

in refs. [17–21]. These papers focused on FJFs for light hadrons such as pions. FJFs

for particles with a single heavy quark are studied in ref. [22]. We show that the FJFs

for gluon and charm quark jets containing a J/ψ can be calculated in terms of a set of

NRQCD long-distance matrix elements (LDME). In our calculations the relevant LDMEs

are: 〈OJ/ψ(3S
(1)
1 )〉, 〈OJ/ψ(1S

(8)
0 )〉, 〈OJ/ψ(3S

(8)
1 )〉, and 〈OJ/ψ(3P

(8)
0 )〉. The spectroscopic

notation indicates the quantum numbers of the heavy quarks prior to hadronization. We

show that the contribution to the FJF from each of these mechanisms depends differently

on z and E and can thus be used to extract the LDME. Our results could easily be extended

to jets containing other quarkonia states.

2In intermediate ranges of p⊥ double-parton fragmentation should dominate [13–15]. The phenomenol-

ogy of double-parton fragmentation has yet to be performed.
3The results will apply for the Υ as well. Of course the matrix elements will be different but most of the

calculations in this paper are normalized such that the result is independent of the matrix element. Thus,

when we use the term J/ψ we really mean the generic 3S1 state.
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Since there are many observables associated with jets (angularities [23], broaden-

ing [24], jet shape [25], N-subjettiness [26], etc.), one can generate a very large number

of new tests of the NRQCD factorization formalism by applying jet physics techniques to

the study of quarkonia produced within jets. Furthermore, studying high p⊥ quarkonia

produced within jets avoids some of the potential theoretical pitfalls that could plague

tests of the NRQCD factorization formalism at small p⊥. At the highest p⊥ available, we

expect factorization to hold up to corrections which scale as mQ/p⊥, and furthermore the

αs expansion should be well behaved.

2.1 Operator definitions

We first briefly review the properties of the FJF [16–21]. We can consider many different

production processes with a quarkonium inside a jet. As an example, consider the two-jet

cross section where one of the jets contains an identified J/ψ. The factorization theorem [16]

for the production cross section for a jet with energy E, cone size R, and a J/ψ with energy

fraction z in a pp collision is schematically of the form

d2σ

dE dz
=
∑
a,b,i,j

Hab→ij × fa/p ⊗ fb/p ⊗ Jj ⊗ S × G
ψ
i (E,R, z, µ), (2.1)

where Hab→ij is the hard function, fa/p and fb/p are parton distributions functions, Jj
is the jet function for the jet not containing the J/ψ initiated by a final state parton j,

and Gψi is the FJF for the jet containing the J/ψ fragmenting from parton i. S is the

soft function. Generically there are two types of jets, unmeasured and measured, in the

terminology of ref. [31]. Unmeasured jet functions describe jets in which only the large

light-cone momentum (measured along the jet axis) is known. In measured jets, some

aspect of the jet’s substructure has also been measured. For unmeasured jets, soft gluon

radiation does not affect the total momentum of the jet (up to power corrections) and

therefore these jet functions enter the cross section multiplicatively. For measured jets,

the jet substructure may be sensitive to the soft radiation, therefore it must be convolved

with the soft function. For Gψi (E,R, z, µ), R, E and z are not affected by soft radiation

(up to power corrections) so it also enters the cross section multiplicatively and all of the z

dependence is contained in Gψi (E,R, z, µ), which enables us to ignore all the other factors in

eq. (2.1) and focus on Gψi (E,R, z, µ). We can therefore ignore the dependence on the other

jet in eq. (2.1), or indeed we could look at other processes with a J/ψ inside a jet, such as

the single-jet inclusive cross section. In this case, there are no other jet functions and the

soft function is only an overall normalization and is therefore irrelevant for our purposes.

A generic fragmenting jet function may be defined as a product of operators of the form

Gψi = 〈0 | OintOmeas

∑
X

| X +H〉〈O +H | Oint | 0〉, (2.2)

where Oint is some interpolating field for the parton of interest, i. Omeas is a measurement

operator (a set of delta functions) that fixes the measured jet characteristics, such as E,R

and z. The operators are manifestly gauge invariant. In SCET these operators would

involve only fields with the same large momentum (and possibly soft fields) and compose
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a piece of the factorization theorem (not shown) that is generated at the highest scale Q,

which is usually taken to be on the order of the jet energies E.4 Gψi contains two relevant

scales: the invariant mass or energy of the jet and the hadron mass. Thus one can perform

a further factorization to separate out these two scales where the long distance physics

is captured by a fragmentation function, and the short distance physics can be calculated

perturbatively. The resulting form of this second step of factorization can be written as [16]

Gψi (E,R, z, µ) =
∑
j

∫ 1

z

dy

y
Jij(E,R, y, µ)Dj→ψ

(
z

y
, µ

)
×

[
1 +O

(
m2
ψ

4E2 tan2(R/2)

)]
,

(2.3)

where we have now specialized to the case of interest where the jet energy E is measured for

cone size R.5 Loosely speaking this function gives the probability of finding a quarkonium

whose large momentum fraction, relative to the jet within which it is found, is z. It is

possible and indeed likely that there are small invariant mass jets in the data. However,

note that the process is inclusive in the sense that one integrates over all invariant masses

up to 2E tan[(R/2). So the effect of the small invariant mass gets washed out. This is the

essence of duality. One may ask the same question about DIS, where there will be events

that contribute that are close to x = 1, which is in the resonance region. But if we take

moments (integrating over x) that region gets washed out. The differential cross section

near x = 1 is sensitive to the IR but the integrated cross section is not.

The operator definition of the quark fragmentation function is [32] given by

Dj→ψ(z) =
z

4π

∫
dx+eix+p

−
ψ /z

1

4Nc
Tr〈0 | n̄/ q(x+, 0, 0)

∑
X

| X +ψ〉〈X +ψ | q̄(0) | 0〉, (2.4)

where the operator q includes an anti-path ordered Wilson line that renders the matrix

element gauge invariant. A similar matrix element can be written down for the gluon

fragmentation function. What distinguishes the quarkonium fragmentation function from

other cases is that it contains a further subset of scales: the quark mass, the Bohr radius,

and the binding energy that scale as 1, v, and v2 respectively in units of the quark mass.

Furthermore, taking the quark mass scale to be perturbative implies that the constituents

are produced at a point, and that the momentum fraction carried by the quarkonium is set

perturbatively. This is so even if the pair is produced in an octet state, since the shedding

of color occurs via soft multipole emission whose effect on the kinematics is suppressed

by an amount of order v2, except near the end point z = 1 where these non-perturbative

corrections are enhanced and can be accounted for by the inclusion of a non-perturbative

shape function [33]. In general we will present our results away from the end point to

avoid the need for such a function. Thus, the fragmentation functions for quarkonium are

calculable up to a set of LDMEs.

The matching coefficients Jij(E,R, z, µ) can be calculated in perturbation theory.

Large logarithms in the Jij(E,R, z, µ) are minimized at the scale 2E tan(R/2)(1−z). Note

4If there were a hierarchy then one would have to run these operators from the scale Q to the scale E.
5In refs. [16–21] the error scales as Λ2

QCD instead of m2
ψ. For our processes, the low energy scale is mψ,

and thus the error scales differently.
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that the matching coefficients Jij(E,R, z, µ) are independent of the choice of hadronic final

states, and thus we may utilize the results in ref. [20] for the FJF for light hadrons for the

case at hand.

2.2 Expressions for the J/ψ FJF

We will focus gluon and charm quark fragmentation to J/ψ. For gluon fragmentation to

J/ψ through cc̄ pairs, we consider the 3S
(1)
1 , 3S

(8)
1 , 1S

(8)
0 , and 3P

(8)
J quark states. The 3S

(1)
1

gluon fragmentation function is leading order in the v expansion, as the color-octet contri-

butions are suppressed by v4. However the gluon color-singlet contribution is suppressed

relative to 3S
(8)
1 by a power of α2

s. For charm quark fragmentation to J/ψ, we consider

only the 3S
(1)
1 contributions because both color-singlet and color-octet mechanisms start

at the same order in αs. The ratio of gluon to charm production cross sections at the

LHC is approximately 50, but the ratio of charm quark to gluon fragmentation functions,

partially compensates for this suppression. Fragmentation from light quarks is suppressed

by one power of αs relative to the 3S
(8)
1 gluon fragmentation contribution and shares the

octet velocity suppression. The Jij(E,R, z, µ) and the relevant fragmentation functions

are collected in the appendix.

The convolution in eq. (2.3) can be explicitly evaluated using the formula for

Jgg(E,R, z, µ) and Jgq(E,R, z, µ) in the appendix to obtain

Gψg (E,R, z, µ) =

∫ 1

z

dy

y
Jgg(y)Dg→ψ

(
z

y
, µ

)
+

∫ 1

z

dy

y
Jgq(y)Dq→ψ

(
z

y
, µ

)
(2.5)

= Gψg(g)(E,R, z, µ) + Gψg(q)(E,R, z, µ) ,

where

Gψg(g)(E,R, z, µ)

2(2π)3
= Dg→ψ(z, µ)

(
1 +

CAαs
π

(
L2
1−z −

π2

24

))
(2.6)

+
CAαs
π

[∫ 1

z

dy

y
P̃gg(y)L1−yDg→ψ

(
z

y
, µ

)
+2

∫ 1

z
dy
Dg→ψ(z/y, µ)−Dg→ψ(z, µ)

1− y
L1−y

+θ

(
1

2
− z
)∫ 1/2

z

dy

y
P̂gg(y) ln

(
y

1− y

)
Dg→ψ

(
z

y
, µ

)]
,

and

Gψg(q)(E,R, z, µ)

2(2π)3
=
TFαs
π

[∫ 1

z

dy

y
[Pqg(y)L1−y + y(1− y)]Dq→ψ

(
z

y
, µ

)
(2.7)

+θ

(
1

2
− z
)∫ 1/2

z

dy

y
Pqg(y) ln

(
y

1− y

)
Dq→ψ

(
z

y
, µ

)]
.
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In this expression, we have defined

L1−z = ln

(
2E tan(R/2)(1− z)

µ

)
,

P̂gg(z) = 2

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]
,

P̃gg(z) = 2

[
1− z
z

+ z(1− z)
]
,

Pqg(z) = z2 + (1− z)2 .

This expression shows that the logarithms in Gψg (E,R, z, µ) are minimized at the scale

µ = 2E tan(R/2)(1 − z), as first pointed out in ref. [20]. The logarithms of 1 − z are

easily resummed using the jet anomalous dimension [20], however, we will not do this

resummation in this paper as we consider 1 − z ∼ O(1). We instead set the scale in

Jgg(E,R, z, µ) to be µJ = 2E tan(R/2), and evolve the fragmentation function from the

scale 2mc to the scale µJ . This is done by taking moments of the fragmentation functions,

evolving each moment according to its anomalous dimension as obtained from the Altarelli-

Parisi equations, and then performing an inverse-Mellin transform.

The Gψg(q)(E,R, z, µ) is present because of mixing with the quark fragmentation func-

tion. In principle there should be a sum over all quark flavors. However, the light quark

fragmentation function contributes only via fragmentation through 3S
(8)
1 cc̄ pairs at O(α2

s)

and is subleading to the 3S
(8)
1 gluon fragmentation so it will be neglected. Charm quarks

and antiquarks can fragment via 3S
(1)
1 cc̄ pairs at O(α2

s), which is lower order than the

corresponding gluon fragmentation function. Therefore this mixing must be included.

The quark FJF is given by:

Gψq (E,R, z, µ)

2(2π)3
= Dq→ψ(z, µ)

(
1 +

CFαs
π

(
L2
1−z −

π2

24

))
(2.8)

+
CFαs
π

[∫ 1

z

dy

y
(1− y)

(
L1−y +

1

2

)
Dq→ψ

(
z

y
, µ

)
+2

∫ 1

z
dy
Dq→ψ(z/y, µ)−Dq→ψ(z, µ)

1− y
L1−y

+θ

(
1

2
− z
)∫ 1/2

z

dy

y
P̂qq(y) ln

(
y

1− y

)
Dq→ψ

(
z

y
, µ

)]

+
CFαs
π

[∫ 1

z

dy

y

(
Pgq(z)L1−y +

y

2

)
Dg→ψ

(
z

y
, µ

)
+θ

(
1

2
− z
)∫ 1/2

z

dy

y
log

(
y

1− y

)
Pgq(y)Dg→ψ

(
z

y
, µ

)]
,

where

P̂qq(z) =
1 + z2

(1− z)+
,

Pgq(z) =
1 + (1− z)2

z
.
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z

Figure 1. The gluon fragmentation functions at µ = 2mc for 3S
(1)
1 (black), 3S

(8)
1 (red), 1S

(8)
0

(green), 3P
(8)
J (blue). Relative normalization is arbitrary and relevant formulas are found in the

appendix.

For this contribution, as previously mentioned we will only consider the q = c contribution

fragmenting via 3S
(1)
1 cc̄ pairs. The mixing contribution of gluon fragmentation into this

FJF must also be included. To evaluate Gψi (E,R, z, µJ) we will use eqs. (2.5)–(2.8) with

our numerically evaluated Di→ψ(z, µJ). We see that up to O(αs) corrections

Gψi (E,R, z, µJ)

2(2π)3
→ Di→ψ(z, µJ) +O(αs(µJ)), (2.9)

which shows that the z distribution of a J/ψ within a jet with energy E and cone size

R is approximately equal to the fragmentation function evaluated at the jet scale µJ =

2E tan(R/2).

Since the fragmentation functions for 3S
(1)
1 , 3S

(8)
1 , 1S

(8)
0 , and 3P

(8)
J are very different,

this observable has the power to discriminate between all four gluon-production mecha-

nisms. This can seen from a cursory inspection of the expressions for the fragmentation

functions given in the appendix and shown in figure 1. Though the dramatic differences in

these functions are considerably softened by Altarelli-Parisi evolution, we will see that each

contribution to Gψg (E,R, z, µ) has a different E dependence that varies for fixed z (cf. fig-

ure 3). This makes it clear that measurement of Gψg (E,R, z, µ) for different momentum

fractions has potential to allow independent extraction of all four LDME. In our calcula-

tions E and R will always enter in the combination E tan(R/2) and we will choose R = 0.4.

In figure 2 we plot the 3S
(1)
1 (black), 3S

(8)
1 (red), 1S

(8)
0 (green), and 3P

(8)
J (blue) gluon

FJFs as well as the 3S
(1)
1 charm (purple) FJF for E = 50 GeV and E = 200 GeV. This

plot illustrates the discriminating power of the jet observables. For figure 2 we have chosen

the LDME to be the central values extracted in the fits of refs. [5, 6]: 〈OJ/ψ(3S
(1)
1 )〉 =

1.32 GeV3, 〈OJ/ψ(1S
(8)
0 )〉 = 4.97 × 10−2 GeV3, 〈OJ/ψ(3S

(8)
1 )〉 = 2.24 × 10−3 GeV3, and

〈OJ/ψ(3P
(8)
0 )〉 = −1.61× 10−2 GeV5. Throughout this work we take mc = 1.4 GeV.

It is also interesting to study the energy dependence of the fragmentation functions. In

figure 3 we plot the four gluon FJFs as a function of energy E for three different values of

– 7 –
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Figure 2. The gluon FJF (color coding the same as in figure 1) and the charm quark FJF for
3S

(1)
1 (purple).
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Figure 3. The energy dependence of the four different contributions to the gluon FJF for fixed

z = 0.3, 0.5, and 0.8. Color coding is the same as in figures 1, 4. For readability, we have scaled

the 3P
(8)
J function down by a factor of 5 and 3S

(1)
1 down by 2. These plots have been normalized

with respect to the total rate and thus do not reflect its underlying energy dependence.

z using the same color-coding as above. The LDME of refs. [5, 6] have again been used to

set the normalization of the curves. In order to the make shapes of the curves more easily

viewable, we have divided the 3P
(8)
J by a factor of 5 and the color-singlet contribution has

been divided by a factor of 2. The shapes of the energy dependence at different values of

z are quite distinct for all four fragmentation functions. For example, the 3P
(8)
J FJF is

an increasing function of energy for all three z values, while the 1S0 and the color-singlet

are decreasing functions of E for z = 0.5 and 0.8, and the 3S
(8)
1 is decreasing only for 0.8.

Extractions of the E dependence of the FJF for different values of z should allow one to

disentangle the various contributions to quarkonium production. In particular, note that if

the lack of polarization is due to an anomalously large 1S
(8)
0 , then we should see a decrease

in the gluon FJF as a function of the jet energy for fixed z, with z > 0.5.

The moments of the FJF, 〈zN 〉 ≡
∫ 1
0 dz z

N−1Gψg (E,R, z, µ), can be calculated ana-

lytically using the formulae in the appendix. Note that this integral diverges if N = 1

because the N = 1 moments of both the Altarelli-Parisi splitting function and the match-

ing coefficients Jgg(E,R, z, µ) have poles at N = 1. This could be cured by resummation

of log z, as implemented for the Dg→ψ(z, µ) fragmentation function in ref. [34], but this

– 8 –
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is beyond the scope of this paper. The LDME cancel in the ratios of moments, and we

plot ratios of successive moments, 〈zN+1〉/〈zN 〉, for N = 2, 3, and 4 in figure 4. In all

columns we have plotted the moment ratios of the 3S
(1)
1 FJF (black). We also plot mo-

ment ratios for the 3S
(8)
1 FJF (red), 3P

(8)
J (blue), 1S

(8)
0 FJF (green), and the charm quark

FJF (purple), in each column respectively. Scale uncertainties are included by varying

E tan(R/2) < µ < 4E tan(R/2). We see that the moments have power to discriminate

between various production mechanisms, in particular, we find

〈zn+1〉
〈zn〉

∣∣∣∣
3P

(8)
J

≈ 〈z
n+1〉
〈zn〉

∣∣∣∣
3S

(8)
1

>
〈zn+1〉
〈zn〉

∣∣∣∣
1S

(8)
0

≈ 〈z
n+1〉
〈zn〉

∣∣∣∣
c−quark

>
〈zn+1〉
〈zn〉

∣∣∣∣
3S

(1)
1

. (2.10)

Note that for the same choice of µ,

〈zn+1〉
〈zn〉

∣∣∣∣
3P

(8)
J

>
〈zn+1〉
〈zn〉

∣∣∣∣
3S

(8)
1

, (2.11)

but once scale uncertainties are included it is hard to distinguish these two moment ratios.

The energy dependence of the moments of the color-octet FJFs is given by

〈zN 〉 = J̃gg(E,R,N, µ)

(
αs(µ)

αs(2mc)

)2γNgg/b0

D̃g→ψ(N, 2mc) . (2.12)

When we set µ ≈ 2E tan(R/2), the energy dependence is entirely contained in the first two

factors on the r.h.s. of eq. (2.12), which are the same for all three color-octet FJFs. The

color-singlet and charm quark fragmentation functions are more complicated due to the

mixing of these fragmentation function in the evolution from the scale 2mc to µJ . Making

log-log plots of 〈zN 〉 we find that that 〈zN 〉 ∝ (logE)F (N) where F (N) can be extracted

from eq. (2.12).

3 Comparison of various LDME extractions

In the final part of this paper, we will discuss what recent extractions of the LDME predict

for the gluon FJF. In addition to the extractions in refs. [5, 6], we will consider values of

the LDME extracted in two recent papers [35, 36] that attempt to solve the polarization

puzzle by focusing exclusively on high p⊥ production of charmonia at collider experiments.

The study in ref. [35] uses a NLO NRQCD calculation to fit the color-octet LDME to inclu-

sive J/ψ production at high p⊥ and finds values of the LDME that can produce negligible

polarization in agreement with the data. However, these values of LDME are inconsistent

with the results of fitting the world data in refs. [5, 6]. In particular, 〈OJ/ψ(1S
(8)
0 )〉 is larger

by a factor of two and 〈OJ/ψ(3P
(8)
0 )〉 has the opposite sign as the fit in refs. [5, 6]. These

two effects combine to produce significant depolarization of the J/ψ. In ref. [36], the calcu-

lations are performed in the leading-power fragmentation approximation and logarithms of

p⊥/mc are resummed by using Altarelli-Parisi equations for the fragmentation functions.

The fitted LDME are similar to those found in ref. [35] in the sense that 〈OJ/ψ(1S
(8)
0 )〉 is by

far the largest matrix element and 〈OJ/ψ(3P
(8)
0 )〉 again has opposite sign as that extracted

from fits to the world data. In ref. [36], the errors on 〈OJ/ψ(3S
(8)
1 )〉 and 〈OJ/ψ(3P

(8)
0 )〉 are
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Figure 4. Ratios of successive moments as a function of the jet energy. See text for explanation.

essentially 100% so the extracted matrix elements are consistent with zero. This analysis

suggests that the production of J/ψ at large p⊥ is dominated by cc̄ pairs in a 1S
(8)
0 state

rather than 3S
(8)
1 . It should be noted that the quoted errors in the extracted LDME in

refs. [5, 6] are considerably smaller than those in refs. [35, 36]. However, the presence of

nontrivial correlations between the uncertainties in [36] allows us to make a much sharper

prediction for the gluon FJF than is naively suggested by the large individual error bars [37].

In all of these extractions, there is a hierarchy between matrix elements that are supposed

to have the same velocity scaling. However, it is generated by anomalously small matrix

elements not anomalously large ones.

In figure 5, we compare the predictions for the gluon FJF at E = 50 GeV and E =

200 GeV using the results from the fits to the LDME in refs. [5, 6, 35, 36]. The gluon

FJF is the sum over all contributions, color-singlet as well as color-octet. The color-

singlet matrix element is chosen to be 1.32 GeV3 in refs. [5, 6, 36] and 1.16 GeV3 in

ref. [35]. We use the LDME extracted in the original fit and the error bands are the

result of adding in quadrature the uncertainties for the LDME quoted in refs. [5, 6, 35].
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Figure 5. The gluon FJF at fixed energy for the LDME extracted in refs. [5, 6] (gray), ref. [35]

(blue), and ref. [36] (red).
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Figure 6. The gluon FJF at fixed momentum fraction for the LDME extracted in refs. [5, 6]

(gray), ref. [35] (blue), and ref. [36] (red). These plots have been normalized with respect to the

total rate.

We supplement the uncertainty given in ref. [36] with the full correlation matrix provided

by one of the authors [37]. No other theoretical uncertainty is included. The gray band

with black borders is the prediction using the LDME extracted in refs. [5, 6], the red

band uses the matrix elements extracted in ref. [36] and the blue band uses the matrix

elements extracted in ref. [35]. Figure 6 shows the energy dependence at fixed momentum

fraction for the different determinations. We see that for z >0.5, the question of which

set of LDMEs is preferred, those determined for the world average [5, 6] or those that

alleviate the polarization puzzle [35, 36], will be resolved by testing whether the gluon FJF

is increasing or decreasing with energy. Furthermore, measurement of the gluon FJF has

the power to distinguish between all three fits.

4 Conclusions

We have demonstrated that by studying the characteristics of jets arising from quarkonium

production, we can disentangle the various production channels. There are a multitude of

ways of analyzing such events. Here we have chosen to measure the energy and cone

angle of the jet, but one could consider other observables such as the invariant mass.

Within our choice of variables (E,R) we found that a particularly discriminating tool
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is the measurement of the energy dependence at fixed momentum fraction as shown in

figures 3 and 6. A robust prediction of our analysis is that for z > 0.5 the gluon FJF at

fixed z should decrease as function of energy if the lack of transverse polarization in the

data is due to the dominance of the 1S
(8)
0 LDME over the other color octet matrix elements

for high-p⊥ production. Further information can be gathered by calculating the normalized

cross section, in which case one could constrain the sum of the matrix elements.

Acknowledgments

TM and AKL acknowledge support from the ESI workshop, Jets in Quantum Field Theory,

where this work was initiated. MB acknowledges the Center for Future High Energy

Physics at IHEP where a portion of this work was completed. We thank Andrew Hornig,

Wouter Waalewijn, Massimiliano Procura, Geoffrey Bodwin, and Christian Bauer for useful

discussions and James Russ for comments on the manuscript. AKL was supported in part

by the National Science Foundation under Grant No. PHY-1212635. TM was supported in

part by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Department of

Energy under grant numbers DE-FG02-05ER41368. IZR and MB are supported by DOE

DE-FG02-04ER41338 and FG02-06ER41449.

A Formulae for matching coefficients, fragmentation functions, moments

In this appendix we collect the basic formulae needed for the calculation. The matching

coefficients Jij(E,R, z, µ) are calculated in ref. [20]:

Jgg(E,R, z, µ)

2(2π)3
= δ(1− z) +

αs(µ)CA
π

[(
L2 − π2

24

)
δ(1− z) + P̂gg(z)L+ Ĵgg(z)

]
, (A.1)

Jqq(E,R, z, µ)

2(2π)3
= δ(1− z) +

αs(µ)CF
π

[(
L2 − π2

24

)
δ(1− z) + P̂qq(z)L+ Ĵqq(z)

]
, (A.2)

Jgq(E,R, z, µ)

2(2π)3
=
αs(µ)TF

π

[
Pqg(z)L+ Ĵgq(z)

]
, (A.3)

Jqg(E,R, z, µ)

2(2π)3
=
αs(µ)CF

π

[
Pgq(z)L+ Ĵqg(z)

]
, (A.4)

where L = ln[2E tan(R/2)/µ], and

Ĵgg(z) =

{
P̂gg(z) ln z z ≤ 1/2
2(1−z+z2)2

z

(
ln(1−z)
1−z

)
+

z ≥ 1/2
, (A.5)

Ĵqq(z) =
1

2
(1− z) +

{
P̂qq(z) ln z z ≤ 1/2

(1 + z2)
(
ln(1−z)
1−z

)
+

z ≥ 1/2
, (A.6)

Ĵgq(z) = z(1− z) + Pqg(z)

{
ln z z ≤ 1/2

ln(1− z) z ≥ 1/2
, (A.7)

Ĵqg(z) =
z

2
+ Pgq(z)

{
ln z z ≤ 1/2

ln(1− z) z ≥ 1/2
. (A.8)
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There are five NRQCD fragmentation functions. The 3S
(8)
1 gluon fragmentation func-

tion is given by [38]

D
3S

(8)
1

g→ψ (z, 2mc) =
παs(2mc)

24m3
c

〈Oψ
(
3S

(8)
1

)
〉δ(1− z), (A.9)

and the 3S
(1)
1 gluon fragmentation function is [39, 40]

D
3S

(1)
1

g→ψ (z, 2mc) =
5α3

s(2mc)

864π

〈Oψ
(
3S

(1)
1

)
〉

m3
c

∫ z

0
dr

∫ (1+r)/2

(r+z2)/2z
dy

1

(1− y)2(y − r)2(y2 − r)2
2∑
i=0

zi

(
fi(r, y) + gi(r, y)

1 + r − 2y

2(y − r)
√
y2 − r

ln
y − r +

√
y2 − r

y − r −
√
y2 − r

)
, (A.10)

where

f0(r, y) = r2(1 + r)
(
3 + 12r + 13r2

)
− 16r2(1 + r)(1 + 3r)y

−2r
(
3− 9r − 21r2 + 7r3

)
y2 + 8r

(
4 + 3r + 3r2

)
y3 − 4r

(
9− 3r − 4r2

)
y4

−16
(
1 + 3r + 3r2

)
y5 + 8(6 + 7r)y6 − 32y7,

f1(r, y) = −2r
(
1 + 5r + 19r2 + 7r3

)
y + 96r2(1 + r)y2 + 8

(
1− 5r − 22r2 − 2r3

)
y3

+16r(7 + 3r)y4 − 8(5 + 7r)y5 + 32y6,

f2(r, y) = r
(
1 + 5r + 19r2 + 7r3

)
− 48r2(1 + r)y − 4

(
1− 5r − 22r2 − 2r3

)
y2

−8r(7 + 3r)y3 + 4(5 + 7r)y4 − 16y5,

g0(r, y) = r3(1− r)
(
3 + 24r + 13r2

)
− 4r3

(
7− 3r − 12r2

)
y − 2r3

(
17 + 22r − 7r2

)
y2

+4r2
(
13 + 5r − 6r2

)
y3 − 8r

(
1 + 2r + 5r2 + 2r3

)
y4 − 8r

(
3− 11r − 6r2

)
y5

+8
(
1− 2r − 5r2

)
y6,

g1(r, y) = −2r2(1 + r)(1− r)(1 + 7r)y + 8r2(1 + 3r)(1− 4r)y2

+4r
(
1 + 10r + 57r2 + 4r3

)
y3 − 8r

(
1 + 29r + 6r2

)
y4 − 8

(
1− 8r − 5r2

)
y5,

g2(r, y) = r2(1 + r)(1− r)(1 + 7r)− 4r2(1 + 3r)(1− 4r)y

−2r
(
1 + 10r + 57r2 + 4r3

)
y2 + 4r

(
1 + 29r + 6r2

)
y3 + 4

(
1− 8r − 5r2

)
y4.

The integrals over r and y must be done numerically. The 1S
(8)
0 gluon fragmentation

function is given by [40–42]

D
1S

(8)
0

g→ψ (z, 2mc) =
5α2

s(2mc)

96m3
c

〈Oψ
(
1S

(8)
0

)
〉
(
3z − 2z2 + 2(1− z) log(1− z)

)
, (A.11)

and the 3P
(8)
J gluon fragmentation function is given by

D
3P

(8)
J

g→ψ (z, 2mc) =
5α2

s(2mc)

12m5
c

〈Oψ
(
3P

(8)
0

)
〉 (A.12)

×
(

1

6
δ(1− z) +

1

(1− z)+
+

13− 7z

4
log(1− z)− (1− 2z)(8− 5z)

8

)
.
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Here we have summed over J = 0, 1, 2 and used 〈Oψ(3P
(8)
J )〉 = (2J + 1)〈Oψ(3P

(8)
0 )〉. The

3S
(1)
1 charm quark fragmentation function is [39],

D
3S

(1)
1

c→ψ (z, 2mc) =
32α2

s(2mc)

81

〈Oψ
(
3S

(1)
1

)
〉

m3
c

(z−1)2

(z−2)6
z
(
5z4−32z3+72z2−32z+16

)
. (A.13)

The moments of the color-octet gluon fragmentation functions can be computed ana-

lytically. Defining

D̃g→ψ(N, 2mc) =

∫ 1

0
dzzN−1Dg→ψ(z, 2mc) , (A.14)

we have

D̃
3S

(8)
1

g→ψ (N, 2mc) =
παs(2mc)

24m3
c

〈Oψ
(
3S

(8)
1

)
〉, (A.15)

D̃
1S

(8)
0

g→ψ (N, 2mc) =
5α2

s(2mc)

96m3
c

〈Oψ
(
1S

(8)
0

)
〉
[

8 + 7N +N2

(N + 1)2(N + 2)
− 2HN

N(N + 1)

]
, (A.16)

D̃
3P

(8)
J

g→ψ (N, 2mc) =
5α2

s(2mc)

12m5
c

〈Oψ
(
3P

(8)
0

)
〉 (A.17)

×
[

188 + 191N + 49N2 + 4N3

24(N + 1)2(N + 2)
− 4N2 + 10N + 13

4N(N + 1)
HN

]
.

The fragmentation function is evolved using the standard DGLAP evolution,

µ
∂

∂µ
Di(z, µ) =

αs(µ)

π

∑
j

∫ 1

z

dy

y
Pi→j(z/y, µ)Dj(y, µ) . (A.18)

These equations are solved analytically in moment space, and then the fragmentation func-

tions at the scale µJ are obtained by numerically evaluating the inverse Mellin transform.

In our calculations, q = c and the mixing between the gluon and c quark fragmentation

function is only relevant for the 3S
(1)
1 channel.

It is useful to have analytic expressions for the moments of the matching coefficients;

these are given by:

J̃gg(E,R,N, µ) =

∫ 1

0
dz zN−1

Jgg(E,R, z, µ)

2(2π)3

= 1 +
αsCA
π

(
L2 + PNggL+H2

N−1 −
5π2

24
+HN−1,2

+ 2GN−1 + FN−2 − 2FN−1 + FN − FN+1

)
, (A.19)

J̃qq(E,R,N, µ) =

∫ 1

0
dz zN−1

Jqq(E,R, z, µ)

2(2π)3

= 1 +
αsCF
π

(
L2 + PNqqL+

H2
N−1 +H2

N+1

2
− 5π2

24
+
HN−1,2 +HN+1,2

2

+GN−1 +GN+1

)
, (A.20)
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J̃gq(E,R,N, µ) =

∫ 1

0
dz zN−1

Jgq(E,R, z, µ)

2(2π)3

=
αsTF
π

(
PNqgL+

1

(N + 1)(N + 2)
+ FN+1 − FN +

1

2
FN−1

)
, (A.21)

J̃qg(E,R,N, µ) =

∫ 1

0
dz zN−1

Jqg(E,R, z, µ)

2(2π)3

=
αsCF
π

(
PNgqL+

1

2(N + 1)
+ FN−2 − FN−1 +

1

2
FN

)
, (A.22)

where HN is the harmonic number, HN,2 is the generalized harmonic number of order 2,

and PNij , FN , and GN are given by

FN =
2

N + 1

−HN+1 +
N∑
j=1

1

j 2j
− log 2

 , (A.23)

GN =
N∑
j=1

1

j2 2j
−

N∑
k=1

1

k

 k∑
j=1

1

j 2j
− log 2

 , (A.24)

PNgg = 2

(
−HN +

1

N − 1
− 1

N
+

1

N + 1
− 1

N + 2

)
, (A.25)

PNqq = −2HN+1 +
1

N
+

1

N + 1
, (A.26)

PNgq =
N2 +N + 2

N(N2 − 1)
, (A.27)

PNqg =
N2 +N + 2

N(N + 1)(N + 2)
. (A.28)

Note that

FN = O
(

1

N

)
,

GN =
π2

12
+O

(
1

N

)
, (A.29)

so in the large N limit

J̃gg(E,R,N, µ) = 1 +
αsCA
π

(
L2
N −

π2

8
+O

(
1

N

))
, (A.30)

J̃qq(E,R,N, µ) = 1 +
αsCF
π

(
L2
N −

π2

8
+O

(
1

N

))
, (A.31)

where

LN = ln

(
2E tan(R/2)

NeγEµ

)
. (A.32)

We see that the logarithms in J̃gg(E,R,N, µ) and J̃qq(E,R,N, µ) are minimized at the

scale 2E tan(R/2)/NeγE . This is consistent with the expressions for Jgg(E,R, z, µ) and
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Jqq(E,R, z, µ) These logarithms are easily resummed using the jet anomalous dimension,

however, we will not do this resummation in this paper as we compute moments with

N of order unity. Moments with N = 1 are divergent because of the poles in PNgg , PNqg ,

J̃gg, and J̃gq.
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