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1 Introduction

The search for the exotic states (tetraquarks, hybrids, hadronic molecules, etc) in the

observed hadron spectrum has been a subject of both theoretical and experimental in-

vestigations for decades. The exact pattern, how these states emerge, should be strictly

determined by the underlying theory and should therefore contain important information

about the behavior of QCD at low energies. In practice, however, extracting such informa-

tion from the data encounters certain challenges, which are in part of a conceptual nature.

In the present paper we wish to focus exactly on this issue.

In general, a state is called “exotic” if its quark content does not correspond to the

“standard” constellation given by the non-relativistic quark model (qq̄ for mesons and qqq

for baryons). Consequently, one needs to use a particular model as a reference point to

define how the exotic states are meant (note that the very notion of constituent quarks

is, strictly speaking, model-dependent). Putting it differently, one has to agree on certain

criteria formulated in terms of certain hadronic observables: if these observables are mea-

sured, or calculated on the lattice, and the results do not follow the pattern predicted by

the quark model, this then should be interpreted as a signature for exotica.
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A standard example for the exotic state candidates is given by the scalar nonet with

the masses around 1GeV. As it is well known, the observed mass hierarchy in this nonet is

reversed as compared to, e.g., the pseudoscalar or vector multiplets. Such a mass ordering

is counter-intuitive from the point of view of the naive quark model, but can be easily

understood, if the scalar mesons were interpreted as tetraquark states (see, e.g., [1–4]). This

is, however, not the only possible interpretation. In refs. [5–7], the a0(980) and f0(980)

were considered as hadronic molecules, whereas in refs. [8] these states were described

as a combination of a bare pole and the rescattering contribution. In the Jülich meson-

exchange model, the f0(980) appears to be a bound KK̄ state, whereas the a0(980) is a

dynamically generated threshold effect [9]. Similar conclusions were inferred in ref. [10]

from the calculations in the unitarized ChPT with explicit resonance states. Finally, the

investigations carried out within the framework of QCD sum rules are also indicative of

the non-qq̄ nature of a0(980) [11, 12]. Given these multiple interpretations, it is natural

to look for the clear-cut criteria based on the observables in order to minimize the model-

dependence of the statements about the nature of the hadronic states in question.

In fact, such criteria are known for quite some time already. The “pole counting”

method, considered in refs. [13, 14], relates the number of the S-matrix poles near threshold

to the molecular nature of the states corresponding to these poles. Namely, it has been

argued that the loosely bound states of hadrons (hadronic molecules) correspond to a single

pole, whereas the poles corresponding to the tightly bound quark states (of standard or

exotic nature) always come in pairs. A closely related criterion goes under the name of

Weinberg’s compositeness condition [15], which uses the quantity called the wave function

renormalization constant Z, where 0 ≤ Z ≤ 1, to differentiate between the loosely bound

states and tight QCD composites, the values Z ≃ 0 corresponding to the molecular states

and vice versa. The application of these methods for the analysis of the data on scalar

mesons are considered in refs. [16–22], and the recent review on the subject may be found

in ref. [23]. Moreover, theoretically, one may study the dependence of the pole positions

on the number of the colors Nc (see refs. [10, 24, 25]) or the quark masses (refs. [26–29]).

From the above studies, one can judge about the precise structure of these states beyond

the simple alternative between a molecule and a tight quark composite.

Recent years have seen a renewed interest in the field, which is partly related to the

progress in the lattice calculations of the QCD spectrum at the quark masses close to

the physical values. It should be realized that the lattice studies have powerful tools

at their disposal to analyze the nature of the states that emerge in QCD. Apart from the

information about the dependence of the spectrum on quark masses, a valuable information

comes from the volume dependence of the calculated spectrum as well as its dependence

on the twisting angle in case of twisted boundary conditions, see refs. [30–37]. Note that

all this information is obtained from the first-principle calculations on the lattice and is

thus in principle devoid of any model-dependent input.

In this paper we investigate the nature of the scalar states in the sector with one

charm quark that is a natural generalization of our treatment of the light scalar mesons.

We mainly focus on the case of the D∗
s0(2317) meson [38, 39], albeit the formalism, which

we develop here, can be straightforwardly applied to the other cases where a bound state
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close to the elastic threshold emerges (note that, in this paper, we do not consider the

generalization of the approach to the inelastic case. This forms a subject of a separate

investigation.). The D∗
s0(2317) does not fit very nicely to the quark-model picture, and its

structure is still debated, see, e.g., ref. [40] for a recent review. The molecular picture, due

to the closeness of the DK threshold and a large coupling to the DK channel looks most

promising among other alternatives. It would be highly desirable to verify this conjecture

in a model-independent manner, on the basis of the lattice calculations. To this end, one

may use the fact that the dependence of the bound-state energy on the kaon mass is very

different for a molecule and a standard quark-model state, see ref. [41]. Another possible

method to address this issue has been described, e.g., in refs. [33, 34], where the authors

propose to study the volume-dependence of the spectrum in order to apply the Weinberg’s

compositeness criterion on the lattice.

The exploratory study of light pseudoscalar mesons (π,K) of (D,Ds) in full lattice

QCD has been carried out in refs. [42–45]. In some isospin channels the study is plagued

by the presence of disconnected contributions. The implementation of the method from

refs. [33, 34], which implies carrying out calculations at different volumes, could be therefore

quite expensive. In this paper we propose an alternative, which requires calculations at one

volume, albeit with twisted boundary conditions. Moreover, we show that, in the study

of D∗
s0(2317), one may use partially twisted boundary conditions, despite the fact that the

quark annihilation diagrams are present. The method used in the proof is the same as in

ref. [46]. Generally, one may expect that the simulations with partially twisted boundary

conditions could be less expensive than working at different volumes, while they provide

us the same information about the nature of the bound states in question.

This article is organized as follows. In section 2, we briefly review Weinberg’s argument

for the compositeness of particles. In section 3 we describe the procedure of extraction of

the parameter Z from the data with twisted boundary condition. Further, in section 4

we use some models and produce synthetic lattice data in order to check the procedure

of the extraction in practice. The error analysis has also been carried out. Separately, in

section 5, we discuss the use of the partially twisted boundary conditions and show that

they are equivalent to the full twisting in our case. Section 6 contains our conclusions.

2 Compositeness of bound states

As mentioned before, in view of the plethora of candidates of exotic hadrons, it is very

important to make model-independent statements on the nature of these states. Model-

independence requires that we can only study the physical observables which can be defined

in terms of the matrix elements between asymptotic states. In particular, we would like

to ask a question, whether a given particle, corresponding to the S-matrix pole, can be

regarded as “elementary” or rather as a bound state (molecule) of other hadrons. The

central place in this identification belongs to the so-called wave function renormalization

constant Z, which has been used to distinguish composite particles from elementary ones

since the early 1960’s [15, 47–51]. To see its role, we will first discuss a non-relativistic

quantum mechanical system, following the discussion of ref. [15].

– 3 –



J
H
E
P
0
1
(
2
0
1
5
)
1
1
8

In this section, we will restrict our discussion to the infinite volume. Let us consider a

two-body system with a Hamiltonian H = H0 + V , where H0 is the free Hamiltonian, and

V specifies the interaction. Both H and H0 have a continuum spectrum. Let us assume

that there is a bound state solution of the Schrödinger equation with a binding energy EB,

H|B〉 = −EB|B〉, (2.1)

andH0 also has a discrete spectrum which are the bare elementary particles. For simplicity,

we will assume that there is only one such state, denoted by |B0〉. In the Hilbert space

spanned by the eigenstates of the free Hamiltonian, the completeness relation is thus given

by

1 = |B0〉〈B0|+
∫

d3~q

(2π)3
|~q 〉〈~q | with H0|~q 〉 =

~q 2

2µ
|~q 〉, (2.2)

where µ = m1m2/(m1 +m2) is the reduced mass. Thus, the probability for the physical

state |B〉 overlapping with the elementary state |B0〉 which, by definition, equals to Z, is

given by

Z =
∣

∣〈B0|B〉
∣

∣

2
= 1−

∫

d3~q

(2π)3
∣

∣〈~q |B〉
∣

∣

2
= 1−

∫

d3~q

(2π)3

∣

∣〈~q |V |B〉
∣

∣

2

[EB + ~q 2/(2µ)]2
, (2.3)

where eq. (2.1) is used. The quantity 1 −
∣

∣〈B0|B〉
∣

∣

2
then describes the probability of the

physical state not being the elementary state or finding the physical state in the two-

particle state. In other words, Z ≃ 1 corresponds to a mostly elementary state whereas a

state with Z ≃ 0 can be interpreted as a predominately molecular one.

In general, the above integral depends on the matrix element 〈~q |V |B〉, which is not

directly measurable. However, for loosely bound states, the quantity Z can be related to

the observables. Consider, for instance, an S-wave bound state with a small binding energy.

The binding energy should be much smaller than the inverse of the range of forces so that

the matrix element 〈~q |V |B〉 can be approximated by a constant gNR. We get from eq. (2.3)

g2NR = (1− Z)
2π

µ2

√

2µEB. (2.4)

Note that, in the past, this equation has been often applied to distinguish composite

particles from elementary ones, see e.g. [15, 18, 23, 52]. The non-relativistic coupling

constant g2NR coincides with the residue of the non-relativistic scattering matrix at the

bound state pole. This can be immediately seen, considering the Low equation

t(E) =
g2NR

E + EB + iǫ
+

∫

d3~q

(2π)3
|t(Eq)|2

E − Eq + iǫ
(2.5)

in the vicinity of the pole [15, 51]. Here, Eq = ~q 2/(2µ).

Finally, we would like to relate the quantity Z to the physical observables, namely, to

the scattering length a and effective range r. Here, we are closely following the path of

ref. [15]. It is important to note that these relations can be derived when the binding energy
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is much smaller than the inverse of the range of forces. We start with the twice-subtracted

dispersion relation for the inverse of t(E)

t−1(E) =
E + EB

g2NR

+
(E + EB)

2

π

∫ ∞

0
dw

Im t−1(w)

(w − E − iǫ)(w + EB)2
, (2.6)

where the two subtraction constants have been determined from eq. (2.5). The S-wave tran-

sition matrix element is related to the non-relativistic S-wave scattering amplitude f(k) =

1/[k cot δ(k)−i k] as f(k) = −µ t(E)/(2π) with k =
√
2µE and δ(k) being the S-wave phase

shift. Thus, one gets Im t−1(w) = µ
√
2µw/(2π). Inserting this into eq. (2.6), we obtain

t−1(E) =
E + EB

g2NR

+
µ

4π
R

(

1

R
+ i k

)2

, (2.7)

where R = 1/
√
2µEB denotes the characteristic distance between the constituents in the

two-body bound system. Comparing the above expression with the effective range ex-

pansion t−1(E) = −µ/2π
(

−1/a+ r k2/2− i k
)

, and using eq. (2.4), one can express the

scattering length and effective range in terms of the binding energy and compositeness [15]

a =
2R (1− Z)

2− Z
, r = − RZ

1− Z
. (2.8)

Therefore, for an S-wave shallow two-body bound state, the compositeness can be measured

by measuring the low-energy scattering parameters.

Next, we turn to the compositeness condition within the framework of the quantum

field theory. For simplicity, let us first consider the situation when a scalar particle described

by a field Φ(x) with the bare mass M0 couples with two scalars φ1,2(x) with the masses

m1,2. The interaction Lagrangian takes the form Lint = g0Φφ1φ2.

Consider now the two-point function of the field Φ(x)

GΦ(s) =

∫

d4x ei Px 〈0 |TΦ(x) Φ(0)| 0〉 , with s = P 2 . (2.9)

Summing up one-loop bubble diagrams to the two-point function, one arrives at the ex-

pression (see figure 1)

GΦ(s) =
i

s−M2
0 − g20 G(s)

, (2.10)

where the one-loop self-energy is given by

G(s) = i

∫

d4q

(2π)4
1

(P − q)2 −m2
1 + iǫ

1

q2 −m2
2 + iǫ

. (2.11)

The relativistic scattering amplitude for the process φ1φ2 → φ1φ2 in the same approxima-

tion is given by (see figure 1)1

T (s) =
g20

s−M2
0 − g20 G(s)

. (2.12)

1Here, in order to be consistent with the non-relativistic formalism, the sign convention S = 1 − iT is

used in the definition of the T -matrix.
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= + + ...

(a) (b)

Figure 1. The scattering matrix for the process φ1φ2 → φ1φ2 (a) and the two-point function of

the field Φ (b). Only one-loop bubbles are summed up. Solid (dashed) lines denote φ1,2 (Φ) fields,

respectively.

The relativistic and the non-relativistic scattering matrices are the same up to an overall

normalization. In the rest frame of the bound system, the relation takes the form

T (s) = 4w1(k)w2(k) t(E) , E =
√
s− (m1 +m2) , (2.13)

where wi(k) =
√

m2
i + k2. Now, let us consider the behavior of the scattering amplitude

in the vicinity of the bound-state pole. The two-point function has the following behavior

GΦ(s) →=
i Z

s−M2 + iǫ
+ less singular terms , M2 =M2

0 + g20G(M
2) , (2.14)

where M is the physical mass.

The residue of the propagator determines the wave function renormalization constant

for the particle Φ:

Z =
1

1− g20 G
′(M2)

= 1 + g2G′(M2), (2.15)

where g2 = Z g20 is the renormalized coupling constant, and G′(M2) = d
ds
G(s)

∣

∣

s=M2 . In or-

der to establish the relation of the quantity Z, defined by eq. (2.15), with its non-relativistic

counterpart, we perform the contour integration over q0 of the loop integral in eq. (2.11):

G(s) =

∫

d3~q

(2π)3
1

2ω1ω2

ω1 + ω2

s+ ~P 2 − (ω1 + ω2)2 + iǫ
, (2.16)

where ω2
1 = (~P − ~q )2 + m2

1 and ω2
2 = ~q 2 + m2

2. In the rest frame of the bound state,

one has ~P = 0. Taking derivative with respect to s, and then taking the non-relativistic

approximation which amounts to ω1 ≃ m1 + ~q 2/(2m1) and ω2 ≃ m2 + ~q 2/(2m2), we get

g2G′(M2) ≃ − g2

8m1m2M

∫

d3~q

(2π)3
1

[EB + ~q 2/(2µ)]2
, (2.17)

where we have used EB = m1 + m2 − M . Taking into account the difference be-

tween relativistic and non-relativistic normalizations, we finally arrive at the relation

g =
√
2m1

√
2m2

√
2MgNR, cf. with eq. (2.5). Comparing now this relation with eq. (2.3),

one immediately sees that the wave function renormalization constant Z is the same as

its non-relativistic counterpart and thus the compositeness condition for an S-wave bound

state can be written as

Z = 1 + g2G′(M2) → 0. (2.18)

One might treat the above argumentation with a grain of salt, since it is based on certain

approximations. Namely, the amplitude is given as a sum of one-loop diagrams only. It
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is, however, clear that the result is valid beyond this approximation, if bound states close

to an elastic threshold are considered. The justification is provided by the statement

that such bound states can be consistently described within a non-relativistic effective

field theory, which is perturbatively matched to the underlying relativistic theory (see,

e.g., ref. [53] for a review on the subject). Such an effective theory is equivalent to the

non-relativistic quantum mechanics (the number of particles is conserved) and hence the

compositeness can be rigorously defined along the lines discussed above. Finally, we would

like to mention that the quantity Z, which is defined in eq. (2.15), is ultraviolet finite, since

the quantity g is defined through the residue of the renormalized scattering amplitude.

3 Compositeness from lattice data

As stated above, the wave function renormalization constant, Z, gives an overlap of

the physical state with the elementary state and hence could be used as a parameter

that describes the compositeness of a given state. Lattice calculations provide a model-

independent way to determine Z from the volume dependence of the spectrum [34, 54–58],

or — as we propose in this paper — from the dependence on the twisting angle. In this

section we set up a finite-volume formalism, which describes the dependence of the bound-

state mass on the volume or twisting angle.

3.1 Finite volume formalism

We consider elastic scattering of particles with the masses m1 and m2 in the S-wave.2

Then, generally, a unitary partial-wave amplitude in infinite volume is given by

T (s) =
1

V −1(s)−G(s)
=

−8π
√
s

k cot δ(k)− ik
, (3.1)

where k2 = 1
4s [s − (m1 +m2)

2][s − (m1 −m2)
2] is the relative momentum squared in the

center of mass (c.m.) frame. Further, the function V −1(s) (“the inverse potential”) is a

regular function in the vicinity of the threshold. The notation used here is reminiscent

of that of unitarized Chiral Perturbation Theory, but eq. (3.1) may in fact describe any

elastic unitary amplitude, with the particular dynamics encoded in the function V (s). The

loop function G(s) is given by eqs. (2.11) and (2.16). This function contains a unitarity

cut. Across this cut, we have ImG(s) = −k/(8π√s). Other (distant) cuts that may be

also present are included in V (s). The loop function G(s) is divergent and has to be

renormalized. Here we do the renormalization with a subtraction constant. As it will be

seen below, the extension to the finite volume is independent of any regulator.

When the particles are put in a finite box of size L, their momenta become discretized

due to boundary conditions. So, the continuum spectrum, which gives rise to the cut in

the infinite volume, becomes a discrete set of two-particle levels. In order to obtain the

spectrum in a finite volume, one should replace the momentum integrals by the sums over

the discretized momenta in the expression of the scattering amplitude. Then, the “finite

2In order to make the presentation transparent, throughout this paper we do not consider the partial-

wave mixing in a finite volume. This effect can be later included in a standard manner.
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volume scattering amplitude” T̃ contains poles on the real axis that correspond to the

discrete two-particle levels. It should be noted that the finite-volume effects in V (s) are

exponentially suppressed (see, e.g., [59]), so the the finite volume scattering amplitude can

be obtained just by changing the loop function by its finite volume counterpart G̃
~θ
L(s) =

G(s) + ∆G
~θ
L(s) [60], where

∆G
~θ
L(s) = lim

Λ→∞





1

L3

∑

|~qn|<Λ

I(~qn)−
∫

|~q|<Λ

d3~q

(2π)3
I(~q )



 . (3.2)

Here I(~q ) denotes the integrand in eq. (2.16), and ~qn the allowed momenta in a finite

volume, whose value depends on the box size L and the boundary conditions used. For

the periodic boundary conditions we have ~qn = 2π
L
~n, ~n ∈ Z

3. In case of twisted boundary

conditions, the momenta also depend on the twisting angle ~θ according to ~qn = 2π
L
~n+

~θ
L
, 0 ≤

θi < 2π. Using the methods of ref. [60], it can be shown that ∆G
~θ
L can be related to the

modified Lüscher function Z
~θ
00, see appendix A,

∆G
~θ
L(s) =

1

8π
√
s

(

ik − 2√
πL

Z
~θ
00(1, k̂

2)

)

+ · · · , (3.3)

where k̂ = kL/(2π) and the dots stand for terms that are exponentially suppressed with

the volume size L [60].

In this paper, we are going to apply Lüscher formalism to study shallow bound states,

where the finite-volume effects are exponentially suppressed. Since, for such states, the

binding momentum κ is presumed to be much smaller than the lightest mass in the system,

the exponentially suppressed corrections emerging, e.g., from the potential V (s) could be

consistently neglected as compared to the corrections ∼ e−κL that arise from Z
~θ
00(1, k̂

2).

Note however that, if masses of the constituents increase for a fixed binding energy, then

the magnitude of the binding momentum also increases and, for the bound states of heavy

mesons, may become comparable to the pion mass. In this case, further study of the

problem is necessary. A recent example of such a study (albeit in the light quark sector)

is given in ref. [61]. In the present paper this issue is not addressed.

Finally, note that the divergences arising at Λ → ∞ in eq. (3.2) cancel between the

sum and the integral, so we can safely send the cutoff to infinity. Thus, ∆G
~θ
L does not

depend on any regulator. In appendix A we show in detail, how ∆G
~θ
L could be calculated

below threshold for different types of boundary conditions.

3.2 Bound states in finite volume

Bound states show up in the scattering amplitude as poles on the real axis below threshold.

Namely, if we have a bound state with the mass M in the infinite volume, the scattering

amplitude should have a pole at s = M2, with the corresponding binding momentum

kB ≡ iκ, κ > 0. From eq. (3.1), it is clear that M and kB satisfy the equation

ψ(k2B) + κ = −8πM
[

V −1(M2)−G(M2)
]

= 0, (3.4)
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where ψ(k2) is the analytic continuation of k cot δ(k) for arbitrary complex values of k2,

which is needed since the bound state is located below threshold, k2B < 0. On the other

hand, the discrete levels in a finite volume are obtained as the poles of the finite-volume

scattering amplitude T̃ and, in particular, the bound state pole gets shifted to ML, with

binding momentum kL ≡ iκL, given by

T̃−1(M2
L) = T−1(M2

L)−∆G
~θ
L(M

2
L) = 0 ⇒ ψ(k2L) + κL + 8πML∆G

~θ
L(M

2
L) = 0 . (3.5)

Note that, below threshold, both T−1 and ∆G
~θ
L are real, so the pole position is real. The

discrete scattering levels above threshold are real as well (as they should be), since the

imaginary part of ∆G
~θ
L cancels exactly with that of T−1.

Next, we relate the finite-volume pole position with the infinite-volume quantities as

the bound state mass, M , and the coupling, g2 (defined as the residue of the scattering

amplitude at the pole s =M2). To this end, we expand ψ(k2L) around the infinite-volume

pole position, kB = iκ,

ψ(k2L) ≃ ψ(k2B)− ψ′(k2B)(κ
2
L − κ2) = −κ− ψ′(k2B)(κL − κ)(κL + κ), (3.6)

where the prime denotes a derivative respect to k2. Then, evaluating the residue at M2 in

eq. (3.1) we obtain

ψ′(k2B) =
1

2κ
− 8πM

g2 dk
2

ds

, (3.7)

where the derivative dk2/ds is to be evaluated at s =M2. Finally, using eqs. (3.5) and (3.6),

we obtain for the pole position shift

κL − κ =
1

1− 2κψ′(k2B)

[

−8πML∆G
~θ
L(M

2
L) + ψ′(k2B)(κL − κ)2

]

(3.8)

This equation gives the bound state pole position, κL (or, equivalently, ML =
√

m2
1 − κ2L+

√

m2
2 − κ2L) as a function of the infinite-volume parameters g2 and κ. It is worth noting

that, within the approximation (3.6), the position of the bound state pole in a finite volume

depends only on these two parameters. This approximation works remarkably well in all

cases considered in this paper.

If the difference κL−κ is small enough, eq. (3.8) can be solved iteratively. For periodic

boundary conditions, with the use of eq. (A.3), it can be shown that the lowest-order

iterative solution reads

κL = κ+
6

1− 2κψ′(k2B)

1

L
e−κL , (3.9)

which coincides with the result given in refs. [34, 55, 57]. However, it will be shown below

that, for shallow bound states, where κ is very small, one should take more than just the

first term in the sum (A.3). Moreover, in some cases, the iterations converge very slowly,

if at all. Therefore, in our opinion, it is safer to consider solving eq. (3.8) numerically,

without further approximations, in order to obtain the finite volume pole position κL.

This is the way we proceed.
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Using eq. (3.8), it is possible to fit the infinite-volume parameters M and g2 from

the bound state levels κL, obtained through lattice simulations at different L or ~θ. This,

in turn, allows one to determine the compositeness parameter from eq. (2.18). However,

in actual lattice simulations, the measured energy levels have some uncertainty, and the

number of different volumes or different twisting angles might be not very large. Therefore,

it is important to know in advance, at which accuracy should be the lattice measurements

carried out, in order to render the extraction of the parameter Z reliable. We address this

question in some exactly solvable models with a given V (s), producing “synthetic lattice

data,” adding random errors and trying to extract back the infinite volume parameters

M, g2 and Z from data.

4 Analysis with two models

4.1 A toy model

The potential in this model is given by a “bare state pole”,

Vtoy(s) =
g20

s− s0
, (4.1)

which depends on two parameters: a bare pole position s0 and a bare coupling constant

g0. By appropriately choosing the value of the bare parameters, we can reproduce a bound

state with any given mass M and coupling g.

If our model describes the interaction of two particles, where a bound state with the

mass M is present, the scattering partial wave amplitude (3.1) should have a pole at

s =M2,

M2 − s0 − g20G(M
2) = 0. (4.2)

The physical coupling of the bound state, g, is given by the residue of the scattering

partial-wave amplitude at the bound state pole

g2 =
g20

1− g20G
′(M2)

= [1 + g2G′(M2)]g20 = Zg20 . (4.3)

One can use above equations to trade the bare parameters for the physical ones in the

expression of the scattering amplitude and write the latter in terms of M and Z:

Ttoy(s) =
Z − 1

(s−M2)ZG′(M2) + (1− Z)[G(s)−G(M2)]
. (4.4)

Note that the above amplitude does not depend on the subtraction constant that renders

G(s) finite. This model can describe a bound state with any given value of the wave

function renormalization constant.

Next, we study the finite volume effects in the bound-state mass. In the actual cal-

culations, we take m1 = mD, m2 = mK and choose the mass of the bound state to be

M = 2340MeV. This is a shallow bound state at 20MeV below threshold, which corre-

sponds to a binding momentum κ ≃ 133MeV. For the mainly molecular state we take
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Figure 2. Bound state mass in the finite volume, ML, as a function of L for periodic boundary

conditions (left) and as a function of the twisting angle for twisted boundary conditions (right).

The solid/dashed lines correspond to Z = 0.1 and Z = 0.9, respectively. The dotted line stands for

the infinite-volume mass M . In order to test the accuracy of the iterative solution, for the case of

Z = 0.1 we also plot (dot-dashed lines) the solutions of eq. (3.8) with an approximate expression

of ∆G
~θ
L (only the first n ≡ |~n| terms are retained in the expression (A.3) for ∆G

~θ
L).

Z = 0.1, and Z = 0.9 is chosen for the mainly elementary one. For each of these two

states, we calculate their finite-volume mass ML as the subthreshold pole position in the

finite-volume scattering amplitude.

In the left panel of figure 2, we show the mass of the two states with Z = 0.1 and

Z = 0.9 as a function of L for periodic boundary conditions.3 These are obtained from

the solution of the exact equation (3.5). It is easy to see that the finite volume effects

are much bigger in the case of the molecular state with Z = 0.1 than in the case of an

elementary state with Z = 0.9. This was of course expected in advance, since small finite-

volume effects point on a compact nature of the state in question. Here we also plot the

solutions of eq. (3.8), using the known values of M and g, taken from the infinite volume

model. In this way we can test the validity of the approximation in eq. (3.6), used to

derive eq. (3.8) from eq. (3.5), which basically states that all relevant dynamics is encoded

only in the two parameters M and g. As can be seen in figure 2, eq. (3.8) is able to

reproduce the synthetic lattice results very accurately. On the other hand, note that for

shallow bound states the binding momentum κ is small, so no wonder that the expansion

in ∆G
~θ
L converges rather slowly. Consequently, retaining only the leading-order term and

constructing iterative solution, see eq. (3.9), might not be sufficient in all cases.

In the right panel of the same figure we show the dependence of the bound-state mass on

the twisting angle ~θ = (θ, θ, θ) for the fixed value of Lmπ = 3. We see that, for such a choice

of twisting, the size of the effect of twisting for a fixed L is almost the double of the maximal

effect caused by the variation of L from the same value to infinity (periodic boundary con-

ditions). Thus, using (partially) twisted boundary conditions to determine Z, besides being

cheaper, could give more accurate results than a method based on the study of the volume-

3Note that throughout this paper we take the physical value of mπ and do not discuss the pion mass

dependence.
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dependence of the energy level. Note also that, for the above choice of the twisting angle,

the twisting effect is maximal. Other choices, e.g., ~θ = (0, 0, θ) lead to a smaller effect.

4.2 DK scattering and the D
∗

s0
(2317)

Now we turn our attention to the realistic case of the hadronic bound state D∗
s0(2317)

in the DK scattering channel with isospin I = 0 and strangeness S = 1. When isospin

symmetry is exact, this state is stable under strong interactions, since it does not couple

to the lighter hadronic channels (the observed decay D∗
s0(2317) → Dsπ breaks isospin

symmetry). Thus, the formalism above, tailored for stable bound states, does apply in

this case. The case of quasi-bound states, which are coupled to inelastic channels, requires

special treatment and is not addressed here.

A popular view on the D∗
s0(2317) meson is that this state is dynamically generated as

a pole through the S-wave interactions between the D-meson and the kaon in the isoscalar

channel [42, 62–66]. We shall study this system, using the model used from ref. [63], which

is based on the leading-order heavy flavor chiral Lagrangian [67–69] and unitarizes the

amplitude [6, 7, 70, 71]. Namely, the infinite-volume amplitude is obtained from eq. (3.1)

with the S-wave-projected potential

V (s) =
1

2

∫ 1

−1
dx

u(s, x)− s

2f2π
=

1

2f2π

[

m2
D +m2

K +
(m2

D −m2
K)2

2s
− 3s

2

]

, (4.5)

where x = cos θ is the cosine of the scattering angle, fπ ≃ 92.4MeV is the pion decay

constant, and s and u are usual Mandelstam variables. We regularize the loop function

with a subtraction constant a(µ), as done in refs. [63, 72]. Its value at the scale µ = mD is

taken to be a(mD) = −0.71. With this value of the subtraction constant, we find a bound

state pole, associated with the D∗
s0(2317), at M = 2316.9 MeV, and the coupling to DK,

which is given by the residue of the pole,

g2 = lim
s→M2

(s−M2)T (s), (4.6)

takes the value g = 10.7 GeV. One can easily calculate the compositeness parameter of

the bound state as well, using eq. (2.18). The calculation yields Z = 0.29. Hence, in this

model, the D∗
s(2317) is predominately a molecular state.

Next, we study this model in a finite volume and consider twisting of different quarks,

from which the D and K mesons consist. The net effect is that these mesons get different

momenta as a result of such twisting, so the expression for G
~θ
L changes. Note that this

issue is important in view of the fact that partial twisting is allowed only for certain quarks

(see section 5 for more details).

In figure 3, we display the volume dependence of the bound state mass for differ-

ent twisting angles which are again chosen as ~θ = (θ, θ, θ). In the left panel, we plot the

L-dependence for three different values of the twisting angle, when twisted boundary condi-

tions are applied to the u-quark. In the right panel, twisted boundary conditions are applied

to the s-quark. As we shall see later, in the latter case the use of partial twisting gives the

same results as using fully twisted boundary conditions. The size of the finite volume ef-

fects, using twisted boundary conditions for the c-quark, is very small, so we do not discuss
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Figure 3. L-dependence of the DK bound-state mass for different twisting angles. Left: twisted

boundary conditions applied to the u-quark. Right: twisted boundary conditions applied to the

s-quark. The dashed lines give the solution of eq. (3.8), using the values for M and g from the

infinite-volume model. In these solutions, approximate expression for G
~θ
L at ~θ = 0 was used, that

amounts to summing up exponentials only up to |~n| ≤ nmax.

this case. In this model, we test again that the predictions obtained from eq. (3.8), using the

values of M and g from the infinite-volume model, reproduce very well the exact solution.

Consequently, all relevant dynamics of the model near threshold is encoded in just two pa-

rameters g and M . On the other hand, we see that retaining only the leading exponential

in the expansion of G
~θ
L will have a large impact on the accuracy. Consequently, the first few

terms should be retained. We see that the convergence is satisfactory: e.g., taking nmax ≥ 3,

where nmax denotes the number of terms retained in the expansion, we see that the largest

difference between the synthetic data and the prediction from eq. (3.8) is less than 0.1MeV.

Analyzing figure 3, we again come to the conclusion that the use of (partially) twisted

boundary conditions can provide a better way to extract the compositeness parameter Z

from lattice results. This can already be seen by comparing the curves for θ = 0 and θ = π.

One namely observes that the size of the effect due to twisting at a fixed volume is almost

twice as big as due to changing the volume for periodic boundary conditions.

In figure 4, for three different volumes, we show the dependence of the bound-state

mass on the twisting angle both for u- and s-quark twisting. On the other hand, taking

the results of the θ-dependence (like in figure 4) at a fixed volume for granted, one

could fit the value of the infinite-volume mass and coupling constant to these data, using

eq. (3.8). After this, it is straightforward to obtain the value of Z. In fact, producing four

synthetic lattice data points at a fixed Lmπ = 2.5 and θ = 0, π/3, 2π/3, π (either for u-

or s- quark twisting), we were able to obtain values for M and g that differ less than 1%

from those calculated from the infinite volume model by fitting the solution to eq. (3.8)

(with nmax = 5) to the synthetic data.

Real lattice simulations, however, produce results which carry uncertainties. Hence,

the question arises, how big these errors could be in order to be still able to determine

Z with a desired accuracy. Since, as seen from the figures, the finite volume effects (for

reasonable volume sizes, say, above Lmπ = 2.5) are at most around 10MeV, one expects
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Figure 4. θ dependence of the DK bound state mass for different lattice volumes. Left: twisted

boundary conditions applied to the u-quark. Right: twisted boundary conditions applied to the

s-quark. The dashed lines give the solution of eq. (3.8), using the values for M and g from the

infinite-volume model. In these solutions, approximate expression for G
~θ
L at ~θ = 0 was used, that

amounts to summing up exponentials only up to |~n| ≤ nmax.

4 lattice data points 8 lattice data points

∆ML (MeV) Lmπ = 2.5 Lmπ = 3.0 Lmπ = 2.5 Lmπ = 3.0

2 0.21 0.47 0.17 0.36

1 0.11 0.23 0.08 0.19

0.5 0.05 0.12 0.04 0.09

Table 1. The accuracy of the extraction of the parameter Z from the fits to the synthetic lattice

data for different input error ∆ML. Four or eight data points and two different volumes Lmπ = 2.5

and Lmπ = 3.0 were used, see main text for details.

that a relatively high accuracy will be needed in the measurement of the bound-state

energy. In order to determine, how high this accuracy should actually be, we assign an

uncertainty to the synthetic data that we generate from our model. In particular, using

the von Neumann rejection method, from the “exact” data points we generate a new,

“randomized” data set, where the central values of each data point are shifted randomly,

following the Gaussian distribution centered at exact data values and with a standard

deviation, given by the lattice data error. Repeating this process several times, we obtain

several sets of synthetic lattice data with errors and central values shifted accordingly. We

then fit each of the randomized data sets and obtain a corresponding value for M and g

(and therefore, for Z), one for each set, ending up with as many values for the parameters,

as many randomized data sets we have generated. We can obtain then the mean and

standard deviation of the distributions for M , g and Z. Thus, for a given data error, we

can estimate the accuracy of the parameter extraction.

For the case of the s-quark twisting, we construct 5000 sets of randomized data at a

fixed volume, for different input errors ∆ML and different number of data points per set.

Fitting the parameters to each set, we obtain the corresponding distributions of 5000 points
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Index Channel Quark content

1 |KvvDvv〉 − 1√
2
|uvs̄vcvūv + dvs̄vcvd̄v〉

2 |KvsDvs〉 − 1√
2
|uss̄vcvūs + dss̄vcvd̄s〉

3 |KvgDvg〉 − 1√
2
|ugs̄vcvūg + dgs̄vcvd̄g〉

Table 2. Scattering channels for the case of I = 0.

for each parameter M , g and Z. In table 1, we show the resulting standard deviations for

Z, which give an idea of the expected accuracy in a fit to actual lattice data. The results

for the case of the u-quark twisting are very similar. We see that, for Lmπ = 2.5 where the

finite volume effects are the largest, we need lattice errors smaller than 1MeV in order to

obtain an accuracy in Z below 0.1. For larger volumes, the accuracy required in the input

lattice data is even bigger. If we increase the number of lattice data points, we get slightly

better results but, in general, the dependence on the increase of the size of the data set is

very mild. For example, we need to use around 20 data points to achieve an accuracy of

order 0.1 in Z, given an input error ∆ML = 2 MeV and volume Lmπ = 2.5.

5 Partially twisted boundary conditions in the DK system

The partial twisting, unlike the full twisting, is more affordable in terms of computational

cost in lattice simulations, because one does not need to generate new gauge configurations.

Thus, it is very interesting to study whether it is possible to extract any physically relevant

information from simulations using this kind of boundary conditions. Problems may arise

when there are annihilation channels present, as is the case in the DK scattering in the

isoscalar channel, where light quarks may annihilate. An analysis of Lüscher approach with

partial twisting for scattering problem in the presence of annihilation channels was recently

addressed in [46]. Namely, a modified partially twisted Lüscher equation was derived for

the πη −KK̄ coupled channel scattering in the framework of non-relativistic EFT.

Here, we address the same problem in the context of the DK scattering. The method

is described in ref. [46], to which the reader is referred for further details. Consider first the

scattering in the infinite volume. We start from building the channel space by tracking the

quarks of different species following through the quark diagrams describing the DK scatter-

ing. It is clear that, since only light quarks may annihilate, the possible final states contain

valence, sea or ghost light quarks with equal masses, as given in table 2. Omitting channel

indices, the resulting algebraic Lippmann-Schwinger equation couples 3 different channels

T = V + V GDKT , (5.1)

where T , V and G are given by 3× 3 matrices.

The free Green function is given by

GDK(s) = G(s) diag (1, 1,−1) (5.2)
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Figure 5. Connected (tc) and disconnected (td) diagrams, emerging in DK → DK scattering

amplitudes with various quark species; l=u, d.

where G(s) is defined in eqs. (2.11) and (2.16), supplemented by the prescription that

the integral is performed in dimensional regularization after expanding the integrand in

powers of 3-momenta (see refs. [46, 73] for details). The minus sign on the diagonal of

the matrix G arises due to fermionic nature of D and K mesons composed of valence and

(commuting) ghost quarks.

The crucial point now is that there exist linear symmetry relations between various

elements of T due to equal valence, sea and ghost quark masses. Note that scattering

matrix elements are given by residues of the 4-point Green functions Γij of the bilinear

quark operators at the poles, corresponding to the external mesonic legs. Decomposing Γij

into connected tc and disconnected td pieces through Wick contractions (see figure 5) and

noting that quark propagators are the same for all light quark species, we get

Γ11 = Γ22 = tc− td , Γ33 = −tc− td , Γ12 = Γ13 = Γ23 = Γ21 = Γ31 = Γ32 = −td , (5.3)

Since in our case there are no neutral states and thus no mixing occurs, following the

argumentation given in ref. [46], it is easy to show that T -matrix obeys the same symmetry

relations as Γ

T11 = T22 = t, T33 = −t+ 2y , T12 = T13 = T23 = T21 = T31 = T32 = y . (5.4)

Here T11 = t corresponds to the physical elastic DK scattering amplitude, i.e scattering

in the sector with valence quarks only. Other diagonal entries are unphysical in the sense

that they correspond to scattering of particles, composed of sea and ghost light quarks.

Non-diagonal elements of T -matrix describe coupling between valence and sea/ghost

sectors through disconnected diagrams. Furthermore, it is straightforward to check from

eq. (5.1) that the elements of potential matrix V satisfy the same symmetry relations as

T and can be expressed in the following form

V =









τ υ υ

υ τ υ

υ υ −τ + 2υ









, (5.5)
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Let us now turn to the case of a finite volume and derive the Lüscher equation for

a couple of particular choices of partially twisted boundary conditions. Note that the

potential V remains the same (up to exponentially suppressed in terms L ), while in the

loop functions the integration is substituted by summation over lattice momenta.

1. Twist the s/c-quark, leaving u and d-quarks to obey periodic boundary condition.

In this case, the matrix of the Green functions is diag
(

G̃
~θ
L, G̃

~0
L,−G̃

~0
L

)

. The solution

of the Lippmann-Schwinger equation in a finite volume for the physical amplitude t

is given by

t =
τ

1− τG̃
~θ
L

, (5.6)

where G̃
~θ
L is the loop function G(s) in a finite volume. We see that the finite-volume

spectrum in case of the partial twisting is determined from the Lüscher equation

1− τG̃
~θ
L(s) = 0, (5.7)

in the same way as in the full-twisting case. Thus, the results obtained by using of

the partially twisted boundary conditions on the c- or s-quark are equivalent to those

using full twisting.

2. Twist the valence u- and d-quarks simultaneously, leaving s- and c-quarks obey peri-

odic boundary condition. In this case, the ghost light quarks also need to be twisted,

and the matrix of the Green functions is diag
(

G̃
~θ
L, G̃

~0
L,−G̃

~θ
L

)

.

The Lüscher equation determining the finite volume spectrum now takes the form

[

1− τG̃
~0
L(s)

] [

1− (τ − υ)G̃
~θ
L(s)

]2
= 0 . (5.8)

Vanishing of the first bracket on the r.h.s. gives the Lüscher equation with no twist-

ing. Note also that the quantity τ − υ is in fact the connected part of the scattering

potential for the isoscalar DK system, which is identical to the DK scattering po-

tential in the isovector channel. Hence, vanishing of the second bracket is equivalent

to the fully twisted Lüscher equation for the isovector DK scattering.4

6 Summary and conclusions

i) Lattice QCD does not only determine the hadron spectrum. Under certain circum-

stances, it may provide information about the nature of hadrons, which renders lat-

tice simulations extremely useful for the search and the identification of exotic states.

Note that the lattice QCD possesses unique tools at its disposal (e.g., the study of

the volume and quark mass dependence of the measured quantities), which are not

available to experiment.

4Since there is no disconnected Wick contraction for the isovector DK scattering, partial twisting is

always equivalent to the full twisting in this case.
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ii) In the present paper, we concentrate on the identification of hadronic molecules on

the lattice. Experimentally, one may apply Weinberg’s compositeness condition to

the near-threshold bound states, in order to distinguish the molecular states from the

elementary ones. To this end, one may use the value of the wave function renormal-

ization constant Z which obeys the inequalities 0 ≤ Z ≤ 1. The vanishing value of

the parameter Z corresponds to the purely molecular state. In this paper we consider

the lattice version of the Weinberg’s condition.

iii) It is known that the quantity Z can be extracted from lattice data by studying the

volume dependence of the measured energy spectrum. We have shown that the same

result can be achieved by measuring the dependence of the spectrum on the twisting

angle in case of twisted boundary conditions. Moreover, within the method proposed,

the expected effect is approximately twice as large in magnitude and comes at a

lower computational cost. Further, we have analyzed synthetic data to estimate the

accuracy of the energy level measurement which is required for a reliable extraction

of the value of Z on the lattice.

iv) As an illustration of the method, we consider the D∗
s0(2317) meson, which is a candi-

date of a DK molecular state. It is proven that, despite the presence of the so-called

annihilation diagrams, one may still use the partially twisted boundary conditions

for the extraction of Z from data if the charm or strange quark is twisted. The effects

which emerge due to partial twisting, are suppressed at large volumes.
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A Formulas for the function ∆G
~θ

L
below threshold

We compute the scattering amplitude in a finite volume by replacing the loop function G

by its finite volume counterpart G̃
~θ
L = G+∆G

~θ
L and obtain synthetic data from the poles

of the finite volume scattering amplitude. In particular, the pole below threshold gives the

mass of the bound state in a finite volume.

For the case of a level below threshold, there exists a fairly simple way to calculate

∆G
~θ
L defined by eq. (3.2), so that the equation (3.8) for κL can be easily solved. Here,

we consider three different cases, one with periodic boundary conditions, and two with

twisted boundary conditions. Depending on which quarks are twisted, the momenta of

the mesons are modified accordingly.
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A.1 Periodic boundary conditions

In the case of periodic boundary conditions, the meson momenta in a box are given by

~qn =
2π~n

L
, ~n ∈ Z

3. (A.1)

We can evaluate the sum in eq. (3.2), using the Poisson summation formula
∑

n δ(n−x) =
∑

n e
2πinx. Transforming the sum into the integral gives

1

L3

∑

~n

I(~qn) =
1

L3

∑

~n

∫

d3~q δ(3)(~q − ~qn)I(~q ) =
∑

~n

∫

d3~q

(2π)3
ei~q·~nLI(~q ). (A.2)

Next, we note that the integrand I(~q ) can be approximated by 1
2
√
s

1
k2−~q2

, since the dif-

ference is exponentially suppressed [60]. Here, k2 is the three-momentum squared of the

particles in the center of mass (c.m.) frame. Then, for k2 < 0, ∆G
~θ
L reads

∆G
~0
L =

1

2
√
s

∑

~n 6=~0

∫

d3~q

(2π)3
ei~q·~nL

k2 − ~q2
= − 1

8π
√
sL

∑

~n 6=~0

1

|~n|e
−|~n|

√
−k2L. (A.3)

The function ∆G
~0
L can be expressed in terms of the Lüscher zeta-function Z00(1, k̂

2), as

follows [60]:

∆G
~0
L =

1

8π
√
s

(

−
√

−k2 − 2√
πL

Z00(1, k̂
2)

)

, (A.4)

Z00(1; k̂
2) =

1√
4π

∑

~n∈Z3

1

~n2 − k̂2
, (A.5)

where k̂ = kL/(2π).

A.2 Twisted boundary conditions: both momenta shifted

In the case of twisted boundary conditions, when the momenta of both particles are shifted

but the particles still are in the c.m. frame, the allowed momenta in a box are:

~qn =
2π

L
~n+

~θ

L
, ~n ∈ Z

3 , (A.6)

where ~θ is the twisting angle. Now, acting in the same way, we can evaluate the sum in

eq. (3.2)

1

L3

∑

~n

I(~qn) =
1

L3

∑

~n

∫

d3~q δ(3)(~q − ~qn)I(~q ) =
∑

~n

∫

d3~q

(2π)3
ei

~θ·~nei~q·~nLI(~q ) (A.7)

and ∆G
~θ
L becomes

∆G
~θ
L = − 1

8π
√
sL

∑

|~n|6=0

1

|~n|e
i~θ·~ne−|~n|

√
−k2L. (A.8)
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Again, we can express ∆G
~θ
L in terms of the Lüscher zeta-function with twisted boundary

conditions, Z
~θ
00(1, k̂

2), as follows,

∆G
~θ
L =

1

8π
√
s

(

−
√

−k2 − 2√
πL

Z
~θ
00(1, k̂

2)

)

, (A.9)

Z
~θ
00(1; k̂

2) =
1√
4π

∑

~n∈Z3

1
(

~n+ ~θ/2π
)2 − k̂2

. (A.10)

For the particular case of ~θ = (θ, θ, θ), the first few terms of the above expansion are given by

∆G
(θ,θ,θ)
L (M) = − 1

8πML

[

6 cos θ e−κL + 3
√
2(1 + cos 2θ)e−

√
2κL

+
2√
3
(3 cos θ + cos 3θ)e−

√
3κL + · · ·

]

(A.11)

with κ =
√
−k2.

A.3 Twisted boundary conditions: only one momentum shifted

Finally, in the case of twisted boundary conditions, when only the momentum of one of

the particles (say, particle 1) is shifted, the allowed momenta in a box are

~q1 =
2π

L
~n1 +

~θ

L
, ~q2 =

2π

L
~n2, ~n1, ~n2 ∈ Z

3 . (A.12)

The particles are not in the c.m. frame any more: the c.m. momentum is equal to ~P = ~θ/L.

Hence, we have to evaluate ∆G
~θ
L in a moving frame with momentum ~P ,

∆G
~θ
L =

1

L3

∑

~n

I(~qn)−
∫

d3~q

(2π)3
I(~q ), I(~q ) =

1

2ω1ω2

ω1 + ω2

P 2
0 − (ω1 + ω2)2

,

ω2
1 = (~P − ~q)2 +m2

1, ω2
2 = ~q2 +m2

2, ~qn =
2π~n

L
, P 2 = P 2

0 − ~P 2 = s. (A.13)

Again, we can approximate the integrand by [74]

I(~q ) = − 1

2P0

1

(~q ′)2 − (~q ′ · ~P )2/P 2
0 − ~k2

+ · · · , ~q ′ = ~q − µ~P , (A.14)

where µ = 1
2

(

1− m2
1
−m2

2

s

)

, ~k is the momentum of the particles in the c.m. frame, and the

dots denote exponentially suppressed terms. Using the Poisson summation formula, we

arrive at

∆G
~θ
L = − 1

2P0

∑

|~n|6=0

e−iµ ~P ·~nL
∫

d3~q

(2π)3
ei~q·~nL

~q2 − ~k2 − (~q·~P )2

P 2
0

(A.15)

= − 1

8π
√
sL

∑

|~n|6=0

1

|γ̂~n|e
−iµ~θ·~ne−|γ̂~n|

√
−k2L, γ̂~n = γ~n‖ + ~n⊥, (A.16)
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where ~n‖ and ~n⊥ are the components parallel and perpendicular to ~P of ~n, and γ = P0/
√
s

is the relativistic gamma-factor. Once again, we can relate ∆G
~θ
L in this case with the

Lüscher zeta function in the moving frame Z
~d
00(1; (q

∗)2) [75], see also refs. [74, 76, 77]:

∆G
~θ
L =

1

8π
√
s

(

−
√

−k2 − 2√
πLγ

Z
~d
00(1; k̂

2)

)

, (A.17)

Z
~d
00(1; k̂

2) =
1√
4π

∑

~r∈Pd

1

~r2 − k̂2
,

Pd = {~r = R
3 | r‖ = γ−1(n‖ − µ|~d|), ~r⊥ = ~n⊥, ~n ∈ Z

3} , (A.18)

where ~d = ~PL/2π = ~θ/2π. For the case of ~θ = (θ, θ, θ), the first few terms in the above

expansion are

∆G
(θ,θ,θ)
L (M) = − 1

8πML

[

6
√
3 cos(µθ)

√

γ2 + 2
e−

√

γ2+2

3
κL

+ 3
√
2e−

√
2κL +

3
√
6 cos(2µθ)

√

2γ2 + 1
e
−
√

2

3
(2γ2+1)κL

+ · · ·
]

. (A.19)

In the case of shallow bound states, the exponential factor κ will be usually quite small,

so in order to reproduce accurately the full function, one should take several terms in the

expansion for ∆G
~θ
L above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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